Valgrind Documentation

Release 3.11.0 22 September 2015
Copyright © 2000-2015 AUTHORS

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with
no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled The
GNU Free Documentation License.

This is the top level of Valgrind’s documentation tree. The documentation is contained in six logically separate
documents, as listed in the following Table of Contents. To get started quickly, read the Valgrind Quick Start Guide.
For full documentation on Valgrind, read the Valgrind User Manual.

Valgrind Documentation

Table of Contents

The Valgrind Quick Start Guide ii
Valgrind User Manual iv
Valgrind FAQ ..o clxxviii
Valgrind Technical Documentationttt X
Valgrind Distribution Documents XX
GINU LICENSES . ..ttt e e e e e e e e CXXVi

The Valgrind Quick Start Guide

Release 3.11.0 22 September 2015
Copyright © 2000-2015 Valgrind Developers
Email: valgrind@valgrind.org

url(http://www.valgrind.org/info/developers.html)

The Valgrind Quick Start Guide

Table of Contents

The Valgrind Quick Start Guide 1
Lo IntrodUCtion 1
2. Preparing yOUr PrOZIAMttt ettt et et e e e e e e e e et e e 1
3. Running your program under Memcheck 1
4. Interpreting Memcheck’s output 1
5. CaVEALS . 3
6. More Information 3

iv

The Valgrind Quick Start Guide

The Valgrind Quick Start Guide
1. Introduction

The Valgrind tool suite provides a number of debugging and profiling tools that help you make your programs faster
and more correct. The most popular of these tools is called Memcheck. It can detect many memory-related errors
that are common in C and C++ programs and that can lead to crashes and unpredictable behaviour.

The rest of this guide gives the minimum information you need to start detecting memory errors in your program with
Memcheck. For full documentation of Memcheck and the other tools, please read the User Manual.

2. Preparing your program

Compile your program with —g to include debugging information so that Memcheck’s error messages include exact
line numbers. Using -00 is also a good idea, if you can tolerate the slowdown. With —O1 line numbers in
error messages can be inaccurate, although generally speaking running Memcheck on code compiled at —~01 works
fairly well, and the speed improvement compared to running —00 is quite significant. Use of —02 and above is not
recommended as Memcheck occasionally reports uninitialised-value errors which don’t really exist.

3. Running your program under Memcheck

If you normally run your program like this:
myprog argl arg2

Use this command line:
valgrind —-leak-check=yes myprog argl arg2

Memcheck is the default tool. The —-1eak-check option turns on the detailed memory leak detector.

Your program will run much slower (eg. 20 to 30 times) than normal, and use a lot more memory. Memcheck will
issue messages about memory errors and leaks that it detects.

4. Interpreting Memcheck’s output

Here’s an example C program, in a file called a.c, with a memory error and a memory leak.

The Valgrind Quick Start Guide

#include <stdlib.h>

void f (void)
{
int* x = malloc (10 * sizeof (int));
x[10] = 0; // problem 1: heap block overrun
} // problem 2: memory leak —— x not freed

int main (void)
{

£0) 7
return 0;

Most error messages look like the following, which describes problem 1, the heap block overrun:

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

==19182== by 0x80483AB: main (example.c:11)

==19182== Address 0x1BA45050 is 0 bytes after a block of size 40 alloc’d
==19182== at Ox1B8FF5CD: malloc (vg_replace_malloc.c:130)

==19182== by 0x8048385: f (example.c:5)

==19182== by 0x80483AB: main (example.c:11)

Things to notice:

* There is a lot of information in each error message; read it carefully.
* The 19182 is the process ID; it’s usually unimportant.

* The first line ("Invalid write...") tells you what kind of error it is. Here, the program wrote to some memory it
should not have due to a heap block overrun.

* Below the first line is a stack trace telling you where the problem occurred. Stack traces can get quite large, and be
confusing, especially if you are using the C++ STL. Reading them from the bottom up can help. If the stack trace
is not big enough, use the ~—num-callers option to make it bigger.

* The code addresses (eg. 0x804838F) are usually unimportant, but occasionally crucial for tracking down weirder
bugs.

* Some error messages have a second component which describes the memory address involved. This one shows
that the written memory is just past the end of a block allocated with malloc() on line 5 of example.c.

The Valgrind Quick Start Guide

It’s worth fixing errors in the order they are reported, as later errors can be caused by earlier errors. Failing to do this
is a common cause of difficulty with Memcheck.

Memory leak messages look like this:

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at O0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: £ (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

The stack trace tells you where the leaked memory was allocated. Memcheck cannot tell you why the memory leaked,
unfortunately. (Ignore the "vg_replace_malloc.c", that’s an implementation detail.)

There are several kinds of leaks; the two most important categories are:

* "definitely lost": your program is leaking memory -- fix it!

* "probably lost": your program is leaking memory, unless you’re doing funny things with pointers (such as moving
them to point to the middle of a heap block).

Memcheck also reports uses of uninitialised values, most commonly with the message "Conditional jump or move
depends on uninitialised value(s)". It can be difficult to determine the root cause of these errors. Try using the
-—track-origins=yes to get extra information. This makes Memcheck run slower, but the extra information
you get often saves a lot of time figuring out where the uninitialised values are coming from.

If you don’t understand an error message, please consult Explanation of error messages from Memcheck in the
Valgrind User Manual which has examples of all the error messages Memcheck produces.

5. Caveats

Memcheck is not perfect; it occasionally produces false positives, and there are mechanisms for suppressing these
(see Suppressing errors in the Valgrind User Manual). However, it is typically right 99% of the time, so you should be
wary of ignoring its error messages. After all, you wouldn’t ignore warning messages produced by a compiler, right?
The suppression mechanism is also useful if Memcheck is reporting errors in library code that you cannot change.
The default suppression set hides a lot of these, but you may come across more.

Memcheck cannot detect every memory error your program has. For example, it can’t detect out-of-range reads or
writes to arrays that are allocated statically or on the stack. But it should detect many errors that could crash your
program (eg. cause a segmentation fault).

Try to make your program so clean that Memcheck reports no errors. Once you achieve this state, it is much easier to
see when changes to the program cause Memcheck to report new errors. Experience from several years of Memcheck
use shows that it is possible to make even huge programs run Memcheck-clean. For example, large parts of KDE,
OpenOffice.org and Firefox are Memcheck-clean, or very close to it.

6. More information

Please consult the Valgrind FAQ and the Valgrind User Manual, which have much more information. Note that the
other tools in the Valgrind distribution can be invoked with the ——t ool option.

Valgrind User Manual

Release 3.11.0 22 September 2015
Copyright © 2000-2015 Valgrind Developers
Email: valgrind@valgrind.org

url(http://www.valgrind.org/info/developers.html)

Valgrind User Manual

Table of Contents

Lo IntrodUCtion 1
1.1. An Overview of Valgrind e 1
1.2. How to navigate this manual i e 1
2. Using and understanding the Valgrind core i 3
2.1. What Valgrind does with your programttt 3
2.2, Getting Started 4
2.3. The COMMENATYttt et e et e e e e e e 4
2.4, REPOTtING OF BITOIS . ..ottt ettt ettt et e ettt e e e e e e e 6
2.5, SUPPIESSING BITOIS .. et ettt ettt ettt ettt e et e ettt e e e et e e e e e e e 7
2.6. Core Command-1ine OPtioNSttt e e e 9
2.6.1. Tool-selection OPtiONt e e 9
2.6.2. Basic OPtiONS 10
2.6.3. Error-related OPHONSttt ettt et e e 12
2.6.4. malloc-related OPLONSottt ettt et e e e 19
2.6.5. Uncommon OPLONSttt ettt et ettt e e e 19
2.6.6. Debugging OPtionst 26
2.6.7. Setting Default Options 26
2.7. Support for TRreadst 27
2.7.1. Scheduling and Multi-Thread Performance i 27
2.8. Handling of Signals 28
2.9. Building and Installing Valgrind 28
2.10. If You Have Problems 29
20110 LIMItatiONS ..o 29
2.12. An Example RUN ..o 32
2.13. Warning Messages You Might See e 32
3. Using and understanding the Valgrind core: Advanced TOpIiCSttt 34
3.1. The Client Request mechanism i e 34
3.2. Debugging your program using Valgrind gdbserverand GDBo oL 36
3.2.1. Quick Start: debug@ing in 3 StEPSttt 36
3.2.2. Valgrind gdbserver overall organisationouuioiniiiitini 37
3.2.3. Connecting GDB to a Valgrind gdbservero 37
3.2.4. Connecting to an Android gdbserver 39
3.2.5. Monitor command handling by the Valgrind gdbserver oL 40
3.2.6. Valgrind gdbserver thread informationo i 42
3.2.7. Examining and modifying Valgrind shadow registerscc.ciiiiiiiiiiiiiieann.. 42
3.2.8. Limitations of the Valgrind gdbserver i 43
3.2.9. vgdb command line OPtiONSt 47
3.2.10. Valgrind monitor commands 48
3.3, Function Wrappingttt 51
33.1. ASimple Example 52
3.3.2. Wrapping SpeCifiCationsttt ittt e e 52
3.3.3. Wrapping SeMANtiCSttt ettt et e et e e e e e 53
334, Debugging ... 54
3.3.5. Limitations - control low 55
3.3.6. Limitations - original function SINAtUIESoouuuttnnteennneeme e, 55
337 EXAMPIES .. oottt 56
4. Memcheck: a memory error deteCtoroonuttiinn it e 57
41 OVEIVIEW ..ottt et e e e 57
4.2. Explanation of error messages from Memcheck L 57
4.2.1. Illegal read / Tllegal WIIte @ITOISttt ettt e et e e e 57
4.2.2. Use of uninitialised values e 58
4.2.3. Use of uninitialised or unaddressable values in system callso .. 59

Valgrind User Manual

424 THegal frEesottt 59
4.2.5. When a heap block is freed with an inappropriate deallocation function 60
4.2.6. Overlapping source and destination blocks i i 61
4.2.7. Fishy argument values i 61
4.2.8. Memory leak deteCtioniinuut ittt 62
4.3. Memcheck Command-Line Optionsooinut ittt 66
4.4, Writing suppression flles 69
4.5. Details of Memcheck’s checking machinery i 70
4.5.1. Valid-value (V) Ditst e e 71
4.5.2. Valid-address (A) DItS i 72
4.5.3. Putting it all toZether e 73
4.6. Memcheck Monitor Commandsuiinuutitn i 74
4.7, Client ReqUESES e e 79
4.8. Memory Pools: describing and working with custom allocators 81
4.9. Debugging MPI Parallel Programs with Valgrind il 83
4.9.1. Building and installing the Wrappersioiuiiiiiiiiiiii i 83
4.9.2. Getting started 84
4.9.3. Controlling the wrapper library i 84
494 FUNCHONSttt e e e 85
40 . LY PO it 85
4.9.6. WIItING NEW WIAPPETS ..ottt tte ittt ettt et et et e e et e e et e e et et ee e 86
4.9.7. What to expect when using the Wrappersoouutt ottt 86
5. Cachegrind: a cache and branch-prediction profiler 88
5.0 OVEIVIBW ..o 88
5.2. Using Cachegrind, cg_annotate and CZ_MEIZeoiiuuuiiinuiaiiniaiinaiieaaane... 88
5.2.1. Running Cachegrind e 89
5.22.0utput FIle ... 89
5.2.3. RUNNINg CZ_annotateo.uiinui ittt 90
5.2.4. The Output Preamble 90
5.2.5. The Global and Function-level Counts i 91
5.2.6. Line-by-line Counts i 92
5.2.7. Annotating Assembly Code Programs i 94
5.2.8. Forking Programsc ..ot 159
5.2.9. cg_annotate Warningsuiinnntotntt ettt e 94
5.2.10. Unusual Annotation CaSEsc..uutntia ittt e e 95
5.2.11. Merging Profiles with cg_merge 96
5.2.12. Differencing Profiles with cg_diff 96
5.3. Cachegrind Command-line OPtionSc..uetinut ottt 97
5.4. cg_annotate Command-line OPtionsiinutiiitiii i 97
5.5. cg_merge Command-line Options i 98
5.6. cg_diff Command-line OptionS i 98
5.7. Acting on Cachegrind’s Information i 99
5.8. Simulation Details 100
5.8.1. Cache Simulation Specifics i 100
5.8.2. Branch Simulation Specifics 101
5.8.3. ACCUTACY ...t 101
5.9. Implementation Details 102
5.9.1. How Cachegrind Works o 102
5.9.2. Cachegrind Output File Format i e e 102
6. Callgrind: a call-graph generating cache and branch prediction profiler 104
6.1, OVeIVIBW ..o 104
6.1.1. Functionality 104
6.1.2. BaSiC USAZEttt 105
6.2. Advanced USageciinuiti i 106

vi

Valgrind User Manual

6.2.1. Multiple profiling dumps from one program runcco.ueeiiiitemiieeniieeanieeennn. 106
6.2.2. Limiting the range of collected eVentsttt 107
6.2.3. Counting global bus @VeNnts i 108
6.2.4. Avoiding CyCles i 108
6.2.5. Forking Programso 109
6.3. Callgrind Command-line OPtiONSuttinntt ittt 109
6.3.1. Dump Creation OPLtiONSttt ettt ettt e e e e 110
6.3.2. ACHVILY OPHOIS ..ottt et e e e e e e e e e 110
6.3.3. Data collection OPHIONSottt et e e e e 111
6.3.4. Cost entity Separation OPLIONSttt ettt ettt et e et 112
6.3.5. SIMUlation OPLIONSottt ettt et e 112
6.3.6. Cache simulation OPtIONSiiuiit i e 113
6.4. Callgrind Monitor Commandsttt 114
6.5. Callgrind specific client TeqUESES e 114
6.6. callgrind_annotate Command-line Options i i 114
6.7. callgrind_control Command-line Optionscoouuiiititiitiniiii .. 115
7. Helgrind: a thread error deteCtort ionnt ittt e 117
T OVEIVIBW oo e 117
7.2. Detected errors: Misuses of the POSIX pthreads APT 117
7.3. Detected errors: Inconsistent Lock Orderings i i 118
7.4. Detected errors: Data Races 120
7.4.1. ASimple Data Race i 120
7.4.2. Helgrind’s Race Detection Algorithm i 122
7.4.3. Interpreting Race Error Messagest 124
7.5. Hints and Tips for Effective Use of Helgrind i . 126
7.6. Helgrind Command-line OPtionso.uiiuiinuiitti i i 129
7.7. Helgrind Monitor Commandsttt 131
7.8. Helgrind Client ReqUESES e 132
7.9. A To-Do List for Helgrind 133
8. DRD: a thread error detector i 134
B L. OVEIVIEW .. 134
8.1.1. Multithreaded Programming Paradigmso i 134
8.1.2. POSIX Threads Programming Model i, 134
8.1.3. Multithreaded Programming Problems i 135
8.1.4. Data Race Detection i 135
8.2. UsiNg DRD ..o 136
8.2.1. DRD Command-ling OPtiOnSc.o.uueenntttmntte ettt i 136
8.2.2. Detected Errors: Data Races i 139
8.2.3. Detected Errors: Lock CONteNtionttt 140
8.2.4. Detected Errors: Misuse of the POSIX threads AP i ... 140
8.2.5. Client ReqUestso 141
8.2.6. Debugging C++11 Programso i e 144
8.2.7. Debugging GNOME Programsoiuuiiiiitimi e 144
8.2.8. Debugging Boost. Thread Programs i i 144
8.2.9. Debugging OpenMP Programs i 145
8.2.10. DRD and Custom Memory AIlocatorsiiiuuiiiii i 146
8.2.11. DRD Versus Memcheck 146
8.2.12. Resource ReqUIremMentsoiinuit ittt e 147
8.2.13. Hints and Tips for Effective Use of DRD 147
8.3. Using the POSIX Threads API Effectively i 148
831 MIULEX LYPS - oo ettt ettt et e et e e e e e e e 148
8.3.2. Condition variables 148
8.3.3. pthread_cond_timedwait and tiMEOULSt ittt 148
8.4 LIMItAtIONS . ..ottt e et e e 149

vii

Valgrind User Manual

8.5. Feedback ... 149
9. Massif: aheap profiler 150
0.1, OVeIVIBW .o 177
9.2. Using Massif and mS_Print i 150
9.2.1. An Example Program 150
9.2.2. Running Massifo 151
9.2.3. RUNNING MS_PIINT .ottt e et e e e et e e e e e et e 151
9.2.4. The Output Preamble 152
9.2.5. The Output Graph 152
9.2.6. The Snapshot Details i e 155
9.2.7. Forking Programso 159
9.2.8. Measuring All Memory in @ Process 159
9.2.9. Acting on Massif’s Information 159
9.3. Massif Command-line Options i e 160
9.4. Massif Monitor Commands i 162
9.5. Massif Client REqUESESot e e 162
9.6. ms_print Command-line Optionsttt 162
9.7. Massif’s Output File Format 162
10. DHAT: a dynamic heap analysis tool 163
TO.1. OVEIVIEW ..t 163
10.2. Understanding DHAT’S OULPULttt ettt et e et e 164
10.2.1. Interpreting the max-live, tot-alloc and deaths fields o i i 164
10.2.2. Interpreting the acc-ratios fields i 165
10.2.3. Interpreting "Aggregated access counts by offset" data i 166
10.3. DHAT Command-line Optionsot 167
11. SGCheck: an experimental stack and global array overrun detector 169
L1 1 OVEIVIEW ..o e e 169
11.2. SGCheck Command-line Optionst 169
11.3. How SGCheck WOTKS . ..o e e e 169
11.4. Comparison with Memcheck 169
T1.5. LIMItations e e 170
11.6. Still To Do: User-visible Functionalityoiiiiiitini i 171
11.7. Still To Do: Implementation Tidyingot e 171
12. BBV: an experimental basic block vector generation tool i i 172
I2.1. OVEIVIEW .ottt 172
12.2. Using Basic Block Vectors to create SimPoints i 172
12.3. BBV Command-line OPtionsc.uuueonntttnnttt ettt 173
12.4. Basic Block Vector File Format 173
12.5. IMPIeMENtAtionttt ettt et e e e e 174
12.6. Threaded Executable Support 174
12.7. Validationo e e e 174
12.8. Performanceo..iiniii i 175
13. Lackey: an example tO0] oot 176
L1310 OVEIVIEW . oottt et e e e e e e e e e e e 176
13.2. Lackey Command-line Optionsttt e 176
14. Nulgrind: the minimal Valgrind tool 177
T4 1. OVEIVIEW .o 177

viii

1. Introduction
1.1. An Overview of Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools each of
which performs some kind of debugging, profiling, or similar task that helps you improve your programs. Valgrind’s
architecture is modular, so new tools can be created easily and without disturbing the existing structure.

A number of useful tools are supplied as standard.

1. Memcheck is a memory error detector. It helps you make your programs, particularly those written in C and C++,
more correct.

2. Cachegrind is a cache and branch-prediction profiler. It helps you make your programs run faster.

3. Callgrind is a call-graph generating cache profiler. It has some overlap with Cachegrind, but also gathers some
information that Cachegrind does not.

4. Helgrind is a thread error detector. It helps you make your multi-threaded programs more correct.

5. DRD is also a thread error detector. It is similar to Helgrind but uses different analysis techniques and so may find
different problems.

6. Massif is a heap profiler. It helps you make your programs use less memory.

7. DHAT is a different kind of heap profiler. It helps you understand issues of block lifetimes, block utilisation, and
layout inefficiencies.

8.SGcheck is an experimental tool that can detect overruns of stack and global arrays. Its functionality is
complementary to that of Memcheck: SGcheck finds problems that Memcheck can’t, and vice versa..

9.BBYV is an experimental SimPoint basic block vector generator. It is useful to people doing computer architecture
research and development.

There are also a couple of minor tools that aren’t useful to most users: Lackey is an example tool that illustrates
some instrumentation basics; and Nulgrind is the minimal Valgrind tool that does no analysis or instrumentation, and
is only useful for testing purposes.

Valgrind is closely tied to details of the CPU and operating system, and to a lesser extent, the compiler and basic C
libraries. Nonetheless, it supports a number of widely-used platforms, listed in full at http://www.valgrind.org/.

Valgrind is built via the standard Unix . /configure, make, make install process; full details are given in
the README file in the distribution.

Valgrind is licensed under the The GNU General Public License, version 2. The valgrind/«.h headers that
you may wish to include in your code (eg. valgrind.h, memcheck.h, helgrind.h, etc.) are distributed under
a BSD-style license, so you may include them in your code without worrying about license conflicts. ~ Some of
the PThreads test cases, pth_x . c, are taken from "Pthreads Programming" by Bradford Nichols, Dick Buttlar &
Jacqueline Proulx Farrell, ISBN 1-56592-115-1, published by O’Reilly & Associates, Inc.

If you contribute code to Valgrind, please ensure your contributions are licensed as "GPLv2, or (at your option) any
later version." This is so as to allow the possibility of easily upgrading the license to GPLv3 in future. If you want to
modify code in the VEX subdirectory, please also see the file VEX/HACKING.README in the distribution.

url(http://www.valgrind.org/)

Introduction

1.2. How to navigate this manual

This manual’s structure reflects the structure of Valgrind itself. First, we describe the Valgrind core, how to use it, and
the options it supports. Then, each tool has its own chapter in this manual. You only need to read the documentation
for the core and for the tool(s) you actually use, although you may find it helpful to be at least a little bit familiar with
what all tools do. If you’re new to all this, you probably want to run the Memcheck tool and you might find the The
Valgrind Quick Start Guide useful.

Be aware that the core understands some command line options, and the tools have their own options which they know
about. This means there is no central place describing all the options that are accepted -- you have to read the options
documentation both for Valgrind’s core and for the tool you want to use.

2. Using and understanding the
Valgrind core

This chapter describes the Valgrind core services, command-line options and behaviours. That means it is relevant
regardless of what particular tool you are using. The information should be sufficient for you to make effective
day-to-day use of Valgrind. Advanced topics related to the Valgrind core are described in Valgrind’s core: advanced
topics.

A point of terminology: most references to "Valgrind" in this chapter refer to the Valgrind core services.

2.1. What Valgrind does with your program

Valgrind is designed to be as non-intrusive as possible. It works directly with existing executables. You don’t need to
recompile, relink, or otherwise modify the program to be checked.

You invoke Valgrind like this:

valgrind [valgrind-options] your-prog [your—-prog-options]

The most important option is ——t ool which dictates which Valgrind tool to run. For example, if want to run the
command 1s -1 using the memory-checking tool Memcheck, issue this command:

valgrind ——tool=memcheck 1ls -1

However, Memcheck is the default, so if you want to use it you can omit the ——t ool option.

Regardless of which tool is in use, Valgrind takes control of your program before it starts. Debugging information is
read from the executable and associated libraries, so that error messages and other outputs can be phrased in terms of
source code locations, when appropriate.

Your program is then run on a synthetic CPU provided by the Valgrind core. As new code is executed for the first
time, the core hands the code to the selected tool. The tool adds its own instrumentation code to this and hands the
result back to the core, which coordinates the continued execution of this instrumented code.

The amount of instrumentation code added varies widely between tools. At one end of the scale, Memcheck adds
code to check every memory access and every value computed, making it run 10-50 times slower than natively. At the
other end of the spectrum, the minimal tool, called Nulgrind, adds no instrumentation at all and causes in total "only"
about a 4 times slowdown.

Valgrind simulates every single instruction your program executes. Because of this, the active tool checks, or profiles,
not only the code in your application but also in all supporting dynamically-linked libraries, including the C library,
graphical libraries, and so on.

If you’re using an error-detection tool, Valgrind may detect errors in system libraries, for example the GNU C or X11
libraries, which you have to use. You might not be interested in these errors, since you probably have no control
over that code. Therefore, Valgrind allows you to selectively suppress errors, by recording them in a suppressions
file which is read when Valgrind starts up. The build mechanism selects default suppressions which give reasonable
behaviour for the OS and libraries detected on your machine. To make it easier to write suppressions, you can use the
-—gen-suppressions=yes option. This tells Valgrind to print out a suppression for each reported error, which
you can then copy into a suppressions file.

Using and understanding the Valgrind core

Different error-checking tools report different kinds of errors. The suppression mechanism therefore allows you to say
which tool or tool(s) each suppression applies to.

2.2. Getting started

First off, consider whether it might be beneficial to recompile your application and supporting libraries with debugging
info enabled (the —g option). Without debugging info, the best Valgrind tools will be able to do is guess which function
a particular piece of code belongs to, which makes both error messages and profiling output nearly useless. With —-g,
you’ll get messages which point directly to the relevant source code lines.

Another option you might like to consider, if you are working with C++, is ~-fno-inline. That makes it easier to
see the function-call chain, which can help reduce confusion when navigating around large C++ apps. For example,
debugging OpenOffice.org with Memcheck is a bit easier when using this option. You don’t have to do this, but doing
so helps Valgrind produce more accurate and less confusing error reports. Chances are you’re set up like this already,
if you intended to debug your program with GNU GDB, or some other debugger. Alternatively, the Valgrind option
——read-inline—-info=yes instructs Valgrind to read the debug information describing inlining information.
With this, function call chain will be properly shown, even when your application is compiled with inlining.

If you are planning to use Memcheck: On rare occasions, compiler optimisations (at —02 and above, and sometimes
—-01) have been observed to generate code which fools Memcheck into wrongly reporting uninitialised value errors,
or missing uninitialised value errors. We have looked in detail into fixing this, and unfortunately the result is that
doing so would give a further significant slowdown in what is already a slow tool. So the best solution is to turn off
optimisation altogether. Since this often makes things unmanageably slow, a reasonable compromise is to use —O.
This gets you the majority of the benefits of higher optimisation levels whilst keeping relatively small the chances of
false positives or false negatives from Memcheck. Also, you should compile your code with —Wal1l because it can
identify some or all of the problems that Valgrind can miss at the higher optimisation levels. (Using -Wall is also a
good idea in general.) All other tools (as far as we know) are unaffected by optimisation level, and for profiling tools
like Cachegrind it is better to compile your program at its normal optimisation level.

Valgrind understands the DWARF2/3/4 formats used by GCC 3.1 and later. The reader for "stabs" debugging format
(used by GCC versions prior to 3.1) has been disabled in Valgrind 3.9.0.

When you’re ready to roll, run Valgrind as described above. Note that you should run the real (machine-code)
executable here. If your application is started by, for example, a shell or Perl script, you’ll need to modify it to
invoke Valgrind on the real executables. Running such scripts directly under Valgrind will result in you getting error
reports pertaining to /bin/sh, /usr/bin/perl, or whatever interpreter you're using. This may not be what you
want and can be confusing. You can force the issue by giving the option ——trace-children=yes, but confusion
is still likely.

2.3. The Commentary

Valgrind tools write a commentary, a stream of text, detailing error reports and other significant events. All lines in
the commentary have following form:

==12345== some-message—-from-Valgrind

The 12345 is the process ID. This scheme makes it easy to distinguish program output from Valgrind commentary,
and also easy to differentiate commentaries from different processes which have become merged together, for whatever
reason.

Using and understanding the Valgrind core

By default, Valgrind tools write only essential messages to the commentary, so as to avoid flooding you with
information of secondary importance. If you want more information about what is happening, re-run, passing the —v
option to Valgrind. A second -v gives yet more detail.

You can direct the commentary to three different places:

1. The default: send it to a file descriptor, which is by default 2 (stderr). So, if you give the core no options, it will
write commentary to the standard error stream. If you want to send it to some other file descriptor, for example
number 9, you can specify ——1og-£d=9.

This is the simplest and most common arrangement, but can cause problems when Valgrinding entire trees of
processes which expect specific file descriptors, particularly stdin/stdout/stderr, to be available for their own use.

2. A less intrusive option is to write the commentary to a file, which you specify by ——log-file=filename.
There are special format specifiers that can be used to use a process ID or an environment variable name in the log
file name. These are useful/necessary if your program invokes multiple processes (especially for MPI programs).
See the basic options section for more details.

3. The least intrusive option is to send the commentary to a network socket. The socket is specified as an IP address
and port number pair, like this: ——1og-socket=192.168.0.1:12345 if you want to send the output to host
IP 192.168.0.1 port 12345 (note: we have no idea if 12345 is a port of pre-existing significance). You can also omit
the port number: ——log-socket=192.168.0.1, in which case a default port of 1500 is used. This default is
defined by the constant VG_CLO_DEFAULT_LOGPORT in the sources.

Note, unfortunately, that you have to use an IP address here, rather than a hostname.

Writing to a network socket is pointless if you don’t have something listening at the other end. We provide a simple
listener program, valgrind-1istener, which accepts connections on the specified port and copies whatever
it is sent to stdout. Probably someone will tell us this is a horrible security risk. It seems likely that people will
write more sophisticated listeners in the fullness of time.

valgrind-1listener can accept simultaneous connections from up to 50 Valgrinded processes. In front of
each line of output it prints the current number of active connections in round brackets.

valgrind-listener accepts three command-line options:

-e ——exit—-at-zero
When the number of connected processes falls back to zero, exit. Without this, it will run forever, that is, until you
send it Control-C.

——max—-connect=INTEGER
By default, the listener can connect to up to 50 processes. Occasionally, that number is too small. Use this option
to provide a different limit. E.g. ——max—connect=100.

Using and understanding the Valgrind core

portnumber
Changes the port it listens on from the default (1500). The specified port must be in the range 1024 to 65535. The
same restriction applies to port numbers specified by a ——1og—-socket to Valgrind itself.

If a Valgrinded process fails to connect to a listener, for whatever reason (the listener isn’t running, invalid or
unreachable host or port, etc), Valgrind switches back to writing the commentary to stderr. The same goes for
any process which loses an established connection to a listener. In other words, killing the listener doesn’t kill the
processes sending data to it.

Here is an important point about the relationship between the commentary and profiling output from tools. The
commentary contains a mix of messages from the Valgrind core and the selected tool. If the tool reports errors, it will
report them to the commentary. However, if the tool does profiling, the profile data will be written to a file of some
kind, depending on the tool, and independent of what ——1og—=« options are in force. The commentary is intended
to be a low-bandwidth, human-readable channel. Profiling data, on the other hand, is usually voluminous and not
meaningful without further processing, which is why we have chosen this arrangement.

2.4. Reporting of errors

When an error-checking tool detects something bad happening in the program, an error message is written to the
commentary. Here’s an example from Memcheck:

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize (int, int, int) (bogon.cpp:45)
==25832== by 0x80487AF: main (bogon.cpp:66)

==25832== Address 0xBFFFF74C is not stack’d, malloc’d or free’d

This message says that the program did an illegal 4-byte read of address 0OXBFFFF74C, which, as far as Memcheck
can tell, is not a valid stack address, nor corresponds to any current heap blocks or recently freed heap blocks. The
read is happening at line 45 of bogon. cpp, called from line 66 of the same file, etc. For errors associated with
an identified (current or freed) heap block, for example reading freed memory, Valgrind reports not only the location
where the error happened, but also where the associated heap block was allocated/freed.

Valgrind remembers all error reports. When an error is detected, it is compared against old reports, to see if it is a
duplicate. If so, the error is noted, but no further commentary is emitted. This avoids you being swamped with
bazillions of duplicate error reports.

