
Package ‘bulkAnalyseR’
December 15, 2022

Title Interactive Shiny App for Bulk Sequencing Data

Version 1.1.0

Maintainer Ilias Moutsopoulos <im383@cam.ac.uk>

Description Given an expression matrix from a bulk sequencing experiment,
pre-processes it and creates a shiny app for interactive data
analysis and visualisation. The app contains quality checks,
differential expression analysis, volcano and cross plots,
enrichment analysis and gene regulatory network inference,
and can be customised to contain more panels by the user.

License GPL-2

Encoding UTF-8

URL https://github.com/Core-Bioinformatics/bulkAnalyseR

BugReports https://github.com/Core-Bioinformatics/bulkAnalyseR/issues

RoxygenNote 7.2.3

Depends R (>= 4.0)

Imports ggplot2, shiny, gprofiler2, edgeR, DESeq2, stats, ggrepel,
utils, RColorBrewer, ComplexHeatmap, circlize, grid,
shinyWidgets, shinyjqui, dplyr, magrittr, ggforce, rlang, glue,
preprocessCore, matrixStats, noisyr, tibble, ggnewscale,
ggrastr, GENIE3, visNetwork, DT, scales, shinyjs, tidyr,
shinyLP, UpSetR, stringr, ggVennDiagram

Suggests rmarkdown, knitr, shinythemes, BiocManager, AnnotationDbi,
org.Hs.eg.db, org.Mm.eg.db, readxl, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Ilias Moutsopoulos [aut, cre],
Eleanor Williams [aut, ctb],
Irina Mohorianu [aut, ctb]

Repository CRAN

Date/Publication 2022-12-15 12:20:02 UTC

1

https://github.com/Core-Bioinformatics/bulkAnalyseR
https://github.com/Core-Bioinformatics/bulkAnalyseR/issues

2 R topics documented:

R topics documented:

calculate_condition_mean_sd_per_gene . 3
crossPanel . 4
cross_plot . 5
DEanalysis . 7
DEpanel . 8
DEplotPanel . 9
DEsummaryPanel . 10
determine_uds . 11
enrichmentPanel . 12
expression_heatmap . 12
find_regulators_with_recurring_edges . 14
generateShinyApp . 14
genes_barplot . 17
get_link_list_rename . 18
GRNCisPanel . 19
GRNCustomPanel . 20
GRNpanel . 21
GRNTransPanel . 22
infer_GRN . 23
jaccard_heatmap . 24
jaccard_index . 26
landingPanel . 26
make_heatmap_matrix . 27
make_pattern_matrix . 27
ma_plot . 28
modalityPanel . 31
noisyr_counts_with_plot . 32
patternPanel . 33
plot_GRN . 34
plot_line_pattern . 35
plot_pca . 36
plot_upset . 37
preprocessExpressionMatrix . 38
preprocess_miRTarBase . 39
QCpanel . 41
qc_density_plot . 42
qc_violin_plot . 43
rescale_matrix . 44
sampleSelectPanel . 45
scatter_plot . 45
volcano_plot . 46

Index 50

calculate_condition_mean_sd_per_gene 3

calculate_condition_mean_sd_per_gene

Calculate statistics for each gene of an expression matrix given a
grouping

Description

This function calculates the mean and standard deviation of the expression of each gene in an
expression matrix, grouped by the conditions supplied.

Usage

calculate_condition_mean_sd_per_gene(expression.matrix, condition)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

condition the condition to group the columns of the expression matrix by; must be a factor
of the same length as ncol(expression.matrix)

Value

A tibble in long format, with the mean and standard deviation of each gene in each condition. The
standard deviation is increased to the minimum value in the expression matrix (the noise threshold)
if it is lower, in order to avoid sensitivity to small changes.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

condition <- factor(rep(c("0h", "12h", "36h"), each = 2))
tbl <- calculate_condition_mean_sd_per_gene(expression.matrix.preproc[1:10,], condition)
tbl

4 crossPanel

crossPanel Generate the cross plot panel of the shiny app

Description

These are the UI and server components of the cross plot panel of the shiny app. It is generated by
including ’Cross’ in the panels.default argument of generateShinyApp.

Usage

crossPanelUI(id, metadata, show = TRUE)

crossPanelServer(id, expression.matrix, metadata, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

cross_plot 5

cross_plot Create a cross plot comparing differential expression (DE) results

Description

This function creates a cross plot visualising the differences in log2(fold-change) between two DE
analyses.

Usage

cross_plot(
DEtable1,
DEtable2,
DEtable1Subset,
DEtable2Subset,
df = NULL,
lfc.threshold = NULL,
raster = FALSE,
mask = FALSE,
labnames = c("not DE", "DE both", "DE comparison 1", "DE comparison 2"),
cols.chosen = c("grey", "purple", "dodgerblue", "lightcoral"),
labels.per.region = 5,
fix.axis.ratio = TRUE,
add.guide.lines = TRUE,
add.labels.custom = FALSE,
genes.to.label = NULL,
seed = 0,
label.force = 1

)

Arguments

DEtable1, DEtable2, DEtable1Subset, DEtable2Subset

tables of DE results, usually generated by DEanalysis_edger; the first two
should contain all genes, while the second two should only contain DE genes

df Optionally, pre-computed cross plot table, from cross_plot_prep

lfc.threshold the log2(fold-change) threshold to determine whether a gene is DE

raster whether to rasterize non-DE genes with ggraster to reduce memory usage; par-
ticularly useful when saving plots to files

mask whether to hide genes that were not called DE in either comparison; default is
FALSE

labnames, cols.chosen

the legend labels and colours for the 4 categories of genes ("not DE", "DE both",
"DE comparison 1", "DE comparison 2")

6 cross_plot

labels.per.region

how many labels to show in each region of the plot; the plot is split in 8 regions
using the axes and major diagonals, and the points closest to the origin in each
region are labelled; default is 5, set to 0 for no labels

fix.axis.ratio whether to ensure the x and y axes have the same units, resulting in a square
plot; default is TRUE

add.guide.lines

whether to add vertical and horizontal guide lines to the plot to highlight the
thresholds; default is TRUE

add.labels.custom

whether to add labels to user-specified genes; the parameter genes.to.label must
also be specified; default is FALSE

genes.to.label a vector of gene names to be labelled in the plot; if names are present those are
shown as the labels (but the values are the ones matched - this is to allow custom
gene names to be presented)

seed the random seed to be used for reproducibility; only used for ggrepel::geom_label_repel
if labels are present

label.force passed to the force argument of ggrepel::geom_label_repel; higher values make
labels overlap less (at the cost of them being further away from the points they
are labelling)

Value

The cross plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500, 1:4]

anno <- AnnotationDbi::select(
getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
keys = rownames(expression.matrix.preproc),
keytype = 'ENSEMBL',
columns = 'SYMBOL'

) %>%
dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))

edger <- DEanalysis_edger(
expression.matrix = expression.matrix.preproc,
condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
deseq <- DEanalysis_edger(

expression.matrix = expression.matrix.preproc,

DEanalysis 7

condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
cross_plot(

DEtable1 = edger,
DEtable2 = deseq,
DEtable1Subset = dplyr::filter(edger, abs(log2FC) > 1, pvalAdj < 0.05),
DEtable2Subset = dplyr::filter(deseq, abs(log2FC) > 1, pvalAdj < 0.05),
labels.per.region = 0

)

DEanalysis Perform differential expression (DE) analysis on an expression matrix

Description

This function performs DE analysis on an expression using edgeR or DESeq2, given a vector of
sample conditions.

