Package 'cap'

October 12, 2022
Type Package
Title Covariate Assisted Principal (CAP) Regression for CovarianceMatrix Outcomes
Version 1.0
Date 2018-09-07
Author Yi Zhao zhaoyi1026@gmail.com,
Bingkai Wang <bwang51@jhmi .edu>,
Stewart Mostofsky mostofsky@kennedykrieger.org,Brian Caffo bcaffo@gmail.com,Xi Luo xi.rossi.luo@gmail.com
Maintainer Yi Zhao zhaoyi1026@gmail.com
Description Performs Covariate Assisted Principal (CAP) Regression for covariance matrix out-comes. The method identifies the optimal projection direction which maximizes the log-likelihood function of the log-linear heteroscedastic regression model in the projec-tion space. See Zhao et al. (2018), Covariate Assisted Principal Regression for Covariance Ma-trix Outcomes, doi:10.1101/425033 for details.
Depends MASS, multigroup
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-09-30 23:00:03 UTC
R topics documented:
cap-package 2
capReg 2
cap_beta 5
env.example 7
Index 9

```
cap-package Covariate Assisted Principal (CAP) Regression for Covariance Ma- trix Outcomes
```


Description

cap package performs Covariate Assisted Principal (CAP) Regression for covariance matrix outcomes. The method identifies the optimal projection direction which maximizes the log-likelihood function of the log-linear heteroscedastic regression model in the projection space.

Author(s)

Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com
Bingkai Wang, Johns Hopkins University, <bwang51 @jhmi.edu>
Stewart Mostofsky, Johns Hopkins University, mostofsky@kennedykrieger.org
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
Xi Luo, Brown University, xi.rossi.luo@gmail.com
Maintainer: Yi Zhao zhaoyi1026@gmail.com

References

Zhao et al. (2018) Covariate Assisted Principal Regression for Covariance Matrix Outcomes doi:10.1101/425033

capReg | Covariate Assisted Principal Regression for Covariance Matrix Out- |
| :--- |
| comes |

Description

This function identifies the first k projection directions that satisfies the log-linear model assumption.

Usage

$\operatorname{capReg}(Y, X, n D=1$, method $=c(" C A P ", ~ " C A P-C "), ~ C A P . O C=F A L S E$, max.itr $=1000$, tol $=1 \mathrm{e}-04$, trace $=$ FALSE, score.return $=$ TRUE, gamma0.mat $=$ NULL, ninitial $=$ NULL)

Arguments

Y

X
nD an integer, the number of directions to be identified. Default is 1 .
method a character of optimization method. method = "CAP" considers a weighted L2norm on the γ vector and solve for the optimizer by block coordinated descent; method = "CAP-C" assumes the complete common principal component assumption which identifies the common principal component first and then searches for the optimal PC.
CAP.OC a logic variable. Whether the orthogonal constraint is imposed when identifying higher-order PCs. When method = "CAP-C", this is ignored. Default is FALSE.
max.itr an integer, the maximum number of iterations.
tol a numeric value of convergence tolerance.
trace a logic variable. Whether the solution path is reported. Default is FALSE.
score.return a logic variable. Whether the log-variance in the transformed space is reported. Default is TRUE.
gamma0. mat a data matrix, the initial value of γ. Default is NULL, and initial value is randomly chosen.
ninitial an integer, the number of different initial value is tested. When it is greater than 1 , multiple initial values will be tested, and the one yields the minimum objective function will be reported. Default is NULL.

Details

Considering $y_{i t}$ are p-dimensional independent and identically distributed random samples from a multivariate normal distribution with mean zero and covariance matrix Σ_{i}. We assume there exits a p-dimensional vector γ such that $z_{i t}:=\gamma^{\prime} y_{i t}$ satisfies the multiplicative heteroscedasticity:

$$
\log \left(\operatorname{Var}\left(z_{i t}\right)\right)=\log \left(\gamma^{\prime} \Sigma_{i} \gamma\right)=\beta_{0}+x_{i}^{\prime} \beta_{1}
$$