If you want to know how many times each error occurred, run with the —v option. When execution finishes, all the
reports are printed out, along with, and sorted by, their occurrence counts. This makes it easy to see which errors have
occurred most frequently.

Errors are reported before the associated operation actually happens. For example, if you’re using Memcheck and
your program attempts to read from address zero, Memcheck will emit a message to this effect, and your program will
then likely die with a segmentation fault.

In general, you should try and fix errors in the order that they are reported. Not doing so can be confusing. For
example, a program which copies uninitialised values to several memory locations, and later uses them, will generate
several error messages, when run on Memcheck. The first such error message may well give the most direct clue to
the root cause of the problem.

The process of detecting duplicate errors is quite an expensive one and can become a significant performance overhead
if your program generates huge quantities of errors. To avoid serious problems, Valgrind will simply stop collecting
errors after 1,000 different errors have been seen, or 10,000,000 errors in total have been seen. In this situation you
might as well stop your program and fix it, because Valgrind won’t tell you anything else useful after this. Note that

Using and understanding the Valgrind core

the 1,000/10,000,000 limits apply after suppressed errors are removed. These limits are defined inm_errormgr.c
and can be increased if necessary.

To avoid this cutoff you can use the ——error—-1limit=no option. Then Valgrind will always show errors, regardless
of how many there are. Use this option carefully, since it may have a bad effect on performance.

2.5. Suppressing errors

The error-checking tools detect numerous problems in the system libraries, such as the C library, which come pre-
installed with your OS. You can’t easily fix these, but you don’t want to see these errors (and yes, there are many!)
So Valgrind reads a list of errors to suppress at startup. A default suppression file is created by the . /configure
script when the system is built.

You can modify and add to the suppressions file at your leisure, or, better, write your own. Multiple suppression files
are allowed. This is useful if part of your project contains errors you can’t or don’t want to fix, yet you don’t want to
continuously be reminded of them.

Note: By far the easiest way to add suppressions is to use the ——gen—suppressions=yes option described in
Core Command-line Options. This generates suppressions automatically. For best results, though, you may want to
edit the output of ——gen-suppressions=yes by hand, in which case it would be advisable to read through this
section.

Each error to be suppressed is described very specifically, to minimise the possibility that a suppression-directive
inadvertently suppresses a bunch of similar errors which you did want to see. The suppression mechanism is designed
to allow precise yet flexible specification of errors to suppress.

If you use the —v option, at the end of execution, Valgrind prints out one line for each used suppression, giving the
number of times it got used, its name and the filename and line number where the suppression is defined. Depending
on the suppression kind, the filename and line number are optionally followed by additional information (such as the
number of blocks and bytes suppressed by a memcheck leak suppression). Here’s the suppressions used by a run of
valgrind -v —--tool=memcheck 1ls -1:

——-1610-- used_suppression: 2 dl-hack3-cond-1 /usr/lib/valgrind/default.supp:1234

—--1610-- used_suppression: 2 glibc-2.5.x-0on-SUSE-10.2- (PPC) -2a /usr/lib/valgrind/default

Multiple suppressions files are allowed. Valgrind loads suppression patterns from $SPREFIX/1ib/valgrind/default. supp
unless ——default-suppressions=no has been specified. You can ask to add suppressions from additional
files by specifying ——suppressions=/path/to/file. supp one or more times.

If you want to understand more about suppressions, look at an existing suppressions file whilst reading the following
documentation. The file glibc-2. 3. supp, in the source distribution, provides some good examples.

Each suppression has the following components:
* First line: its name. This merely gives a handy name to the suppression, by which it is referred to in the summary

of used suppressions printed out when a program finishes. It’s not important what the name is; any identifying
string will do.

Using and understanding the Valgrind core

* Second line: name of the tool(s) that the suppression is for (if more than one, comma-separated), and the name of
the suppression itself, separated by a colon (n.b.: no spaces are allowed), eg:

tool_namel,tool_name2:suppression_name

Recall that Valgrind is a modular system, in which different instrumentation tools can observe your program whilst it
is running. Since different tools detect different kinds of errors, it is necessary to say which tool(s) the suppression
is meaningful to.

Tools will complain, at startup, if a tool does not understand any suppression directed to it. ~ Tools ignore
suppressions which are not directed to them. As a result, it is quite practical to put suppressions for all tools
into the same suppression file.

e Next line: a small number of suppression types have extra information after the second line (eg. the Param
suppression for Memcheck)

* Remaining lines: This is the calling context for the error -- the chain of function calls that led to it. There can be
up to 24 of these lines.

Locations may be names of either shared objects or functions. They begin obj: and fun: respectively. Function
and object names to match against may use the wildcard characters » and 2.

Important note: C++ function names must be mangled. If you are writing suppressions by hand, use the
-—demangle=no option to get the mangled names in your error messages. An example of a mangled C++ name
is _ZN9QListView4dshowEv. This is the form that the GNU C++ compiler uses internally, and the form that
must be used in suppression files. The equivalent demangled name, QListView: : show (), is what you see at
the C++ source code level.

A location line may also be simply ". . ." (three dots). This is a frame-level wildcard, which matches zero or more
frames. Frame level wildcards are useful because they make it easy to ignore varying numbers of uninteresting
frames in between frames of interest. That is often important when writing suppressions which are intended to be
robust against variations in the amount of function inlining done by compilers.

* Finally, the entire suppression must be between curly braces. Each brace must be the first character on its own line.

A suppression only suppresses an error when the error matches all the details in the suppression. Here’s an example:

__gconv_transform_ascii_internal/_ mbrtowc/mbtowc
Memcheck:Value4
fun:__gconv_transform_ascii_internal

fun:__ _mbrxtoc

fun:mbtowc

What it means is: for Memcheck only, suppress a use-of-uninitialised-value error, when the data size

is 4, when it occurs in the function _ gconv_transform_ascii_internal, when that is called
from any function of name matching _ mbrxtoc, when that is called from mbtowc. It doesn’t ap-
ply under any other circumstances. The string by which this suppression is identified to the user is

__gconv_transform_ascii_internal/__mbrtowc/mbtowc.
(See Writing suppression files for more details on the specifics of Memcheck’s suppression kinds.)

Another example, again for the Memcheck tool:

Using and understanding the Valgrind core

1ibX11.50.6.2/1ibX11.s0.6.2/1ibXaw.so0.7.0
Memcheck:Value4
obj:/usr/X11R6/1ib/1ibX11.50.6.2
obj:/usr/X11R6/1ib/1ibX11.50.6.2
obj:/usr/X11R6/1ib/libXaw.so.7.0

This suppresses any size 4 uninitialised-value error which occurs anywhere in 1ibX11.so. 6.2, when called from
anywhere in the same library, when called from anywhere in 1ibXaw.so.7.0. The inexact specification of
locations is regrettable, but is about all you can hope for, given that the X11 libraries shipped on the Linux distro on
which this example was made have had their symbol tables removed.

Although the above two examples do not make this clear, you can freely mix obj: and fun: lines in a suppression.

Finally, here’s an example using three frame-level wildcards:

{
a-contrived-example
Memcheck:Leak
fun:malloc

fun:ddd
fun:ccc

fun:main

This suppresses Memcheck memory-leak errors, in the case where the allocation was done by main calling (though
any number of intermediaries, including zero) ccc, calling onwards via ddd and eventually tomalloc..

2.6. Core Command-line Options

As mentioned above, Valgrind’s core accepts a common set of options. The tools also accept tool-specific options,
which are documented separately for each tool.

Valgrind’s default settings succeed in giving reasonable behaviour in most cases. We group the available options by
rough categories.

2.6.1. Tool-selection Option

The single most important option.

Using and understanding the Valgrind core

——tool=<toolname> [default: memcheck]
Run the Valgrind tool called toolname, e.g. memcheck, cachegrind, callgrind, helgrind, drd, massif, lackey, none,
exp-sgcheck, exp-bbv, exp-dhat, etc.

2.6.2. Basic Options

These options work with all tools.

-h —-help
Show help for all options, both for the core and for the selected tool. If the option is repeated it is equivalent to giving
——help-debug.

——help-debug
Same as ——help, but also lists debugging options which usually are only of use to Valgrind’s developers.

——version

Show the version number of the Valgrind core. Tools can have their own version numbers. There is a scheme in place
to ensure that tools only execute when the core version is one they are known to work with. This was done to minimise
the chances of strange problems arising from tool-vs-core version incompatibilities.

-g, ——quiet
Run silently, and only print error messages. Useful if you are running regression tests or have some other automated
test machinery.

-v, ——verbose

Be more verbose. Gives extra information on various aspects of your program, such as: the shared objects loaded, the
suppressions used, the progress of the instrumentation and execution engines, and warnings about unusual behaviour.
Repeating the option increases the verbosity level.

——trace-children=<yes|no> [default: no]
When enabled, Valgrind will trace into sub-processes initiated via the exec system call. This is necessary for
multi-process programs.

Note that Valgrind does trace into the child of a fork (it would be difficult not to, since fork makes an identical
copy of a process), so this option is arguably badly named. However, most children of fork calls immediately call
exec anyway.

——trace-children-skip=pattl,patt2, ...

This option only has an effect when ——trace—-children=yes is specified. It allows for some children to be
skipped. The option takes a comma separated list of patterns for the names of child executables that Valgrind should
not trace into. Patterns may include the metacharacters ? and =, which have the usual meaning.

This can be useful for pruning uninteresting branches from a tree of processes being run on Valgrind. But you should
be careful when using it. When Valgrind skips tracing into an executable, it doesn’t just skip tracing that executable,
it also skips tracing any of that executable’s child processes. In other words, the flag doesn’t merely cause tracing to
stop at the specified executables -- it skips tracing of entire process subtrees rooted at any of the specified executables.

——trace-children-skip-by-arg=pattl,patt2, ...

This is the same as ——trace—children—skip, with one difference: the decision as to whether to trace into a
child process is made by examining the arguments to the child process, rather than the name of its executable.

10

Using and understanding the Valgrind core

——child-silent-after-fork=<yes|no> [default: no]

When enabled, Valgrind will not show any debugging or logging output for the child process resulting from a fork
call. This can make the output less confusing (although more misleading) when dealing with processes that create
children. It is particularly useful in conjunction with ——trace-children=. Use of this option is also strongly
recommended if you are requesting XML output (——xml=yes), since otherwise the XML from child and parent may
become mixed up, which usually makes it useless.

—--vgdb=<no|yes|full> [default: vyes]

Valgrind will provide "gdbserver" functionality when ——vgdb=yes or ——vgdb=full is specified. This allows
an external GNU GDB debugger to control and debug your program when it runs on Valgrind. —-vgdb=full
incurs significant performance overheads, but provides more precise breakpoints and watchpoints. See Debugging
your program using Valgrind’s gdbserver and GDB for a detailed description.

If the embedded gdbserver is enabled but no gdb is currently being used, the vgdb command line utility can send
"monitor commands" to Valgrind from a shell. The Valgrind core provides a set of Valgrind monitor commands. A
tool can optionally provide tool specific monitor commands, which are documented in the tool specific chapter.

-—-vgdb-error=<number> [default: 999999999]

Use this option when the Valgrind gdbserver is enabled with ——vgdb=yes or ——vgdb=full. Tools that report
errors will wait for "number" errors to be reported before freezing the program and waiting for you to connect with
GDB. It follows that a value of zero will cause the gdbserver to be started before your program is executed. This is
typically used to insert GDB breakpoints before execution, and also works with tools that do not report errors, such as
Massif.

—-—-vgdb-stop-at=<set> [default: none]

Use this option when the Valgrind gdbserver is enabled with ——vgdb=yes or ——vgdb=full. The Valgrind
gdbserver will be invoked for each error after ——vgdb—error have been reported. You can additionally ask the
Valgrind gdbserver to be invoked for other events, specified in one of the following ways:

* a comma separated list of one or more of startup exit valgrindabexit.

The values startup exit valgrindabexit respectively indicate to invoke gdbserver before your program is
executed, after the last instruction of your program, on Valgrind abnormal exit (e.g. internal error, out of memory,

..

Note: startup and ——vgdb-error=0 will both cause Valgrind gdbserver to be invoked before your program
is executed. The ——vgdb-error=0 will in addition cause your program to stop on all subsequent errors.

* all to specify the complete set. It is equivalent to ——vgdb-stop-at=startup, exit,valgrindabexit.
* none for the empty set.

——track—-fds=<yes|no> [default: noj

When enabled, Valgrind will print out a list of open file descriptors on exit or on request, via the gdbserver monitor
command v.info open_fds. Along with each file descriptor is printed a stack backtrace of where the file was
opened and any details relating to the file descriptor such as the file name or socket details.

——time-stamp=<yes|no> [default: no]
When enabled, each message is preceded with an indication of the elapsed wallclock time since startup, expressed as
days, hours, minutes, seconds and milliseconds.

——log-fd=<number> [default: 2, stderr]
Specifies that Valgrind should send all of its messages to the specified file descriptor. The default, 2, is the standard
error channel (stderr). Note that this may interfere with the client’s own use of stderr, as Valgrind’s output will be
interleaved with any output that the client sends to stderr.

11

Using and understanding the Valgrind core

—-—log-file=<filename>
Specifies that Valgrind should send all of its messages to the specified file. If the file name is empty, it causes an
abort. There are three special format specifiers that can be used in the file name.

%p is replaced with the current process ID. This is very useful for program that invoke multiple processes. WARNING:
If youuse ——trace—-children=yes and your program invokes multiple processes OR your program forks without
calling exec afterwards, and you don’t use this specifier (or the % g specifier below), the Valgrind output from all those
processes will go into one file, possibly jumbled up, and possibly incomplete.

$q{FO0O0} is replaced with the contents of the environment variable FOO. If the {FOO} part is malformed, it causes an
abort. This specifier is rarely needed, but very useful in certain circumstances (eg. when running MPI programs). The
idea is that you specify a variable which will be set differently for each process in the job, for example BPROC_RANK
or whatever is applicable in your MPI setup. If the named environment variable is not set, it causes an abort. Note
that in some shells, the { and } characters may need to be escaped with a backslash.

%% is replaced with %.
If an % is followed by any other character, it causes an abort.

If the file name specifies a relative file name, it is put in the program’s initial working directory : this is the current
directory when the program started its execution after the fork or after the exec. If it specifies an absolute file name
(ie. starts with ’/”) then it is put there.

—--log-socket=<ip-address:port—-number>

Specifies that Valgrind should send all of its messages to the specified port at the specified IP address. The port
may be omitted, in which case port 1500 is used. If a connection cannot be made to the specified socket, Valgrind
falls back to writing output to the standard error (stderr). This option is intended to be used in conjunction with the
valgrind-listener program. For further details, see the commentary in the manual.

2.6.3. Error-related Options

These options are used by all tools that can report errors, e.g. Memcheck, but not Cachegrind.

—-—-xml=<yes|no> [default: no]

When enabled, the important parts of the output (e.g. tool error messages) will be in XML format rather than plain
text. Furthermore, the XML output will be sent to a different output channel than the plain text output. Therefore,
you also must use one of ——xml-fd, ——xml-file or ——xml-socket to specify where the XML is to be sent.

Less important messages will still be printed in plain text, but because the XML output and plain text output are sent
to different output channels (the destination of the plain text output is still controlled by ——1og-fd, ——log-file
and ——1log-socket) this should not cause problems.

This option is aimed at making life easier for tools that consume Valgrind’s output as input, such as GUI front ends.
Currently this option works with Memcheck, Helgrind, DRD and SGcheck. The output format is specified in the file
docs/internals/xml-output-protocol4.txt in the source tree for Valgrind 3.5.0 or later.

The recommended options for a GUI to pass, when requesting XML output, are: ——xml=yes to enable XML output,
——xml-file to send the XML output to a (presumably GUI-selected) file, ——1og—file to send the plain text
output to a second GUI-selected file, ——child-silent-after—-fork=yes, and —q to restrict the plain text
output to critical error messages created by Valgrind itself. For example, failure to read a specified suppressions file
counts as a critical error message. In this way, for a successful run the text output file will be empty. But if it isn’t
empty, then it will contain important information which the GUI user should be made aware of.

12

Using and understanding the Valgrind core

——xml-fd=<number> [default: -1, disabled]
Specifies that Valgrind should send its XML output to the specified file descriptor. It must be used in conjunction
with ——xml=yes.

——xml-file=<filename>

Specifies that Valgrind should send its XML output to the specified file. It must be used in conjunction with
-—-xml=yes. Any $p or $g sequences appearing in the filename are expanded in exactly the same way as they
are for ——1og—-file. See the description of ——1og-£file for details.

——-xml-socket=<ip-address:port—number>

Specifies that Valgrind should send its XML output the specified port at the specified IP address. It must be used in
conjunction with ——xml=yes. The form of the argument is the same as that used by ——log-socket. See the
description of ——log—-socket for further details.

——xml-user—-comment=<string>
Embeds an extra user comment string at the start of the XML output. Only works when ——xml=yes is specified;
ignored otherwise.

——demangle=<yes|no> [default: vyes]

Enable/disable automatic demangling (decoding) of C++ names. Enabled by default. When enabled, Valgrind will
attempt to translate encoded C++ names back to something approaching the original. The demangler handles symbols
mangled by g++ versions 2.X, 3.X and 4.X.

An important fact about demangling is that function names mentioned in suppressions files should be in their mangled
form. Valgrind does not demangle function names when searching for applicable suppressions, because to do otherwise
would make suppression file contents dependent on the state of Valgrind’s demangling machinery, and also slow down
suppression matching.

——num—-callers=<number> [default: 12]

Specifies the maximum number of entries shown in stack traces that identify program locations. Note that errors
are commoned up using only the top four function locations (the place in the current function, and that of its three
immediate callers). So this doesn’t affect the total number of errors reported.

The maximum value for this is 500. Note that higher settings will make Valgrind run a bit more slowly and take a bit
more memory, but can be useful when working with programs with deeply-nested call chains.

——unw—stack—-scan-thresh=<number> [default: 0] , ——unw-stack-scan-frames=<number>
[default: 5]
Stack-scanning support is available only on ARM targets.

These flags enable and control stack unwinding by stack scanning. When the normal stack unwinding mechanisms --
usage of Dwarf CFI records, and frame-pointer following -- fail, stack scanning may be able to recover a stack trace.

Note that stack scanning is an imprecise, heuristic mechanism that may give very misleading results, or none at all.
It should be used only in emergencies, when normal unwinding fails, and it is important to nevertheless have stack
traces.

Stack scanning is a simple technique: the unwinder reads words from the stack, and tries to guess which of them might
be return addresses, by checking to see if they point just after ARM or Thumb call instructions. If so, the word is
added to the backtrace.

The main danger occurs when a function call returns, leaving its return address exposed, and a new function is called,
but the new function does not overwrite the old address. The result of this is that the backtrace may contain entries for
functions which have already returned, and so be very confusing.

13

Using and understanding the Valgrind core

A second limitation of this implementation is that it will scan only the page (4KB, normally) containing the starting
stack pointer. If the stack frames are large, this may result in only a few (or not even any) being present in the trace.
Also, if you are unlucky and have an initial stack pointer near the end of its containing page, the scan may miss all
interesting frames.

By default stack scanning is disabled. The normal use case is to ask for it when a stack trace would otherwise be very
short. So, to enable it, use ——unw-stack-scan-thresh=number. This requests Valgrind to try using stack
scanning to "extend" stack traces which contain fewer than number frames.

If stack scanning does take place, it will only generate at most the number of frames specified by
-—unw-stack-scan-frames. Typically, stack scanning generates so many garbage entries that this value
is set to a low value (5) by default. In no case will a stack trace larger than the value specified by ——num-callers
be created.

——error—-limit=<yes|no> [default: yes]
When enabled, Valgrind stops reporting errors after 10,000,000 in total, or 1,000 different ones, have been seen. This
is to stop the error tracking machinery from becoming a huge performance overhead in programs with many errors.

——error—-exitcode=<number> [default: 0]

Specifies an alternative exit code to return if Valgrind reported any errors in the run. When set to the default value
(zero), the return value from Valgrind will always be the return value of the process being simulated. When set to a
nonzero value, that value is returned instead, if Valgrind detects any errors. This is useful for using Valgrind as part
of an automated test suite, since it makes it easy to detect test cases for which Valgrind has reported errors, just by
inspecting return codes.

—-—error-markers=<begin>, <end> [default: none]
When errors are output as plain text (i.e. XML not used), —~—error-markers instructs to output a line containing
the begin (end) string before (after) each error.

Such marker lines facilitate searching for errors and/or extracting errors in an output file that contain valgrind errors
mixed with the program output.

Note that empty markers are accepted. So, only using a begin (or an end) marker is possible.

—--sigill-diagnostics=<yes|no> [default: vyes]
Enable/disable printing of illegal instruction diagnostics. Enabled by default, but defaults to disabled when ——quiet
is given. The default can always be explicitly overridden by giving this option.

When enabled, a warning message will be printed, along with some diagnostics, whenever an instruction is encoun-
tered that Valgrind cannot decode or translate, before the program is given a SIGILL signal. Often an illegal instruction
indicates a bug in the program or missing support for the particular instruction in Valgrind. But some programs do
deliberately try to execute an instruction that might be missing and trap the SIGILL signal to detect processor features.
Using this flag makes it possible to avoid the diagnostic output that you would otherwise get in such cases.

—-show-below-main=<yes|no> [default: no]

By default, stack traces for errors do not show any functions that appear beneath main because most of the time it’s
uninteresting C library stuff and/or gobbledygook. Alternatively, if main is not present in the stack trace, stack traces
will not show any functions below main-like functions such as glibc’s __libc_start_main. Furthermore, if
main-like functions are present in the trace, they are normalised as (below main), in order to make the output
more deterministic.

If this option is enabled, all stack trace entries will be shown and ma i n-like functions will not be normalised.

14

Using and understanding the Valgrind core

——fullpath-after=<string> [default: don’t show source paths]

By default Valgrind only shows the filenames in stack traces, but not full paths to source files. = When using
Valgrind in large projects where the sources reside in multiple different directories, this can be inconvenient.
-—fullpath-after provides a flexible solution to this problem. When this option is present, the path to each
source file is shown, with the following all-important caveat: if st ring is found in the path, then the path up to and
including st ring is omitted, else the path is shown unmodified. Note that st ring is not required to be a prefix of
the path.

For example, consider a file named /home/janedoe/blah/src/foo/bar/xyzzy.c. Specity-
ing ——-fullpath-after=/home/janedoe/blah/src/ will cause Valgrind to show the name as
foo/bar/xyzzy.c.

Because the string is not required to be a prefix, ——fullpath-after=src/ will produce the same out-
put. This is useful when the path contains arbitrary machine-generated characters. For example,
the path /my/build/dir/C32A1B47/blah/src/foo/xyzzy can be pruned to foo/xyzzy using
——fullpath-after=/blah/src/.

If you simply want to see the full path, just specify an empty string: ——fullpath-after=. This isn’t a special
case, merely a logical consequence of the above rules.

Finally, you can use ——fullpath-after multiple times. = Any appearance of it causes Valgrind to switch
to producing full paths and applying the above filtering rule. Each produced path is compared against all the
—-—fullpath-after-specified strings, in the order specified. =~ The first string to match causes the path to be
truncated as described above. If none match, the full path is shown. This facilitates chopping off prefixes when the
sources are drawn from a number of unrelated directories.

—-—extra-debuginfo-path=<path> [default: undefined and unused]
By default Valgrind searches in several well-known paths for debug objects, such as /usr/1ib/debug/.

However, there may be scenarios where you may wish to put debug objects at an arbitrary location, such as external
storage when running Valgrind on a mobile device with limited local storage. Another example might be a situation
where you do not have permission to install debug object packages on the system where you are running Valgrind.

In these scenarios, you may provide an absolute path as an extra, final place for Valgrind to search for debug objects
by specifying ——extra-debuginfo-path=/path/to/debug/objects. The given path will be prepended
to the absolute path name of the searched-for object. = For example, if Valgrind is looking for the debuginfo
for /w/x/y/zz.so and ——extra-debuginfo-path=/a/b/c is specified, it will look for a debug object at
/a/b/c/w/x/y/zz.so.

This flag should only be specified once. If it is specified multiple times, only the last instance is honoured.

15

Using and understanding the Valgrind core

—-—debuginfo-server=ipaddr:port [default: undefined and unused]
This is a new, experimental, feature introduced in version 3.9.0.

In some scenarios it may be convenient to read debuginfo from objects stored on a different machine. With this flag,
Valgrind will query a debuginfo server running on ipaddr and listening on port port, if it cannot find the debuginfo
object in the local filesystem.

The debuginfo server must accept TCP connections on port port. The debuginfo server is contained in the source
file auxprogs/valgrind-di-server. c. It will only serve from the directory it is started in. port defaults to
1500 in both client and server if not specified.

If Valgrind looks for the debuginfo for /w/x/y/zz.so by using the debuginfo server, it will strip the pathname
components and merely request zz . so on the server. That in turn will look only in its current working directory for
a matching debuginfo object.

The debuginfo data is transmitted in small fragments (8 KB) as requested by Valgrind. Each block is compressed
using LZO to reduce transmission time. The implementation has been tuned for best performance over a single-stage
802.11g (WiFi) network link.

Note that checks for matching primary vs debug objects, using GNU debuglink CRC scheme, are per-
formed even when using the debuginfo server. To disable such checking, you need to also specify
——allow-mismatched-debuginfo=yes.

By default the Valgrind build system will build valgrind-di-server for the target platform, which is almost
certainly not what you want. So far we have been unable to find out how to get automake/autoconf to build it for the
build platform. If you want to use it, you will have to recompile it by hand using the command shown at the top of
auxprogs/valgrind-di-server.c.

——allow-mismatched-debuginfo=nol|yes [no]

When reading debuginfo from separate debuginfo objects, Valgrind will by default check that the main and debuginfo
objects match, using the GNU debuglink mechanism. This guarantees that it does not read debuginfo from out of date
debuginfo objects, and also ensures that Valgrind can’t crash as a result of mismatches.

This check can be overridden using ——allow-mismatched-debuginfo=yes. This may be useful when the
debuginfo and main objects have not been split in the proper way. Be careful when using this, though: it disables all
consistency checking, and Valgrind has been observed to crash when the main and debuginfo objects don’t match.

—-suppressions=<filename> [default: $PREFIX/lib/valgrind/default.supp]
Specifies an extra file from which to read descriptions of errors to suppress. You may use up to 100 extra suppression
files.

16

Using and understanding the Valgrind core

—-—gen-suppressions=<yes|nolall> [default: no]
When set to yes, Valgrind will pause after every error shown and print the line:

—-——— Print suppression ? ——— [Return/N/n/Y/y/C/c] ———-
Pressing Ret, or N Ret orn Ret, causes Valgrind continue execution without printing a suppression for this error.

Pressing Y Ret or y Ret causes Valgrind to write a suppression for this error. You can then cut and paste it into a
suppression file if you don’t want to hear about the error in the future.

When set to all, Valgrind will print a suppression for every reported error, without querying the user.
This option is particularly useful with C++ programs, as it prints out the suppressions with mangled names, as required.

Note that the suppressions printed are as specific as possible. You may want to common up similar ones, by adding
wildcards to function names, and by using frame-level wildcards. The wildcarding facilities are powerful yet flexible,
and with a bit of careful editing, you may be able to suppress a whole family of related errors with only a few
suppressions.

Sometimes two different errors are suppressed by the same suppression, in which case Valgrind will output the
suppression more than once, but you only need to have one copy in your suppression file (but having more than
one won’t cause problems). Also, the suppression name is given as <insert a suppression name here>;
the name doesn’t really matter, it’s only used with the —v option which prints out all used suppression records.

——input-fd=<number> [default: 0, stdin]

When using ——gen—-suppressions=yes, Valgrind will stop so as to read keyboard input from you when each
error occurs. By default it reads from the standard input (stdin), which is problematic for programs which close stdin.
This option allows you to specify an alternative file descriptor from which to read input.

——dsymutil=no|yes [yes]
This option is only relevant when running Valgrind on Mac OS X.

Mac OS X uses a deferred debug information (debuginfo) linking scheme. When object files containing debuginfo
are linked into a . dy1ib or an executable, the debuginfo is not copied into the final file. Instead, the debuginfo must
be linked manually by running dsymutil, a system-provided utility, on the executable or .dylib. The resulting
combined debuginfo is placed in a directory alongside the executable or . dy1ib, but with the extension . dSYM.

With ——dsymutil=no, Valgrind will detect cases where the .dSYM directory is either missing, or is present but
does not appear to match the associated executable or .dy1ib, most likely because it is out of date. In these cases,
Valgrind will print a warning message but take no further action.

With ——dsymutil=yes, Valgrind will, in such cases, automatically run dsymutil as necessary to bring the
debuginfo up to date. For all practical purposes, if you always use ——dsymut i 1=yes, then there is never any need
to run dsymutil manually or as part of your applications’s build system, since Valgrind will run it as necessary.

Valgrind will not attempt to run dsymut il on any executable or library in /usr/, /bin/, /sbin/, /opt/, /sw/,
/System/, /Library/ or /Applications/ since dsymutil will always fail in such situations. It fails both
because the debuginfo for such pre-installed system components is not available anywhere, and also because it would
require write privileges in those directories.

Be careful when using ——dsymutil=yes, since it will cause pre-existing . dSYM directories to be silently deleted
and re-created. Also note that dsymut il is quite slow, sometimes excessively so.

17

Using and understanding the Valgrind core

——max—stackframe=<number> [default: 20000001
The maximum size of a stack frame. If the stack pointer moves by more than this amount then Valgrind will assume
that the program is switching to a different stack.

You may need to use this option if your program has large stack-allocated arrays. Valgrind keeps track of your
program’s stack pointer. If it changes by more than the threshold amount, Valgrind assumes your program is
switching to a different stack, and Memcheck behaves differently than it would for a stack pointer change smaller
than the threshold. Usually this heuristic works well. However, if your program allocates large structures on the
stack, this heuristic will be fooled, and Memcheck will subsequently report large numbers of invalid stack accesses.
This option allows you to change the threshold to a different value.

You should only consider use of this option if Valgrind’s debug output directs you to do so. In that case it will tell
you the new threshold you should specify.

In general, allocating large structures on the stack is a bad idea, because you can easily run out of stack space,
especially on systems with limited memory or which expect to support large numbers of threads each with a small
stack, and also because the error checking performed by Memcheck is more effective for heap-allocated data than for
stack-allocated data. If you have to use this option, you may wish to consider rewriting your code to allocate on the
heap rather than on the stack.

——-main-stacksize=<number> [default: wuse current ’‘ulimit’ wvalue]
Specifies the size of the main thread’s stack.

To simplify its memory management, Valgrind reserves all required space for the main thread’s stack at startup. That
means it needs to know the required stack size at startup.

By default, Valgrind uses the current "ulimit" value for the stack size, or 16 MB, whichever is lower. In many cases
this gives a stack size in the range 8 to 16 MB, which almost never overflows for most applications.