Usage

DEanalysis_edger(expression.matrix, condition, var1, var2, anno)

DEanalysis_deseq2(expression.matrix, condition, var1, var2, anno)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

condition a vector of the same length as the number of columns of expression.matrix,
containing the sample conditions; this is usually the last column of the metadata

var1, var2 conditions (contained in condition) to perform DE between; note that DESeq2
requires at least two replicates per condition

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

A tibble with the differential expression results for all genes. Columns are

• gene_id (usually ENSEMBL ID matching one of the rows of the expression matrix)

• gene_name (name matched through the annotation)

8 DEpanel

• log2exp (average log2(expression) of the gene across samples)

• log2FC (log2(fold-change) of the gene between conditions)

• pval (p-value of the gene being called DE)

• pvalAdj (adjusted p-value using the Benjamini Hochberg correction)

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:100, 1:4]

anno <- AnnotationDbi::select(
getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
keys = rownames(expression.matrix.preproc),
keytype = 'ENSEMBL',
columns = 'SYMBOL'

) %>%
dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))

edger <- DEanalysis_edger(
expression.matrix = expression.matrix.preproc,
condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
deseq <- DEanalysis_edger(

expression.matrix = expression.matrix.preproc,
condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
DE genes with log2(fold-change) > 1 in both pipelines
intersect(

dplyr::filter(edger, abs(log2FC) > 1, pvalAdj < 0.05)$gene_name,
dplyr::filter(deseq, abs(log2FC) > 1, pvalAdj < 0.05)$gene_name

)

DEpanel Generate the DE panel of the shiny app

Description

These are the UI and server components of the DE panel of the shiny app. It is generated by
including ’DE’ in the panels.default argument of generateShinyApp.

DEplotPanel 9

Usage

DEpanelUI(id, metadata, show = TRUE)

DEpanelServer(id, expression.matrix, metadata, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

DEplotPanel Generate the DE plot plot panel of the shiny app

Description

These are the UI and server components of the DE plot panel of the shiny app. It is generated by
including ’DEplot’ in the panels.default argument of generateShinyApp.

Usage

DEplotPanelUI(id, show = TRUE)

DEplotPanelServer(id, DEresults, anno)

10 DEsummaryPanel

Arguments

id the input slot that will be used to access the value

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

DEresults differential expression results output from DEpanelServer; a reactive list with
slots ’DEtable’ (all genes), ’DEtableSubset’ (only DE genes), ’lfcThreshold’
and ’pvalThreshold’

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

DEsummaryPanel Generate the DE summary panel of the shiny app

Description

These are the UI and server components of the Heatmap panel of the shiny app. It is generated by
including ’DEsummary’ in the panels.default argument of generateShinyApp.

Usage

DEsummaryPanelUI(id, metadata, show = TRUE)

DEsummaryPanelServer(id, expression.matrix, metadata, DEresults, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

determine_uds 11

DEresults differential expression results output from DEpanelServer; a reactive list with
slots ’DEtable’ (all genes), ’DEtableSubset’ (only DE genes), ’lfcThreshold’
and ’pvalThreshold’

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

determine_uds Determine the pattern between two intervals

Description

This function checks if the two input intervals oferlap and outputs the corresponding pattern (up,
down, or straight) based on that.

Usage

determine_uds(min1, max1, min2, max2)

Arguments

min1, max1, min2, max2

the endpoints of the two intervals

Value

A single character (one of "U", "D", "S") representing the pattern

Examples

determine_uds(10, 20, 15, 25) # overlap
determine_uds(10, 20, 25, 35) # no overlap

12 expression_heatmap

enrichmentPanel Generate the enrichment panel of the shiny app

Description

These are the UI and server components of the enrichment panel of the shiny app. It is generated
by including ’Enrichment’ in the panels.default argument of generateShinyApp.

Usage

enrichmentPanelUI(id, show = TRUE)

enrichmentPanelServer(id, DEresults, organism, seed = 13)

Arguments

id the input slot that will be used to access the value

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

DEresults differential expression results output from DEpanelServer; a reactive list with
slots ’DEtable’ (all genes), ’DEtableSubset’ (only DE genes), ’lfcThreshold’
and ’pvalThreshold’

organism organism name to be passed on to gprofiler2::gost; organism names are
constructed by concatenating the first letter of the name and the family name;
default is NA - enrichment is not included to ensure compatibility with datasets
that have non-standard gene names; a vector (of the same length as modality)
can be provided if length(modality) > 1

seed the random seed to be set for the jitter plot, to avoid seemingly different plots
for the same inputs

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

expression_heatmap Create heatmap of an expression matrix

Description

This function creates a heatmap to visualise an expression matrix

expression_heatmap 13

Usage

expression_heatmap(
expression.matrix.subset,
top.annotation.ids = NULL,
metadata,
type = c("Z-score", "Log2 Expression", "Expression"),
show.column.names = TRUE

)

Arguments

expression.matrix.subset

a subset of rows from the expression matrix; rows correspond to genes and
columns correspond to samples

top.annotation.ids

a vector of column indices denoting which columns of the metadata should be-
come heatmap annotations

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

type type of rescaling; one of "Expression" (defautl, does nothing), "Log2 Expres-
sion" (returns log2(x + 1) for every value), "Mean Scaled" (each row is scaled
by its average), "Z-score" (each row is centered and scaled to mean = 0 and sd
= 1)

show.column.names

whether to show the column names below the heatmap; default is TRUE

Value

The heatmap as detailed in the ComplexHeatmap package.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)
print(expression_heatmap(head(expression.matrix.preproc), NULL, metadata))

14 generateShinyApp

find_regulators_with_recurring_edges

Find recurring regulators

Description

This function finds regulators that appear as the same network edge in more than one of the input
networks.