, where x_{i} contains explanatory variables of subject i, and β_{0} and β_{1} are model coefficients.
Parameters γ and $\beta=\left(\beta_{0}, \beta_{1}^{\prime}\right)^{\prime}$ are study of interest, and we propose to estimate them by maximizing the likelihood function,

$$
\ell(\beta, \gamma)=-\frac{1}{2} \sum_{i=1}^{n} T_{i}\left(x_{i}^{\prime} \beta\right)-\frac{1}{2} \sum_{i=1}^{n} \exp \left(-x_{i}^{\prime} \beta\right) \gamma^{\prime} S_{i} \gamma
$$

where $S_{i}=\sum_{t=1}^{T_{i}} y_{i t} y_{i t}^{\prime}$. To estimate γ, we impose the following constraint

$$
\gamma^{\prime} H \gamma=1
$$

where H is a positive definite matrix. In this study, we consider the choice that

$$
H=\bar{\Sigma}, \quad \bar{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{T_{i}} S_{i}
$$

For higher order projecting directions, an orthogonal constraint is imposed as well.

Value

When method = "CAP",
gamma the estimate of γ vectors, which is a $p \times n D$ matrix.
beta the estimate of β for each projecting direction, which is a $q \times n D$ matrix, where $q-1$ is the number of explanatory variables.
orthogonality an ad hoc checking of the orthogonality between γ vectors.
DfD output of both average (geometric mean) and individual level of "deviation from diagonality".
score \quad an output when score. return $=$ TRUE. A $n \times n D$ matrix of $\log \left(\hat{\gamma}^{\prime} S_{i} \hat{\gamma}\right)$ value.
When method = "CAP-C",
gamma the estimate of γ vectors, which is a $p \times n D$ matrix.
beta the estimate of β for each projecting direction, which is a $q \times n D$ matrix, where $q-1$ is the number of explanatory variables.
orthogonality an ad hoc checking of the orthogonality between γ vectors.
PC.idx a vector of length nD , the order index of identified γ vectors among all the common principal components.
aPC.idx the order index of all the principal components that satisfy the log-linear model and the eigenvalue condition.
$\operatorname{minmax} \quad a \operatorname{logic}$ output, whether the identified γ vectors are estimated from the minmax approach. If FALSE, indicating the eigenvalue condition is not satisfied for any principal component.
score \quad an output when score. return $=$ TRUE. A $n \times n D$ matrix of $\log \left(\hat{\gamma}^{\prime} S_{i} \hat{\gamma}\right)$ value.

Author(s)

Yi Zhao, Johns Hopkins University, <zhaoyi1026@ gmail.com>
Bingkai Wang, Johns Hopkins University, <bwang51 @jhmi.edu>
Stewart Mostofsky, Johns Hopkins University, mostofsky@kennedykrieger.org
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
Xi Luo, Brown University, xi.rossi.luo@gmail.com

References

Zhao et al. (2018) Covariate Assisted Principal Regression for Covariance Matrix Outcomes doi:10.1101/425033

Examples

\#
data(env.example)
X<-get("X", env.example)
$Y<-$ get (" Y ", env.example)

```
# method = "CAP"
# without orthogonal constraint
re1<-capReg(Y,X,nD=2,method=c("CAP"),CAP.OC=FALSE)
# with orthogonal constraint
re2<-capReg(Y,X,nD=2,method=c("CAP"),CAP.OC=TRUE)
# method = "CAP-C"
re3<-capReg(Y,X,nD=2,method=c("CAP-C"))
#############################################
```

```
cap_beta Inference of model coefficients
```


Description

This function performs inference on the model coefficient β.

Usage

```
cap_beta(Y, X, gamma = NULL, beta = NULL, method = c("asmp", "LLR"),
    boot = FALSE, sims = 1000, boot.ci.type = c("bca", "perc"),
    conf.level = 0.95, verbose = TRUE)
```


Arguments

Y

X
gamma a p-dimensional vector, the projecting direction γ. Default is NULL. If gamma $=$ NULL, an error warning will be returned.
beta a q-dimensional vector, the model coefficient β. Default is NULL. If beta $=$ NULL, when boot $=$ FALSE, β will be estimated using the provided γ.
method a character of inference method. If method = "asmp", the inference is made based on the asymptotic variance; if method = "LLR", the likelihood ratio test is conducted. When boot = TRUE, this argument is ignored.
boot a logic variable, whether bootstrap inference is performed.
sims a numeric value, the number of bootstrap iterations will be performed.
boot.ci.type a character of the way of calculating bootstrap confidence interval. If boot.ci.type = "bca", the bias corrected confidence interval is returned; if boot.ci.type = "perc", the percentile confidence interval is returned.
conf.level a numeric value, the designated significance level. Default is 0.95.
verbose a logic variable, whether the bootstrap procedure is printed. Default is TRUE.