If you need a larger total stack size, use ——main-stacksize to specify it. Only set it as high as you need, since
reserving far more space than you need (that is, hundreds of megabytes more than you need) constrains Valgrind’s
memory allocators and may reduce the total amount of memory that Valgrind can use. This is only really of
significance on 32-bit machines.

On Linux, you may request a stack of size up to 2GB. Valgrind will stop with a diagnostic message if the stack cannot
be allocated.

--main-stacksize only affects the stack size for the program’s initial thread. It has no bearing on the size of
thread stacks, as Valgrind does not allocate those.

You may need to use both ——main-stacksize and ——-max-stackframe together. Itis important to understand
that ——main-stacksize sets the maximum total stack size, whilst ——max-stack frame specifies the largest size
of any one stack frame. You will have to work out the ——main-stacksize value for yourself (usually, if your
applications segfaults). But Valgrind will tell you the needed ——max—-stackframe size, if necessary.

As discussed further in the description of ——max-stackframe, a requirement for a large stack is a sign of potential
portability problems. You are best advised to place all large data in heap-allocated memory.

18

Using and understanding the Valgrind core

—-—-max—threads=<number> [default: 500]
By default, Valgrind can handle to up to 500 threads. Occasionally, that number is too small. Use this option to provide
a different limit. E.g. ——max-threads=3000.

2.6.4. malloc-related Options

For tools that use their own version of malloc (e.g. Memcheck, Massif, Helgrind, DRD), the following options
apply.

——alignment=<number> [default: 8 or 16, depending on the platform]

By default Valgrind’s malloc, realloc, etc, return a block whose starting address is 8-byte aligned or 16-byte
aligned (the value depends on the platform and matches the platform default). This option allows you to specify a
different alignment. The supplied value must be greater than or equal to the default, less than or equal to 4096, and
must be a power of two.

——redzone-size=<number> [default: depends on the tool]

Valgrind’smalloc, realloc, etc, add padding blocks before and after each heap block allocated by the program
being run. Such padding blocks are called redzones. The default value for the redzone size depends on the tool. For
example, Memcheck adds and protects a minimum of 16 bytes before and after each block allocated by the client.
This allows it to detect block underruns or overruns of up to 16 bytes.

Increasing the redzone size makes it possible to detect overruns of larger distances, but increases the amount of
memory used by Valgrind. Decreasing the redzone size will reduce the memory needed by Valgrind but also reduces
the chances of detecting over/underruns, so is not recommended.

2.6.5. Uncommon Options

These options apply to all tools, as they affect certain obscure workings of the Valgrind core. Most people won’t need
to use them.

19

Using and understanding the Valgrind core

——smc—check=<none|stack|all|all-non—-file> [default: all-non-file for
x86/amd64/s390x, stack for other archs]

This option controls Valgrind’s detection of self-modifying code. If no checking is done, when a program executes
some code, then overwrites it with new code, and executes the new code, Valgrind will continue to execute the
translations it made for the old code. This will likely lead to incorrect behaviour and/or crashes.

For "modern" architectures -- anything that’s not x86, amd64 or s390x -- the default is stack. This is because a
correct program must take explicit action to reestablish D-I cache coherence following code modification. Valgrind
observes and honours such actions, with the result that self-modifying code is transparently handled with zero extra
cost.

For x86, amd64 and s390x, the program is not required to notify the hardware of required D-I coherence syncing.
Hence the defaultis al1-non-£f1ile, which covers the normal case of generating code into an anonymous (non-file-
backed) mmap’d area.

The meanings of the four available settings are as follows. No detection (none), detect self-modifying code on the
stack (which is used by GCC to implement nested functions) (st ack), detect self-modifying code everywhere (all),
and detect self-modifying code everywhere except in file-backed mappings (all-non-file).

Running with all will slow Valgrind down noticeably. = Running with none will rarely speed things up, since
very little code gets dynamically generated in most programs. = The VALGRIND_DISCARD_TRANSLATIONS
client request is an alternative to ——smc-check=all and —~—smc—check=all-non-file that requires more
programmer effort but allows Valgrind to run your program faster, by telling it precisely when translations need to be
re-made.

——smc—-check=all-non-file provides a cheaper but more limited version of ——smc—-check=all. It adds
checks to any translations that do not originate from file-backed memory mappings. Typical applications that generate
code, for example JITs in web browsers, generate code into anonymous mmaped areas, whereas the "fixed" code
of the browser always lives in file-backed mappings. —--smc-check=all-non-file takes advantage of this
observation, limiting the overhead of checking to code which is likely to be JIT generated.

—--read-inline-info=<yes|no> [default: see below]

When enabled, Valgrind will read information about inlined function calls from DWARF3 debug info. This slows
Valgrind startup and makes it use more memory (typically for each inlined piece of code, 6 words and space for the
function name), but it results in more descriptive stacktraces. For the 3.10.0 release, this functionality is enabled by
default only for Linux, Android and Solaris targets and only for the tools Memcheck, Helgrind and DRD. Here is an
example of some stacktraces with ——read-inline-info=no:

==15380== Conditional jump or move depends on uninitialised value (s)

==15380== at 0x80484EA: main (inlinfo.c:06)

==15380==

==15380== Conditional jump or move depends on uninitialised value (s)
==15380== at 0x8048550: fun_noninline (inlinfo.c:6)

==15380== by 0x804850E: main (inlinfo.c:34)

==15380==

==15380== Conditional jump or move depends on uninitialised value (s)
==15380== at 0x8048520: main (inlinfo.c:6)

And here are the same errors with ——read-inline-info=yes:

20

Using and understanding the Valgrind core

==15377== Conditional jump or move depends on uninitialised value (s)

==15377== at 0x80484EA: fun_d (inlinfo.c:06)

==]15377== by 0x80484EA: fun_c (inlinfo.c:14)

==15377== by 0x80484EA: fun_b (inlinfo.c:20)

==15377== by 0x80484EA: fun_a (inlinfo.c:26)

==15377== by 0x80484EA: main (inlinfo.c:33)

==15377==

==15377== Conditional jump or move depends on uninitialised value (s)
==15377== at 0x8048550: fun_d (inlinfo.c:6)

==15377== by 0x8048550: fun_noninline (inlinfo.c:41)

==15377== by 0x804850E: main (inlinfo.c:34)

==15377==

==15377== Conditional jump or move depends on uninitialised value (s)
==15377== at 0x8048520: fun_d (inlinfo.c:6)

==15377== by 0x8048520: main (inlinfo.c:35)
—--read-var-info=<yes|no> [default: no]

When enabled, Valgrind will read information about variable types and locations from DWARF3 debug info. This
slows Valgrind startup significantly and makes it use significantly more memory, but for the tools that can take
advantage of it (Memcheck, Helgrind, DRD) it can result in more precise error messages. For example, here are
some standard errors issued by Memcheck:

==15363== Uninitialised byte (s) found during client check request
==15363== at 0x80484A9: croak (varinfol.c:28)

==15363== by 0x8048544: main (varinfol.c:55)

==15363== Address 0x80497f7 is 7 bytes inside data symbol "global_ i2"
==15363==

==15363== Uninitialised byte(s) found during client check request

==15363== at 0x80484A9: croak (varinfol.c:28)
==15363== by 0x8048550: main (varinfol.c:56)
==15363== Address 0OxbealOdOcc is on thread 1’s stack
==15363== 1in frame #1, created by main (varinfol.c:45)

And here are the same errors with ——read-var—-info=yes:

==15370== Uninitialised byte (s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048544: main (varinfol.c:55)

==15370== Location 0x80497f7 is 0 bytes inside global_i2[7],
==15370== a global variable declared at varinfol.c:41

==15370==

==15370== Uninitialised byte (s) found during client check request
==15370== at 0x80484A9: croak (varinfol.c:28)

==15370== by 0x8048550: main (varinfol.c:56)

==15370== Location Oxbebd4alcc is 0 bytes inside local var "local"

==15370== declared at varinfol.c:46, in frame #1 of thread 1

21

Using and understanding the Valgrind core

—-—-vgdb-poll=<number> [default: 5000]

As part of its main loop, the Valgrind scheduler will poll to check if some activity (such as an external command or
some input from a gdb) has to be handled by gdbserver. This activity poll will be done after having run the given
number of basic blocks (or slightly more than the given number of basic blocks). This poll is quite cheap so the default
value is set relatively low. You might further decrease this value if vgdb cannot use ptrace system call to interrupt
Valgrind if all threads are (most of the time) blocked in a system call.

—--vgdb-shadow-registers=no|yes [default: no]

When activated, gdbserver will expose the Valgrind shadow registers to GDB. With this, the value of the Valgrind
shadow registers can be examined or changed using GDB. Exposing shadow registers only works with GDB version
7.1 or later.

—--vgdb-prefix=<prefix> [default: /tmp/vgdb-pipe]
To communicate with gdb/vgdb, the Valgrind gdbserver creates 3 files (2 named FIFOs and a mmap shared memory
file). The prefix option controls the directory and prefix for the creation of these files.

——run—-libc-freeres=<yes|no> [default: vyes]
This option is only relevant when running Valgrind on Linux.

The GNU C library (1ibc. so), which is used by all programs, may allocate memory for its own uses. Usually it
doesn’t bother to free that memory when the program ends—there would be no point, since the Linux kernel reclaims
all process resources when a process exits anyway, so it would just slow things down.

The glibc authors realised that this behaviour causes leak checkers, such as Valgrind, to falsely report leaks in glibc,
when a leak check is done at exit. In order to avoid this, they provided a routine called __libc_freeres
specifically to make glibc release all memory it has allocated. Memcheck therefore tries torun __1ibc_freeres
at exit.

Unfortunately, in some very old versions of glibc, _ libc_freeres is sufficiently buggy to cause segmentation
faults. This was particularly noticeable on Red Hat 7.1. So this option is provided in order to inhibit the run
of _ libc_freeres. If your program seems to run fine on Valgrind, but segfaults at exit, you may find that
-—run-libc-freeres=no fixes that, although at the cost of possibly falsely reporting space leaks in 1ibc. so.

—-—-sim-hints=hintl,hint2, ...

Pass miscellaneous hints to Valgrind which slightly modify the simulated behaviour in nonstandard or dangerous ways,
possibly to help the simulation of strange features. By default no hints are enabled. Use with caution! Currently
known hints are:

*lax-ioctls: Be very lax about ioctl handling; the only assumption is that the size is correct. Doesn’t require
the full buffer to be initialised when writing. Without this, using some device drivers with a large number of strange
ioctl commands becomes very tiresome.

e fuse-compatible: Enable special handling for certain system calls that may block in a FUSE file-system.
This may be necessary when running Valgrind on a multi-threaded program that uses one thread to manage a FUSE
file-system and another thread to access that file-system.

*eenable-outer: Enable some special magic needed when the program being run is itself Valgrind.

eno-inner-prefix: Disable printing a prefix > in front of each stdout or stderr output line in an inner
Valgrind being run by an outer Valgrind. This is useful when running Valgrind regression tests in an outer/inner
setup. Note that the prefix > will always be printed in front of the inner debug logging lines.

22

Using and understanding the Valgrind core

eno-nptl-pthread-stackcache: This hintis only relevant when running Valgrind on Linux.

The GNU glibc pthread library (Libpthread. so), which is used by pthread programs, maintains a cache of
pthread stacks. When a pthread terminates, the memory used for the pthread stack and some thread local storage
related data structure are not always directly released. This memory is kept in a cache (up to a certain size), and is
re-used if a new thread is started.

This cache causes the helgrind tool to report some false positive race condition errors on this cached memory, as
helgrind does not understand the internal glibc cache synchronisation primitives. So, when using helgrind, disabling
the cache helps to avoid false positive race conditions, in particular when using thread local storage variables (e.g.
variables using the ___thread qualifier).

When using the memcheck tool, disabling the cache ensures the memory used by glibc to handle __thread variables
is directly released when a thread terminates.

Note: Valgrind disables the cache using some internal knowledge of the glibc stack cache implementation and by
examining the debug information of the pthread library. This technique is thus somewhat fragile and might not work
for all glibc versions. This has been succesfully tested with various glibc versions (e.g. 2.11, 2.16, 2.18) on various
platforms.

*lax—doors: (Solaris only) Be very lax about door syscall handling over unrecognised door file descriptors.
Does not require that full buffer is initialised when writing. Without this, programs using libdoor(3LIB) functional-
ity with completely proprietary semantics may report large number of false positives.

——fair-sched=<no|yes|try> [default: no]

The —-fair-sched option controls the locking mechanism used by Valgrind to serialise thread execution. The
locking mechanism controls the way the threads are scheduled, and different settings give different trade-offs between
fairness and performance. For more details about the Valgrind thread serialisation scheme and its impact on
performance and thread scheduling, see Scheduling and Multi-Thread Performance.

*The value ——fair-sched=yes activates a fair scheduler. In short, if multiple threads are ready to run, the
threads will be scheduled in a round robin fashion. This mechanism is not available on all platforms or Linux
versions. If not available, using ——fair—-sched=yes will cause Valgrind to terminate with an error.

You may find this setting improves overall responsiveness if you are running an interactive multithreaded program,
for example a web browser, on Valgrind.

*The value ——fair-sched=try activates fair scheduling if available on the platform. Otherwise, it will
automatically fall back to ——fair-sched=no.

* The value ——fair-sched=no activates a scheduler which does not guarantee fairness between threads ready to
run, but which in general gives the highest performance.

23

Using and understanding the Valgrind core

——kernel-variant=variantl,variant2, ...

Handle system calls and ioctls arising from minor variants of the default kernel for this platform. This is useful for
running on hacked kernels or with kernel modules which support nonstandard ioctls, for example. Use with caution.
If you don’t understand what this option does then you almost certainly don’t need it. Currently known variants are:

*bproc: support the sys_broc system call on x86. This is for running on BProc, which is a minor variant of
standard Linux which is sometimes used for building clusters.

e android-no-hw-t1s: some versions of the Android emulator for ARM do not provide a hardware TLS (thread-
local state) register, and Valgrind crashes at startup. Use this variant to select software support for TLS.

*android-gpu-sgx5xx: use this to support handling of proprietary ioctls for the PowerVR SGX 5XX series of
GPUs on Android devices. Failure to select this does not cause stability problems, but may cause Memcheck to
report false errors after the program performs GPU-specific ioctls.

*android-gpu-adreno3xx: similarly, use this to support handling of proprietary ioctls for the Qualcomm
Adreno 3XX series of GPUs on Android devices.

—-—-merge-recursive-frames=<number> [default: 0]

Some recursive algorithms, for example balanced binary tree implementations, create many different stack traces, each
containing cycles of calls. A cycle is defined as two identical program counter values separated by zero or more other
program counter values. Valgrind may then use a lot of memory to store all these stack traces. This is a poor use
of memory considering that such stack traces contain repeated uninteresting recursive calls instead of more interesting
information such as the function that has initiated the recursive call.

The option ——merge-recursive-frames=<number> instructs Valgrind to detect and merge recursive call
cycles having a size of up to <number> frames. When such a cycle is detected, Valgrind records the cycle in
the stack trace as a unique program counter.

The value O (the default) causes no recursive call merging. A value of 1 will cause stack traces of simple recursive
algorithms (for example, a factorial implementation) to be collapsed. A value of 2 will usually be needed to collapse
stack traces produced by recursive algorithms such as binary trees, quick sort, etc. Higher values might be needed for
more complex recursive algorithms.

Note: recursive calls are detected by analysis of program counter values. They are not detected by looking at function
names.

——-num-transtab-sectors=<number> [default: 6 for Android platforms, 16 for all
others]

Valgrind translates and instruments your program’s machine code in small fragments (basic blocks). The translations
are stored in a translation cache that is divided into a number of sections (sectors). If the cache is full, the sector
containing the oldest translations is emptied and reused. If these old translations are needed again, Valgrind must
re-translate and re-instrument the corresponding machine code, which is expensive. If the "executed instructions"
working set of a program is big, increasing the number of sectors may improve performance by reducing the number
of re-translations needed. Sectors are allocated on demand. Once allocated, a sector can never be freed, and occupies
considerable space, depending on the tool and the value of ——avg-transtab-entry-size (about 40 MB per
sector for Memcheck). Use the option ——stats=yes to obtain precise information about the memory used by a
sector and the allocation and recycling of sectors.

24

Using and understanding the Valgrind core

—-—avg-transtab-entry-size=<number> [default: 0, meaning use tool provided
default]

Average size of translated basic block. This average size is used to dimension the size of a sector. Each tool
provides a default value to be used. If this default value is too small, the translation sectors will become full too
quickly. If this default value is too big, a significant part of the translation sector memory will be unused. Note
that the average size of a basic block translation depends on the tool, and might depend on tool options. For
example, the memcheck option ——track-origins=yes increases the size of the basic block translations. Use
-—avg-transtab-entry-size to tune the size of the sectors, either to gain memory or to avoid too many
retranslations.

——aspace-minaddr=<address> [default: depends on the platform]

To avoid potential conflicts with some system libraries, Valgrind does not use the address space below
—-—aspace-minaddr value, keeping it reserved in case a library specifically requests memory in this region.
So, some "pessimistic" value is guessed by Valgrind depending on the platform. On linux, by default, Valgrind
avoids using the first 64MB even if typically there is no conflict in this complete zone. You can use the option
—-—aspace-minaddr to have your memory hungry application benefitting from more of this lower memory. On
the other hand, if you encounter a conflict, increasing aspace-minaddr value might solve it. Conflicts will typically
manifest themselves with mmap failures in the low range of the address space. The provided address must be page
aligned and must be equal or bigger to 0x1000 (4KB). To find the default value on your platform, do something such
as valgrind -d -d date 2>&1 | grep —i minaddr. Values lower than 0x10000 (64KB) are known to
create problems on some distributions.

—--valgrind-stacksize=<number> [default: 1MB]

For each thread, Valgrind needs its own ’private’ stack. The default size for these stacks is largely dimensioned, and so
should be sufficient in most cases. In case the size is too small, Valgrind will segfault. Before segfaulting, a warning
might be produced by Valgrind when approaching the limit.

Use the option ——valgrind-stacksize if such an (unlikely) warning is produced, or Valgrind dies due to a
segmentation violation. Such segmentation violations have been seen when demangling huge C++ symbols.

If your application uses many threads and needs a lot of memory, you can gain some memory by reducing the size of
these Valgrind stacks using the option ——valgrind-stacksize.

—--show—-emwarns=<yes|no> [default: no]
When enabled, Valgrind will emit warnings about its CPU emulation in certain cases. These are usually not
interesting.

——-require-text-symbol=:sonamepatt:fnnamepatt

When a shared object whose soname matches sonamepatt is loaded into the process, examine all the text symbols
it exports. If none of those match fnnamepatt, print an error message and abandon the run. This makes it possible
to ensure that the run does not continue unless a given shared object contains a particular function name.

Both sonamepatt and fnnamepatt can be written using the usual ? and * wildcards. For example:
":xlibc.sox:foo?bar". You may use characters other than a colon to separate the two patterns. It is
only important that the first character and the separator character are the same. For example, the above example could
also be written "Qx1libc.so*xQfoo?bar". Multiple —--require-text-symbol flags are allowed, in which
case shared objects that are loaded into the process will be checked against all of them.

The purpose of this is to support reliable usage of marked-up libraries. For example, suppose we have a
version of GCC’s 1ibgomp.so which has been marked up with annotations to support Helgrind. It is only
too easy and confusing to load the wrong, un-annotated 1ibgomp.so into the application. So the idea is:
add a text symbol in the marked-up library, for example annotated_for_helgrind_3_6, and then give
the flag ——require-text-symbol=:*libgomp*sox:annotated_for_helgrind_3_6 so that when
libgomp. so is loaded, Valgrind scans its symbol table, and if the symbol isn’t present the run is aborted, rather
than continuing silently with the un-marked-up library. Note that you should put the entire flag in quotes to stop
shells expanding up the % and ? wildcards.

25

Using and understanding the Valgrind core

—-—soname-synonyms=synl=patternl, syn2=pattern2, ...

When a shared library is loaded, Valgrind checks for functions in the library that must be replaced or wrapped. For
example, Memcheck replaces all malloc related functions (malloc, free, calloc, ...) with its own versions. Such
replacements are done by default only in shared libraries whose soname matches a predefined soname pattern (e.g.
libc.so* on linux). By default, no replacement is done for a statically linked library or for alternative libraries
such as tcmalloc. In some cases, the replacements allow ——soname—-synonyms to specify one additional synonym
pattern, giving flexibility in the replacement.

Currently, this flexibility is only allowed for the malloc related functions, using the synonym somalloc. This
synonym is usable for all tools doing standard replacement of malloc related functions (e.g. memcheck, massif, drd,
helgrind, exp-dhat, exp-sgcheck).

e Alternate malloc library: to replace the malloc related functions in an alternate library with soname
mymalloclib. so, give the option ——soname-synonyms=somalloc=mymalloclib.so. A pattern can
be used to match multiple libraries sonames. For example, ——soname-synonyms=somalloc=+tcmallocx*
will match the soname of all variants of the tcmalloc library (native, debug, profiled, ... tcmalloc variants).

Note: the soname of a elf shared library can be retrieved using the readelf utility.

*Replacements in a statically linked library are done by using the NONE pattern. For exam-
ple, if you link with libtcmalloc.a, memcheck will properly work when you give the option
—-—soname-synonyms=somalloc=NONE. Note that a NONE pattern will match the main executable
and any shared library having no soname.

eTo run a "default" Firefox build for Linux, in which JEMalloc is linked in to the main executable, use
——soname-synonyms=somalloc=NONE.

2.6.6. Debugging Options

There are also some options for debugging Valgrind itself. You shouldn’t need to use them in the normal run of
things. If you wish to see the list, use the ——help-debug option.

If you wish to debug your program rather than debugging Valgrind itself, then you should use the options
——vgdb=yes or ——vgdb=full.

2.6.7. Setting Default Options

Note that Valgrind also reads options from three places:

1. The file ~/ .valgrindrc
2. The environment variable SVALGRIND OPTS

3.The file . /.valgrindrc

26

Using and understanding the Valgrind core

These are processed in the given order, before the command-line options. Options processed later override those
processed earlier; for example, options in . /. valgrindrc will take precedence over those in ~/ .valgrindrc.

Please note that the . /.valgrindrc file is ignored if it is marked as world writeable or not owned by the current
user. This is because the . /.valgrindrc can contain options that are potentially harmful or can be used by a local
attacker to execute code under your user account.

Any tool-specific options put in $VALGRIND_OPTS or the .valgrindrc files should be prefixed with the tool
name and a colon. For example, if you want Memcheck to always do leak checking, you can put the following entry
in ~/.valgrindrc:

——memcheck:leak-check=yes

This will be ignored if any tool other than Memcheck is run. Without the memcheck : part, this will cause problems
if you select other tools that don’t understand ——1leak-check=yes.

2.7. Support for Threads

Threaded programs are fully supported.

The main thing to point out with respect to threaded programs is that your program will use the native threading
library, but Valgrind serialises execution so that only one (kernel) thread is running at a time. This approach avoids
the horrible implementation problems of implementing a truly multithreaded version of Valgrind, but it does mean that
threaded apps never use more than one CPU simultaneously, even if you have a multiprocessor or multicore machine.

Valgrind doesn’t schedule the threads itself. It merely ensures that only one thread runs at once, using a simple
locking scheme. The actual thread scheduling remains under control of the OS kernel. What this does mean, though,
is that your program will see very different scheduling when run on Valgrind than it does when running normally. This
is both because Valgrind is serialising the threads, and because the code runs so much slower than normal.

This difference in scheduling may cause your program to behave differently, if you have some kind of concurrency,
critical race, locking, or similar, bugs. In that case you might consider using the tools Helgrind and/or DRD to track
them down.

On Linux, Valgrind also supports direct use of the clone system call, futex and so on. clone is supported where
either everything is shared (a thread) or nothing is shared (fork-like); partial sharing will fail.

2.7.1. Scheduling and Multi-Thread Performance

A thread executes code only when it holds the abovementioned lock. After executing some number of instructions,
the running thread will release the lock. All threads ready to run will then compete to acquire the lock.

The —-—fair-sched option controls the locking mechanism used to serialise thread execution.

The default pipe based locking mechanism (-—-fair-sched=no) is available on all platforms. Pipe based locking
does not guarantee fairness between threads: it is quite likely that a thread that has just released the lock reacquires it
immediately, even though other threads are ready to run. When using pipe based locking, different runs of the same
multithreaded application might give very different thread scheduling.

An alternative locking mechanism, based on futexes, is available on some platforms. If available, it is activated by
-—fair-sched=yes or ——fair-sched=try. Futex based locking ensures fairness (round-robin scheduling)
between threads: if multiple threads are ready to run, the lock will be given to the thread which first requested the
lock. Note that a thread which is blocked in a system call (e.g. in a blocking read system call) has not (yet) requested
the lock: such a thread requests the lock only after the system call is finished.

27

Using and understanding the Valgrind core

The fairness of the futex based locking produces better reproducibility of thread scheduling for different executions of
a multithreaded application. This better reproducibility is particularly helpful when using Helgrind or DRD.

Valgrind’s use of thread serialisation implies that only one thread at a time may run. On a multiprocessor/multicore
system, the running thread is assigned to one of the CPUs by the OS kernel scheduler. When a thread acquires the
lock, sometimes the thread will be assigned to the same CPU as the thread that just released the lock. Sometimes, the
thread will be assigned to another CPU. When using pipe based locking, the thread that just acquired the lock will
usually be scheduled on the same CPU as the thread that just released the lock. With the futex based mechanism, the
thread that just acquired the lock will more often be scheduled on another CPU.

Valgrind’s thread serialisation and CPU assignment by the OS kernel scheduler can interact badly with the CPU
frequency scaling available on many modern CPUs. To decrease power consumption, the frequency of a CPU or
core is automatically decreased if the CPU/core has not been used recently. If the OS kernel often assigns the thread
which just acquired the lock to another CPU/core, it is quite likely that this CPU/core is currently at a low frequency.
The frequency of this CPU will be increased after some time. However, during this time, the (only) running thread
will have run at the low frequency. Once this thread has run for some time, it will release the lock. Another thread
will acquire this lock, and might be scheduled again on another CPU whose clock frequency was decreased in the
meantime.

The futex based locking causes threads to change CPUs/cores more often. So, if CPU frequency scaling is activated,
the futex based locking might decrease significantly the performance of a multithreaded app running under Valgrind.
Performance losses of up to 50% degradation have been observed, as compared to running on a machine for which
CPU frequency scaling has been disabled. The pipe based locking locking scheme also interacts badly with CPU
frequency scaling, with performance losses in the range 10..20% having been observed.

To avoid such performance degradation, you should indicate to the kernel that all CPUs/cores should always run at
maximum clock speed. Depending on your Linux distribution, CPU frequency scaling may be controlled using a
graphical interface or using command line such as cpufreg-selector or cpufreg-set.

An alternative way to avoid these problems is to tell the OS scheduler to tie a Valgrind process to a specific (fixed)
CPU using the taskset command. This should ensure that the selected CPU does not fall below its maximum
frequency setting so long as any thread of the program has work to do.

2.8. Handling of Signals

Valgrind has a fairly complete signal implementation. It should be able to cope with any POSIX-compliant use of
signals.

If you're using signals in clever ways (for example, catching SIGSEGV, modifying page state
and restarting the instruction), you're probably relying on precise exceptions. In this case,
you will need to use —-vex-iropt-register-updates=allregs—at-mem-access Or
—--vex—-iropt-register-updates=allregs—-at-each-insn.

If your program dies as a result of a fatal core-dumping signal, Valgrind will generate its own core file
(vgcore .NNNNN) containing your program’s state. You may use this core file for post-mortem debugging
with GDB or similar. (Note: it will not generate a core if your core dump size limit is 0.) At the time of writing the
core dumps do not include all the floating point register information.

In the unlikely event that Valgrind itself crashes, the operating system will create a core dump in the usual way.

2.9. Building and Installing Valgrind

We use the standard Unix . /configure, make, make install mechanism. Once you have completed make
install you may then want to run the regression tests with make regtest.

28

Using and understanding the Valgrind core

In addition to the usual ——-prefix=/path/to/install/tree, there are three options which affect how Valgrind
is built:
e -——enable-inner

This builds Valgrind with some special magic hacks which make it possible to run it on a standard build of Valgrind
(what the developers call "self-hosting"). Ordinarily you should not use this option as various kinds of safety
checks are disabled.

e ——enable-only64bit
—-—enable-only32bit

On 64-bit platforms (amd64-linux, ppc64-linux, amd64-darwin), Valgrind is by default built in such a way that both
32-bit and 64-bit executables can be run. Sometimes this cleverness is a problem for a variety of reasons. These
two options allow for single-target builds in this situation. If you issue both, the configure script will complain.
Note they are ignored on 32-bit-only platforms (x86-linux, ppc32-linux, arm-linux, x86-darwin).

The configure script tests the version of the X server currently indicated by the current $SDISPLAY. This is a
known bug. The intention was to detect the version of the current X client libraries, so that correct suppressions could
be selected for them, but instead the test checks the server version. This is just plain wrong.

If you are building a binary package of Valgrind for distribution, please read README_PACKAGERS Readme
Packagers. It contains some important information.

Apart from that, there’s not much excitement here. Let us know if you have build problems.

2.10. If You Have Problems

Contact us at http://www.valgrind.org/.
See Limitations for the known limitations of Valgrind, and for a list of programs which are known not to work on it.

All parts of the system make heavy use of assertions and internal self-checks. They are permanently enabled, and we
have no plans to disable them. If one of them breaks, please mail us!

If you get an assertion failure in m_mallocfree. c, this may have happened because your program wrote off the
end of a heap block, or before its beginning, thus corrupting heap metadata. Valgrind hopefully will have emitted a
message to that effect before dying in this way.

Read the Valgrind FAQ for more advice about common problems, crashes, etc.

2.11. Limitations

The following list of limitations seems long. However, most programs actually work fine.

Valgrind will run programs on the supported platforms subject to the following constraints:
* On x86 and amd64, there is no support for 3DNow! instructions. If the translator encounters these, Valgrind will
generate a SIGILL when the instruction is executed. Apart from that, on x86 and amd64, essentially all instructions

are supported, up to and including AVX and AES in 64-bit mode and SSSE3 in 32-bit mode. 32-bit mode does in
fact support the bare minimum SSE4 instructions needed to run programs on MacOSX 10.6 on 32-bit targets.

29

url(http://www.valgrind.org/)

Using and understanding the Valgrind core

* On ppc32 and ppc64, almost all integer, floating point and Altivec instructions are supported. Specifically: integer
and FP insns that are mandatory for PowerPC, the "General-purpose optional" group (fsqrt, fsqrts, stfiwx), the
"Graphics optional" group (fre, fres, frsqrte, frsqrtes), and the Altivec (also known as VMX) SIMD instruction
set, are supported. Also, instructions from the Power ISA 2.05 specification, as present in POWER6 CPUs, are
supported.

* On ARM, essentially the entire ARMv7-A instruction set is supported, in both ARM and Thumb mode. ThumbEE
and Jazelle are not supported. NEON, VFPv3 and ARMv6 media support is fairly complete.