Usage

find_regulators_with_recurring_edges(weightMatList, plotConnections)

Arguments

weightMatList a list of (weighted) adjacency matrices; each list element must be an adjacency
matrix with regulators in rows, targets in columns

plotConnections

the number of connections to subset to

Value

A vector containing the names of the recurring regulators

Examples

weightMat1 <- matrix(
c(0.1, 0.4, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
weightMat2 <- matrix(

c(0.1, 0.2, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
find_regulators_with_recurring_edges(list(weightMat1, weightMat2), 2)

generateShinyApp Generate all files required for an autonomous shiny app

Description

This function creates an app.R file and all required objects to run the app in .rda format in the target
directory. A basic argument check is performed to avoid input data problems. The app directory is
standalone and can be used on another platform, as long as bulkAnalyseR is installed there. It is
recommended to run preprocessExpressionMatrix before this function.

generateShinyApp 15

Usage

generateShinyApp(
shiny.dir = "shiny_bulkAnalyseR",
app.title = "Visualisation of RNA-Seq data",
theme = "flatly",
modality = "RNA",
expression.matrix,
metadata,
organism = NA,
org.db = NA,
panels.default = c("Landing", "SampleSelect", "QC", "GRN", "DE", "DEplot", "DEsummary",

"Enrichment", "GRNenrichment", "Cross", "Patterns"),
panels.extra = tibble::tibble(name = NULL, UIfun = NULL, UIvars = NULL, serverFun =

NULL, serverVars = NULL),
data.extra = list(),
packages.extra = c(),
cis.integration = tibble::tibble(reference.expression.matrix = NULL, reference.org.db =
NULL, reference.coord = NULL, comparison.coord = NULL, reference.table.name = NULL,
comparison.table.name = NULL),

trans.integration = tibble::tibble(reference.expression.matrix = NULL, reference.org.db
= NULL, comparison.expression.matrix = NULL, comparison.org.db = NULL,
reference.table.name = NULL, comparison.table.name = NULL),

custom.integration = tibble::tibble(reference.expression.matrix = NULL,
reference.org.db = NULL, comparison.table = NULL, reference.table.name = NULL,
comparison.table.name = NULL)

)

Arguments

shiny.dir directory to store the shiny app; if a non-empty directory with that name already
exists an error is generated

app.title title to be displayed within the app

theme shiny theme to be used in the app; default is ’flatly’

modality name of the modality, or a vector of modalities to be included in the app
expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

organism organism name to be passed on to gprofiler2::gost; organism names are
constructed by concatenating the first letter of the name and the family name;
default is NA - enrichment is not included to ensure compatibility with datasets

16 generateShinyApp

that have non-standard gene names; a vector (of the same length as modality)
can be provided if length(modality) > 1

org.db database for annotations to transform ENSEMBL IDs to gene names; a list of
bioconductor packaged databases can be found with BiocManager::available("^org\.");
default in NA, in which case the row names of the expression matrix are used
directly - it is recommended to provide ENSEMBL IDs if the database for your
model organism is available; a vector (of the same length as modality) can be
provided if length(modality) > 1

panels.default argument to control which of the default panels will be included in the app;
default is all, but the enrichment panel will not appear unless organism is also
supplied; note that the ’DE’ panel is required for ’DEplot’, ’DEsummary’, ’En-
richment’, and ’GRNenrichment’; a list (of the same length as modality) can be
provided if length(modality) > 1

panels.extra, data.extra, packages.extra

functionality to add new user-created panels to the app to extend functionality
or change the default behaviour of existing panels; a data frame of the modality,
panel UI and server names and default parameters should be passed to pan-
els.extra (see example); the names of any packages required should be passed to
the packages.extra argument; extra data should be a single list and passed to the
data.extra argument

cis.integration

functionality to integrate extra cis-regulatory information into GRN panel. Tib-
ble containing names of reference expression matrix, tables of coordinates for el-
ements corresponding to rows of reference expression matrix (reference.coord),
tables of coordinates to compare against reference.coord (comparison.coord)
and names for comparison tables. See vignettes for more details about inputs.

trans.integration

functionality to integrate extra trans-regulatory information into GRN panel.
Tibble containing names of reference expression matrix, (reference.expression.matrix),
comparison expression matrix (comparison.expression.matrix). Organism database
names for each expression matrix and names for each table are also required.
See vignettes for more details about inputs.

custom.integration

functionality to integrate custom information related to rows of reference ex-
pression matrix. Tibble containing names of reference expression matrix, tables
(comparison.table) with Reference_ID and Reference_Name (matching ENSEMBL
and NAME columns of reference organism database) and Comparison_ID and
Comparison_Name plus a Category column containing extra information. Names
for the reference expression matrix and comparison table (comparison.table.name)
are also required. See vignettes for more details about inputs.

Value

The path to shiny.dir (invisibly).

Examples

expression.matrix.preproc <- as.matrix(read.csv(

genes_barplot 17

system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))
metadata <- data.frame(

srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)
app.dir <- generateShinyApp(

shiny.dir = paste0(tempdir(), "/shiny_Yang2019"),
app.title = "Shiny app for the Yang 2019 data",
modality = "RNA",
expression.matrix = expression.matrix.preproc,
metadata = metadata,
organism = "mmusculus",
org.db = "org.Mm.eg.db"

)
runApp(app.dir)

Example of an app with a second copy of the QC panel
app.dir.qc2 <- generateShinyApp(

shiny.dir = paste0(tempdir(), "/shiny_Yang2019_QC2"),
app.title = "Shiny app for the Yang 2019 data",
expression.matrix = expression.matrix.preproc,
metadata = metadata,
organism = "mmusculus",
org.db = "org.Mm.eg.db",
panels.extra = tibble::tibble(

name = "RNA2",
UIfun = "modalityPanelUI",
UIvars = "'RNA2', metadata[[1]], NA, 'QC'",
serverFun = "modalityPanelServer",
serverVars = "'RNA2', expression.matrix[[1]], metadata[[1]], anno[[1]], NA, 'QC'"

)
)
runApp(app.dir.qc2)

clean up tempdir
unlink(paste0(normalizePath(tempdir()), "/", dir(tempdir())), recursive = TRUE)

genes_barplot Create a bar plot of expression for selected genes across samples in
an experiment

Description

This function creates a clustered bar plot between all samples in the expression matrix for the
selection of genes.

Usage

genes_barplot(sub.expression.matrix, log.transformation = TRUE)

18 get_link_list_rename

Arguments

sub.expression.matrix

subset of the expression matrix containing only selected genes
log.transformation

whether expression should be shown on log (default) or linear scale

Value

The bar plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

print(genes_barplot(head(expression.matrix.preproc,5)))

get_link_list_rename Convert the adjacency matrix to network links

Description

This function converts an adjacency matrix to a data frame of network links, subset to the most
important ones.

Usage

get_link_list_rename(weightMat, plotConnections)

Arguments

weightMat the (weighted) adjacency matrix - regulators in rows, targets in columns
plotConnections

the number of connections to subset to

Value

A data frame with fields from, to and value, describing the edges of the network

Examples

weightMat <- matrix(
c(0.1, 0.4, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
get_link_list_rename(weightMat, 2)

GRNCisPanel 19

GRNCisPanel Generate the GRN cis integration panel of the shiny app

Description

These are the UI and server components of the GRN cis integration panel of the shiny app. It is
generated by including at least 1 row in the cis.integration parameter of generateShinyApp.

Usage

GRNCisPanelUI(id, reference.table.name, comparison.table.name)

GRNCisPanelServer(
id,
expression.matrix,
anno,
coord.table.reference,
coord.table.comparison,
seed = 13

)

Arguments

id the input slot that will be used to access the value
reference.table.name

Name for reference expression matrix and coordinate table
comparison.table.name

Name for comparison coordinate table
expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

coord.table.reference

Table of coordinates corresponding to rows of expression.matrix
coord.table.comparison

Table of coordinates to compare against coord.table.reference
seed Random seed to create reproducible GRNs

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

20 GRNCustomPanel

GRNCustomPanel Generate the GRN custom integration panel of the shiny app

Description

These are the UI and server components of the GRN custom integration panel of the shiny app. It
is generated by including at least 1 row in the custom.integration parameter of generateShinyApp.