Details

Considering $y_{i t}$ are p-dimensional independent and identically distributed random samples from a multivariate normal distribution with mean zero and covariance matrix Σ_{i}. We assume there exits a p-dimensional vector γ such that $z_{i t}:=\gamma^{\prime} y_{i t}$ satisfies the multiplicative heteroscedasticity:

$$
\log \left(\operatorname{Var}\left(z_{i t}\right)\right)=\log \left(\gamma^{\prime} \Sigma_{i} \gamma\right)=\beta_{0}+x_{i}^{\prime} \beta_{1}
$$

where x_{i} contains explanatory variables of subject i, and β_{0} and β_{1} are model coefficients.
The β coefficient is estimated by maximizing the likelihood function. The asymptotic variance is obtained based on maximum likelihood estimator theory.

Value

When method $=$ "asmp", the output is a $q \times 6$ data frame containing the estimate of β coefficient, the asymptotic standard error, the test statistic, the p-value, and the lower and upper bound of the confidence interval.

When method = "LLR", the output is a $q \times 3$ data frame containing the estimate of β coefficient, the test statistic, and the p-value.
When boot = TRUE,
Inference point estimate of the β coefficient, as well as the corresponding standard error, test statistic, p-value, and the lower and upper bound of the confidence interval.
beta.boot the estimate of the β coefficient in each iteration.

Author(s)

Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com
Bingkai Wang, Johns Hopkins University, bwang51@jhmi.edu
Stewart Mostofsky, Johns Hopkins University, <mostofsky @ kennedykrieger.org>
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
Xi Luo, Brown University, <xi.rossi.luo@ gmail.com>

References

Zhao et al. (2018) Covariate Assisted Principal Regression for Covariance Matrix Outcomes doi:10.1101/425033

Examples

```
#############################################
data(env.example)
X<-get("X",env.example)
Y<-get("Y",env.example)
Phi<-get("Phi",env.example)
# asymptotic variance
re1<-cap_beta(Y,X,gamma=Phi[, 2],method=c("asmp"),boot=FALSE)
```

\# likelihood ratio test
re2<-cap_beta(Y,X, gamma=Phi[, 2], method=c("LLR"), boot=FALSE)
\# bootstrap confidence interval
re3<-cap_beta(Y, X, gamma=Phi[, 2], boot=TRUE, sims=500, verbose=FALSE)
\#

```
env.example Simulated data
```


Description

"env.example" is an R environment containing the data generated from the proposed model with $p=2$.

Usage

data("env.example")

Format

An R environment
X a $n \times q$ data matrix, the covariate matrix of n subjects with $q-1$ predictors. The first column is all ones.
Y a list of length n. Each list element is a $T \times p$ matrix, the data matrix of T observations from p features.

Phi a $p \times p$ matrix, the true projection matrix used to generate the data.
beta a $q \times p$ matrix, the true coefficient matrix used to generate the data.
Sigma a $p \times p \times n$ array, the covariance matrix of the n subjects.

Details

For subject i observation $t(i=1, \ldots, n, t=1, \ldots, T), y_{i t}=\left(y_{i t 1}, \ldots, y_{i t p}\right)$ was generated from a p-dimensional normal distribution with mean zero and covariance Σ, where

$$
\Sigma=\Phi \Lambda \Phi
$$

Φ is an orthonormal matrix and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is a diagonal matrix. The eigenvalues $\lambda_{i j}$ $(j=1, \ldots, p)$ satisfies the following log-linear model

$$
\log \left(\lambda_{i j}\right)=x_{i}^{\top} \beta_{j}
$$

where β_{j} is the j th column of beta.

Examples

data(env.example)
X<-get("X", env.example)
$Y<-g e t(" Y$ ", env.example)

Index

```
* datasets
    env.example, }
* models
    cap_beta, 5
    capReg, 2
* package
    cap-package, 2
cap (cap-package), 2
cap-package, 2
cap_beta, 5
capReg, 2
```

env.example, 7