* If your program does its own memory management, rather than using malloc/new/free/delete, it should still work,
but Memcheck’s error checking won’t be so effective. If you describe your program’s memory management
scheme using "client requests” (see The Client Request mechanism), Memcheck can do better. Nevertheless, using
malloc/new and free/delete is still the best approach.

* Valgrind’s signal simulation is not as robust as it could be. Basic POSIX-compliant sigaction and sigprocmask
functionality is supplied, but it’s conceivable that things could go badly awry if you do weird things with signals.
Workaround: don’t. Programs that do non-POSIX signal tricks are in any case inherently unportable, so should be
avoided if possible.

* Machine instructions, and system calls, have been implemented on demand. So it’s possible, although unlikely,
that a program will fall over with a message to that effect. If this happens, please report all the details printed out,
so we can try and implement the missing feature.

* Memory consumption of your program is majorly increased whilst running under Valgrind’s Memcheck tool. This
is due to the large amount of administrative information maintained behind the scenes. Another cause is that
Valgrind dynamically translates the original executable. Translated, instrumented code is 12-18 times larger than
the original so you can easily end up with 150+ MB of translations when running (eg) a web browser.

* Valgrind can handle dynamically-generated code just fine. If you regenerate code over the top of old code (ie.
at the same memory addresses), if the code is on the stack Valgrind will realise the code has changed, and work
correctly. This is necessary to handle the trampolines GCC uses to implemented nested functions. If you regenerate
code somewhere other than the stack, and you are running on an 32- or 64-bit x86 CPU, you will need to use the
——smc—-check=all option, and Valgrind will run more slowly than normal. Or you can add client requests that
tell Valgrind when your program has overwritten code.

On other platforms (ARM, PowerPC) Valgrind observes and honours the cache invalidation hints that programs are
obliged to emit to notify new code, and so self-modifying-code support should work automatically, without the need
for ——smc—check=all.

¢ Valgrind has the following limitations in its implementation of x86/AMD64 floating point relative to IEEE754.

Precision: There is no support for 80 bit arithmetic. Internally, Valgrind represents all such "long double" numbers
in 64 bits, and so there may be some differences in results. Whether or not this is critical remains to be seen. Note,
the x86/amd64 fldt/fstpt instructions (read/write 80-bit numbers) are correctly simulated, using conversions to/from
64 bits, so that in-memory images of 80-bit numbers look correct if anyone wants to see.

The impression observed from many FP regression tests is that the accuracy differences aren’t significant. Generally
speaking, if a program relies on 80-bit precision, there may be difficulties porting it to non x86/amd64 platforms
which only support 64-bit FP precision. Even on x86/amd64, the program may get different results depending on
whether it is compiled to use SSE2 instructions (64-bits only), or x87 instructions (80-bit). The net effect is to
make FP programs behave as if they had been run on a machine with 64-bit IEEE floats, for example PowerPC.
On amd64 FP arithmetic is done by default on SSE2, so amd64 looks more like PowerPC than x86 from an FP
perspective, and there are far fewer noticeable accuracy differences than with x86.

30

Using and understanding the Valgrind core

Rounding: Valgrind does observe the 4 IEEE-mandated rounding modes (to nearest, to +infinity, to -infinity, to
zero) for the following conversions: float to integer, integer to float where there is a possibility of loss of precision,
and float-to-float rounding. For all other FP operations, only the IEEE default mode (round to nearest) is supported.

Numeric exceptions in FP code: IEEE754 defines five types of numeric exception that can happen: invalid operation
(sqrt of negative number, etc), division by zero, overflow, underflow, inexact (loss of precision).

For each exception, two courses of action are defined by IEEE754: either (1) a user-defined exception handler may
be called, or (2) a default action is defined, which "fixes things up" and allows the computation to proceed without
throwing an exception.

Currently Valgrind only supports the default fixup actions. Again, feedback on the importance of exception support
would be appreciated.

When Valgrind detects that the program is trying to exceed any of these limitations (setting exception handlers,
rounding mode, or precision control), it can print a message giving a traceback of where this has happened, and
continue execution. This behaviour used to be the default, but the messages are annoying and so showing them is
now disabled by default. Use ——show-emwarns=yes to see them.

The above limitations define precisely the IEEE754 *default’ behaviour: default fixup on all exceptions, round-to-
nearest operations, and 64-bit precision.

Valgrind has the following limitations in its implementation of x86/AMD64 SSE2 FP arithmetic, relative to
IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, SSE2 has control bits which
make it treat denormalised numbers as zero (DAZ) and a related action, flush denormals to zero (FTZ). Both of
these cause SSE2 arithmetic to be less accurate than IEEE requires. Valgrind detects, ignores, and can warn about,
attempts to enable either mode.

Valgrind has the following limitations in its implementation of ARM VFPv3 arithmetic, relative to IEEE754.

Essentially the same: no exceptions, and limited observance of rounding mode. Also, switching the VFP unit into
vector mode will cause Valgrind to abort the program -- it has no way to emulate vector uses of VFP at a reasonable
performance level. This is no big deal given that non-scalar uses of VFP instructions are in any case deprecated.

Valgrind has the following limitations in its implementation of PPC32 and PPC64 floating point arithmetic, relative
to [IEEE754.

Scalar (non-Altivec): Valgrind provides a bit-exact emulation of all floating point instructions, except for "fre" and
"fres", which are done more precisely than required by the PowerPC architecture specification. All floating point
operations observe the current rounding mode.

However, fpscr[FPRF] is not set after each operation. That could be done but would give measurable performance
overheads, and so far no need for it has been found.

As on x86/AMD64, IEEE754 exceptions are not supported: all floating point exceptions are handled using the
default IEEE fixup actions. Valgrind detects, ignores, and can warn about, attempts to unmask the 5 IEEE FP
exception kinds by writing to the floating-point status and control register (fpscr).

Vector (Altivec, VMX): essentially as with x86/AMD64 SSE/SSE2: no exceptions, and limited observance of
rounding mode. For Altivec, FP arithmetic is done in IEEE/Java mode, which is more accurate than the Linux
default setting. "More accurate" means that denormals are handled properly, rather than simply being flushed to
Zero.

Programs which are known not to work are:

31

Using and understanding the Valgrind core

e emacs starts up but immediately concludes it is out of memory and aborts. It may be that Memcheck does not
provide a good enough emulation of the mallinfo function. Emacs works fine if you build it to use the standard
malloc/free routines.

2.12. An Example Run

This is the log for a run of a small program using Memcheck. The program is in fact correct, and the reported error is
as the result of a potentially serious code generation bug in GNU g++ (snapshot 20010527).

sewardj@phoenix:~/newmatl10$ ~/Valgrind-6/valgrind -v ./bogon
==25832== Valgrind 0.10, a memory error detector for x86 RedHat 7.1.
==25832== Copyright (C) 2000-2001, and GNU GPL’d, by Julian Seward.
==25832== Startup, with flags:

==25832== ——suppressions=/home/sewardj/Valgrind/redhat71. supp
==25832== reading syms from /lib/ld-linux.so0.2

==25832== reading syms from /1lib/libc.so.6

==25832== reading syms from /mnt/pima/jrs/Inst/lib/libgcc_s.so0.0
==25832== reading syms from /lib/libm.so.6

==25832== reading syms from /mnt/pima/jrs/Inst/lib/libstdc++.s0.3
==25832== reading syms from /home/sewardj/Valgrind/valgrind.so
==25832== reading syms from /proc/self/exe

==25832==

==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize (int,int,int) (bogon.cpp:45)
==25832== by 0x80487AF: main (bogon.cpp:66)

==25832== Address OxBFFFF74C is not stack’d, malloc’d or free’d
==25832==

==25832== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==25832==malloc/free: in use at exit: 0 bytes in 0 blocks.
==25832==malloc/free: 0 allocs, 0 frees, 0 bytes allocated.

==25832== For a detailed leak analysis, rerun with: —--leak-check=yes

The GCC folks fixed this about a week before GCC 3.0 shipped.

2.13. Warning Messages You Might See

Some of these only appear if you run in verbose mode (enabled by —v):

*More than 100 errors detected. Subsequent errors will still be recorded,
but in less detail than before.

After 100 different errors have been shown, Valgrind becomes more conservative about collecting them. It then
requires only the program counters in the top two stack frames to match when deciding whether or not two errors
are really the same one. Prior to this point, the PCs in the top four frames are required to match. This hack has
the effect of slowing down the appearance of new errors after the first 100. The 100 constant can be changed by
recompiling Valgrind.

32

Using and understanding the Valgrind core

*More than 1000 errors detected. I’'m not reporting any more. Final
error counts may be inaccurate. Go fix your program!

After 1000 different errors have been detected, Valgrind ignores any more. It seems unlikely that collecting even
more different ones would be of practical help to anybody, and it avoids the danger that Valgrind spends more
and more of its time comparing new errors against an ever-growing collection. As above, the 1000 number is a
compile-time constant.

*Warning: client switching stacks?

Valgrind spotted such a large change in the stack pointer that it guesses the client is switching to a different stack.
At this point it makes a kludgey guess where the base of the new stack is, and sets memory permissions accordingly.
At the moment "large change" is defined as a change of more that 2000000 in the value of the stack pointer register.
If Valgrind guesses wrong, you may get many bogus error messages following this and/or have crashes in the
stack trace recording code. You might avoid these problems by informing Valgrind about the stack bounds using
VALGRIND_STACK_REGISTER client request.

*Warning: client attempted to close Valgrind’s logfile fd <number>
Valgrind doesn’t allow the client to close the logfile, because you’d never see any diagnostic information after that
point. If you see this message, you may want to use the ——log—fd=<number> option to specify a different
logfile file-descriptor number.

*Warning: noted but unhandled ioctl <number>

Valgrind observed a call to one of the vast family of ioctl system calls, but did not modify its memory status
info (because nobody has yet written a suitable wrapper). The call will still have gone through, but you may get
spurious errors after this as a result of the non-update of the memory info.

*Warning: set address range perms: large range <number>

Diagnostic message, mostly for benefit of the Valgrind developers, to do with memory permissions.

33

3. Using and understanding the
Valgrind core: Advanced Topics

This chapter describes advanced aspects of the Valgrind core services, which are mostly of interest to power users who
wish to customise and modify Valgrind’s default behaviours in certain useful ways. The subjects covered are:

* The "Client Request" mechanism
* Debugging your program using Valgrind’s gdbserver and GDB

* Function Wrapping

3.1. The Client Request mechanism

Valgrind has a trapdoor mechanism via which the client program can pass all manner of requests and queries to
Valgrind and the current tool. Internally, this is used extensively to make various things work, although that’s not
visible from the outside.

For your convenience, a subset of these so-called client requests is provided to allow you to tell Valgrind facts about
the behaviour of your program, and also to make queries. In particular, your program can tell Valgrind about things
that it otherwise would not know, leading to better results.

Clients need to include a header file to make this work. Which header file depends on which client requests you use.
Some client requests are handled by the core, and are defined in the header file valgrind/valgrind.h. Tool-
specific header files are named after the tool, e.g. valgrind/memcheck.h. Each tool-specific header file includes
valgrind/valgrind.h so you don’t need to include it in your client if you include a tool-specific header. All
header files can be found in the include/valgrind directory of wherever Valgrind was installed.

The macros in these header files have the magical property that they generate code in-line which Valgrind can spot.
However, the code does nothing when not run on Valgrind, so you are not forced to run your program under Valgrind
just because you use the macros in this file. Also, you are not required to link your program with any extra supporting
libraries.

The code added to your binary has negligible performance impact: on x86, amd64, ppc32, ppc64 and ARM, the
overhead is 6 simple integer instructions and is probably undetectable except in tight loops. However, if you really
wish to compile out the client requests, you can compile with ~-DNVALGRIND (analogous to ~-DNDEBUG’s effect on
assert).

You are encouraged to copy the valgrind/«.h headers into your project’s include directory, so your program
doesn’t have a compile-time dependency on Valgrind being installed. The Valgrind headers, unlike most of the rest
of the code, are under a BSD-style license so you may include them without worrying about license incompatibility.

Here is a brief description of the macros available in valgrind.h, which work with more than one tool (see the

tool-specific documentation for explanations of the tool-specific macros).

RUNNING_ON_VALGRIND:
Returns 1 if running on Valgrind, O if running on the real CPU. If you are running Valgrind on itself, returns the
number of layers of Valgrind emulation you’re running on.

34

Using and understanding the Valgrind core: Advanced Topics

VALGRIND_DISCARD_TRANSLATIONS:

Discards translations of code in the specified address range. Useful if you are debugging a JIT compiler or some
other dynamic code generation system. After this call, attempts to execute code in the invalidated address range will
cause Valgrind to make new translations of that code, which is probably the semantics you want. Note that code
invalidations are expensive because finding all the relevant translations quickly is very difficult, so try not to call it
often. Note that you can be clever about this: you only need to call it when an area which previously contained code is
overwritten with new code. You can choose to write code into fresh memory, and just call this occasionally to discard
large chunks of old code all at once.

Alternatively, for transparent self-modifying-code support, use-—smc—-check=all, or run on ppc32/Linux,
ppc64/Linux or ARM/Linux.

VALGRIND_COUNT_ERRORS:
Returns the number of errors found so far by Valgrind. Can be useful in test harness code when combined with
the ——log—-fd=-1 option; this runs Valgrind silently, but the client program can detect when errors occur. Only
useful for tools that report errors, e.g. it’s useful for Memcheck, but for Cachegrind it will always return zero because
Cachegrind doesn’t report errors.

VALGRIND_MALLOCLIKE_BLOCK:

If your program manages its own memory instead of using the standard malloc / new / new[], tools that track
information about heap blocks will not do nearly as good a job. For example, Memcheck won’t detect nearly as
many errors, and the error messages won’t be as informative. To improve this situation, use this macro just after your
custom allocator allocates some new memory. See the comments in valgrind.h for information on how to use it.

VALGRIND FREELIKE BLOCK:
This should be used in conjunction with VALGRIND_MALLOCLIKE_BLOCK. Again, see valgrind.h for infor-
mation on how to use it.

VALGRIND_RESIZEINPLACE_BLOCK:
Informs a Valgrind tool that the size of an allocated block has been modified but not its address. See valgrind.h
for more information on how to use it.

VALGRIND_CREATE_MEMPOOL, VALGRIND_DESTROY_ MEMPOOL, VALGRIND_MEMPOOL_ALLOC,
VALGRIND_MEMPOOL_FREE, VALGRIND_MOVE_MEMPOOL, VALGRIND_MEMPOOL_CHANGE,
VALGRIND_MEMPOOL_EXISTS:

These are similar to VALGRIND_MALLOCLIKE_BLOCK and VALGRIND_FREELIKE_BLOCK but are tailored
towards code that uses memory pools. See Memory Pools for a detailed description.

VALGRIND_NON_SIMD_ CALL[0123]:

Executes a function in the client program on the real CPU, not the virtual CPU that Valgrind normally runs code on.
The function must take an integer (holding a thread ID) as the first argument and then O, 1, 2 or 3 more arguments
(depending on which client request is used). These are used in various ways internally to Valgrind. They might be
useful to client programs.

Warning: Only use these if you really know what you are doing. They aren’t entirely reliable, and can cause Valgrind
to crash. See valgrind.h for more details.

VALGRIND_PRINTF (format, ...):

Print a printf-style message to the Valgrind log file. The message is prefixed with the PID between a pair of * x
markers. (Like all client requests, nothing is output if the client program is not running under Valgrind.) Output is not
produced until a newline is encountered, or subsequent Valgrind output is printed; this allows you to build up a single
line of output over multiple calls. Returns the number of characters output, excluding the PID prefix.

VALGRIND_PRINTF_BACKTRACE (format, ...):
Like VALGRIND_PRINTF (in particular, the return value is identical), but prints a stack backtrace immediately
afterwards.

35

Using and understanding the Valgrind core: Advanced Topics

VALGRIND_MONITOR_COMMAND (command):

Execute the given monitor command (a string). Returns 0 if command is recognised. Returns 1 if command
is not recognised. Note that some monitor commands provide access to a functionality also accessible via a
specific client request. For example, memcheck leak search can be requested from the client program using
VALGRIND_DO_LEAK_CHECK or via the monitor command "leak_search". Note that the syntax of the command
string is only verified at run-time. So, if it exists, it is preferrable to use a specific client request to have better compile
time verifications of the arguments.

VALGRIND_STACK_REGISTER (start, end):
Registers a new stack. Informs Valgrind that the memory range between start and end is a unique stack. Returns a
stack identifier that can be used with other VALGRIND_STACK_ * calls.

Valgrind will use this information to determine if a change to the stack pointer is an item pushed onto the stack or a
change over to a new stack. Use this if you’re using a user-level thread package and are noticing crashes in stack trace
recording or spurious errors from Valgrind about uninitialized memory reads.

Warning: Unfortunately, this client request is unreliable and best avoided.

VALGRIND_STACK DEREGISTER(id):
Deregisters a previously registered stack. Informs Valgrind that previously registered memory range with stack id 1d
is no longer a stack.

Warning: Unfortunately, this client request is unreliable and best avoided.

VALGRIND_STACK CHANGE (id, start, end):
Changes a previously registered stack. Informs Valgrind that the previously registered stack with stack id id has
changed its start and end values. Use this if your user-level thread package implements stack growth.

Warning: Unfortunately, this client request is unreliable and best avoided.

3.2. Debugging your program using Valgrind
gdbserver and GDB

A program running under Valgrind is not executed directly by the CPU. Instead it runs on a synthetic CPU provided
by Valgrind. This is why a debugger cannot debug your program when it runs on Valgrind.

This section describes how GDB can interact with the Valgrind gdbserver to provide a fully debuggable program under
Valgrind. Used in this way, GDB also provides an interactive usage of Valgrind core or tool functionalities, including
incremental leak search under Memcheck and on-demand Massif snapshot production.

3.2.1. Quick Start: debugging in 3 steps

The simplest way to get started is to run Valgrind with the flag ——vgdb-error=0. Then follow the on-screen
directions, which give you the precise commands needed to start GDB and connect it to your program.

Otherwise, here’s a slightly more verbose overview.

If you want to debug a program with GDB when using the Memcheck tool, start Valgrind like this:

valgrind —--vgdb=yes —-vgdb-error=0 prog

36

Using and understanding the Valgrind core: Advanced Topics

In another shell, start GDB:

gdb prog

Then give the following command to GDB:

(gdb) target remote | vgdb

You can now debug your program e.g. by inserting a breakpoint and then using the GDB cont inue command.

This quick start information is enough for basic usage of the Valgrind gdbserver. The sections below describe
more advanced functionality provided by the combination of Valgrind and GDB. Note that the command line flag
—-—vgdb=yes can be omitted, as this is the default value.

3.2.2. Valgrind gdbserver overall organisation

The GNU GDB debugger is typically used to debug a process running on the same machine. In this mode, GDB uses
system calls to control and query the program being debugged. This works well, but only allows GDB to debug a
program running on the same computer.

GDB can also debug processes running on a different computer. To achieve this, GDB defines a protocol (that is, a
set of query and reply packets) that facilitates fetching the value of memory or registers, setting breakpoints, etc. A
gdbserver is an implementation of this "GDB remote debugging" protocol. To debug a process running on a remote
computer, a gdbserver (sometimes called a GDB stub) must run at the remote computer side.

The Valgrind core provides a built-in gdbserver implementation, which is activated using —-vgdb=yes or
——vgdb=full. This gdbserver allows the process running on Valgrind’s synthetic CPU to be debugged remotely.
GDB sends protocol query packets (such as "get register contents") to the Valgrind embedded gdbserver. The gdb-
server executes the queries (for example, it will get the register values of the synthetic CPU) and gives the results back
to GDB.

GDB can use various kinds of channels (TCP/IP, serial line, etc) to communicate with the gdbserver. In the case
of Valgrind’s gdbserver, communication is done via a pipe and a small helper program called vgdb, which acts as an
intermediary. If no GDB is in use, vgdb can also be used to send monitor commands to the Valgrind gdbserver from
a shell command line.

3.2.3. Connecting GDB to a Valgrind gdbserver

To debug a program "prog" running under Valgrind, you must ensure that the Valgrind gdbserver is
activated by specifying either —-vgdb=yes or —--vgdb=full. A secondary command line option,
—-—vgdb-error=number, can be used to tell the gdbserver only to become active once the specified number of
errors have been shown. A value of zero will therefore cause the gdbserver to become active at startup, which allows
you to insert breakpoints before starting the run. For example:

valgrind —-tool=memcheck —--vgdb=yes —--vgdb—error=0 ./prog

37

Using and understanding the Valgrind core: Advanced Topics

The Valgrind gdbserver is invoked at startup and indicates it is waiting for a connection from a GDB:

==2418== Memcheck, a memory error detector

==2418== Copyright (C) 2002-2010, and GNU GPL’d, by Julian Seward et al.
==2418== Using Valgrind-3.7.0.SVN and LibVEX; rerun with -h for copyright info
==2418== Command: ./prog

==2418==

==2418== (action at startup) vgdb me ...

GDB (in another shell) can then be connected to the Valgrind gdbserver. For this, GDB must be started on the program
prog:

gdb ./prog

You then indicate to GDB that you want to debug a remote target:

(gdb) target remote | vgdb

GDB then starts a vgdb relay application to communicate with the Valgrind embedded gdbserver:

(gdb) target remote | vgdb

Remote debugging using | vgdb

relaying data between gdb and process 2418

Reading symbols from /lib/ld-linux.so.2...done.

Reading symbols from /usr/lib/debug/lib/1d-2.11.2.so.debug...done.
Loaded symbols for /lib/ld-1linux.so0.2

[Switching to Thread 2418]

0x001f2850 in _start () from /lib/ld-linux.so.2

(gdb)

Note that vgdb is provided as part of the Valgrind distribution. You do not need to install it separately.

If vgdb detects that there are multiple Valgrind gdbservers that can be connected to, it will list all such servers and
their PIDs, and then exit. You can then reissue the GDB "target" command, but specifying the PID of the process you
want to debug:

38

Using and understanding the Valgrind core: Advanced Topics

(gdb) target remote | vgdb

Remote debugging using | vgdb

no —-pid= arg given and multiple valgrind pids found:

use ——pid=2479 for valgrind ——tool=memcheck —--vgdb=yes —--vgdb-error=0 ./prog
use —-pid=2481 for valgrind ——-tool=memcheck —--vgdb=yes --vgdb-error=0 ./prog
use —-pid=2483 for valgrind --vgdb=yes —--vgdb-error=0 ./another_prog

Remote communication error: Resource temporarily unavailable.

(gdb) target remote | vgdb —-pid=2479

Remote debugging using | vgdb ——pid=2479

relaying data between gdb and process 2479

Reading symbols from /lib/ld-linux.so.2...done.

Reading symbols from /usr/lib/debug/lib/1d-2.11.2.so.debug...done.

Loaded symbols for /lib/ld-1linux.so0.2

[Switching to Thread 2479]

0x001£2850 in _start () from /1lib/ld-linux.so.?2

(gdb)

Once GDB is connected to the Valgrind gdbserver, it can be used in the same way as if you were debugging the
program natively:

* Breakpoints can be inserted or deleted.

* Variables and register values can be examined or modified.

» Signal handling can be configured (printing, ignoring).

* Execution can be controlled (continue, step, next, stepi, etc).

* Program execution can be interrupted using Control-C.

And so on. Refer to the GDB user manual for a complete description of GDB’s functionality.

3.2.4. Connecting to an Android gdbserver

When developping applications for Android, you will typically use a development system (on which the Android NDK
is installed) to compile your application. An Android target system or emulator will be used to run the application. In
this setup, Valgrind and vgdb will run on the Android system, while GDB will run on the development system. GDB
will connect to the vgdb running on the Android system using the Android NDK ’adb forward’ application.

Example: on the Android system, execute the following:
valgrind —--vgdb-error=0 —--vgdb=yes prog

and then in another shell, run:
vgdb —-port=1234

On the development system, execute the following commands:

39

Using and understanding the Valgrind core: Advanced Topics

adb forward tcp:1234 tcp:1234
gdb prog
(gdb) target remote :1234

GDB will use a local tcp/ip connection to connect to the Android adb forwarder. Adb will establish a relay connection
between the host system and the Android target system. Be sure to use the GDB delivered in the Android NDK system
(typically, arm-linux-androideabi-gdb), as the host GDB is probably not able to debug Android arm applications. Note
that the local port nr (used by GDB) must not necessarily be equal to the port number used by vgdb: adb can forward
tep/ip between different port numbers.

In the current release, the GDB server is not enabled by default for Android, due to problems in establishing a suitable
directory in which Valgrind can create the necessary FIFOs (named pipes) for communication purposes. You can stil
try to use the GDB server, but you will need to explicitly enable it using the flag ——vgdb=yes or ——vgdb=full.

Additionally, you will need to select a temporary directory which is (a) writable by Valgrind, and (b) supports FIFOs.
This is the main difficult point. Often, /sdcard satisfies requirement (a), but fails for (b) because it is a VFAT file
system and VFAT does not support pipes. Possibilities you could try are /data/local, /data/local/Inst (if
you installed Valgrind there), or /data/data/name.of.my.app, if you are running a specific application and it
has its own directory of that form. This last possibility may have the highest probability of success.

You can specify the temporary directory to use either via the ——with-tmpdir= configure time flag, or by setting
environment variable TMPDIR when running Valgrind (on the Android device, not on the Android NDK development
host). Another alternative is to specify the directory for the FIFOs using the —-vgdb-pre fix= Valgrind command
line option.

We hope to have a better story for temporary directory handling on Android in the future. The difficulty is that, unlike
in standard Unixes, there is no single temporary file directory that reliably works across all devices and scenarios.

3.2.5. Monitor command handling by the Valgrind
gdbserver

The Valgrind gdbserver provides additional Valgrind-specific functionality via "monitor commands". Such monitor
commands can be sent from the GDB command line or from the shell command line or requested by the client program
using the VALGRIND_MONITOR_COMMAND client request. See Valgrind monitor commands for the list of the
Valgrind core monitor commands available regardless of the Valgrind tool selected.

The following tools provide tool-specific monitor commands:

* Memcheck Monitor Commands
* Callgrind Monitor Commands
¢ Massif Monitor Commands

* Helgrind Monitor Commands

40

Using and understanding the Valgrind core: Advanced Topics

An example of a tool specific monitor command is the Memcheck monitor command leak_check full
reachable any. Thisrequests a full reporting of the allocated memory blocks. To have this leak check executed,
use the GDB command:

(gdb) monitor leak_check full reachable any

GDB will send the 1eak_check command to the Valgrind gdbserver. The Valgrind gdbserver will execute the
monitor command itself, if it recognises it to be a Valgrind core monitor command. If it is not recognised as such, it
is assumed to be tool-specific and is handed to the tool for execution. For example:

(gdb) monitor leak_check full reachable any
==2418== 100 bytes in 1 blocks are still reachable in loss record 1 of 1

==2418== at 0x4006E9E: malloc (vg_replace_malloc.c:236)
==2418== by 0x804884F: main (prog.c:88)
==2418==

==2418== LEAK SUMMARY:

==2418== definitely lost: 0 bytes in 0 blocks
==2418== indirectly lost: 0 bytes in 0 blocks
==2418== possibly lost: 0 bytes in 0 blocks
==2418== still reachable: 100 bytes in 1 blocks
==2418== suppressed: 0 bytes in 0 blocks
==2418==

(gdb)

As with other GDB commands, the Valgrind gdbserver will accept abbreviated monitor command names and
arguments, as long as the given abbreviation is unambiguous. For example, the above 1leak_check command
can also be typed as:

(gdb) mo 1 £ r a

The letters mo are recognised by GDB as being an abbreviation for monitor. So GDB sendsthestringl £ r ato
the Valgrind gdbserver. The letters provided in this string are unambiguous for the Valgrind gdbserver. This therefore
gives the same output as the unabbreviated command and arguments. If the provided abbreviation is ambiguous, the
Valgrind gdbserver will report the list of commands (or argument values) that can match:

(gdb) mo v. n

v. can match v.set v.info v.wait v.kill v.translate v.do
(gdb) mo v.i n

n_errs_found 0 n_errs_shown 0 (vgdb-error 0)

(gdb)

Instead of sending a monitor command from GDB, you can also send these from a shell command line. For example,
the following command lines, when given in a shell, will cause the same leak search to be executed by the process
3145:

41

Using and understanding the Valgrind core: Advanced Topics

vgdb ——pid=3145 leak_check full reachable any
vgdb ——pid=31451 f r a

Note that the Valgrind gdbserver automatically continues the execution of the program after a standalone invocation of
vgdb. Monitor commands sent from GDB do not cause the program to continue: the program execution is controlled
explicitly using GDB commands such as "continue" or "next".

3.2.6. Valgrind gdbserver thread information

Valgrind’s gdbserver enriches the output of the GDB info threads command with Valgrind-specific information.
The operating system’s thread number is followed by Valgrind’s internal index for that thread ("tid") and by the
Valgrind scheduler thread state:

(gdb) info threads
4 Thread 6239 (tid 4 VgTs_Yielding) 0x001£f2832 in _dl_sysinfo_int80 () from /lib/ld-linux. sc

* 3 Thread 6238 (tid 3 VgTs_Runnable) make_error (s=0x8048b76 "called from London") at prog.c
2 Thread 6237 (tid 2 VgTs_WaitSys) 0x001£2832 in _dl_sysinfo_int80 () from /lib/ld-linux.so
1 Thread 6234 (tid 1 VgTs_Yielding) main (argc=1l, argv=0xbedcc274) at prog.c:105

(gdb)

3.2.7. Examining and modifying Valgrind shadow
registers

When the option ——vgdb-shadow-registers=yes is given, the Valgrind gdbserver will let GDB examine
and/or modify Valgrind’s shadow registers. =~ GDB version 7.1 or later is needed for this to work. For x86 and
amd64, GDB version 7.2 or later is needed.

For each CPU register, the Valgrind core maintains two shadow register sets. These shadow registers can be accessed
from GDB by giving a postfix s1 or s2 for respectively the first and second shadow register. For example, the x86

register eax and its two shadows can be examined using the following commands:

(gdb) p S$eax

42

Using and understanding the Valgrind core: Advanced Topics

Float shadow registers are shown by GDB as unsigned integer values instead of float values, as it is expected that these
shadow values are mostly used for memcheck validity bits.

Intel/amd64 AVX registers ymmO to ymm15 have also their shadow registers. However, GDB presents the shadow
values using two "half" registers. For example, the half shadow registers for ymm9 are xmm9s1 (lower half for set 1),
ymm9hs1 (upper half for set 1), xmm9s2 (lower half for set 2), ymm9hs?2 (upper half for set 2). Note the inconsistent
notation for the names of the half registers: the lower part starts with an x, the upper part starts with an y and has an
h before the shadow postfix.

The special presentation of the AVX shadow registers is due to the fact that GDB independently retrieves the lower
and upper half of the ymm registers. GDB does not however know that the shadow half registers have to be shown
combined.