Usage

GRNCustomPanelUI(id, title = "GRN with custom integration", show = TRUE)

GRNCustomPanelServer(
id,
expression.matrix,
anno,
comparison.table,
DEresults = NULL,
seed = 13

)

Arguments

id the input slot that will be used to access the value

title Name for custom panel instance

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

comparison.table

Table linking rows of expression.matrix to custom information, for example
miRNAs or transcription factors.

DEresults differential expression results output from DEpanelServer; a reactive list with
slots ’DEtable’ (all genes), ’DEtableSubset’ (only DE genes), ’lfcThreshold’
and ’pvalThreshold’

seed Random seed to create reproducible GRNs

GRNpanel 21

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

GRNpanel Generate the GRN panel of the shiny app

Description

These are the UI and server components of the GRN panel of the shiny app. It is generated by
including ’GRN’ in the panels.default argument of generateShinyApp.

Usage

GRNpanelUI(id, metadata, show = TRUE)

GRNpanelServer(id, expression.matrix, metadata, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

22 GRNTransPanel

GRNTransPanel Generate the GRN trans integration panel of the shiny app

Description

These are the UI and server components of the GRN trans integration panel of the shiny app. It is
generated by including at least 1 row in the trans.integration parameter of generateShinyApp.

Usage

GRNTransPanelUI(id, reference.table.name, comparison.table.name)

GRNTransPanelServer(
id,
expression.matrix,
anno,
anno.comparison,
expression.matrix.comparison,
tablenames,
seed = 13

)

Arguments

id the input slot that will be used to access the value
expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

anno.comparison

annotation data frame containing a match between the row names of the compar-
ison expression matrix and the names that should be rendered within the app and
in output files. The structure matches the anno table created in generateShinyApp
using the org.db specified

expression.matrix.comparison

Additional expression matrix to integrate. Column names must match column
names from expression.matrix.

tablenames, reference.table.name, comparison.table.name

Names for reference and comparison expression tables.

seed Random seed to create reproducible GRNs

infer_GRN 23

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

infer_GRN Perform GRN inference

Description

This function performs Gene Regulatory Network inference on a subset of the expression matrix,
for a set of potential targets

Usage

infer_GRN(
expression.matrix,
metadata,
anno,
seed = 13,
targets,
condition,
samples,
inference_method

)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

seed the random seed to be set when running GRN inference, to ensure reproducibil-
ity of outputs

targets the target genes of interest around which the GRN is built; must be row names
of the expression matrix

condition name of the metadata column to select samples from

24 jaccard_heatmap

samples names of the sample groups to select; must appear in metadata[[condition]]

inference_method

method used for GRN inference; only supported method is currently GENIE3.

Value

The adjacency matrix of the inferred network

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)

anno <- AnnotationDbi::select(
getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
keys = rownames(expression.matrix.preproc),
keytype = 'ENSEMBL',
columns = 'SYMBOL'

) %>%
dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))

res <- infer_GRN(
expression.matrix = expression.matrix.preproc,
metadata = metadata,
anno = anno,
seed = 13,
targets = c("Hecw2", "Akr1cl"),
condition = "timepoint",
samples = "0h",
inference_method = "GENIE3"

)

jaccard_heatmap Create a heatmap of the Jaccard similarity index (JSI) between sam-
ples of an experiment

Description

This function creates a JSI heatmap between all samples in the expression matrix using the specified
number of most abundant genes as input. Metadata columns are used as annotations.

jaccard_heatmap 25

Usage

jaccard_heatmap(
expression.matrix,
metadata,
top.annotation.ids = NULL,
n.abundant = NULL,
show.values = TRUE,
show.row.column.names = TRUE

)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

top.annotation.ids

a vector of column indices denoting which columns of the metadata should be-
come heatmap annotations

n.abundant number of most abundant genes to use for the JSI calculation

show.values whether to show the JSI values within the heatmap squares
show.row.column.names

whether to show the row and column names below the heatmap; default is TRUE

Value

The JSI heatmap as detailed in the ComplexHeatmap package.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)
print(jaccard_heatmap(expression.matrix.preproc, metadata, n.abundant = 100))

26 landingPanel

jaccard_index Calculate the Jaccard similarity index (JSI) between two vectors

Description

Calculate the Jaccard similarity index (JSI) between two vectors

Usage

jaccard_index(a, b)

Arguments

a, b two vectors

Value

The JSI of the two vectors, a single value between 0 and 1.

Examples

jaccard_index(1:4, 2:6)

landingPanel Generate the landing page panel of the shiny app

Description

These are the UI and server components of the landing page panel of the shiny app. It is generated
by including ’Landing’ in the panels.default argument of generateShinyApp.

Usage

landingPanelUI(id, show = TRUE)

landingPanelServer(id)

Arguments

id the input slot that will be used to access the value
show whether to show the panel or not; default is TRUE; there for compatibility with

specifying panels to show

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

make_heatmap_matrix 27

make_heatmap_matrix Create a matrix of the average expression of each gene in each condi-
tion

Description

This function reshapes the tibble output of calculate_condition_mean_sd_per_gene into a ma-
trix of average expression by condition. Its output can be used by expression_heatmap.

Usage

make_heatmap_matrix(tbl, genes = NULL)

Arguments

tbl the output of calculate_condition_mean_sd_per_gene

genes gene names to use for the output; if NULL (the default), all genes will be used

Value

A matrix of averaged expression per gene in each condition.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

condition <- factor(rep(c("0h", "12h", "36h"), each = 2))
tbl <- calculate_condition_mean_sd_per_gene(expression.matrix.preproc[1:10,], condition)
heatmat <- make_heatmap_matrix(tbl)
heatmat

make_pattern_matrix Create a matrix of the patterns between conditions

Description

This function determines the patterns between different conditions of each gene. It should be ap-
plied to the output of calculate_condition_mean_sd_per_gene.

Usage

make_pattern_matrix(tbl, n_sd = 2)

28 ma_plot

Arguments

tbl the output of calculate_condition_mean_sd_per_gene

n_sd number of standard deviations from the mean to use to construct the intervals;
default is 2

Value

A matrix of single character patterns between conditions. The last column is named pattern and is
a concatenation of all other columns.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

condition <- factor(rep(c("0h", "12h", "36h"), each = 2))
tbl <- calculate_condition_mean_sd_per_gene(expression.matrix.preproc[1:10,], condition)
patmat <- make_pattern_matrix(tbl)
patmat

ma_plot Create an MA plot visualising differential expression (DE) results

Description

This function creates an MA plot to visualise the results of a DE analysis.

ma_enhance is called indirectly by ma_plot to add extra features.

Usage

ma_plot(
genes.de.results,
pval.threshold = 0.05,
lfc.threshold = 1,
alpha = 0.1,
ylims = NULL,
add.colours = TRUE,
add.expression.colour.gradient = TRUE,
add.guide.lines = TRUE,
add.labels.auto = TRUE,
add.labels.custom = FALSE,
...

