* using log directory 'd:/Rcompile/CRANpkg/local/4.5/SurvDisc.Rcheck' * using R Under development (unstable) (2025-01-18 r87593 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * checking for file 'SurvDisc/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'SurvDisc' version '0.1.1' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'SurvDisc' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... [2s] OK * checking whether the package can be loaded with stated dependencies ... [2s] OK * checking whether the package can be unloaded cleanly ... [2s] OK * checking whether the namespace can be loaded with stated dependencies ... [2s] OK * checking whether the namespace can be unloaded cleanly ... [2s] OK * checking loading without being on the library search path ... [2s] OK * checking use of S3 registration ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [7s] OK * checking Rd files ... [1s] NOTE checkRd: (-1) AsympDiscSurv.Rd:24: Lost braces; missing escapes or markup? 24 | \code{p0} and \code{p1} are not the survival curves because they also include information about the allocation ratio between groups and the censoring distribution. The j^{th} element of \code{p0} is the probability of being assigned to the control group and being at risk at time \code{time[j]}. \code{p0+p1} is always less than or equal to 1 and should be close to 1 at the first time point and decreasing with time. Note that subjects censored at \code{time[j]} are not in the risk set, only subjects who have an event at this time or later or who are censored later. This definition of censoring time is the definition used in the reference and may be different than used in other places. Add 1 to all censored times if desired to force censoring to conform with the more standard ways. With equal allocation and no censoring, then \code{p0[1]=p1[1]=0.5}. | ^ checkRd: (-1) LongToSurv.Rd:24: Lost braces 24 | The discrete survival function is found given a distribution of covariates and a longitudinal model. The event is defined by the response variable crossing a threshold value either once (confirmation = "none") or twice in successive time points. The distribution of the covariates is assumed to be truncated multivariate normal. If method is \code{"simulation"}, then /code{nsim/accept.rate} values of the covariates are simulated first. The truncation conditions are tested and approximately \code{nsim} of these covariates will be accepted. The survival curve is found and averaged over the covariate values in the sample. If the method is \code{"analytic"}, then the survival curve function is integrated analytically (using the \code{adaptIntegrate} function from the \code{cubature} package). | ^ checkRd: (-1) SampleSizeDiscSurv.Rd:40: Lost braces; missing escapes or markup? 40 | \code{p0} and \code{p1} are not the survival curves because they also include information about the allocation ratio between groups and the censoring distribution. The j^{th} element of \code{p0} is the probability of being assigned to the control group and being at risk at time \code{time[j]}. \code{p0+p1} is always less than or equal to 1 and should be close to 1 at the first time point and decreasing with time. Note that subjects censored at \code{time[j]} are not in the risk set, only subjects who have an event at this time or later or who are censored later. This definition of censoring time is the definition used in the reference and may be different than used in other places. Add 1 to all censored times if desired to force censoring to conform with the more standard ways. With equal allocation and no censoring, then \code{p0[1]=p1[1]=0.5}. | ^ * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... [1s] OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking examples ... [5s] OK * checking PDF version of manual ... [21s] OK * checking HTML version of manual ... [2s] OK * DONE Status: 1 NOTE