3.2.8. Limitations of the Valgrind gdbserver

Debugging with the Valgrind gdbserver is very similar to native debugging. Valgrind’s gdbserver implementation is
quite complete, and so provides most of the GDB debugging functionality. There are however some limitations and
peculiarities:

¢ Precision of "stop-at" commands.

non non

GDB commands such as "step", "next", "stepi", breakpoints and watchpoints, will stop the execution of the process.
With the option ——vgdb=yes, the process might not stop at the exact requested instruction. Instead, it might
continue execution of the current basic block and stop at one of the following basic blocks. This is linked to the fact
that Valgrind gdbserver has to instrument a block to allow stopping at the exact instruction requested. Currently,
re-instrumentation of the block currently being executed is not supported. So, if the action requested by GDB (e.g.
single stepping or inserting a breakpoint) implies re-instrumentation of the current block, the GDB action may not
be executed precisely.

This limitation applies when the basic block currently being executed has not yet been instrumented for debugging.
This typically happens when the gdbserver is activated due to the tool reporting an error or to a watchpoint. If the
gdbserver block has been activated following a breakpoint, or if a breakpoint has been inserted in the block before
its execution, then the block has already been instrumented for debugging.

If you use the option ——vgdb=full, then GDB "stop-at" commands will be obeyed precisely. The downside
is that this requires each instruction to be instrumented with an additional call to a gdbserver helper function,
which gives considerable overhead (+500% for memcheck) compared to ——vgdb=no. Option ——-vgdb=yes has
neglectible overhead compared to ——vgdb=no.

* Processor registers and flags values.

When Valgrind gdbserver stops on an error, on a breakpoint or when single stepping, registers and flags val-
ues might not be always up to date due to the optimisations done by the Valgrind core. The default value
-—vex—-iropt-register-updates=unwindregs—-at-mem—access ensures that the registers needed to
make a stack trace (typically PC/SP/FP) are up to date at each memory access (i.e. memory exception points).
Disabling some optimisations using the following values will increase the precision of registers and flags values (a
typical performance impact for memcheck is given for each option).

e ——vex—iropt-register-updates=allregs—at-mem-access (+10%) ensures that all registers and
flags are up to date at each memory access.

s ——vex—iropt-register-updates=allregs—at—each—-insn (+25%) ensures that all registers and
flags are up to date at each instruction.

43

Using and understanding the Valgrind core: Advanced Topics

Note that ——vgdb=full (+500%, see above Precision of "stop-at" commands) automatically activates
—-—-vex—iropt-register-updates=allregs—-at—-each-insn.

Hardware watchpoint support by the Valgrind gdbserver.

The Valgrind gdbserver can simulate hardware watchpoints if the selected tool provides support for it. Currently,
only Memcheck provides hardware watchpoint simulation. = The hardware watchpoint simulation provided by
Memcheck is much faster that GDB software watchpoints, which are implemented by GDB checking the value
of the watched zone(s) after each instruction. Hardware watchpoint simulation also provides read watchpoints.
The hardware watchpoint simulation by Memcheck has some limitations compared to real hardware watchpoints.
However, the number and length of simulated watchpoints are not limited.

Typically, the number of (real) hardware watchpoints is limited. ~For example, the x86 architecture supports a
maximum of 4 hardware watchpoints, each watchpoint watching 1, 2, 4 or 8 bytes. The Valgrind gdbserver does
not have any limitation on the number of simulated hardware watchpoints. It also has no limitation on the length of
the memory zone being watched. Using GDB version 7.4 or later allow full use of the flexibility of the Valgrind
gdbserver’s simulated hardware watchpoints. Previous GDB versions do not understand that Valgrind gdbserver
watchpoints have no length limit.

Memcheck implements hardware watchpoint simulation by marking the watched address ranges as being unad-
dressable. When a hardware watchpoint is removed, the range is marked as addressable and defined. Hardware
watchpoint simulation of addressable-but-undefined memory zones works properly, but has the undesirable side
effect of marking the zone as defined when the watchpoint is removed.

Write watchpoints might not be reported at the exact instruction that writes the monitored area, unless option
——vgdb=full is given. Read watchpoints will always be reported at the exact instruction reading the watched
memory.

It is better to avoid using hardware watchpoint of not addressable (yet) memory: in such a case, GDB will fall
back to extremely slow software watchpoints. Also, if you do not quit GDB between two debugging sessions, the
hardware watchpoints of the previous sessions will be re-inserted as software watchpoints if the watched memory
zone is not addressable at program startup.

Stepping inside shared libraries on ARM.

For unknown reasons, stepping inside shared libraries on ARM may fail. A workaround is to use the 1dd command
to find the list of shared libraries and their loading address and inform GDB of the loading address using the GDB
command "add-symbol-file". Example:

(gdb) shell 1dd ./prog
libc.so.6 => /1lib/libc.so.6 (0x4002c000)
/1lib/1d-1linux.so.3 (0x40000000)
(gdb) add-symbol-file /lib/libc.so.6 0x4002c000
add symbol table from file "/lib/libc.so.6" at
.text_addr = 0x4002c000
(y orn) y
Reading symbols from /lib/libc.so0.6...(no debugging symbols found) ...done.
(gdb)

44

Using and understanding the Valgrind core: Advanced Topics

¢ GDB version needed for ARM and PPC32/64.

You must use a GDB version which is able to read XML target description sent by a gdbserver. This is the standard
setup if GDB was configured and built with the "expat" library. If your GDB was not configured with XML support,
it will report an error message when using the "target" command. Debugging will not work because GDB will then
not be able to fetch the registers from the Valgrind gdbserver. For ARM programs using the Thumb instruction set,
you must use a GDB version of 7.1 or later, as earlier versions have problems with next/step/breakpoints in Thumb
code.

Stack unwinding on PPC32/PPC64.

On PPC32/PPC64, stack unwinding for leaf functions (functions that do not call any other functions) works
properly only when you give the option ——vex-iropt-register—updates=allregs—at-mem-access
or ——vex—iropt-register-updates=allregs—at—-each—-insn. You must also pass this option in
order to get a precise stack when a signal is trapped by GDB.

Breakpoints encountered multiple times.

Some instructions (e.g. x86 "rep movsb") are translated by Valgrind using a loop. If a breakpoint is placed on
such an instruction, the breakpoint will be encountered multiple times -- once for each step of the "implicit" loop
implementing the instruction.

Execution of Inferior function calls by the Valgrind gdbserver.

GDB allows the user to "call" functions inside the process being debugged. Such calls are named "inferior calls" in
the GDB terminology. A typical use of an inferior call is to execute a function that prints a human-readable version
of a complex data structure. To make an inferior call, use the GDB "print" command followed by the function to
call and its arguments. As an example, the following GDB command causes an inferior call to the libc "printf"
function to be executed by the process being debugged:

(gdb) p printf ("process being debugged has pid %d\n", getpid())
$5 = 36
(gdb)

The Valgrind gdbserver supports inferior function calls. Whilst an inferior call is running, the Valgrind tool will
report errors as usual. If you do not want to have such errors stop the execution of the inferior call, you can use
v.set vgdb-error to set a big value before the call, then manually reset it to its original value when the call is
complete.

To execute inferior calls, GDB changes registers such as the program counter, and then continues the execution
of the program. In a multithreaded program, all threads are continued, not just the thread instructed to make the
inferior call. If another thread reports an error or encounters a breakpoint, the evaluation of the inferior call is
abandoned.

Note that inferior function calls are a powerful GDB feature, but should be used with caution. For example, if the
program being debugged is stopped inside the function "printf", forcing a recursive call to printf via an inferior call
will very probably create problems. The Valgrind tool might also add another level of complexity to inferior calls,
e.g. by reporting tool errors during the Inferior call or due to the instrumentation done.

45

Using and understanding the Valgrind core: Advanced Topics

* Connecting to or interrupting a Valgrind process blocked in a system call.

Connecting to or interrupting a Valgrind process blocked in a system call requires the "ptrace” system call to be
usable. This may be disabled in your kernel for security reasons.

When running your program, Valgrind’s scheduler periodically checks whether there is any work to be handled by
the gdbserver. Unfortunately this check is only done if at least one thread of the process is runnable. If all the
threads of the process are blocked in a system call, then the checks do not happen, and the Valgrind scheduler will
not invoke the gdbserver. In such a case, the vgdb relay application will "force" the gdbserver to be invoked, without
the intervention of the Valgrind scheduler.

Such forced invocation of the Valgrind gdbserver is implemented by vgdb using ptrace system calls. On a properly
implemented kernel, the ptrace calls done by vgdb will not influence the behaviour of the program running under
Valgrind. If however they do, giving the option —~—max—invoke-ms=0 to the vgdb relay application will disable
the usage of ptrace calls. The consequence of disabling ptrace usage in vgdb is that a Valgrind process blocked in
a system call cannot be woken up or interrupted from GDB until it executes enough basic blocks to let the Valgrind
scheduler’s normal checking take effect.

When ptrace is disabled in vgdb, you can increase the responsiveness of the Valgrind gdbserver to commands or
interrupts by giving a lower value to the option ——vgdb-poll. If your application is blocked in system calls
most of the time, using a very low value for ——vgdb-pol1l will cause a the gdbserver to be invoked sooner. The
gdbserver polling done by Valgrind’s scheduler is very efficient, so the increased polling frequency should not cause
significant performance degradation.

When ptrace is disabled in vgdb, a query packet sent by GDB may take significant time to be handled by the Valgrind
gdbserver. In such cases, GDB might encounter a protocol timeout. To avoid this, you can increase the value of
the timeout by using the GDB command "set remotetimeout".

Ubuntu versions 10.10 and later may restrict the scope of ptrace to the children of the process calling ptrace. As
the Valgrind process is not a child of vgdb, such restricted scoping causes the ptrace calls to fail. To avoid that,
Valgrind will automatically allow all processes belonging to the same userid to "ptrace" a Valgrind process, by using
PR_SET_PTRACER.

Unblocking processes blocked in system calls is not currently implemented on Mac OS X and Android. So you
cannot connect to or interrupt a process blocked in a system call on Mac OS X or Android.

Changing register values.

The Valgrind gdbserver will only modify the values of the thread’s registers when the thread is in status Runnable
or Yielding. In other states (typically, WaitSys), attempts to change register values will fail. Amongst other things,
this means that inferior calls are not executed for a thread which is in a system call, since the Valgrind gdbserver
does not implement system call restart.

Unsupported GDB functionality.

GDB provides a lot of debugging functionality and not all of it is supported. Specifically, the following are not
supported: reversible debugging and tracepoints.

Unknown limitations or problems.

The combination of GDB, Valgrind and the Valgrind gdbserver probably has unknown other limitations and
problems. If you encounter strange or unexpected behaviour, feel free to report a bug. But first please verify
that the limitation or problem is not inherent to GDB or the GDB remote protocol. You may be able to do so by
checking the behaviour when using standard gdbserver part of the GDB package.

46

Using and understanding the Valgrind core: Advanced Topics

3.2.9. vgdb command line options
Usage: vgdb [OPTION] ... [[-c] COMMAND]...

vgdb ("Valgrind to GDB") is a small program that is used as an intermediary between Valgrind and GDB or a shell.
Therefore, it has two usage modes:

1. As a standalone utility, it is used from a shell command line to send monitor commands to a process running under
Valgrind. For this usage, the vgdb OPTION(s) must be followed by the monitor command to send. To send more
than one command, separate them with the —c option.

2.In combination with GDB "target remote |" command, it is used as the relay application between GDB and the
Valgrind gdbserver. For this usage, only OPTION(s) can be given, but no COMMAND can be given.

vgdb accepts the following options:

——pid=<number>

Specifies the PID of the process to which vgdb must connect to. This option is useful in case more than one Valgrind
gdbserver can be connected to. If the ——pid argument is not given and multiple Valgrind gdbserver processes are
running, vgdb will report the list of such processes and then exit.

—-vgdb-prefix
Must be given to both Valgrind and vgdb if you want to change the default prefix for the FIFOs (named pipes) used
for communication between the Valgrind gdbserver and vgdb.

—-wait=<number>

Instructs vgdb to search for available Valgrind gdbservers for the specified number of seconds. This makes it possible
start a vgdb process before starting the Valgrind gdbserver with which you intend the vgdb to communicate. This
option is useful when used in conjunction with a ——vgdb-prefix that is unique to the process you want to wait for.
Also, if you use the ——wait argument in the GDB "target remote" command, you must set the GDB remotetimeout
to a value bigger than the --wait argument value. See option ——max-invoke-ms (just below) for an example of
setting the remotetimeout value.

——max-invoke-ms=<number>

Gives the number of milliseconds after which vgdb will force the invocation of gdbserver embedded in Valgrind. The
default value is 100 milliseconds. A value of 0 disables forced invocation. The forced invocation is used when vgdb is
connected to a Valgrind gdbserver, and the Valgrind process has all its threads blocked in a system call.

If you specify a large value, you might need to increase the GDB "remotetimeout" value from its default value of
2 seconds. You should ensure that the timeout (in seconds) is bigger than the ——max-invoke-ms value. For
example, for ——max—-invoke-ms=5000, the following GDB command is suitable:

(gdb) set remotetimeout 6

——cmd-time—-out=<number>
Instructs a standalone vgdb to exit if the Valgrind gdbserver it is connected to does not process a command in the
specified number of seconds. The default value is to never time out.

47

Using and understanding the Valgrind core: Advanced Topics

——port=<portnr>

Instructs vgdb to use tcp/ip and listen for GDB on the specified port nr rather than to use a pipe to communicate
with GDB. Using tcp/ip allows to have GDB running on one computer and debugging a Valgrind process running on
another target computer. Example:

On the target computer, start your program under valgrind using
valgrind —--vgdb-error=0 prog

and then in another shell, run:

vgdb —-port=1234

On the computer which hosts GDB, execute the command:

gdb prog
(gdb) target remote targetip:1234

where targetip is the ip address or hostname of the target computer.

—C
To give more than one command to a standalone vgdb, separate the commands by an option —c. Example:

vgdb v.set log_output —-c leak_check any

-1
Instructs a standalone vgdb to report the list of the Valgrind gdbserver processes running and then exit.

-D
Instructs a standalone vgdb to show the state of the shared memory used by the Valgrind gdbserver. vgdb will exit
after having shown the Valgrind gdbserver shared memory state.

-d

Instructs vgdb to produce debugging output. Give multiple —d args to increase the verbosity. When giving —d to a
relay vgdb, you better redirect the standard error (stderr) of vgdb to a file to avoid interaction between GDB and vgdb
debugging output.

3.2.10. Valgrind monitor commands

This section describes the Valgrind monitor commands, available regardless of the Valgrind tool selected. For the
tool specific commands, refer to Memcheck Monitor Commands, Helgrind Monitor Commands, Callgrind Monitor
Commands and Massif Monitor Commands.

The monitor commands can be sent either from a shell command line, by using a standalone vgdb, or from GDB,
by using GDB’s "monitor" command (see Monitor command handling by the Valgrind gdbserver). They can also be
launched by the client program, using the VALGRIND_MONITOR_COMMAND client request.

48

Using and understanding the Valgrind core: Advanced Topics

*help [debug] instructs Valgrind’s gdbserver to give the list of all monitor commands of the Valgrind core and
of the tool. The optional "debug" argument tells to also give help for the monitor commands aimed at Valgrind
internals debugging.

ev.info all_errors shows all errors found so far.
ev.info last_error shows the last error found.

ev.info location <addr> outputs information about the location <addr>. Possibly, the following are
described: global variables, local (stack) variables, allocated or freed blocks, ... The information produced depends
on the tool and on the options given to valgrind. Some tools (e.g. memcheck and helgrind) produce more detailed
information for client heap blocks. For example, these tools show the stacktrace where the heap block was allocated.
If a tool does not replace the malloc/free/... functions, then client heap blocks will not be described. Use the option
-—-read-var—-info=yes to obtain more detailed information about global or local (stack) variables.

(gdb) monitor v.info location 0x8050b20
Location 0x8050b20 is 0 bytes inside global var "mx"
declared at tcl9_shadowmem.c:19

(gdb) mo v.in loc 0x582£f33c

Location 0x582f33c is 0 bytes inside local var "info"
declared at tcl9_shadowmem.c:282, in frame #1 of thread 3
(gdb)

ev.info n_errs_found [msg] shows the number of errors found so far, the nr of errors shown so far and the
current value of the ——vgdb-error argument. The optional msg (one or more words) is appended. Typically,
this can be used to insert markers in a process output file between several tests executed in sequence by a process
started only once. This allows to associate the errors reported by Valgrind with the specific test that produced these
errors.

ev.info open_fds shows the list of open file descriptors and details related to the file descriptor. This only
works if ——track-fds=yes was given at Valgrind startup.

ev.set {gdb_output | log_output | mixed_output} allows redirection of the Valgrind output (e.g.
the errors detected by the tool). The default setting is mixed_output.

With mixed_output, the Valgrind output goes to the Valgrind log (typically stderr) while the output of the
interactive GDB monitor commands (e.g. v.info last_error) is displayed by GDB.

With gdb_output, both the Valgrind output and the interactive GDB monitor commands output are displayed by
GDB.

With 1og_output, both the Valgrind output and the interactive GDB monitor commands output go to the Valgrind
log.

ev.wait [ms (default 0)] instructs Valgrind gdbserver to sleep "ms" milli-seconds and then continue.
When sent from a standalone vgdb, if this is the last command, the Valgrind process will continue the execution of
the guest process. The typical usage of this is to use vgdb to send a "no-op" command to a Valgrind gdbserver so as
to continue the execution of the guest process.

*v.kill requests the gdbserver to kill the process. This can be used from a standalone vgdb to properly kill a
Valgrind process which is currently expecting a vgdb connection.

49

Using and understanding the Valgrind core: Advanced Topics

ev.set vgdb-error <errornr>dynamically changes the value of the -——vgdb-error argument. A typical
usage of this is to start with ——vgdb—-error=0 on the command line, then set a few breakpoints, set the vgdb-error
value to a huge value and continue execution.

The following Valgrind monitor commands are useful for investigating the behaviour of Valgrind or its gdbserver in
case of problems or bugs.

*v.do expensive_sanity_check_general executes various sanity checks. In particular, the sanity of the
Valgrind heap is verified. This can be useful if you suspect that your program and/or Valgrind has a bug corrupting
Valgrind data structure. It can also be used when a Valgrind tool reports a client error to the connected GDB, in
order to verify the sanity of Valgrind before continuing the execution.

v.info gdbserver_status shows the gdbserver status. In case of problems (e.g. of communications),
this shows the values of some relevant Valgrind gdbserver internal variables. Note that the variables related to
breakpoints and watchpoints (e.g. the number of breakpoint addresses and the number of watchpoints) will be
zero, as GDB by default removes all watchpoints and breakpoints when execution stops, and re-inserts them when
resuming the execution of the debugged process. You can change this GDB behaviour by using the GDB command
set breakpoint always-inserted on.

v.info memory [aspacemgr] shows the statistics of Valgrind’s internal heap management. If option
-—-profile-heap=yes was given, detailed statistics will be output. With the optional argument aspacemgr.
the segment list maintained by valgrind address space manager will be output. Note that this list of segments is
always output on the Valgrind log.

v.info exectxt shows informations about the "executable contexts" (i.e. the stack traces) recorded by
Valgrind. For some programs, Valgrind can record a very high number of such stack traces, causing a high
memory usage. This monitor command shows all the recorded stack traces, followed by some statistics. This can
be used to analyse the reason for having a big number of stack traces. Typically, you will use this command if
v.info memory has shown significant memory usage by the "exectxt" arena.

v.info scheduler shows various information about threads. First, it outputs the host stack trace, i.e. the
Valgrind code being executed. Then, for each thread, it outputs the thread state. For non terminated threads, the
state is followed by the guest (client) stack trace. Finally, for each active thread or for each terminated thread slot
not yet re-used, it shows the max usage of the valgrind stack.

Showing the client stack traces allows to compare the stack traces produced by the Valgrind unwinder with the stack
traces produced by GDB+Valgrind gdbserver. Pay attention that GDB and Valgrind scheduler status have their
own thread numbering scheme. To make the link between the GDB thread number and the corresponding Valgrind
scheduler thread number, use the GDB command info threads. The output of this command shows the GDB
thread number and the valgrind ’tid’. The ’tid’ is the thread number output by v.info scheduler. When
using the callgrind tool, the callgrind monitor command status outputs internal callgrind information about the
stack/call graph it maintains.

ev.info stats shows various valgrind core and tool statistics. With this, Valgrind and tool statistics can be
examined while running, even without option ——stats=yes.

ev.info unwind <addr> [<len>] shows the CFIunwind debug info for the address range [addr, addr+len-
1]. The default value of <len> is 1, giving the unwind information for the instruction at <addr>.

ev.set debuglog <intvalue> sets the Valgrind debug log level to <intvalue>. This allows to dynamically
change the log level of Valgrind e.g. when a problem is detected.

50

Using and understanding the Valgrind core: Advanced Topics

ev.set hostvisibility [yes=|no] The value "yes" indicates to gdbserver that GDB can look at the
Valgrind ’host’ (internal) status/memory. "no" disables this access. When hostvisibility is activated, GDB can
e.g. look at Valgrind global variables. As an example, to examine a Valgrind global variable of the memcheck tool
on an x86, do the following setup:

(gdb) monitor v.set hostvisibility yes
(gdb) add-symbol-file /path/to/tool/executable/file/memcheck-x86-1inux 0x38000000

add symbol table from file "/path/to/tool/executable/file/memcheck-x86-1inux" at

.text_addr = 0x38000000

(y orn) vy
Reading symbols from /path/to/tool/executable/file/memcheck-x86-1inux...done.
(gdb)

After that, variables defined in memcheck-x86-linux can be accessed, e.g.

(gdb) p /x vgPlain_threads[1l].os_state

$3 = {lwpid = 0x4688, threadgroup = 0x4688, parent = 0x0,
valgrind_stack_base = 0x62e78000, valgrind_stack_init_SP = 0x62f79fe0,
exitcode = 0x0, fatalsig = 0x0}

(gdb) p vex_control

$5 = {iropt_verbosity = 0, iropt_level = 2,
iropt_register_updates = VexRegUpdUnwindregsAtMemAccess,
iropt_unroll_thresh = 120, guest_max_insns = 60, guest_chase_thresh = 10,
guest_chase_cond = 0 "\000' }

(gdb)

ev.translate <address> [<traceflags>] shows the translation of the block containing address with
the given trace flags. The t raceflags value bit patterns have similar meaning to Valgrind’s ——trace—-flags
option. It can be given in hexadecimal (e.g. 0x20) or decimal (e.g. 32) or in binary 1s and Os bit (e.g. 0b00100000).
The default value of the traceflags is 0b00100000, corresponding to "show after instrumentation". The output of
this command always goes to the Valgrind log.

The additional bit flag 0b100000000 (bit 8) has no equivalent in the -——t race—f lags option. It enables tracing of
the gdbserver specific instrumentation. Note that this bit 8 can only enable the addition of gdbserver instrumentation
in the trace. Setting it to O will not disable the tracing of the gdbserver instrumentation if it is active for some other
reason, for example because there is a breakpoint at this address or because gdbserver is in single stepping mode.

3.3. Function wrapping

Valgrind allows calls to some specified functions to be intercepted and rerouted to a different, user-supplied function.
This can do whatever it likes, typically examining the arguments, calling onwards to the original, and possibly
examining the result. Any number of functions may be wrapped.

Function wrapping is useful for instrumenting an API in some way. For example, Helgrind wraps functions in
the POSIX pthreads API so it can know about thread status changes, and the core is able to wrap functions in the
MPI (message-passing) API so it can know of memory status changes associated with message arrival/departure.
Such information is usually passed to Valgrind by using client requests in the wrapper functions, although the exact
mechanism may vary.

51

Using and understanding the Valgrind core: Advanced Topics

3.3.1. A Simple Example
Supposing we want to wrap some function

int foo (int x, int y) { return x + vy; }

A wrapper is a function of identical type, but with a special name which identifies it as the wrapper for foo. Wrappers
need to include supporting macros from valgrind.h. Here is a simple wrapper which prints the arguments and
return value:

#include <stdio.h>
#include "valgrind.h"
int I_WRAP_SONAME_FNNAME_ZU (NONE, foo) (int x, int y)
{
int result;
OrigFn fn;
VALGRIND_GET_ORIG_FN (fn) ;
printf ("foo’s wrapper: args %d %$d\n", x, y);
CALL_FN_W_WW (result, fn, x,vy);
printf ("foo’s wrapper: result $d\n", result);
return result;

To become active, the wrapper merely needs to be present in a text section somewhere in the same process’ address
space as the function it wraps, and for its ELF symbol name to be visible to Valgrind. In practice, this means either
compiling to a . o and linking it in, or compiling to a . so and LD_PRELOADing it in. The latter is more convenient
in that it doesn’t require relinking.

All wrappers have approximately the above form. There are three crucial macros:

I_WRAP_SONAME_FNNAME_ZU: this generates the real name of the wrapper. This is an encoded name which
Valgrind notices when reading symbol table information. What it says is: I am the wrapper for any function named
foo which is found in an ELF shared object with an empty ("NONE") soname field. The specification mechanism is
powerful in that wildcards are allowed for both sonames and function names. The details are discussed below.

VALGRIND_GET_ORIG_FN: once in the wrapper, the first priority is to get hold of the address of the original (and
any other supporting information needed). This is stored in a value of opaque type OrigFn. The information is
acquired using VALGRIND_GET_ORIG_FN. It is crucial to make this macro call before calling any other wrapped
function in the same thread.

CALL_FN_W_WW: eventually we will want to call the function being wrapped. Calling it directly does not work, since
that just gets us back to the wrapper and leads to an infinite loop. Instead, the result lvalue, Or igFn and arguments
are handed to one of a family of macros of the form CALL_FN_*. These cause Valgrind to call the original and avoid
recursion back to the wrapper.

3.3.2. Wrapping Specifications

This scheme has the advantage of being self-contained. A library of wrappers can be compiled to object code in the
normal way, and does not rely on an external script telling Valgrind which wrappers pertain to which originals.

52

Using and understanding the Valgrind core: Advanced Topics

Each wrapper has a name which, in the most general case says: I am the wrapper for any function whose name matches
FNPATT and whose ELF "soname" matches SOPATT. Both FNPATT and SOPATT may contain wildcards (asterisks)
and other characters (spaces, dots, @, etc) which are not generally regarded as valid C identifier names.

This flexibility is needed to write robust wrappers for POSIX pthread functions, where typically we are not completely
sure of either the function name or the soname, or alternatively we want to wrap a whole set of functions at once.

For example, pthread_create in GNU libpthread is usually a versioned symbol - one whose name ends in, eg,
@GLIBC_2.3. Hence we are not sure what its real name is. We also want to cover any soname of the form
libpthread. sox*. So the header of the wrapper will be

int I_WRAP_SONAME_FNNAME_ZZ (libpthreadZdsoZd0, pthreadZucreateZAZa)
(... formals ...)
{ ... body ... }

In order to write unusual characters as valid C function names, a Z-encoding scheme is used. Names are written
literally, except that a capital Z acts as an escape character, with the following encoding:

Za encodes *
Zp +
zZc

zd

Zu _
Zh =
Zs (space)

ZA @

27 Z

ZL (# only in valgrind 3.3.0 and later
ZR) # only in valgrind 3.3.0 and later

Hence 1ibpthreadZdsozdo0 is an encoding of the soname 1ibpthread.so.0and pthreadZucreateZAZa
is an encoding of the function name pthread_create@x.

The macro I_WRAP_SONAME_FNNAME_ 77 constructs a wrapper name in which both the soname (first component)
and function name (second component) are Z-encoded. Encoding the function name can be tiresome and is often
unnecessary, so a second macro, I_WRAP_SONAME_FNNAME_ ZU, can be used instead. The _ZU variant is also
useful for writing wrappers for C++ functions, in which the function name is usually already mangled using some
other convention in which Z plays an important role. Having to encode a second time quickly becomes confusing.

Since the function name field may contain wildcards, it can be anything, including just . The same is true for
the soname. However, some ELF objects - specifically, main executables - do not have sonames. Any object
lacking a soname is treated as if its soname was NONE, which is why the original example above had a name
I_WRAP_SONAME_FNNAME_ZU (NONE, foo).

Note that the soname of an ELF object is not the same as its file name, although it is often similar. You can find the
soname of an object Libfoo. so using the command readelf —-a libfoo.so | grep soname.

3.3.3. Wrapping Semantics

53

Using and understanding the Valgrind core: Advanced Topics

The ability for a wrapper to replace an infinite family of functions is powerful but brings complications in situations
where ELF objects appear and disappear (are dlopen’d and diclose’d) on the fly. Valgrind tries to maintain sensible
behaviour in such situations.

For example, suppose a process has dlopened (an ELF object with soname) objectl.so, which contains
functionl. Itstarts to use functionl immediately.

After a while it dlopens wrappers . so, which contains a wrapper for functionl in (soname) objectl.so. All
subsequent calls to functionl are rerouted to the wrapper.

If wrappers. so is later diclose’d, calls to functionl are naturally routed back to the original.

Alternatively, if objectl.so is dlclose’d but wrappers.so remains, then the wrapper exported by
wrappers.so becomes inactive, since there is no way to get to it - there is no original to call any more.
However, Valgrind remembers that the wrapper is still present. If objectl. so is eventually dlopen’d again, the
wrapper will become active again.

In short, valgrind inspects all code loading/unloading events to ensure that the set of currently active wrappers remains
consistent.

A second possible problem is that of conflicting wrappers. It is easily possible to load two or more wrappers, both of
which claim to be wrappers for some third function. In such cases Valgrind will complain about conflicting wrappers
when the second one appears, and will honour only the first one.

3.3.4. Debugging

Figuring out what’s going on given the dynamic nature of wrapping can be difficult. The —-trace-redir=yes
option makes this possible by showing the complete state of the redirection subsystem after every mmap/munmap
event affecting code (text).

There are two central concepts:
* A "redirection specification" is a binding of a (soname pattern, fnname pattern) pair to a code address. These

bindings are created by writing functions with names made with the I_ WRAP_SONAME_FNNAME_{ZZ, _ZU}
macros.

* An "active redirection" is a code-address to code-address binding currently in effect.

The state of the wrapping-and-redirection subsystem comprises a set of specifications and a set of active bindings.
The specifications are acquired/discarded by watching all mmap/munmap events on code (text) sections. The active
binding set is (conceptually) recomputed from the specifications, and all known symbol names, following any change
to the specification set.

—-—trace-redir=yes shows the contents of both sets following any such event.
—v prints a line of text each time an active specification is used for the first time.
Hence for maximum debugging effectiveness you will need to use both options.

One final comment. The function-wrapping facility is closely tied to Valgrind’s ability to replace (redirect) specified
functions, for example to redirect calls to malloc to its own implementation. Indeed, a replacement function can be
regarded as a wrapper function which does not call the original. However, to make the implementation more robust,
the two kinds of interception (wrapping vs replacement) are treated differently.

—-—trace-redir=yes shows specifications and bindings for both replacement and wrapper functions. To
differentiate the two, replacement bindings are printed using R—> whereas wraps are printed using W—>.