)

ma_enhance(

ma_plot 29

p,
df,
pval.threshold,
lfc.threshold,
alpha,
add.colours,
point.colours = c("#bfbfbf", "orange", "red", "blue"),
raster = FALSE,
add.expression.colour.gradient,
colour.gradient.scale = list(left = c("#99e6ff", "#000066"), right = c("#99e6ff",

"#000066")),
colour.gradient.breaks = waiver(),
colour.gradient.limits = NULL,
add.guide.lines,
guide.line.colours = c("green", "blue"),
add.labels.auto,
add.labels.custom,
annotation = NULL,
n.labels.auto = c(5, 5, 5),
genes.to.label = NULL,
seed = 0,
label.force = 1

)

Arguments

genes.de.results

the table of DE genes, usually generated by DEanalysis_edger

pval.threshold, lfc.threshold

the p-value and/or log2(fold-change) thresholds to determine whether a gene is
DE

alpha the transparency of points; ignored for DE genes if add.expression.colour.gradient
is TRUE; default is 0.1

ylims a single value to create (symmetric) y-axis limits; by default inferred from the
data

add.colours whether to colour genes based on their log2(fold-change) and -log10(p-value);
default is TRUE

add.expression.colour.gradient

whether to add a colour gradient for DE genes to present their log2(expression);
default is TRUE

add.guide.lines

whether to add vertical and horizontal guide lines to the plot to highlight the
thresholds; default is TRUE

add.labels.auto

whether to automatically label genes with the highest |log2(fold-change)| and
expression; default is TRUE

30 ma_plot

add.labels.custom

whether to add labels to user-specified genes; the parameter genes.to.label must
also be specified; default is FALSE

... parameters passed on to ma_enhance

p MA plot as a ggplot object (usually passed by ma_plot)

df data frame of DE results for all genes (usually passed by ma_plot)

point.colours a vector of 4 colours to colour genes with both pval and lfc under thresholds, just
pval under threshold, just lfc under threshold, both pval and lfc over threshold
(DE genes) respectively; only used if add.colours is TRUE

raster whether to rasterize non-DE genes with ggraster to reduce memory usage; par-
ticularly useful when saving plots to files

colour.gradient.scale

a vector of two colours to create a colour gradient for colouring the DE genes
based on expression; a named list with components left and right can be supplied
to use two different colour scales; only used if add.expression.colour.gradient is
TRUE

colour.gradient.breaks, colour.gradient.limits

parameters to customise the legend of the colour gradient scale; especially useful
if creating multiple plots or a plot with two scales; only used if add.expression.colour.gradient
is TRUE

guide.line.colours

a vector with two colours to be used to colour the guide lines; the first colour is
used for the p-value and log2(fold-change) thresholds and the second for double
those values

annotation annotation data frame containing a match between the gene field of df (usually
ENSEMBL IDs) and the gene names that should be shown in the plot labels; not
necessary if df already contains gene names

n.labels.auto a integer vector of length 3 denoting the number of genes that should be au-
tomatically labelled; the first entry corresponds to DE genes with the lowest
p-value, the second to those with highest absolute log2(fold-change) and the
third to those with highest expression; a single integer can also be specified, to
be used for all 3 entries; default is 5

genes.to.label a vector of gene names to be labelled in the plot; if names are present those are
shown as the labels (but the values are the ones matched - this is to allow custom
gene names to be presented)

seed the random seed to be used for reproducibility; only used for ggrepel::geom_label_repel
if labels are present

label.force passed to the force argument of ggrepel::geom_label_repel; higher values make
labels overlap less (at the cost of them being further away from the points they
are labelling)

Value

The MA plot as a ggplot object.

The enhanced MA plot as a ggplot object.

modalityPanel 31

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500, 1:4]

anno <- AnnotationDbi::select(
getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
keys = rownames(expression.matrix.preproc),
keytype = 'ENSEMBL',
columns = 'SYMBOL'

) %>%
dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))

edger <- DEanalysis_edger(
expression.matrix = expression.matrix.preproc,
condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
mp <- ma_plot(edger)
print(mp)

modalityPanel Generate an app panel for a modality

Description

These are the UI and server components of a modality panel of the shiny app. Different modalities
can be included by specifying their inputs in generateShinyApp.

Usage

modalityPanelUI(id, metadata, organism, panels.default)

modalityPanelServer(
id,
expression.matrix,
metadata,
anno,
organism,
panels.default

)

32 noisyr_counts_with_plot

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

organism organism name to be passed on to gprofiler2::gost; organism names are
constructed by concatenating the first letter of the name and the family name;
default is NA - enrichment is not included to ensure compatibility with datasets
that have non-standard gene names; a vector (of the same length as modality)
can be provided if length(modality) > 1

panels.default argument to control which of the default panels will be included in the app;
default is all, but the enrichment panel will not appear unless organism is also
supplied; note that the ’DE’ panel is required for ’DEplot’, ’DEsummary’, ’En-
richment’, and ’GRNenrichment’; a list (of the same length as modality) can be
provided if length(modality) > 1

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

noisyr_counts_with_plot

Apply a modified noisyR counts pipeline printing a plot

Description

This function is identical to the noisyr::noisyr_counts function, with the addition of the option to
print a line plot of the similarity against expression for all samples.

Usage

noisyr_counts_with_plot(
expression.matrix,
n.elements.per.window = NULL,

patternPanel 33

optimise.window.length.logical = FALSE,
similarity.threshold = 0.25,
method.chosen = "Boxplot-IQR",
...,
output.plot = FALSE

)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples

n.elements.per.window

number of elements to have in a window passed to calculate_expression_similarity_counts();
default 10% of the number of rows

optimise.window.length.logical

whether to call optimise_window_length to try and optimise the value of n.elements.per.window
similarity.threshold, method.chosen

parameters passed on to calculate_noise_threshold; they can be single val-
ues or vectors; if they are vectors optimal values are computed by calling calculate_noise_threshold_method_statistics
and minimising the coefficient of variation across samples; all possible values
for method.chosen can be viewed by get_methods_calculate_noise_threshold

... optional arguments passed on to noisyr::noisyr_counts()

output.plot whether to create an expression-similarity plot for the noise analysis (printed to
the console); default is FALSE

Value

The denoised expression matrix.

Examples

expression.matrix <- as.matrix(read.csv(
system.file("extdata", "expression_matrix.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:10, 1:4]
expression.matrix.denoised <- noisyr_counts_with_plot(expression.matrix)

patternPanel Generate the expression patterns panel of the shiny app

Description

These are the UI and server components of the expression patterns panel of the shiny app. It is
generated by including ’Patterns’ in the panels.default argument of generateShinyApp.

34 plot_GRN

Usage

patternPanelUI(id, metadata, show = TRUE)

patternPanelServer(id, expression.matrix, metadata, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

plot_GRN Plot a GRN

Description

This function creates a network plot of a GRN.

Usage

plot_GRN(
weightMat,
anno,
plotConnections,
plot_position_grid,
n_networks,
recurring_regulators

)

plot_line_pattern 35

Arguments

weightMat the (weighted) adjacency matrix - regulators in rows, targets in columns
anno annotation data frame containing a match between the row names of the expres-

sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

plotConnections

the number of connections to subset to
plot_position_grid, n_networks

the position of the plot in the grid (1-4) and the number of networks shown (1-4);
these are solely used for hiding unwanted plots in the shiny app

recurring_regulators

targets to be highlighted; usually the result of find_regulators_with_recurring_edges

Value

A network plot. See visNetwork package for more details.