54

Using and understanding the Valgrind core: Advanced Topics

3.3.5. Limitations - control flow

For the most part, the function wrapping implementation is robust. The only important caveat is: in a wrapper, get hold
of the OrigFn information using VALGRIND_GET_ORIG_FN before calling any other wrapped function. Once you
have the OrigFn, arbitrary calls between, recursion between, and longjumps out of wrappers should work correctly.

There is never any interaction between wrapped functions and merely replaced functions (eg malloc), so you can
call malloc etc safely from within wrappers.

The above comments are true for {x86,amd64,ppc32,arm,mips32,s390}-linux. On ppc64-linux function wrapping is
more fragile due to the (arguably poorly designed) ppc64-linux ABI. This mandates the use of a shadow stack which
tracks entries/exits of both wrapper and replacement functions. This gives two limitations: firstly, longjumping out
of wrappers will rapidly lead to disaster, since the shadow stack will not get correctly cleared. Secondly, since the

shadow stack has finite size, recursion between wrapper/replacement functions is only possible to a limited depth,
beyond which Valgrind has to abort the run. This depth is currently 16 calls.

For all platforms ({x86,amd64,ppc32,ppc64,arm,mips32,s390}-linux) all the above comments apply on a per-thread

basis. In other words, wrapping is thread-safe: each thread must individually observe the above restrictions, but there
is no need for any kind of inter-thread cooperation.

3.3.6. Limitations - original function signatures

As shown in the above example, to call the original you must use a macro of the form CALL_FN_ . For technical
reasons it is impossible to create a single macro to deal with all argument types and numbers, so a family of macros
covering the most common cases is supplied. In what follows, "W’ denotes a machine-word-typed value (a pointer or
aC long), and v’ denotes C’s void type. The currently available macros are:

CALL_FN_v_v —— call an original of type void fn (void)
CALL_FN_W_v —— call an original of type 1long fn (void)
CALL_FN_v_W —— call an original of type void fn (long)

CALL_FN_W_W —— call an original of type 1long fn (long)
CALL_FN_v_WW -- call an original of type void fn (long, long)
CALL_FN_W_WW -- call an original of type long fn (long, long)
CALL_FN_V_WWW -- call an original of type wvoid fn (long, long, long)
CALL_FN_W_WWW -- call an original of type 1long fn (long, long, long)

CALL_FN_W_WWWW -- call an original of type long fn (long, long, long, long)
CALL_FN_W_5W -- call an original of type long fn (long, long, long, long, long)

CALL_FN_W_6W -- call an original of type long fn (long, long, long, long, long, long)

and so on, up to
CALL_FN_W_12W

The set of supported types can be expanded as needed. It is regrettable that this limitation exists. = Function
wrapping has proven difficult to implement, with a certain apparently unavoidable level of ickiness. ~After several

implementation attempts, the present arrangement appears to be the least-worst tradeoff. At least it works reliably in
the presence of dynamic linking and dynamic code loading/unloading.

55

Using and understanding the Valgrind core: Advanced Topics

You should not attempt to wrap a function of one type signature with a wrapper of a different type signature.
Such trickery will surely lead to crashes or strange behaviour. This is not a limitation of the function wrapping
implementation, merely a reflection of the fact that it gives you sweeping powers to shoot yourself in the foot if you
are not careful. Imagine the instant havoc you could wreak by writing a wrapper which matched any function name
in any soname - in effect, one which claimed to be a wrapper for all functions in the process.

3.3.7. Examples

In the source tree, memcheck/tests/wrap[1-8] .c provide a series of examples, ranging from very simple to
quite advanced.

mpi/libmpiwrap.c is an example of wrapping a big, complex API (the MPI-2 interface). This file defines almost
300 different wrappers.

56

4. Memcheck: a memory error detector

To use this tool, you may specify ——tool=memcheck on the Valgrind command line. You don’t have to, though,
since Memcheck is the default tool.

4.1. Overview

Memcheck is a memory error detector. It can detect the following problems that are common in C and C++ programs.
* Accessing memory you shouldn’t, e.g. overrunning and underrunning heap blocks, overrunning the top of the stack,
and accessing memory after it has been freed.

* Using undefined values, i.e. values that have not been initialised, or that have been derived from other undefined
values.

* Incorrect freeing of heap memory, such as double-freeing heap blocks, or mismatched use of malloc/new/new []
versus free/delete/delete[]

* Overlapping src and dst pointers in memcpy and related functions.
* Passing a fishy (presumably negative) value to the size parameter of a memory allocation function.
* Memory leaks.

Problems like these can be difficult to find by other means, often remaining undetected for long periods, then causing
occasional, difficult-to-diagnose crashes.

4.2. Explanation of error messages from
Memcheck

Memcheck issues a range of error messages. This section presents a quick summary of what error messages mean.
The precise behaviour of the error-checking machinery is described in Details of Memcheck’s checking machinery.

4.2.1. lllegal read / lllegal write errors
For example:

Invalid read of size 4
at 0x40F6BBCC: (within /usr/lib/libpng.so0.2.1.0.9)
by 0x40F6B804: (within /usr/lib/libpng.so0.2.1.0.9)
by 0x40B07FF4: read_png_image (QImageIO %) (kernel/gpngio.cpp:326)
by 0x40AC751B: QImageIO: :read() (kernel/gimage.cpp:3621)
Address OxBFFFFOEO is not stack’d, malloc’d or free’d

This happens when your program reads or writes memory at a place which Memcheck reckons it shouldn’t. In
this example, the program did a 4-byte read at address OxBFFFFOEQ, somewhere within the system-supplied library
libpng.so.2.1.0.9, which was called from somewhere else in the same library, called from line 326 of gpngio. cpp,
and so on.

57

Memcheck: a memory error detector

Memcheck tries to establish what the illegal address might relate to, since that’s often useful. So, if it points
into a block of memory which has already been freed, you’ll be informed of this, and also where the block was
freed. Likewise, if it should turn out to be just off the end of a heap block, a common result of off-by-one-
errors in array subscripting, you’ll be informed of this fact, and also where the block was allocated. If you use
the ——read-var-info option Memcheck will run more slowly but may give a more detailed description of any
illegal address.

In this example, Memcheck can’t identify the address. Actually the address is on the stack, but, for some reason, this
is not a valid stack address -- it is below the stack pointer and that isn’t allowed. In this particular case it’s probably
caused by GCC generating invalid code, a known bug in some ancient versions of GCC.

Note that Memcheck only tells you that your program is about to access memory at an illegal address. It can’t stop the
access from happening. So, if your program makes an access which normally would result in a segmentation fault,
you program will still suffer the same fate -- but you will get a message from Memcheck immediately prior to this. In
this particular example, reading junk on the stack is non-fatal, and the program stays alive.

4.2.2. Use of uninitialised values

For example:

Conditional jump or move depends on uninitialised value (s)
at 0x402DFA94: _IO0_vfprintf (_itoa.h:49)
by 0x402E8476: _IO_printf (printf.c:36)
by 0x8048472: main (tests/manuell.c:8)

An uninitialised-value use error is reported when your program uses a value which hasn’t been initialised -- in other
words, is undefined. Here, the undefined value is used somewhere inside the print £ machinery of the C library.
This error was reported when running the following small program:

int main ()
{
int x;
printf ("x = %d\n", x);

}

It is important to understand that your program can copy around junk (uninitialised) data as much as it likes.
Memcheck observes this and keeps track of the data, but does not complain. A complaint is issued only when
your program attempts to make use of uninitialised data in a way that might affect your program’s externally-visible
behaviour. In this example, x is uninitialised. Memcheck observes the value being passed to _IO_printf and
thence to _TO_vfprintf, but makes no comment. However, _TO_vfprintf has to examine the value of x so it
can turn it into the corresponding ASCII string, and it is at this point that Memcheck complains.

Sources of uninitialised data tend to be:

¢ Local variables in procedures which have not been initialised, as in the example above.

* The contents of heap blocks (allocated with malloc, new, or a similar function) before you (or a constructor) write
something there.

58

Memcheck: a memory error detector

To see information on the sources of uninitialised data in your program, use the ——track—-origins=yes option.

This makes Memcheck run more slowly, but can make it much easier to track down the root causes of uninitialised
value errors.

4.2.3. Use of uninitialised or unaddressable values in
system calls

Memcheck checks all parameters to system calls:

« It checks all the direct parameters themselves, whether they are initialised.

* Also, if a system call needs to read from a buffer provided by your program, Memcheck checks that the entire buffer
is addressable and its contents are initialised.

* Also, if the system call needs to write to a user-supplied buffer, Memcheck checks that the buffer is addressable.

After the system call, Memcheck updates its tracked information to precisely reflect any changes in memory state
caused by the system call.

Here’s an example of two system calls with invalid parameters:

#include <stdlib.h>

#include <unistd.h>

int main(void)

{
charx arr = malloc(10);
int* arr2 = malloc(sizeof (int));
write(1l /* stdout %/, arr, 10);
exit (arr2[0]);

}

You get these complaints ...

Syscall param write (buf) points to uninitialised byte (s)
at 0x25A48723: __ _write_nocancel (in /lib/tls/libc-2.3.3.s0)
by 0x259AFAD3: _ libc_start_main (in /lib/tls/libc-2.3.3.s0)
by 0x8048348: (within /auto/homes/njn25/grind/head4/a.out)
Address 0x25AB8028 is 0 bytes inside a block of size 10 alloc’d
at 0x259852B0: malloc (vg_replace_malloc.c:130)
by 0x80483F1: main (a.c:5)

Syscall param exit (error_code) contains uninitialised byte (s)
at 0x25A21B44: GI___exit (in /lib/tls/libc-2.3.3.s0)
by 0x8048426: main (a.c:8)

... because the program has (a) written uninitialised junk from the heap block to the standard output, and (b) passed an
uninitialised value to exit. Note that the first error refers to the memory pointed to by buf (not buf itself), but the
second error refers directly to exit’s argument arr2 [0].

59

Memcheck: a memory error detector

4.2.4. lllegal frees

For example:

Invalid free ()
at 0x4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: main (tests/doublefree.c:10)
Address 0x3807F7B4 is 0 bytes inside a block of size 177 free’d
at O0x4004FFDF: free (vg_clientmalloc.c:577)
by 0x80484C7: main (tests/doublefree.c:10)

Memcheck keeps track of the blocks allocated by your program with malloc/new, so it can know exactly whether
or not the argument to free/delete is legitimate or not. Here, this test program has freed the same block twice.
As with the illegal read/write errors, Memcheck attempts to make sense of the address freed. If, as here, the address
is one which has previously been freed, you wil be told that -- making duplicate frees of the same block easy to spot.
You will also get this message if you try to free a pointer that doesn’t point to the start of a heap block.

4.2.5. When a heap block is freed with an inappropriate
deallocation function

In the following example, a block allocated with new [] has wrongly been deallocated with free:

Mismatched free() / delete / delete []
at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray: :~QGArray (void) (tools/ggarray.cpp:149)
by 0x4C261C41: PptDoc: :~PptDoc (void) (include/qmemarray.h:60)
by 0x4C261F0E: PptXml::~PptXml (void) (pptxml.cc:44)
Address 0x4BB292A8 is 0 bytes inside a block of size 64 alloc’d
at 0x4004318C: operator new[] (unsigned int) (vg_clientfuncs.c:152)
by 0x4C21BC15: KLaola: :readSBStream(int) const (klaola.cc:314)
by 0x4C21C155: KLaola::stream(KLaola::0LENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert (QCString const &) (olefilter.cc:272)

In C++ it’s important to deallocate memory in a way compatible with how it was allocated. The deal is:

e If allocated withmalloc, calloc, realloc, valloc or memalign, you must deallocate with free.
« If allocated with new, you must deallocate with delete.

e If allocated with new [], you must deallocate with delete[].

60

Memcheck: a memory error detector

The worst thing is that on Linux apparently it doesn’t matter if you do mix these up, but the same program may then
crash on a different platform, Solaris for example. So it’s best to fix it properly. According to the KDE folks "it’s
amazing how many C++ programmers don’t know this".

The reason behind the requirement is as follows. In some C++ implementations, delete [] must be used for objects
allocated by new [] because the compiler stores the size of the array and the pointer-to-member to the destructor of
the array’s content just before the pointer actually returned. delete doesn’t account for this and will get confused,
possibly corrupting the heap.

4.2.6. Overlapping source and destination blocks

The following C library functions copy some data from one memory block to another (or something similar): memcpy,
strcpy, strncpy, strcat, strncat. The blocks pointed to by their src and dst pointers aren’t allowed to
overlap. The POSIX standards have wording along the lines "If copying takes place between objects that overlap, the
behavior is undefined." Therefore, Memcheck checks for this.

For example:

==27492== Source and destination overlap in memcpy (Oxbffff294, Oxbffff280, 21)
==27492== at 0x40026CDC: memcpy (mc_replace_strmem.c:71)
==27492== by 0x804865A: main (overlap.c:40)

You don’t want the two blocks to overlap because one of them could get partially overwritten by the copying.

You might think that Memcheck is being overly pedantic reporting this in the case where dst is less than src.
For example, the obvious way to implement memcpy is by copying from the first byte to the last. However, the
optimisation guides of some architectures recommend copying from the last byte down to the first. Also, some
implementations of memcpy zero dst before copying, because zeroing the destination’s cache line(s) can improve
performance.

The moral of the story is: if you want to write truly portable code, don’t make any assumptions about the language
implementation.

4.2.7. Fishy argument values

All memory allocation functions take an argument specifying the size of the memory block that should be allocated.
Clearly, the requested size should be a non-negative value and is typically not excessively large. For instance, it is
extremely unlikly that the size of an allocation request exceeds 2**63 bytes on a 64-bit machine. It is much more
likely that such a value is the result of an erroneous size calculation and is in effect a negative value (that just happens
to appear excessively large because the bit pattern is interpreted as an unsigned integer). Such a value is called a "fishy
value". The size argument of the following allocation functions is checked for being fishy: malloc, calloc,
realloc,memalign,new,new [].__builtin_new,__builtin_vec_new, For calloc both arguments
are being checked.

For example:

61

Memcheck: a memory error detector

==32233== Argument ’size’ of function malloc has a fishy (possibly negative) value:

==32233== at 0x4C2CFA7: malloc (vg_replace_malloc.c:298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

In earlier Valgrind versions those values were being referred to as "silly arguments" and no back-trace was included.

4.2.8. Memory leak detection

Memcheck keeps track of all heap blocks issued in response to calls to malloc/new et al. So when the program exits,
it knows which blocks have not been freed.

If ——leak-check is set appropriately, for each remaining block, Memcheck determines if the block is reachable
from pointers within the root-set. ~ The root-set consists of (a) general purpose registers of all threads, and (b)
initialised, aligned, pointer-sized data words in accessible client memory, including stacks.

There are two ways a block can be reached. The first is with a "start-pointer”, i.e. a pointer to the start of the block.
The second is with an "interior-pointer", i.e. a pointer to the middle of the block. There are several ways we know of
that an interior-pointer can occur:

* The pointer might have originally been a start-pointer and have been moved along deliberately (or not deliberately)
by the program. In particular, this can happen if your program uses tagged pointers, i.e. if it uses the bottom one,
two or three bits of a pointer, which are normally always zero due to alignment, in order to store extra information.

* It might be a random junk value in memory, entirely unrelated, just a coincidence.

* It might be a pointer to the inner char array of a C++ std: : string. For example, some compilers add 3 words at
the beginning of the std::string to store the length, the capacity and a reference count before the memory containing
the array of characters. They return a pointer just after these 3 words, pointing at the char array.

* Some code might allocate a block of memory, and use the first 8 bytes to store (block size - 8) as a 64bit number.
sgqlite3MemMalloc does this.

* It might be a pointer to an array of C++ objects (which possess destructors) allocated with new []. In this case,
some compilers store a "magic cookie" containing the array length at the start of the allocated block, and return a
pointer to just past that magic cookie, i.e. an interior-pointer. See this page for more information.

* It might be a pointer to an inner part of a C++ object using multiple inheritance.

62

url(http://theory.uwinnipeg.ca/gnu/gcc/gxxint_14.html)

Memcheck: a memory error detector

You can optionally activate heuristics to use during the leak search to detect the interior pointers corresponding to the
stdstring, length64, newarray andmultipleinheritance cases. If the heuristic detects that an interior
pointer corresponds to such a case, the block will be considered as reachable by the interior pointer. In other words,
the interior pointer will be treated as if it were a start pointer.

With that in mind, consider the nine possible cases described by the following figure.

Pointer chain AAA Leak Case BBB Leak Case
(1) RRR ——————————~— > BBB DR
(2) RRR ———> AAA ———> BBB DR IR
(3) RRR BBB DL
(4) RRR AAA ———> BREB DL IL
(5) RRR —————— Pom——= > BBB (y)DR, (n)DL
(6) RRR ———> AAA —-?-> BBB DR (y) IR, (n)DL
(7) RRR -?-> AAA ———> BBB (v)DR, (n)DL (y) IR, (n)IL
(8) RRR —?-> AAA —?-> BBB (y)DR, (n)DL (y,y)IR, (n,y)IL, (_,n)DL
(9) RRR AAA —?—-> BBB DL (y)IL, (n)DL

Pointer chain legend:

— RRR: a root set node or DR block
- AAA, BBB: heap blocks

- ———>: a start-pointer

— —?->: an interior-pointer

Leak Case legend:

— DR: Directly reachable

— IR: Indirectly reachable

— DL: Directly lost

— IL: Indirectly lost

- (y)XY: it’s XY if the interior-pointer is a real pointer

- (n)XY: it’s XY if the interior-pointer is not a real pointer
— (_)XY: it’s XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these cases in its output,
resulting in the following four leak kinds.

« "Still reachable". This covers cases 1 and 2 (for the BBB blocks) above. A start-pointer or chain of start-pointers
to the block is found. Since the block is still pointed at, the programmer could, at least in principle, have freed
it before program exit. "Still reachable" blocks are very common and arguably not a problem. So, by default,
Memcheck won’t report such blocks individually.

* "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no pointer to the block can be
found. The block is classified as "lost", because the programmer could not possibly have freed it at program exit,
since no pointer to it exists. This is likely a symptom of having lost the pointer at some earlier point in the program.
Such cases should be fixed by the programmer.

63

Memcheck: a memory error detector

* "Indirectly lost". This covers cases 4 and 9 (for the BBB blocks) above. This means that the block is lost, not
because there are no pointers to it, but rather because all the blocks that point to it are themselves lost. For example,
if you have a binary tree and the root node is lost, all its children nodes will be indirectly lost. Because the problem
will disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck won’t report such blocks
individually by default.

¢ "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a chain of one or more
pointers to the block has been found, but at least one of the pointers is an interior-pointer. This could just be a
random value in memory that happens to point into a block, and so you shouldn’t consider this ok unless you know
you have interior-pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best way that leaks could be
reported; in particular, interior-pointers are treated inconsistently. It is possible the categorisation may be improved
in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed” no matter what which of the above
four kinds it belongs to.

The following is an example leak summary.

LEAK SUMMARY :
definitely lost: 48 bytes in 3 blocks.
indirectly lost: 32 bytes in 2 blocks.
possibly lost: 96 bytes in 6 blocks.
still reachable: 64 bytes in 4 blocks.
suppressed: 0 bytes in 0 blocks.

If heuristics have been used to consider some blocks as reachable, the leak summary details the heuristically reachable
subset of ’still reachable:’ per heuristic. In the below example, of the 95 bytes still reachable, 87 bytes (56+7+8+16)
have been considered heuristically reachable.

LEAK SUMMARY :
definitely lost: 4 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 95 bytes in 6 blocks
of which reachable via heuristic:

stdstring : 56 bytes in 2 blocks
lengtho64 : 16 bytes in 1 blocks
newarray : 7 bytes in 1 blocks

multipleinheritance: 8 bytes in 1 blocks
suppressed: 0 bytes in 0 blocks

If ——leak-check=full is specified, Memcheck will give details for each definitely lost or possibly lost block,
including where it was allocated. (Actually, it merges results for all blocks that have the same leak kind and
sufficiently similar stack traces into a single "loss record”. The ——leak-resolution lets you control the meaning
of "sufficiently similar".) It cannot tell you when or how or why the pointer to a leaked block was lost; you have to
work that out for yourself. In general, you should attempt to ensure your programs do not have any definitely lost or
possibly lost blocks at exit.

For example:

64

Memcheck: a memory error detector

8 bytes in 1 blocks are definitely lost in loss record 1 of 14

at 0x........: malloc (vg_replace_malloc.c:...)
by Ox........: mk (leak-tree.c:11)
by Ox........: main (leak-tree.c:39)

88 (8 direct, 80 indirect) bytes in 1 blocks are definitely lost in loss record 13 of 14

at Ox........: malloc (vg_replace_malloc.c:...)
by Ox........: mk (leak-tree.c:11)
by Ox........: main (leak-tree.c:25)

The first message describes a simple case of a single 8 byte block that has been definitely lost. The second case
mentions another 8 byte block that has been definitely lost; the difference is that a further 80 bytes in other blocks are
indirectly lost because of this lost block. The loss records are not presented in any notable order, so the loss record
numbers aren’t particularly meaningful. The loss record numbers can be used in the Valgrind gdbserver to list the
addresses of the leaked blocks and/or give more details about how a block is still reachable.

The option ——show—-leak-kinds=<set> controls the set of leak kinds to show when —-leak-check=full
is specified.

The <set > of leak kinds is specified in one of the following ways:

* a comma separated list of one or more of definite indirect possible reachable.
* all to specify the complete set (all leak kinds).

* none for the empty set.

The default value for the leak kinds to show is ——show-leak-kinds=definite, possible.

To also show the reachable and indirectly lost blocks in addition to the definitely and possibly lost blocks,
you can use —-show-leak-kinds=all. To only show the reachable and indirectly lost blocks, use
--show-leak-kinds=indirect, reachable. The reachable and indirectly lost blocks will then be pre-
sented as shown in the following two examples.

64 bytes in 4 blocks are still reachable in loss record 2 of 4

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: mk (leak-cases.c:52)
by Ox........: main (leak-cases.c:74)

at Ox........: malloc (vg_replace_malloc.c:177)
by Ox........: mk (leak-cases.c:52)
by Ox........: main (leak-cases.c:80)

Because there are different kinds of leaks with different severities, an interesting question is: which leaks should be
counted as true "errors" and which should not?

65

Memcheck: a memory error detector

The answer to this question affects the numbers printed in the ERROR SUMMARY line, and also the effect of the
——error—exitcode option. First, a leak is only counted as a true "error" if ——leak—-check=full is specified.
Then, the option ——errors-for-leak-kinds=<set> controls the set of leak kinds to consider as errors. The
default value is ——errors—for-leak-kinds=definite, possible

4.3. Memcheck Command-Line Options

——leak—-check=<no|summary|yes|full> [default: summary]
When enabled, search for memory leaks when the client program finishes. If set to summary, it says how many leaks
occurred. If setto full or yes, each individual leak will be shown in detail and/or counted as an error, as specified
by the options ——show-leak-kinds and ——errors—for—-leak—-kinds.

——leak-resolution=<low|med|high> [default: high]

When doing leak checking, determines how willing Memcheck is to consider different backtraces to be the same for
the purposes of merging multiple leaks into a single leak report. When set to 1ow, only the first two entries need
match. When med, four entries have to match. When high, all entries need to match.

For hardcore leak debugging, you probably want to use --leak-resolution=high together with
——num-callers=40 or some such large number.

Note that the ——1eak-resolution setting does not affect Memcheck’s ability to find leaks. It only changes how
the results are presented.

——-show-leak-kinds=<set> [default: definite,possible]
Specifies the leak kinds to show in a full leak search, in one of the following ways:

* a comma separated list of one or more of definite indirect possible reachable.
* all to specify the complete set (all leak kinds). Itis equivalent to ——show-leak-kinds=definite, indirect, possible,:
* none for the empty set.

——errors—for-leak-kinds=<set> [default: definite,possible]
Specifies the leak kinds to count as errors in a full leak search. The <set> is specified similarly to
—-show-leak-kinds

—-leak-check-heuristics=<set> [default: all]
Specifies the set of leak check heuristics to be used during leak searches. The heuristics control which interior pointers
to a block cause it to be considered as reachable. The heuristic set is specified in one of the following ways:

* a comma separated list of one or more of stdstring length64 newarray multipleinheritance.
* all to activate the complete set of heuristics. Itis equivalentto ——leak—-check-heuristics=stdstring, length64, newa
* none for the empty set.

—-show-reachable=<yes|no> , ——show-possibly-lost=<yes|no>
These options provide an alternative way to specify the leak kinds to show:

e ——show-reachable=no --show-possibly-lost=yesisequivalentto ——show-leak-kinds=definite,possibl

¢ ——show-reachable=no --show-possibly-lost=noisequivalentto -—show-leak-kinds=definite.

e ——show-reachable=yes is equivalent to ——show-leak-kinds=all.

66

Memcheck: a memory error detector

—--undef-value-errors=<yes|no> [default: vyes]
Controls whether Memcheck reports uses of undefined value errors. Set this to no if you don’t want to see undefined
value errors. It also has the side effect of speeding up Memcheck somewhat.

——track-origins=<yes|no> [default: no]

Controls whether Memcheck tracks the origin of uninitialised values. By default, it does not, which means that
although it can tell you that an uninitialised value is being used in a dangerous way, it cannot tell you where the
uninitialised value came from. This often makes it difficult to track down the root problem.

When set to yes, Memcheck keeps track of the origins of all uninitialised values. Then, when an uninitialised value
error is reported, Memcheck will try to show the origin of the value. ~An origin can be one of the following four
places: a heap block, a stack allocation, a client request, or miscellaneous other sources (eg, a call to brk).

For uninitialised values originating from a heap block, Memcheck shows where the block was allocated. ~ For
uninitialised values originating from a stack allocation, Memcheck can tell you which function allocated the value, but
no more than that -- typically it shows you the source location of the opening brace of the function. So you should
carefully check that all of the function’s local variables are initialised properly.

Performance overhead: origin tracking is expensive. It halves Memcheck’s speed and increases memory use by a
minimum of 100MB, and possibly more. Nevertheless it can drastically reduce the effort required to identify the root
cause of uninitialised value errors, and so is often a programmer productivity win, despite running more slowly.

Accuracy: Memcheck tracks origins quite accurately. To avoid very large space and time overheads, some
approximations are made. It is possible, although unlikely, that Memcheck will report an incorrect origin, or not
be able to identify any origin.

Note that the combination ——track—-origins=yes and ——undef-value-errors=no is nonsensical. Mem-
check checks for and rejects this combination at startup.

—--partial-loads-ok=<yes|no> [default: yes]

Controls how Memcheck handles 32-, 64-, 128- and 256-bit naturally aligned loads from addresses for which some
bytes are addressable and others are not. When yes, such loads do not produce an address error. Instead, loaded
bytes originating from illegal addresses are marked as uninitialised, and those corresponding to legal addresses are
handled in the normal way.

When no, loads from partially invalid addresses are treated the same as loads from completely invalid addresses: an
illegal-address error is issued, and the resulting bytes are marked as initialised.

Note that code that behaves in this way is in violation of the ISO C/C++ standards, and should be considered broken.
If at all possible, such code should be fixed.

——expensive-definedness-checks=<yes|no> [default: no]

Controls whether Memcheck should employ more precise but also more expensive (time consuming) algorithms
when checking the definedness of a value. The default setting is not to do that and it is usually sufficient.
However, for highly optimised code valgrind may sometimes incorrectly complain. Invoking valgrind with
—-—expensive-definedness-checks=yes helps but comes at a performance cost. Runtime degradation of
25% have been observed but the extra cost depends a lot on the application at hand.

67

Memcheck: a memory error detector

—-—keep-stacktraces=alloc|freelalloc-and-free|alloc-then-free|none [default:
alloc—and-free]
Controls which stack trace(s) to keep for malloc’d and/or free’d blocks.

With alloc-then—-free, a stack trace is recorded at allocation time, and is associated with the block. When the
block is freed, a second stack trace is recorded, and this replaces the allocation stack trace. As a result, any "use after
free" errors relating to this block can only show a stack trace for where the block was freed.

With alloc-and-free, both allocation and the deallocation stack traces for the block are stored. Hence a "use
after free" error will show both, which may make the error easier to diagnose. Compared to alloc-then-free,
this setting slightly increases Valgrind’s memory use as the block contains two references instead of one.

With alloc, only the allocation stack trace is recorded (and reported). With free, only the deallocation stack trace
is recorded (and reported). These values somewhat decrease Valgrind’s memory and cpu usage. They can be useful
depending on the error types you are searching for and the level of detail you need to analyse them. For example, if
you are only interested in memory leak errors, it is sufficient to record the allocation stack traces.

With none, no stack traces are recorded for malloc and free operations. If your program allocates a lot of blocks
and/or allocates/frees from many different stack traces, this can significantly decrease cpu and/or memory required.
Of course, few details will be reported for errors related to heap blocks.

Note that once a stack trace is recorded, Valgrind keeps the stack trace in memory even if it is not referenced
by any block. Some programs (for example, recursive algorithms) can generate a huge number of stack traces.
If Valgrind uses too much memory in such circumstances, you can reduce the memory required with the options
——keep-stacktraces and/or by using a smaller value for the option ——num-callers.

——freelist-vol=<number> [default: 20000000]

When the client program releases memory using free (in C) or delete (C++), that memory is not immediately made
available for re-allocation. Instead, it is marked inaccessible and placed in a queue of freed blocks. The purpose
is to defer as long as possible the point at which freed-up memory comes back into circulation. This increases the
chance that Memcheck will be able to detect invalid accesses to blocks for some significant period of time after they
have been freed.

This option specifies the maximum total size, in bytes, of the blocks in the queue. The default value is twenty million
bytes. Increasing this increases the total amount of memory used by Memcheck but may detect invalid uses of freed
blocks which would otherwise go undetected.

——freelist-big-blocks=<number> [default: 1000000]

When making blocks from the queue of freed blocks available for re-allocation, Memcheck will in priority re-circulate
the blocks with a size greater or equal to ——freelist-big-blocks. This ensures that freeing big blocks (in
particular freeing blocks bigger than ——freelist-vol) does not immediately lead to a re-circulation of all (or a lot
of) the small blocks in the free list. In other words, this option increases the likelihood to discover dangling pointers
for the "small" blocks, even when big blocks are freed.

Setting a value of 0 means that all the blocks are re-circulated in a FIFO order.

—-—-workaround-gcc296-bugs=<yes|no> [default: no]

When enabled, assume that reads and writes some small distance below the stack pointer are due to bugs in GCC 2.96,
and does not report them. The "small distance" is 256 bytes by default. Note that GCC 2.96 is the default compiler
on some ancient Linux distributions (RedHat 7.X) and so you may need to use this option. Do not use it if you do not
have to, as it can cause real errors to be overlooked. A better alternative is to use a more recent GCC in which this
bug is fixed.

You may also need to use this option when working with GCC 3.X or 4.X on 32-bit PowerPC Linux. This is because
GCC generates code which occasionally accesses below the stack pointer, particularly for floating-point to/from integer
conversions. This is in violation of the 32-bit PowerPC ELF specification, which makes no provision for locations
below the stack pointer to be accessible.