Examples

weightMat1 <- matrix(
c(0.1, 0.4, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
weightMat2 <- matrix(

c(0.1, 0.2, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
anno <- tibble::tibble(ENSEMBL = c("r1", "r2", "t1", "t2"), NAME = ENSEMBL)
recurring_regulators <- find_regulators_with_recurring_edges(list(weightMat1, weightMat2), 2)
plot_GRN(weightMat1, anno, 2, 1, 1, recurring_regulators)
plot_GRN(weightMat2, anno, 2, 1, 1, recurring_regulators)

plot_line_pattern Create a line plot of average expression across conditions

Description

This function creates a line plot of average expression across conditions for a selection of genes,
usually to visualise an expression pattern.

Usage

plot_line_pattern(
tbl,
genes = NULL,
type = c("Mean Scaled", "Log2 Expression", "Expression"),
show.legend = FALSE

)

36 plot_pca

Arguments

tbl the output of calculate_condition_mean_sd_per_gene

genes gene names to use for the output; if NULL (the default), all genes will be used

type whether the expression values should be scaled using their mean (default), log-
transformed, or not adjusted for the plot

show.legend whether to show the gene names in the legend; should be avoided in many genes
are plotted

Value

A matrix of average gene expression per gene in each condition.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

condition <- factor(rep(c("0h", "12h", "36h"), each = 2))
tbl <- calculate_condition_mean_sd_per_gene(expression.matrix.preproc[1:10,], condition)
plot_line_pattern(tbl)

plot_pca Create a principal component analysis (PCA) plot the samples of an
experiment

Description

This function creates a PCA plot between all samples in the expression matrix using the specified
number of most abundant genes as input. A metadata column is used as annotation.

Usage

plot_pca(
expression.matrix,
metadata,
annotation.id,
n.abundant = NULL,
show.labels = FALSE,
show.ellipses = TRUE,
label.force = 1

)

plot_upset 37

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

annotation.id a column index denoting which column of the metadata should be used to colour
the points and draw confidence ellipses

n.abundant number of most abundant genes to use for the JSI calculation

show.labels whether to label the points with the sample names

show.ellipses whether to draw confidence ellipses

label.force passed to the force argument of ggrepel::geom_label_repel; higher values make
labels overlap less (at the cost of them being further away from the points they
are labelling)

Value

The PCA plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)
plot_pca(expression.matrix.preproc, metadata, 2)

plot_upset Visualise the overlap of edges between different networks

Description

This function creates an UpSet plot of the intersections and specific differences of the edges in the
input networks.

Usage

plot_upset(weightMatList, plotConnections)

38 preprocessExpressionMatrix

Arguments

weightMatList a list of (weighted) adjacency matrices; each list element must be an adjacency
matrix with regulators in rows, targets in columns

plotConnections

the number of connections to subset to

Value

An UpSet plot. See UpSetR package for more details.

Examples

weightMat1 <- matrix(
c(0.1, 0.4, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
weightMat2 <- matrix(

c(0.1, 0.2, 0.8, 0.3), nrow = 2, ncol = 2,
dimnames = list("regulators" = c("r1", "r2"), "targets" = c("t1", "t2"))

)
plot_upset(list(weightMat1, weightMat2), 2)

preprocessExpressionMatrix

Pre-process the expression matrix before generating the shiny app

Description

This function denoises the expression matrix using the noisyR package and then normalises it. It is
recommended to use this function before using generateShinyApp.

Usage

preprocessExpressionMatrix(
expression.matrix,
denoise = TRUE,
output.plot = FALSE,
normalisation.method = c("quantile", "rpm", "tmm", "deseq2", "median"),
n_million = 1,
...

)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples

preprocess_miRTarBase 39

denoise whether to use noisyR to denoise the expression matrix; proceeding without
denoising data is not recommended

output.plot whether to create an expression-similarity plot for the noise analysis (printed to
the console); default is FALSE

normalisation.method

the normalisation method to be used; default is quantile; any unrecognised input
will result in no normalisation being applied, but proceeding with un-normalised
data is not recommended; currently supported normalisation methods are:

quantile Quantile normalisation using the normalize.quantiles function from
the preprocessCore package

rpm RPM (reads per million) normalisation, where each sample is scaled by
1 (or more using the n_million parameter) million and divided by the total
number of reads in that sample

tmm Trimmed Mean of M values normalisation using the calcNormFactors
function from the edgeR package

deseq2 Size factor normalisation using the estimateSizeFactorsForMatrix
function from the DESeq2 package

median Normalisation using the median, where each sample is scaled by the
median expression in the sample divided by the total number of reads in
that sample

n_million scaling factor for RPM normalisation; default is 1 million

... optional arguments passed on to noisyr::noisyr_counts()

Value

The denoised, normalised expression matrix; some rows (genes) may have been removed by noisyR.

Examples

expression.matrix <- as.matrix(read.csv(
system.file("extdata", "expression_matrix.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:10, 1:4]
expression.matrix.preproc <- preprocessExpressionMatrix(expression.matrix)

preprocess_miRTarBase Creates a comparison table for miRTarBase to be used for custom
integration

Description

This function downloads the miRTarBase database for the organism of choice, filters it according to
user-specified values and formats ready for custom integration in generateShinyApp.

40 preprocess_miRTarBase

Usage

preprocess_miRTarBase(
download.dir = ".",
download.method = "auto",
mirtarbase.file = NULL,
organism.code,
org.db,
support.type = c(),
validation.method = c(),
reference = c("mRNA", "miRNA"),
print.support.types = FALSE,
print.validation.methods = FALSE

)

Arguments

download.dir Directory where miRTarBase database will be downloaded.
download.method

Method for downloading miRTarBase file through download.file, see down-
load.file documentation for options for your operating system.

mirtarbase.file

Path to pre-downloaded miRTarBase file for your organism. If this is left NULL
then the file will be downloaded.

organism.code Three letter code for the organism of choice. See miRTarBase website for op-
tions. For human, enter ’hsa’ and for mouse, ’mmu’.

org.db database for annotations to transform ENSEMBL IDs to gene names; a list of
bioconductor packaged databases can be found with BiocManager::available("^org\.").

support.type Subset of entries of the ’Support Type’ field in miRTarBase. Only these values
will be kept. To find the options available for your organism of choice, run the
function once with print.support.types = TRUE.

validation.method

Subset of entries of ’Experiments’ field in miRTarBase. Only these values will
be kept. To find the options available for your organism of choice, run the func-
tion once with print.validation.methods = TRUE.

reference Should the reference category be mRNA or miRNA? The reference category
chosen here must match the reference category chosen in custom.integration
in generateShinyApp. Default in mRNA.

print.support.types, print.validation.methods

Should options for Support Type and Experiments be displayed? Default is
FALSE.