68

Memcheck: a memory error detector

—-—-show-mismatched-frees=<yes|no> [default: vyes]

When enabled, Memcheck checks that heap blocks are deallocated using a function that matches the allocating
function. That is, it expects free to be used to deallocate blocks allocated by malloc, delete for blocks
allocated by new, and delete [] for blocks allocated by new []. If a mismatch is detected, an error is reported.
This is in general important because in some environments, freeing with a non-matching function can cause crashes.

There is however a scenario where such mismatches cannot be avoided. That is when the user provides imple-
mentations of new/new [] that call malloc and of delete/delete[] that call free, and these functions are
asymmetrically inlined. For example, imagine that delete [] is inlined but new [] is not. The result is that Mem-
check "sees" all delete[] calls as direct calls to free, even when the program source contains no mismatched
calls.

This causes a lot of confusing and irrelevant error reports. —-show-mismatched-frees=no disables these
checks. It is not generally advisable to disable them, though, because you may miss real errors as a result.

——ignore-ranges=0xPP-0xQQ[, 0xRR-0xSS]
Any ranges listed in this option (and multiple ranges can be specified, separated by commas) will be ignored by
Memcheck’s addressability checking.

——malloc-fill=<hexnumber>

Fills blocks allocated by malloc, new, etc, but not by calloc, with the specified byte. This can be useful when
trying to shake out obscure memory corruption problems. The allocated area is still regarded by Memcheck as unde-
fined -- this option only affects its contents. Note that ——malloc-£fil1 does not affect a block of memory when it
is used as argument to client requests VALGRIND_MEMPOOL_ALLOC or VALGRIND_MALLOCLIKE_BLOCK.

——free-fill=<hexnumber>

Fills blocks freed by free, delete, etc, with the specified byte value. This can be useful when trying to shake
out obscure memory corruption problems. The freed area is still regarded by Memcheck as not valid for access --
this option only affects its contents. Note that ——free—fil1l does not affect a block of memory when it is used as
argument to client requests VALGRIND_MEMPOOL_FREE or VALGRIND_FREELIKE_BLOCK.

4.4. Writing suppression files

The basic suppression format is described in Suppressing errors.

The suppression-type (second) line should have the form:

Memcheck: suppression_type

The Memcheck suppression types are as follows:

*Valuel, Value2, Value4, Value8, Valuel6, meaning an uninitialised-value error when using a value of 1,
2,4, 8 or 16 bytes.

* Cond (or its old name, Value0), meaning use of an uninitialised CPU condition code.

*Addrl, Addr2, Addr4, Addr8, Addrl6, meaning an invalid address during a memory access of 1, 2, 4, 8 or 16
bytes respectively.

* Jump, meaning an jump to an unaddressable location error.

* Param, meaning an invalid system call parameter error.

69

Memcheck: a memory error detector

* Free, meaning an invalid or mismatching free.
*Overlap, meaning a src / dst overlap in memcpy or a similar function.
* Leak, meaning a memory leak.

Param errors have a mandatory extra information line at this point, which is the name of the offending system call
parameter.

Leak errors have an optional extra information line, with the following format:

match-leak-kinds:<set>

where <set> specifies which leak kinds are matched by this suppression entry. <set> is specified in the same way
as with the option ——show-1eak-kinds, that is, one of the following:

* a comma separated list of one or more of definite indirect possible reachable.

* all to specify the complete set (all leak kinds).

* none for the empty set.
If this optional extra line is not present, the suppression entry will match all leak kinds.

Be aware that leak suppressions that are created using ——gen—suppressions will contain this optional extra line,
and therefore may match fewer leaks than you expect. You may want to remove the line before using the generated
suppressions.

The other Memcheck error kinds do not have extra lines.

If you give the —v option, Valgrind will print the list of used suppressions at the end of execution. For a leak
suppression, this output gives the number of different loss records that match the suppression, and the number of
bytes and blocks suppressed by the suppression. If the run contains multiple leak checks, the number of bytes and
blocks are reset to zero before each new leak check. Note that the number of different loss records is not reset to zero.

In the example below, in the last leak search, 7 blocks and 96 bytes have been suppressed by a suppression with the
name some_leak_suppression:

—-—-21041-- used_suppression: 10 some_other_leak_suppression s.supp:14 suppressed: 12,400 by

——21041-- used_suppression: 39 some_leak_suppression s.supp:2 suppressed: 96 bytes in 7 bl«

For ValueN and AddrN errors, the first line of the calling context is either the name of the function in which the error
occurred, or, failing that, the full path of the . so file or executable containing the error location. For Free errors, the
first line is the name of the function doing the freeing (eg, free, _ _builtin_vec_delete,etc). For Overlap
errors, the first line is the name of the function with the overlapping arguments (eg. memcpy, strcpy, etc).

The last part of any suppression specifies the rest of the calling context that needs to be matched.

4.5. Details of Memcheck’s checking machinery

70

Memcheck: a memory error detector

Read this section if you want to know, in detail, exactly what and how Memcheck is checking.

4.5.1. Valid-value (V) bits

It is simplest to think of Memcheck implementing a synthetic CPU which is identical to a real CPU, except for one
crucial detail. Every bit (literally) of data processed, stored and handled by the real CPU has, in the synthetic CPU, an
associated "valid-value" bit, which says whether or not the accompanying bit has a legitimate value. In the discussions
which follow, this bit is referred to as the V (valid-value) bit.

Each byte in the system therefore has a 8 V bits which follow it wherever it goes. For example, when the CPU loads a
word-size item (4 bytes) from memory, it also loads the corresponding 32 V bits from a bitmap which stores the V bits
for the process’ entire address space. If the CPU should later write the whole or some part of that value to memory at
a different address, the relevant V bits will be stored back in the V-bit bitmap.

In short, each bit in the system has (conceptually) an associated V bit, which follows it around everywhere, even
inside the CPU. Yes, all the CPU’s registers (integer, floating point, vector and condition registers) have their own V
bit vectors. For this to work, Memcheck uses a great deal of compression to represent the V bits compactly.

Copying values around does not cause Memcheck to check for, or report on, errors. However, when a value is
used in a way which might conceivably affect your program’s externally-visible behaviour, the associated V bits are
immediately checked. If any of these indicate that the value is undefined (even partially), an error is reported.

Here’s an (admittedly nonsensical) example:

int i, J;

int a[10], b[10];

for (1 =0; i <10; i++) {
j=alil;

bli] = 3J;

}

Memcheck emits no complaints about this, since it merely copies uninitialised values from a [] into b [], and doesn’t
use them in a way which could affect the behaviour of the program. However, if the loop is changed to:

for (1 =0; i <10; i++) {
J +=ali]

}

if (J==77)
printf ("hello there\n");

14

then Memcheck will complain, at the if, that the condition depends on uninitialised values. Note that it doesn’t
complain at the j += a[i];, since at that point the undefinedness is not "observable". It’s only when a decision
has to be made as to whether or not to do the print £ -- an observable action of your program -- that Memcheck
complains.

Most low level operations, such as adds, cause Memcheck to use the V bits for the operands to calculate the V bits for
the result. Even if the result is partially or wholly undefined, it does not complain.

Checks on definedness only occur in three places: when a value is used to generate a memory address, when control
flow decision needs to be made, and when a system call is detected, Memcheck checks definedness of parameters as
required.

71

Memcheck: a memory error detector

If a check should detect undefinedness, an error message is issued. The resulting value is subsequently regarded as
well-defined. To do otherwise would give long chains of error messages. In other words, once Memcheck reports an
undefined value error, it tries to avoid reporting further errors derived from that same undefined value.

This sounds overcomplicated. ~Why not just check all reads from memory, and complain if an undefined value is
loaded into a CPU register? Well, that doesn’t work well, because perfectly legitimate C programs routinely copy
uninitialised values around in memory, and we don’t want endless complaints about that. ~ Here’s the canonical
example. Consider a struct like this:

struct S { int x; char c; };
struct S sl, s2;

sl.x = 42;
sl.c="z";
s2 = sl;

The question to ask is: how large is struct S, in bytes? An int is 4 bytes and a char one byte, so perhaps a
struct S occupies 5 bytes? Wrong. All non-toy compilers we know of will round the size of struct S up to
a whole number of words, in this case 8 bytes. Not doing this forces compilers to generate truly appalling code for
accessing arrays of struct S’s on some architectures.

So s1 occupies 8 bytes, yet only 5 of them will be initialised. For the assignment s2 = s1, GCC generates code
to copy all 8 bytes wholesale into s2 without regard for their meaning. If Memcheck simply checked values as they
came out of memory, it would yelp every time a structure assignment like this happened. So the more complicated
behaviour described above is necessary. This allows GCC to copy s1 into s2 any way it likes, and a warning will
only be emitted if the uninitialised values are later used.

4.5.2. Valid-address (A) bits

Notice that the previous subsection describes how the validity of values is established and maintained without having
to say whether the program does or does not have the right to access any particular memory location. We now consider
the latter question.

As described above, every bit in memory or in the CPU has an associated valid-value (V) bit. In addition, all bytes
in memory, but not in the CPU, have an associated valid-address (A) bit. This indicates whether or not the program
can legitimately read or write that location. It does not give any indication of the validity of the data at that location
-- that’s the job of the V bits -- only whether or not the location may be accessed.

Every time your program reads or writes memory, Memcheck checks the A bits associated with the address. If any of
them indicate an invalid address, an error is emitted. Note that the reads and writes themselves do not change the A
bits, only consult them.

So how do the A bits get set/cleared? Like this:

* When the program starts, all the global data areas are marked as accessible.

* When the program does malloc/new, the A bits for exactly the area allocated, and not a byte more, are marked as
accessible. Upon freeing the area the A bits are changed to indicate inaccessibility.

72

Memcheck: a memory error detector

* When the stack pointer register (SP) moves up or down, A bits are set. The rule is that the area from SP up to
the base of the stack is marked as accessible, and below SP is inaccessible. (If that sounds illogical, bear in mind
that the stack grows down, not up, on almost all Unix systems, including GNU/Linux.) Tracking SP like this has
the useful side-effect that the section of stack used by a function for local variables etc is automatically marked
accessible on function entry and inaccessible on exit.

* When doing system calls, A bits are changed appropriately. For example, mmap magically makes files appear in the
process’ address space, so the A bits must be updated if mmap succeeds.

* Optionally, your program can tell Memcheck about such changes explicitly, using the client request mechanism
described above.

4.5.3. Putting it all together

Memcheck’s checking machinery can be summarised as follows:

¢ Each byte in memory has 8 associated V (valid-value) bits, saying whether or not the byte has a defined value, and
a single A (valid-address) bit, saying whether or not the program currently has the right to read/write that address.
As mentioned above, heavy use of compression means the overhead is typically around 25%.

* When memory is read or written, the relevant A bits are consulted. If they indicate an invalid address, Memcheck
emits an Invalid read or Invalid write error.

* When memory is read into the CPU’s registers, the relevant V bits are fetched from memory and stored in the
simulated CPU. They are not consulted.

* When a register is written out to memory, the V bits for that register are written back to memory too.

* When values in CPU registers are used to generate a memory address, or to determine the outcome of a conditional
branch, the V bits for those values are checked, and an error emitted if any of them are undefined.

* When values in CPU registers are used for any other purpose, Memcheck computes the V bits for the result, but
does not check them.

* Once the V bits for a value in the CPU have been checked, they are then set to indicate validity. This avoids long
chains of errors.

* When values are loaded from memory, Memcheck checks the A bits for that location and issues an illegal-address
warning if needed. In that case, the V bits loaded are forced to indicate Valid, despite the location being invalid.

This apparently strange choice reduces the amount of confusing information presented to the user. It avoids the
unpleasant phenomenon in which memory is read from a place which is both unaddressable and contains invalid
values, and, as a result, you get not only an invalid-address (read/write) error, but also a potentially large set of
uninitialised-value errors, one for every time the value is used.

There is a hazy boundary case to do with multi-byte loads from addresses which are partially valid and partially
invalid. See details of the option ——partial-loads—ok for details.

Memcheck intercepts calls to malloc, calloc, realloc, valloc, memalign, free, new, new[], delete
and delete[]. The behaviour you get is:

emalloc/new/new []: the returned memory is marked as addressable but not having valid values. This means you
have to write to it before you can read it.

73

Memcheck: a memory error detector

e calloc: returned memory is marked both addressable and valid, since calloc clears the area to zero.

e realloc: if the new size is larger than the old, the new section is addressable but invalid, as withmalloc. If the
new size is smaller, the dropped-off section is marked as unaddressable. You may only pass to realloc a pointer
previously issued to you by malloc/calloc/realloc.

e free/delete/delete[]: you may only pass to these functions a pointer previously issued to you by the
corresponding allocation function. Otherwise, Memcheck complains. If the pointer is indeed valid, Memcheck
marks the entire area it points at as unaddressable, and places the block in the freed-blocks-queue. The aim is
to defer as long as possible reallocation of this block. Until that happens, all attempts to access it will elicit an
invalid-address error, as you would hope.

4.6. Memcheck Monitor Commands

The Memcheck tool provides monitor commands handled by Valgrind’s built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver).

*xb <addr> [<len>] shows the definedness (V) bits and values for <len> (default 1) bytes starting at <addr>.
For each 8 bytes, two lines are output.

The first line shows the validity bits for 8 bytes. The definedness of each byte in the range is given using two
hexadecimal digits. These hexadecimal digits encode the validity of each bit of the corresponding byte, using 0
if the bit is defined and 1 if the bit is undefined. If a byte is not addressable, its validity bits are replaced by ___ (a
double underscore).

The second line shows the values of the bytes below the corresponding validity bits. The format used to show the
bytes data is similar to the GDB command ’x /<len>xb <addr>’. The value for a non addressable bytes is shown as
7?7 (two question marks).

In the following example, st ring10 is an array of 10 characters, in which the even numbered bytes are undefined.
In the below example, the byte corresponding to st ringl0 [5] is not addressable.

(gdb) p &stringl0
$4 = (char (*)[10]) 0x804a2f0
(gdb) mo xb 0x804a2f0 10

ff 00 ff 00 ff . ff 00
0x804A2FO0: 0x3f Ox6e 0x3f 0x65 0x3f 0x?? 0x3f 0x65
ff 00
0x804A2F8: 0x3f 0x00
Address 0x804A2F0 len 10 has 1 bytes unaddressable

(gdb)

The command xb cannot be used with registers. To get the validity bits of a register, you must start Valgrind with
the option ——vgdb-shadow-registers=yes. The validity bits of a register can then be obtained by printing
the ’shadow 1’ corresponding register. In the below x86 example, the register eax has all its bits undefined, while
the register ebx is fully defined.

(gdb) p /x Seaxsl
SS9 = Oxffffffff
(gdb) p /x $ebxsl

74

Memcheck: a memory error detector

$10 = 0x0
(gdb)

eget_vbits <addr> [<len>] shows the definedness (V) bits for <len> (default 1) bytes starting at <addr>
using the same convention as the xb command. get_vbits only shows the V bits (grouped by 4 bytes). It does
not show the values. If you want to associate V bits with the corresponding byte values, the xb command will be
easier to use, in particular on little endian computers when associating undefined parts of an integer with their V
bits values.

The following example shows the result of get _vibts onthe stringl0 used in the xb command explanation.

(gdb) monitor get_vbits 0x804a2f0 10

ff00££00 ££_ ££f00 ££00

Address 0x804A2F0 len 10 has 1 bytes unaddressable
(gdb)

emake_memory [noaccess|undefined|defined|Definedifaddressable] <addr> [<len>]
marks the range of <len> (default 1) bytes at <addr> as having the given status. Parameter noaccess marks
the range as non-accessible, so Memcheck will report an error on any access to it. undefined or defined
mark the area as accessible, but Memcheck regards the bytes in it respectively as having undefined or defined
values. Definedifaddressable marks as defined, bytes in the range which are already addressible, but
makes no change to the status of bytes in the range which are not addressible. Note that the first letter of
Definedifaddressable is an uppercase D to avoid confusion with defined.

In the following example, the first byte of the st ringl0 is marked as defined:

(gdb) monitor make_memory defined 0x8049e28 1
(gdb) monitor get_vbits 0x8049e28 10

0000ff00 ££f00££00 ££00

(gdb)

e check_memory [addressable|defined] <addr> [<len>] checks thatthe range of <len> (default 1)
bytes at <addr> has the specified accessibility. It then outputs a description of <addr>. In the following example, a
detailed description is available because the option ——read-var—-info=yes was given at Valgrind startup:

(gdb) monitor check_memory defined 0x8049e28 1

Address 0x8049E28 len 1 defined

==14698== Location 0x8049e28 is 0 bytes inside stringl0[0],
==14698== declared at prog.c:10, in frame #0 of thread 1
(gdb)

75

Memcheck: a memory error detector

*leak_check [fullx|summary] [kinds <set>|reachable|possibleleakx|definiteleak]
[heuristics heurl, heur2, ...] [increasedx*|changed|any] [unlimitedx|limited
<max_loss_records_output>] performs a leak check. The % in the arguments indicates the default
values.

If the [fullx|summary] argument is summary, only a summary of the leak search is given; otherwise a full
leak report is produced. A full leak report gives detailed information for each leak: the stack trace where the leaked
blocks were allocated, the number of blocks leaked and their total size. When a full report is requested, the next
two arguments further specify what kind of leaks to report. A leak’s details are shown if they match both the second
and third argument. A full leak report might output detailed information for many leaks. The nr of leaks for which
information is output can be controlled using the 1imited argument followed by the maximum nr of leak records
to output. If this maximum is reached, the leak search outputs the records with the biggest number of bytes.

The kinds argument controls what kind of blocks are shown for a full leak search. The set of leak kinds to show
can be specified using a <set> similarly to the command line option ——show-1leak-kinds. Alternatively, the
value definiteleak is equivalent to kinds definite, the value possibleleak is equivalent to kinds
definite, possible : it will also show possibly leaked blocks, .i.e those for which only an interior pointer was
found. The value reachable will show all block categories (i.e. is equivalent to kinds all).

The heuristics argument controls the heuristics used during the leak search. The set of heuristics to use can
be specified using a <set> similarly to the command line option ——leak—-check-heuristics. The default
value for the heuristics argumentis heuristics none.

The [increasedx|changed|any] argument controls what kinds of changes are shown for a full leak
search. The value increased specifies that only block allocation stacks with an increased number of leaked
bytes or blocks since the previous leak check should be shown. The value changed specifies that allocation
stacks with any change since the previous leak check should be shown. The value any specifies that all leak entries
should be shown, regardless of any increase or decrease. When If increased or changed are specified, the
leak report entries will show the delta relative to the previous leak report.

The following example shows usage of the 1eak_check monitor command on the memcheck/tests/leak-cases.c
regression test. The first command outputs one entry having an increase in the leaked bytes. The second command

is the same as the first command, but uses the abbreviated forms accepted by GDB and the Valgrind gdbserver. It

only outputs the summary information, as there was no increase since the previous leak search.

(gdb) monitor leak_check full possibleleak increased
==19520== 16 (+16) bytes in 1 (+1) blocks are possibly lost in loss record 9 of 12

==19520== at 0x40070B4: malloc (vg_replace_malloc.c:263)
==19520== by 0x80484D5: mk (leak-cases.c:52)

==19520== by 0x804855F: £ (leak-cases.c:81)

==19520== by 0x80488E0: main (leak-cases.c:107)
==19520==

==19520== LEAK SUMMARY:

==19520== definitely lost: 32 (+0) bytes in 2 (+0) blocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) blocks
==19520== possibly lost: 32 (+16) bytes in 2 (+1) blocks
==19520== still reachable: 96 (+16) bytes in 6 (+1) blocks
==19520== suppressed: 0 (+0) bytes in 0 (+0) blocks

==19520== Reachable blocks (those to which a pointer was found) are not shown.
==19520== To see them, add ’'reachable any’ args to leak_check

==19520==

(gdb) mo 1

==19520== LEAK SUMMARY :

76

Memcheck: a memory error detector

==19520== definitely lost: 32 (+0) bytes in 2 (+0) blocks
==19520== indirectly lost: 16 (+0) bytes in 1 (+0) blocks
==19520== possibly lost: 32 (+0) bytes in 2 (+0) blocks
==19520== still reachable: 96 (+0) bytes in 6 (+0) blocks
==19520== suppressed: 0 (+0) bytes in 0 (+0) blocks

==19520== Reachable blocks (those to which a pointer was found) are not shown.
==19520== To see them, add ’"reachable any’ args to leak_check

==19520==

(gdb)

Note that when using Valgrind’s gdbserver, it is not necessary to rerun with —--leak-check=full
--show-reachable=yes to see the reachable blocks. You can obtain the same information without rerunning
by using the GDB command monitor leak_check full reachable any (or, using abbreviation: mo
1 £ r a)

block_list <loss_record_nr>|<loss_record_nr_from>..<loss_record_nr_to>
[unlimited*|limited <max_blocks>] [heuristics heurl, heur2, ...] shows the list of

blocks belonging to <1loss_record_nr> (or to the loss records range <loss_record_nr_from>. .<loss_record_nr_tc
The nr of blocks to print can be controlled using the 1imited argument followed by the maximum nr of blocks

to output. If one or more heuristics are given, only prints the loss records and blocks found via one of the given

heurl, heur2, ... heuristics.

A leak search merges the allocated blocks in loss records : a loss record re-groups all blocks having the same state
(for example, Definitely Lost) and the same allocation backtrace. Each loss record is identified in the leak search
result by a loss record number. The block_1ist command shows the loss record information followed by the
addresses and sizes of the blocks which have been merged in the loss record. If a block was found using an heuristic,
the block size is followed by the heuristic.

If a directly lost block causes some other blocks to be indirectly lost, the block_list command will also show these
indirectly lost blocks. The indirectly lost blocks will be indented according to the level of indirection between the
directly lost block and the indirectly lost block(s). Each indirectly lost block is followed by the reference of its loss
record.

The block_list command can be used on the results of a leak search as long as no block has been freed after this
leak search: as soon as the program frees a block, a new leak search is needed before block_list can be used again.

In the below example, the program leaks a tree structure by losing the pointer to the block A (top of the tree). So,
the block A is directly lost, causing an indirect loss of blocks B to G. The first block_list command shows the loss
record of A (a definitely lost block with address 0x4028028, size 16). The addresses and sizes of the indirectly lost
blocks due to block A are shown below the block A. The second command shows the details of one of the indirect
loss records output by the first command.

(gdb) bt
#0 main () at leak-tree.c:69
(gdb) monitor leak_check full any

71

Memcheck: a memory error detector

==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely lost in loss record 7

==19552== at 0x40070B4: malloc (vg_replace_malloc.c:263)
==19552== by 0x80484D5: mk (leak-tree.c:28)
==19552== by 0x80484FC: £ (leak-tree.c:41)
==19552== by 0x8048856: main (leak-tree.c:63)
==19552==
==19552== LEAK SUMMARY :
==19552== definitely lost: 16 bytes in 1 blocks
==19552== indirectly lost: 96 bytes in 6 blocks
==19552== possibly lost: 0 bytes in 0 blocks
==19552== still reachable: 0 bytes in 0 blocks
==19552== suppressed: 0 bytes in 0 blocks
=19552==

(gdb) monitor block_list 7
==19552== 112 (16 direct, 96 indirect) bytes in 1 blocks are definitely lost in loss record 7

==19552== at 0x40070B4: malloc (vg_replace_malloc.c:263)
==19552== by 0x80484D5: mk (leak-tree.c:28)

==19552== by 0x80484FC: f (leak-tree.c:41)

==19552== by 0x8048856: main (leak-tree.c:63)

==19552== 0x4028028[16]

==19552== 0x4028068[16] indirect loss record 1

==19552== 0x40280E8[16] indirect loss record 3
==19552== 0x4028128[16] indirect loss record 4
==19552== 0x40280A8[16] indirect loss record 2

==19552== 0x4028168[16] indirect loss record 5
==19552== 0x40281A8[16] indirect loss record 6

(gdb) mo b 2

==19552== 16 bytes in 1 blocks are indirectly lost in loss record 2 of 7
==19552== at 0x40070B4: malloc (vg_replace_malloc.c:263)
==19552== by 0x80484D5: mk (leak-tree.c:28)

==19552== by 0x8048519: f (leak-tree.c:43)

==19552== by 0x8048856: main (leak-tree.c:63)

==19552== 0x40280A8[16]

==19552== 0x4028168[16] indirect loss record 5

==19552== 0x40281A8[16] indirect loss record 6

(gdb)

who_points_at <addr> [<len>] shows all the locations where a pointer to addr is found. If len is equal
to 1, the command only shows the locations pointing exactly at addr (i.e. the "start pointers" to addr). If len is > 1,
"interior pointers" pointing at the len first bytes will also be shown.

The locations searched for are the same as the locations used in the leak search. So, who_points_at cana.o. be
used to show why the leak search still can reach a block, or can search for dangling pointers to a freed block. Each
location pointing at addr (or pointing inside addr if interior pointers are being searched for) will be described.

In the below example, the pointers to the ’tree block A’ (see example in command block_11ist) is shown before
the tree was leaked. The descriptions are detailed as the option ——read-var—info=yes was given at Valgrind
startup. The second call shows the pointers (start and interior pointers) to block G. The block G (0x40281A8) is
reachable via block C (0x40280a8) and register ECX of tid 1 (tid is the Valgrind thread id). It is "interior reachable"
via the register EBX.

78

Memcheck: a memory error detector

(gdb) monitor who_points_at 0x4028028

==20852== Searching for pointers to 0x4028028

==20852== x0x8049e20 points at 0x4028028

==20852== Location 0x8049e20 is 0 bytes inside global var "t"

==20852== declared at leak-tree.c:35

(gdb) monitor who_points_at 0x40281A8 16

==20852== Searching for pointers pointing in 16 bytes from 0x40281a8
==20852== x0x40280ac points at 0x40281a8

==20852== Address 0x40280ac is 4 bytes inside a block of size 16 alloc’d

==20852== at 0x40070B4: malloc (vg_replace_malloc.c:263)
==20852== by 0x80484D5: mk (leak-tree.c:28)

==20852== by 0x8048519: £ (leak-tree.c:43)

==20852== by 0x8048856: main (leak-tree.c:63)

==20852== tid 1 register ECX points at 0x40281a8
==20852== tid 1 register EBX interior points at 2 bytes inside 0x40281a8
(gdb)

When who_points_at finds an interior pointer, it will report the heuristic(s) with which this interior
pointer will be considered as reachable. Note that this is done independently of the value of the option
——leak-check-heuristics. In the below example, the loss record 6 indicates a possibly lost block.
who_points_at reports that there is an interior pointer pointing in this block, and that the block can be con-
sidered reachable using the heuristic multipleinheritance.

(gdb) monitor block_list 6

==3748== 8 bytes in 1 blocks are possibly lost in loss record 6 of 7

==3748== at 0x4007D77: operator new(unsigned int) (vg_replace_malloc.c:313)

==3748== by 0x8048954: main (leak_cpp_interior.cpp:43)

==3748== 0x402A0EQ0[8]

(gdb) monitor who_points_at 0x402A0EQ0 8

==3748== Searching for pointers pointing in 8 bytes from 0x402a0e0

==3748== x0xbe8ee(078 interior points at 4 bytes inside 0x402a0e0

==3748== Address 0xbe8ee078 is on thread 1’s stack

==3748== block at 0x402a0e0 considered reachable by ptr 0x402a0e4 using multipleinheritance

(gdb)

4.7. Client Requests

The following client requests are defined in memcheck . h. See memcheck . h for exact details of their arguments.

* VALGRIND_MAKE_MEM_NOACCESS, VALGRIND_MAKE_MEM_UNDEF INED and VALGRIND_MAKE_MEM_DEFINED.
These mark address ranges as completely inaccessible, accessible but containing undefined data, and accessible
and containing defined data, respectively. They return -1, when run on Valgrind and 0 otherwise.

* VALGRIND_MAKE_MEM_ DEFINED_IF_ADDRESSABLE. This is just like VALGRIND_MAKE_MEM_DEFINED
but only affects those bytes that are already addressable.

79

Memcheck: a memory error detector

¢ VALGRIND_CHECK_MEM_IS_ADDRESSABLE and VALGRIND_CHECK_MEM_IS_DEFINED: check immedi-
ately whether or not the given address range has the relevant property, and if not, print an error message. Also, for
the convenience of the client, returns zero if the relevant property holds; otherwise, the returned value is the address
of the first byte for which the property is not true. Always returns O when not run on Valgrind.

* VALGRIND_CHECK_VALUE_IS_DEFINED: aquick and easy way to find out whether Valgrind thinks a particular
value (Ivalue, to be precise) is addressable and defined. Prints an error message if not. It has no return value.

* VALGRIND_DO_LEAK_CHECK: does a full memory leak check (like ——1eak—check=full) right now. This is
useful for incrementally checking for leaks between arbitrary places in the program’s execution. It has no return
value.

* VALGRIND_DO_ADDED_LEAK_CHECK: same as VALGRIND_DO_LEAK_CHECK but only shows the entries
for which there was an increase in leaked bytes or leaked number of blocks since the previous leak search. It has
no return value.

* VALGRIND_DO_CHANGED_LEAK_CHECK: same as VALGRIND_DO_LEAK_CHECK but only shows the entries
for which there was an increase or decrease in leaked bytes or leaked number of blocks since the previous leak
search. It has no return value.

* VALGRIND_DO_QUICK_LEAK_CHECK: like VALGRIND_DO_LEAK_CHECK, except it produces only a leak
summary (like ——leak-check=summary). It has no return value.

* VALGRIND_COUNT_LEAKS: fills in the four arguments with the number of bytes of memory found by
the previous leak check to be leaked (i.e. the sum of direct leaks and indirect leaks), dubious, reach-
able and suppressed. This is useful in test harness code, after calling VALGRIND_DO_LEAK_CHECK or
VALGRIND_DO_QUICK_LEAK_CHECK.

* VALGRIND_COUNT_LEAK_BLOCKS: identical to VALGRIND_COUNT_LEAKS except that it returns the number
of blocks rather than the number of bytes in each category.

* VALGRIND_GET_VBITS and VALGRIND_SET_VBITS: allow you to get and set the V (validity) bits for an
address range. You should probably only set V bits that you have got with VALGRIND_GET_VBITS. Only for
those who really know what they are doing.

¢ VALGRIND_CREATE_BLOCK and VALGRIND_DISCARD. VALGRIND_CREATE_BLOCK takes an address, a
number of bytes and a character string. The specified address range is then associated with that string. When
Memcheck reports an invalid access to an address in the range, it will describe it in terms of this block rather than
in terms of any other block it knows about. Note that the use of this macro does not actually change the state of
memory in any way -- it merely gives a name for the range.

At some point you may want Memcheck to stop reporting errors in terms of the block named by
VALGRIND_CREATE_BLOCK. To make this possible, VALGRIND_CREATE_BLOCK returns a "block
handle", which is a C int value. You can pass this block handle to VALGRIND_DISCARD. After doing so,
Valgrind will no longer relate addressing errors in the specified range to the block. Passing invalid handles to
VALGRIND_DISCARD is harmless.