Value

A dataframe with Reference_ID/Name and Comparison_ID/Name columns which can be supplied
to custom.integration in generateShinyApp

QCpanel 41

Examples

comparison.table <- preprocess_miRTarBase(
mirtarbase.file = system.file("extdata", "mmu_MTI_sub.xls", package = "bulkAnalyseR"),
organism.code = "mmu",
org.db = "org.Mm.eg.db",
support.type = "Functional MTI",
validation.method = "Luciferase reporter assay",
reference = "miRNA")

QCpanel Generate the QC panel of the shiny app

Description

These are the UI and server components of the QC panel of the shiny app. It is generated by
including ’QC’ in the panels.default argument of generateShinyApp.

Usage

QCpanelUI(id, metadata, show = TRUE)

QCpanelServer(id, expression.matrix, metadata, anno)

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

42 qc_density_plot

qc_density_plot Create a density plot of log2 expression across samples of an experi-
ment

Description

This function creates a density plot between all samples in the expression matrix. Metadata columns
are used to group samples.

Usage

qc_density_plot(expression.matrix, metadata, annotation.id)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

annotation.id name of metadata column on which to group samples

Value

The density plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)
print(qc_density_plot(expression.matrix.preproc, metadata, 'timepoint'))

qc_violin_plot 43

qc_violin_plot Create a violin/box plot of expression across samples of an experiment

Description

This function creates a combined violin and box plot between all samples in the expression matrix.
Metadata columns are used to colour samples.

Usage

qc_violin_plot(
expression.matrix,
metadata,
annotation.id,
log.transformation = TRUE

)

Arguments

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

annotation.id name of metadata column on which to group samples
log.transformation

whether expression should be shown on log (default) or linear scale

Value

The violin/box plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500,]

metadata <- data.frame(
srr = colnames(expression.matrix.preproc),
timepoint = rep(c("0h", "12h", "36h"), each = 2)

)

44 rescale_matrix

print(qc_violin_plot(expression.matrix.preproc, metadata, 'timepoint'))

rescale_matrix Rescale a matrix

Description

This function rescales the rows of a matrix according to the specified type.

Usage

rescale_matrix(
mat,
type = c("Expression", "Log2 Expression", "Mean Scaled", "Z-score")

)

Arguments

mat the matrix to rescale

type type of rescaling; one of "Expression" (defautl, does nothing), "Log2 Expres-
sion" (returns log2(x + 1) for every value), "Mean Scaled" (each row is scaled
by its average), "Z-score" (each row is centered and scaled to mean = 0 and sd
= 1)

Value

The rescaled matrix.

Examples

mat = matrix(1:10, nrow = 2, ncol = 5)
rescale_matrix(mat, type = "Expression")
rescale_matrix(mat, type = "Log2 Expression")
rescale_matrix(mat, type = "Mean Scaled")
rescale_matrix(mat, type = "Z-score")

sampleSelectPanel 45

sampleSelectPanel Generate the sample select panel of the shiny app

Description

These are the UI and server components of the sample selection panel of the shiny app. It is
generated by including ’SampleSelect’ in the panels.default argument of generateShinyApp.

Usage

sampleSelectPanelUI(id, metadata, show = TRUE)

sampleSelectPanelServer(id, expression.matrix, metadata, modality = "RNA")

Arguments

id the input slot that will be used to access the value

metadata a data frame containing metadata for the samples contained in the expression.matrix;
must contain at minimum two columns: the first column must contain the col-
umn names of the expression.matrix, while the last column is assumed to contain
the experimental conditions that will be tested for differential expression; a list
(of the same length as modality) can be provided if #’ length(modality) > 1

show whether to show the panel or not; default is TRUE; there for compatibility with
specifying panels to show

expression.matrix

the expression matrix; rows correspond to genes and columns correspond to
samples; usually preprocessed by preprocessExpressionMatrix; a list (of the
same length as modality) can be provided if #’ length(modality) > 1

modality the modality, needs to be passed when used within another shiny module for
namespacing reasons

Value

The UI and Server components of the shiny module, that can be used within the UI and Server
definitions of a shiny app.

scatter_plot Create a scatter plot of expression between two samples of an experi-
ment

Description

This function creates a scatter plot between two samples.

46 volcano_plot

Usage

scatter_plot(
sub.expression.matrix,
anno,
genes.to.highlight = c(),
log.transformation = TRUE

)

Arguments

sub.expression.matrix

subset of the expression matrix containing only the two selected samples

anno annotation data frame containing a match between the row names of the expres-
sion.matrix (usually ENSEMBL IDs) and the gene names that should be ren-
dered within the app and in output files; this object is created by generateShinyApp
using the org.db specified

genes.to.highlight

vector of gene names to highlight. These should match entries in the anno
NAME column.

log.transformation

whether expression should be shown on log (default) or linear scale

Value

The scatter plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[,1:2]

print(scatter_plot(expression.matrix.preproc, c()))

volcano_plot Create a volcano plot visualising differential expression (DE) results

Description

This function creates a volcano plot to visualise the results of a DE analysis.

volcano_enhance is called indirectly by volcano_plot to add extra features.

volcano_plot 47

Usage

volcano_plot(
genes.de.results,
pval.threshold = 0.05,
lfc.threshold = 1,
alpha = 0.1,
xlims = NULL,
log10pval.cap = TRUE,
add.colours = TRUE,
add.expression.colour.gradient = TRUE,
add.guide.lines = TRUE,
add.labels.auto = TRUE,
add.labels.custom = FALSE,
...

)

volcano_enhance(
vp,
df,
pval.threshold,
lfc.threshold,
alpha,
add.colours,
point.colours = c("#bfbfbf", "orange", "red", "blue"),
raster = FALSE,
add.expression.colour.gradient,
colour.gradient.scale = list(left = c("#99e6ff", "#000066"), right = c("#99e6ff",

"#000066")),
colour.gradient.breaks = waiver(),
colour.gradient.limits = NULL,
add.guide.lines,
guide.line.colours = c("green", "blue"),
add.labels.auto,
add.labels.custom,
annotation = NULL,
n.labels.auto = c(5, 5, 5),
genes.to.label = NULL,
seed = 0,
label.force = 1

)

Arguments

genes.de.results

the table of DE genes, usually generated by DEanalysis_edger

pval.threshold, lfc.threshold

the p-value and/or log2(fold-change) thresholds to determine whether a gene is
DE

48 volcano_plot

alpha the transparency of points; ignored for DE genes if add.expression.colour.gradient
is TRUE; default is 0.1

xlims a single value to create (symmetric) x-axis limits; by default inferred from the
data

log10pval.cap whether to cap the log10(p-value at -10); any p-values lower that 10^(-10) are
set to the cap for plotting

add.colours whether to colour genes based on their log2(fold-change) and -log10(p-value);
default is TRUE

add.expression.colour.gradient

whether to add a colour gradient for DE genes to present their log2(expression);
default is TRUE

add.guide.lines

whether to add vertical and horizontal guide lines to the plot to highlight the
thresholds; default is TRUE

add.labels.auto

whether to automatically label genes with the highest |log2(fold-change)| and
expression; default is TRUE

add.labels.custom

whether to add labels to user-specified genes; the parameter genes.to.label must
also be specified; default is FALSE

... parameters passed on to volcano_enhance

vp volcano plot as a ggplot object (usually passed by volcano_plot)

df data frame of DE results for all genes (usually passed by volcano_plot)

point.colours a vector of 4 colours to colour genes with both pval and lfc under thresholds, just
pval under threshold, just lfc under threshold, both pval and lfc over threshold
(DE genes) respectively; only used if add.colours is TRUE

raster whether to rasterize non-DE genes with ggraster to reduce memory usage; par-
ticularly useful when saving plots to files

colour.gradient.scale

a vector of two colours to create a colour gradient for colouring the DE genes
based on expression; a named list with components left and right can be supplied
to use two different colour scales; only used if add.expression.colour.gradient is
TRUE

colour.gradient.breaks, colour.gradient.limits

parameters to customise the legend of the colour gradient scale; especially useful
if creating multiple plots or a plot with two scales; only used if add.expression.colour.gradient
is TRUE

guide.line.colours

a vector with two colours to be used to colour the guide lines; the first colour is
used for the p-value and log2(fold-change) thresholds and the second for double
those values

annotation annotation data frame containing a match between the gene field of df (usually
ENSEMBL IDs) and the gene names that should be shown in the plot labels; not
necessary if df already contains gene names

volcano_plot 49

n.labels.auto a integer vector of length 3 denoting the number of genes that should be au-
tomatically labelled; the first entry corresponds to DE genes with the lowest
p-value, the second to those with highest absolute log2(fold-change) and the
third to those with highest expression; a single integer can also be specified, to
be used for all 3 entries; default is 5

genes.to.label a vector of gene names to be labelled in the plot; if names are present those are
shown as the labels (but the values are the ones matched - this is to allow custom
gene names to be presented)

seed the random seed to be used for reproducibility; only used for ggrepel::geom_label_repel
if labels are present

label.force passed to the force argument of ggrepel::geom_label_repel; higher values make
labels overlap less (at the cost of them being further away from the points they
are labelling)

Value

The volcano plot as a ggplot object.

The enhanced volcano plot as a ggplot object.

Examples

expression.matrix.preproc <- as.matrix(read.csv(
system.file("extdata", "expression_matrix_preprocessed.csv", package = "bulkAnalyseR"),
row.names = 1

))[1:500, 1:4]

anno <- AnnotationDbi::select(
getExportedValue('org.Mm.eg.db', 'org.Mm.eg.db'),
keys = rownames(expression.matrix.preproc),
keytype = 'ENSEMBL',
columns = 'SYMBOL'

) %>%
dplyr::distinct(ENSEMBL, .keep_all = TRUE) %>%
dplyr::mutate(NAME = ifelse(is.na(SYMBOL), ENSEMBL, SYMBOL))

edger <- DEanalysis_edger(
expression.matrix = expression.matrix.preproc,
condition = rep(c("0h", "12h"), each = 2),
var1 = "0h",
var2 = "12h",
anno = anno

)
vp <- volcano_plot(edger)
print(vp)

Index

calculate_condition_mean_sd_per_gene,
3, 27, 28, 36

calculate_noise_threshold, 33
calculate_noise_threshold_method_statistics,

33
cross_plot, 5
crossPanel, 4
crossPanelServer (crossPanel), 4
crossPanelUI (crossPanel), 4

DEanalysis, 7
DEanalysis_deseq2 (DEanalysis), 7
DEanalysis_edger, 5, 29, 47
DEanalysis_edger (DEanalysis), 7
DEpanel, 8
DEpanelServer (DEpanel), 8
DEpanelUI (DEpanel), 8
DEplotPanel, 9
DEplotPanelServer (DEplotPanel), 9
DEplotPanelUI (DEplotPanel), 9
DEsummaryPanel, 10
DEsummaryPanelServer (DEsummaryPanel),

10
DEsummaryPanelUI (DEsummaryPanel), 10
determine_uds, 11

enrichmentPanel, 12
enrichmentPanelServer

(enrichmentPanel), 12
enrichmentPanelUI (enrichmentPanel), 12
expression_heatmap, 12, 27

find_regulators_with_recurring_edges,
14, 35

generateShinyApp, 4, 7–12, 14, 19–23, 26,
31–35, 38–41, 45, 46

genes_barplot, 17
get_link_list_rename, 18
get_methods_calculate_noise_threshold,

33

GRNCisPanel, 19
GRNCisPanelServer (GRNCisPanel), 19
GRNCisPanelUI (GRNCisPanel), 19
GRNCustomPanel, 20
GRNCustomPanelServer (GRNCustomPanel),

20
GRNCustomPanelUI (GRNCustomPanel), 20
GRNpanel, 21
GRNpanelServer (GRNpanel), 21
GRNpanelUI (GRNpanel), 21
GRNTransPanel, 22
GRNTransPanelServer (GRNTransPanel), 22
GRNTransPanelUI (GRNTransPanel), 22

infer_GRN, 23

jaccard_heatmap, 24
jaccard_index, 26

landingPanel, 26
landingPanelServer (landingPanel), 26
landingPanelUI (landingPanel), 26

ma_enhance, 28, 30
ma_enhance (ma_plot), 28
ma_plot, 28, 28, 30
make_heatmap_matrix, 27
make_pattern_matrix, 27
modalityPanel, 31
modalityPanelServer (modalityPanel), 31
modalityPanelUI (modalityPanel), 31

noisyr_counts_with_plot, 32

patternPanel, 33
patternPanelServer (patternPanel), 33
patternPanelUI (patternPanel), 33
plot_GRN, 34
plot_line_pattern, 35
plot_pca, 36
plot_upset, 37

50

INDEX 51

preprocess_miRTarBase, 39
preprocessExpressionMatrix, 3, 4, 7, 9, 10,

14, 15, 19–23, 25, 32, 34, 37, 38,
41–43, 45

qc_density_plot, 42
qc_violin_plot, 43
QCpanel, 41
QCpanelServer (QCpanel), 41
QCpanelUI (QCpanel), 41

rescale_matrix, 44

sampleSelectPanel, 45
sampleSelectPanelServer

(sampleSelectPanel), 45
sampleSelectPanelUI

(sampleSelectPanel), 45
scatter_plot, 45

volcano_enhance, 46, 48
volcano_enhance (volcano_plot), 46
volcano_plot, 46, 46, 48

	calculate_condition_mean_sd_per_gene
	crossPanel
	cross_plot
	DEanalysis
	DEpanel
	DEplotPanel
	DEsummaryPanel
	determine_uds
	enrichmentPanel
	expression_heatmap
	find_regulators_with_recurring_edges
	generateShinyApp
	genes_barplot
	get_link_list_rename
	GRNCisPanel
	GRNCustomPanel
	GRNpanel
	GRNTransPanel
	infer_GRN
	jaccard_heatmap
	jaccard_index
	landingPanel
	make_heatmap_matrix
	make_pattern_matrix
	ma_plot
	modalityPanel
	noisyr_counts_with_plot
	patternPanel
	plot_GRN
	plot_line_pattern
	plot_pca
	plot_upset
	preprocessExpressionMatrix
	preprocess_miRTarBase
	QCpanel
	qc_density_plot
	qc_violin_plot
	rescale_matrix
	sampleSelectPanel
	scatter_plot
	volcano_plot
	Index