80

Memcheck: a memory error detector

4.8. Memory Pools: describing and working
with custom allocators

Some programs use custom memory allocators, often for performance reasons. Left to itself, Memcheck is unable
to understand the behaviour of custom allocation schemes as well as it understands the standard allocators, and so
may miss errors and leaks in your program. What this section describes is a way to give Memcheck enough of a
description of your custom allocator that it can make at least some sense of what is happening.

There are many different sorts of custom allocator, so Memcheck attempts to reason about them using a loose, abstract
model. We use the following terminology when describing custom allocation systems:
* Custom allocation involves a set of independent "memory pools".

* Memcheck’s notion of a a memory pool consists of a single "anchor address" and a set of non-overlapping "chunks"
associated with the anchor address.

* Typically a pool’s anchor address is the address of a book-keeping "header” structure.

* Typically the pool’s chunks are drawn from a contiguous "superblock" acquired through the system malloc or
mmap.

Keep in mind that the last two points above say "typically": the Valgrind mempool client request API is intentionally
vague about the exact structure of a mempool. There is no specific mention made of headers or superblocks.
Nevertheless, the following picture may help elucidate the intention of the terms in the API:

"pool"
(anchor address)
\
A
o +———+
| header | o
o ————— +— |-+
|
v superblock
+————— ot ot +
| |rzB| allocation |rzB|
t—————= fo— o —— R et +
\ |
"addr" "addr"+"size"

Note that the header and the superblock may be contiguous or discontiguous, and there may be multiple superblocks
associated with a single header; such variations are opaque to Memcheck. The API only requires that your allocation
scheme can present sensible values of "pool", "addr" and "size".

Typically, before making client requests related to mempools, a client program will have allocated
such a header and superblock for their mempool, and marked the superblock NOACCESS using the
VALGRIND_MAKE_MEM_NOACCESS client request.

When dealing with mempools, the goal is to maintain a particular invariant condition: that Memcheck believes the
unallocated portions of the pool’s superblock (including redzones) are NOACCESS. To maintain this invariant, the

81

Memcheck: a memory error detector

client program must ensure that the superblock starts out in that state; Memcheck cannot make it so, since Memcheck
never explicitly learns about the superblock of a pool, only the allocated chunks within the pool.

Once the header and superblock for a pool are established and properly marked, there are a number of client requests
programs can use to inform Memcheck about changes to the state of a mempool:

* VALGRIND_CREATE_MEMPOOL (pool, rzB, is_zeroed): Thisrequest registers the address pool as the
anchor address for a memory pool. It also provides a size rzB, specifying how large the redzones placed around
chunks allocated from the pool should be. Finally, it provides an is_zeroed argument that specifies whether the
pool’s chunks are zeroed (more precisely: defined) when allocated.

Upon completion of this request, no chunks are associated with the pool. The request simply tells Memcheck that
the pool exists, so that subsequent calls can refer to it as a pool.

* VALGRIND_DESTROY_MEMPOOL (pool): This request tells Memcheck that a pool is being torn down. Mem-
check then removes all records of chunks associated with the pool, as well as its record of the pool’s existence. While
destroying its records of a mempool, Memcheck resets the redzones of any live chunks in the pool to NOACCESS.

* VALGRIND_MEMPOOL_ALLOC (pool, addr, size): This request informs Memcheck that a size-byte
chunk has been allocated at addr, and associates the chunk with the specified pool. If the pool was created
with nonzero rzB redzones, Memcheck will mark the rzB bytes before and after the chunk as NOACCESS. If
the pool was created with the i s_zeroed argument set, Memcheck will mark the chunk as DEFINED, otherwise
Memcheck will mark the chunk as UNDEFINED.

* VALGRIND_MEMPOOL_FREE (pool, addr): This request informs Memcheck that the chunk at addr should
no longer be considered allocated. Memcheck will mark the chunk associated with addr as NOACCESS, and
delete its record of the chunk’s existence.

* VALGRIND_MEMPOOL_TRIM (pool, addr, size): This request trims the chunks associated with pool.
The request only operates on chunks associated with pool. Trimming is formally defined as:

* All chunks entirely inside the range addr .. (addr+size—1) are preserved.

* All chunks entirely outside the range addr..(addr+size-1) are discarded, as though
VALGRIND_MEMPOOL_FREE was called on them.

* All other chunks must intersect with the range addr. . (addr+size—1); areas outside the intersection are
marked as NOACCESS, as though they had been independently freed with VALGRIND_MEMPOOL_FREE.

This is a somewhat rare request, but can be useful in implementing the type of mass-free operations common in
custom LIFO allocators.

* VALGRIND_MOVE_MEMPOOL (pool?d, poolB): This request informs Memcheck that the pool previously
anchored at address poolA has moved to anchor address poolB. This is a rare request, typically only needed
if you realloc the header of a mempool.

No memory-status bits are altered by this request.

* VALGRIND_MEMPOOL_CHANGE (pool, addr?d, addrB, size): Thisrequestinforms Memcheck that the
chunk previously allocated at address addrA within pool has been moved and/or resized, and should be changed
to cover the region addrB. . (addrB+size—-1). This is a rare request, typically only needed if you realloc a
superblock or wish to extend a chunk without changing its memory-status bits.

No memory-status bits are altered by this request.

82

Memcheck: a memory error detector

* VALGRIND_MEMPOOL_EXISTS (pool): This request informs the caller whether or not Memcheck is currently
tracking a mempool at anchor address pool. It evaluates to 1 when there is a mempool associated with that address,
0 otherwise. This is a rare request, only useful in circumstances when client code might have lost track of the set of
active mempools.

4.9. Debugging MPI Parallel Programs with
Valgrind

Memcheck supports debugging of distributed-memory applications which use the MPI message passing standard.
This support consists of a library of wrapper functions for the PMPI_ « interface. = When incorporated into the
application’s address space, either by direct linking or by LD_PRELOAD, the wrappers intercept calls to PMPI_Send,
PMPI_Recv, etc. They then use client requests to inform Memcheck of memory state changes caused by the
function being wrapped. This reduces the number of false positives that Memcheck otherwise typically reports for
MPI applications.

The wrappers also take the opportunity to carefully check size and definedness of buffers passed as arguments to MPI
functions, hence detecting errors such as passing undefined data to PMPI_Send, or receiving data into a buffer which
is too small.

Unlike most of the rest of Valgrind, the wrapper library is subject to a BSD-style license, so you can link it into any
code base you like. See the top of mpi/libmpiwrap. c for license details.

4.9.1. Building and installing the wrappers

The wrapper library will be built automatically if possible. Valgrind’s configure script will look for a suitable mpicc
to build it with. This must be the same mpicc you use to build the MPI application you want to debug. By default,
Valgrind tries mpicc, but you can specify a different one by using the configure-time option ——with-mpicc.
Currently the wrappers are only buildable with mpiccs which are based on GNU GCC or Intel’s C++ Compiler.

Check that the configure script prints a line like this:

checking for usable MPI2-compliant mpicc and mpi.h... yes, mpicc

Ifitsays ... no,your mpicc has failed to compile and link a test MPI2 program.

If the configure test succeeds, continue in the usual way with make and make install. The final install tree
should then contain 1 ibmpiwrap—-<platform>. so.

Compile up a test MPI program (eg, MPI hello-world) and try this:

LD_PRELOAD=S$prefix/lib/valgrind/libmpiwrap—-<platform>.so \
mpirun [args] $prefix/bin/valgrind ./hello

You should see something similar to the following

83

Memcheck: a memory error detector

valgrind MPI wrappers 31901: Active for pid 31901
valgrind MPI wrappers 31901: Try MPIWRAP_DEBUG=help for possible options

repeated for every process in the group. If you do not see these, there is an build/installation problem of some kind.

The MPI functions to be wrapped are assumed to be in an ELF shared object with soname matching 1ibmpi . so*.
This is known to be correct at least for Open MPI and Quadrics MPI, and can easily be changed if required.

4.9.2. Getting started

Compile your MPI application as usual, taking care to link it using the same mpicc that your Valgrind build was
configured with.

Use the following basic scheme to run your application on Valgrind with the wrappers engaged:

MPIWRAP_DEBUG=[wrapper—args] \
LD_PRELOAD=Sprefix/lib/valgrind/libmpiwrap—-<platform>.so \
mpirun [mpirun-args] \
Sprefix/bin/valgrind [valgrind-args] \

[application] [app-args]

As an alternative to LD_PRELOADIng libmpiwrap-<platform>. so, you can simply link it to your application
if desired. This should not disturb native behaviour of your application in any way.

4.9.3. Controlling the wrapper library

Environment variable MPTWRAP_DEBUG is consulted at startup. The default behaviour is to print a starting banner

valgrind MPI wrappers 16386: Active for pid 16386
valgrind MPI wrappers 16386: Try MPIWRAP_DEBUG=help for possible options

and then be relatively quiet.
You can give a list of comma-separated options in MPIWRAP_DEBUG. These are
e verbose: show entries/exits of all wrappers. Also show extra debugging info, such as the status of outstanding
MPI_Requests resulting from uncompleted MPI_TIrecvs.

equiet: opposite of verbose, only print anything when the wrappers want to report a detected programming
error, or in case of catastrophic failure of the wrappers.

e warn: by default, functions which lack proper wrappers are not commented on, just silently ignored. This causes
a warning to be printed for each unwrapped function used, up to a maximum of three warnings per function.

e strict: print an error message and abort the program if a function lacking a wrapper is used.

84

Memcheck: a memory error detector

If you want to use Valgrind’s XML output facility (-—xml=yes), you should pass quiet in MPIWRAP_DEBUG so
as to get rid of any extraneous printing from the wrappers.

4.9.4. Functions

All MPI2 functions except MPI_Wtick, MPI_Wtime and MPI_Pcontrol have wrappers. The first two are not
wrapped because they return a double, which Valgrind’s function-wrap mechanism cannot handle (but it could easily
be extended to do so). MPI_Pcontrol cannot be wrapped as it has variable arity: int MPI_Pcontrol (const
int level, ...)

Most functions are wrapped with a default wrapper which does nothing except complain or abort if it is called,
depending on settings in MP IWRAP_ DEBUG listed above. The following functions have "real", do-something-useful
wrappers:

PMPI_Send PMPI_Bsend PMPI_Ssend PMPI_Rsend

PMPI_Recv PMPI_Get_count

PMPI_TIsend PMPI_TIbsend PMPI_Issend PMPI_Irsend

PMPI_Trecv

PMPI_Wait PMPI_Waitall

PMPI_Test PMPI_Testall

PMPI_TIprobe PMPI_Probe

PMPI_Cancel

PMPI_Sendrecv

PMPI_Type_commit PMPI_Type_free

PMPI_Pack PMPI_Unpack

PMPI_Bcast PMPI_Gather PMPI_Scatter PMPI_Alltoall
PMPI_Reduce PMPI_Allreduce PMPI_Op_create

PMPI_Comm_create PMPI_Comm_dup PMPI_Comm_free PMPI_Comm_rank PMPI_Comm_size

PMPI_Error_string
PMPI_Init PMPI_Initialized PMPI_Finalize

A few functions such as PMPI_Address are listed as HAS_NO_WRAPPER. They have no wrapper at all as there is
nothing worth checking, and giving a no-op wrapper would reduce performance for no reason.

Note that the wrapper library itself can itself generate large numbers of calls to the MPI implementa-

tion, especially when walking complex types. The most common functions called are PMPI_Extent,
PMPI_Type_get_envelope, PMPI_Type_get_contents, and PMPI_Type_free.

4.9.5. Types

85

Memcheck: a memory error detector

MPI-1.1 structured types are supported, and walked exactly. The currently supported combin-

ers are MPI_COMBINER_NAMED, MPI_COMBINER_CONTIGUOUS, MPI_COMBINER_VECTOR,
MPI_COMBINER_HVECTORMPI_COMBINER_INDEXED,MPI_COMBINER_HINDEXED and MPI_COMBINER_STRUCT.
This should cover all MPI-1.1 types. The mechanism (function walk_type) should extend easily to cover MPI2
combiners.

MPI defines some named structured types (MPI_FLOAT_INT,MPI_DOUBLE_INT,MPI_LONG_INT,MPI_2INT,
MPI_SHORT_INT,MPI_LONG_DOUBLE_INT) which are pairs of some basic type and a C int. Unfortunately the
MPI specification makes it impossible to look inside these types and see where the fields are. = Therefore these
wrappers assume the types are laid out as struct { float val; int loc; } (for MPI_FLOAT_INT), etc,
and act accordingly. This appears to be correct at least for Open MPI 1.0.2 and for Quadrics MPI.

If strict is an option specified in MP TWRAP_ DEBUG, the application will abort if an unhandled type is encountered.
Otherwise, the application will print a warning message and continue.

Some effort is made to mark/check memory ranges corresponding to arrays of values in a single pass. This is
important for performance since asking Valgrind to mark/check any range, no matter how small, carries quite a large
constant cost. This optimisation is applied to arrays of primitive types (double, float, int, long, long long,
short, char, and long double on platforms where sizeof (long double) == 8). For arrays of all other
types, the wrappers handle each element individually and so there can be a very large performance cost.

4.9.6. Writing new wrappers

For the most part the wrappers are straightforward. The only significant complexity arises with nonblocking receives.

The issue is that MPI_TIrecv states the recv buffer and returns immediately, giving a handle (MPI_Request)
for the transaction. Later the user will have to poll for completion with MPI_Wait etc, and when the transaction
completes successfully, the wrappers have to paint the recv buffer. But the recv buffer details are not presented to
MPI_Wait -- only the handle is. The library therefore maintains a shadow table which associates uncompleted
MPI_Requests with the corresponding buffer address/count/type. = When an operation completes, the table is
searched for the associated address/count/type info, and memory is marked accordingly.

Access to the table is guarded by a (POSIX pthreads) lock, so as to make the library thread-safe.
The table is allocated with malloc and never freed, so it will show up in leak checks.

Writing new wrappers should be fairly easy. The source file is mpi/libmpiwrap.c. If possible, find an existing
wrapper for a function of similar behaviour to the one you want to wrap, and use it as a starting point. The wrappers
are organised in sections in the same order as the MPI 1.1 spec, to aid navigation. When adding a wrapper, remember
to comment out the definition of the default wrapper in the long list of defaults at the bottom of the file (do not remove
it, just comment it out).

4.9.7. What to expect when using the wrappers

The wrappers should reduce Memcheck’s false-error rate on MPI applications. Because the wrapping is done at the
MPI interface, there will still potentially be a large number of errors reported in the MPI implementation below the
interface. The best you can do is try to suppress them.

You may also find that the input-side (buffer length/definedness) checks find errors in your MPI use, for example
passing too short a buffer to MPI_Recv.

Functions which are not wrapped may increase the false error rate. A possible approach is to run with MPI_DEBUG
containing warn. This will show you functions which lack proper wrappers but which are nevertheless used. You
can then write wrappers for them.

86

Memcheck: a memory error detector

A known source of potential false errors are the PMPI_Reduce family of functions, when using a custom (user-
defined) reduction function. In a reduction operation, each node notionally sends data to a "central point" which uses
the specified reduction function to merge the data items into a single item. Hence, in general, data is passed between
nodes and fed to the reduction function, but the wrapper library cannot mark the transferred data as initialised before
it is handed to the reduction function, because all that happens "inside" the PMPI_Reduce call. As a result you may
see false positives reported in your reduction function.

87

5. Cachegrind: a cache and
branch-prediction profiler

To use this tool, you must specify ——tool=cachegrind on the Valgrind command line.

5.1. Overview

Cachegrind simulates how your program interacts with a machine’s cache hierarchy and (optionally) branch predictor.
It simulates a machine with independent first-level instruction and data caches (Il and D1), backed by a unified
second-level cache (L.2). This exactly matches the configuration of many modern machines.

However, some modern machines have three or four levels of cache. For these machines (in the cases where
Cachegrind can auto-detect the cache configuration) Cachegrind simulates the first-level and last-level caches. The
reason for this choice is that the last-level cache has the most influence on runtime, as it masks accesses to main
memory. Furthermore, the L1 caches often have low associativity, so simulating them can detect cases where the
code interacts badly with this cache (eg. traversing a matrix column-wise with the row length being a power of 2).

Therefore, Cachegrind always refers to the I1, D1 and LL (last-level) caches.
Cachegrind gathers the following statistics (abbreviations used for each statistic is given in parentheses):
* I cache reads (Ir, which equals the number of instructions executed), I1 cache read misses (I1mr) and LL cache
instruction read misses (ILmr).

* D cache reads (Dr, which equals the number of memory reads), D1 cache read misses (D1mr), and LL cache data
read misses (DLmr).

* D cache writes (Dw, which equals the number of memory writes), D1 cache write misses (D1mw), and LL cache
data write misses (DLmw).

* Conditional branches executed (Bc) and conditional branches mispredicted (Bcm).
¢ Indirect branches executed (B1i) and indirect branches mispredicted (Bim).
Note that D1 total accesses is given by D1mr + D1mw, and that LL total accesses is given by ILmr + DLmr + DLmw.

These statistics are presented for the entire program and for each function in the program. You can also annotate each
line of source code in the program with the counts that were caused directly by it.

On a modern machine, an L1 miss will typically cost around 10 cycles, an LL miss can cost as much as 200 cycles,
and a mispredicted branch costs in the region of 10 to 30 cycles. Detailed cache and branch profiling can be very
useful for understanding how your program interacts with the machine and thus how to make it faster.

Also, since one instruction cache read is performed per instruction executed, you can find out how many instructions
are executed per line, which can be useful for traditional profiling.

5.2. Using Cachegrind, cg_annotate and
cg_merge

88

Cachegrind: a cache and branch-prediction profiler

First off, as for normal Valgrind use, you probably want to compile with debugging info (the —g option). But
by contrast with normal Valgrind use, you probably do want to turn optimisation on, since you should profile your
program as it will be normally run.

Then, you need to run Cachegrind itself to gather the profiling information, and then run cg_annotate to get a detailed
presentation of that information. As an optional intermediate step, you can use cg_merge to sum together the outputs
of multiple Cachegrind runs into a single file which you then use as the input for cg_annotate. Alternatively, you
can use cg_diff to difference the outputs of two Cachegrind runs into a single file which you then use as the input for
cg_annotate.

5.2.1. Running Cachegrind

To run Cachegrind on a program prog, run:

valgrind —-tool=cachegrind prog

The program will execute (slowly). Upon completion, summary statistics that look like this will be printed:

==31751== refs: 27,742,716

==31751== I1 misses: 276

==31751== LLi misses: 275

==31751== I1 miss rate: 0.0%

==31751== LLi miss rate: 0.0%

==31751==

==31751==D refs: 15,430,290 (10,955,517 rd + 4,474,773 wr)
==31751== D1 misses: 41,185 (21,905 rd + 19,280 wr)
==31751== LLd misses: 23,085 (3,987 rd + 19,098 wr)
==31751== D1 miss rate: 0.2% (0.1% + 0.4%)
==31751== LLd miss rate: 0.1% (0.0% + 0.4%)
==31751==

==31751== LL misses: 23,360 (4,262 rd + 19,098 wr)
==31751== LL miss rate: 0.0% (0.0% + 0.4%)

Cache accesses for instruction fetches are summarised first, giving the number of fetches made (this is the number of
instructions executed, which can be useful to know in its own right), the number of I1 misses, and the number of LL
instruction (LI.1i) misses.

Cache accesses for data follow. The information is similar to that of the instruction fetches, except that the values are
also shown split between reads and writes (note each row’s rd and wr values add up to the row’s total).

Combined instruction and data figures for the LL cache follow that. Note that the LL miss rate is computed relative
to the total number of memory accesses, not the number of L1 misses. le. itis (ILmr + DLmr + DLmw) /
(Ir + Dr + Dw) not (ILmr + DILmr + DILmw) / (Ilmr + Dlmr + Dlmw)

Branch prediction statistics are not collected by default. To do so, add the option ——branch-sim=yes.

5.2.2. Output File

As well as printing summary information, Cachegrind also writes more detailed profiling information to a file. By
default this file is named cachegrind.out.<pid> (where <pid> is the program’s process ID), but its name

89

Cachegrind: a cache and branch-prediction profiler

can be changed with the ——cachegrind-out—-file option. This file is human-readable, but is intended to be
interpreted by the accompanying program cg_annotate, described in the next section.

The default . <pid> suffix on the output file name serves two purposes. Firstly, it means you don’t have to rename
old log files that you don’t want to overwrite. Secondly, and more importantly, it allows correct profiling with the
——trace—-children=yes option of programs that spawn child processes.

The output file can be big, many megabytes for large applications built with full debugging information.

5.2.3. Running cg_annotate

Before using cg_annotate, it is worth widening your window to be at least 120-characters wide if possible, as the
output lines can be quite long.

To get a function-by-function summary, run:
cg_annotate <filename>

on a Cachegrind output file.

5.2.4. The Output Preamble
The first part of the output looks like this:

I1 cache: 65536 B, 64 B, 2-way associative

D1 cache: 65536 B, 64 B, 2-way associlative

LL cache: 262144 B, 64 B, 8-way associative
Command : concord vg_to_ucode.c

Events recorded: Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DLmw
Events shown: Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DLmw
Event sort order: Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DILmw
Threshold: 99%

Chosen for annotation:

Auto—-annotation: off

This is a summary of the annotation options:
I1 cache, D1 cache, LL cache: cache configuration. So you know the configuration with which these results were
obtained.
* Command: the command line invocation of the program under examination.
¢ Events recorded: which events were recorded.

» Events shown: the events shown, which is a subset of the events gathered. This can be adjusted with the ——show
option.

90

Cachegrind: a cache and branch-prediction profiler

* Event sort order: the sort order in which functions are shown. For example, in this case the functions are sorted
from highest Ir counts to lowest. If two functions have identical Ir counts, they will then be sorted by I1mr
counts, and so on. This order can be adjusted with the ——sort option.

Note that this dictates the order the functions appear. It is not the order in which the columns appear; that is dictated
by the "events shown" line (and can be changed with the ——show option).

* Threshold: cg_annotate by default omits functions that cause very low counts to avoid drowning you in information.
In this case, cg_annotate shows summaries the functions that account for 99% of the Ir counts; Ir is chosen as the
threshold event since it is the primary sort event. The threshold can be adjusted with the ——threshold option.

* Chosen for annotation: names of files specified manually for annotation; in this case none.

* Auto-annotation: whether auto-annotation was requested via the ——auto=yes option. In this case no.

5.2.5. The Global and Function-level Counts
Then follows summary statistics for the whole program:

Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DLmw

27,742,716 276 275 10,955,517 21,905 3,987 4,474,773 19,280 19,098 PROGRAM TOTALS

These are similar to the summary provided when Cachegrind finishes running.

Then comes function-by-function statistics:

91

Cachegrind: a cache and branch-prediction profiler

Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DLmw file:function

8,821,482 5 52,242,702 1,621 73 1,794,230 0 0 getc.c:_IO_getc

5,222,023 4 4 2,276,334 16 12 875,959 1 1 concord.c:get_word

2,649,248 2 21,344,810 7,326 1,385 . . . vg_main.c:strcmp

2,521,927 2 2 591,215 0 0 179,398 0 0 concord.c:hash

2,242,740 2 21,046,612 568 22 448,548 0 0 ctype.c:tolower

1,496,937 4 4 630,874 9,000 1,400 279,388 0 0 concord.c:insert
897,991 51 51 897,831 95 30 62 1 1 222:227?
598,068 1 1 299,034 0 0 149,517 0 0 ../sysdeps/generic/lockfile.c:__ flo
598,068 0 0 299,034 0 0 149,517 0 0 ../sysdeps/generic/lockfile.c:__ fun
598,024 4 4 213,580 35 16 149,506 0 0 vg_clientmalloc.c:malloc

446,587 1 1 215,973 2,167 430 129,948 14,057 13,957 concord.c:add_existing

341,760 2 2 128,160 0 0 128,160 0 0 vg_clientmalloc.c:vg_trap_here WRAP
320,782 4 4 150,711 276 0 56,027 53 53 concord.c:init_hash_table
298,998 1 1 106,785 0 0 64,071 1 1 concord.c:create

149,518 0 0 149,516 0 0 1 0 0 ???:tolower@@GLIBC_2.0

149,518 0 0 149,516 0 0 1 0 0 ?2?2:fgetc@@GLIBC_2.0

95,983 4 4 38,031 0 0 34,409 3,152 3,150 concord.c:new_word_node

85,440 0 0 42,720 0 0 21,360 0 0 vg_clientmalloc.c:vg_bogus_epilogue

Each function is identified by a file_name: function_name pair. If a column contains only a dot it means the
function never performs that event (e.g. the third row shows that st rcmp () contains no instructions that write to
memory). The name 27?72 is used if the file name and/or function name could not be determined from debugging

It is worth noting that functions will come both from the profiled program (e.g. concord. c) and from libraries (e.g.
getc.c)

5.2.6. Line-by-line Counts

There are two ways to annotate source files -- by specifying them manually as arguments to cg_annotate, or with the
—-—auto=yes option. For example, the output from running cg_annotate <filename> concord.c for our
example produces the same output as above followed by an annotated version of concord.c, a section of which
looks like:

92

Cachegrind: a cache and branch-prediction profiler

—— User—-annotated source: concord.c

Ir Ilmr ILmr Dr Dlmr DLmr Dw Dlmw DLmw

void init_hash_table (char xfile_name, Word_N

3 1 1 1 0 0 {
FILE xfile_ptr;
. Word_Info xdata;
1 0 0 . . . 1 1 1 int line =1, 1i;
5 0 0 . . . 3 0 0 data = (Word_Info x) create(sizeof (Word_TIi
4,991 0 0 1,995 0 0 998 0 0 for (i =0; 1 < TABLE_SIZE; i++)
3,988 1 1 1,994 0 0 997 53 52 table[i] = NULL;
. /* Open file, check it. =/
6 0 0 1 0 0 4 0 0 file_ptr = fopen(file_name, "r");
2 0 0 1 0 0 . . . if (! (file_ptr)) {
fprintf (stderr, "Couldn’t open ’%s’.\n
1 1 1 exit (EXIT_FAILURE) ;
}
165,062 1 1 73,360 0 0 91,700 0 0 while ((line = get_word(data, line, £
146,712 0 0 73,356 0 0 73,356 0 0 insert (data->;word, data->line, t.
4 0 0 1 0 0 2 0 0 free (data) ;
4 0 0 1 0 0 2 0 0 fclose (file_ptr);
3 0 0 2 0 0 }

(Although column widths are automatically minimised, a wide terminal is clearly useful.)

Each source file is clearly marked (User—annotated source) as having been chosen manually for annotation.
If the file was found in one of the directories specified with the —I/--include option, the directory and file are both
given.

Each line is annotated with its event counts. Events not applicable for a line are represented by a dot. This is useful
for distinguishing between an event which cannot happen, and one which can but did not.

Sometimes only a small section of a source file is executed. To minimise uninteresting output, Cachegrind only shows
annotated lines and lines within a small distance of annotated lines. Gaps are marked with the line numbers so you
know which part of a file the shown code comes from, eg:

93

Cachegrind: a cache and branch-prediction profiler

(figures and code for line 704)
-- line 704 —————————"———— - ——————
== Limg 878 ——————————mmeeseeeeeeseeessee e e es e
(figures and code for line 878)

The amount of context to show around annotated lines is controlled by the ——context option.

To get automatic annotation, use the ——auto=yes option. cg_annotate will automatically annotate every source file
it can find that is mentioned in the function-by-function summary. Therefore, the files chosen for auto-annotation
are affected by the ——sort and ——threshold options. Each source file is clearly marked (Auto-annotated
source) as being chosen automatically. Any files that could not be found are mentioned at the end of the output, eg:

getc.c
ctype.c
../sysdeps/generic/lockfile.c

This is quite common for library files, since libraries are usually compiled with debugging information, but the source
files are often not present on a system. If a file is chosen for annotation both manually and automatically, it is marked
as User—annotated source. Use the —-I/-—include option to tell Valgrind where to look for source files if
the filenames found from the debugging information aren’t specific enough.

Beware that cg_annotate can take some time to digest large cachegrind.out.<pid> files, e.g. 30 seconds or
more. Also beware that auto-annotation can produce a lot of output if your program is large!

5.2.7. Annotating Assembly Code Programs

Valgrind can annotate assembly code programs too, or annotate the assembly code generated for your C program.
Sometimes this is useful for understanding what is really happening when an interesting line of C code is translated
into multiple instructions.

To do this, you just need to assemble your . s files with assembly-level debug information. You can use compile with
the —S to compile C/C++ programs to assembly code, and then assemble the assembly code files with —g to achieve
this. You can then profile and annotate the assembly code source files in the same way as C/C++ source files.

5.2.8. Forking Programs
If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

If the output file format string (controlled by ——cachegrind-out—-file) does not contain %$p, then the outputs
from the parent and child will be intermingled in a single output file, which will almost certainly make it unreadable
by cg_annotate.

5.2.9. cg_annotate Warnings

There are a couple of situations in which cg_annotate issues warnings.

94

Cachegrind: a cache and branch-prediction profiler

¢ If a source file is more recent than the cachegrind.out.<pid> file. This is because the information in
cachegrind.out.<pid> is only recorded with line numbers, so if the line numbers change at all in the source
(e.g. lines added, deleted, swapped), any annotations will be incorrect.

« If information is recorded about line numbers past the end of a file. This can be caused by the above problem, i.e.
shortening the source file while using an old cachegrind.out.<pid> file. If this happens, the figures for the
bogus lines are printed anyway (clearly marked as bogus) in case they are important.

5.2.10. Unusual Annotation Cases

Some odd things that can occur during annotation:

« If annotating at the assembler level, you might see something like this:

1 0 o leal -12 (%ebp), $eax

1 0 0o . . .1 0 0 movl %eax, 84 (%ebx)

2 0 0 0 0 0 1 0 0 movl $1,-20 (%ebp)
.align 4, 0x90

1 0 o movl $.LnrB, $eax

1 0 o . . o1 0 0 movl %$eax,-16 (%ebp)

How can the third instruction be executed twice when the others are executed only once? As it turns out, it isn’t.
Here’s a dump of the executable, using objdump -d:

8048f25: 8d 45 f4 lea Oxfffffff4d (%ebp), $eax
8048f28: 89 43 54 mov %$eax, 0x54 (%ebx)

8048f2b: c7 45 ec 01 00 00 0O movl $0x1,0xffffffec (%ebp)
8048f32: 89 f6 mov %esi, $esi

8048f34: b8 08 8b 07 08 mov $0x8078b08, $eax
8048f£39: 89 45 f0 mov $eax, Oxfffffff0 (%ebp)

Notice the extra mov %esi, $esi instruction. Where did this come from? The GNU assembler inserted it to
serve as the two bytes of padding needed to align the mov1l $.LnrB, $eax instruction on a four-byte boundary,
but pretended it didn’t exist when adding debug information. Thus when Valgrind reads the debug info it thinks
that themovl $0x1, 0xffffffec (%ebp) instruction covers the address range 0x8048f2b--0x804833 by itself,
and attributes the counts for the mov %esi, $esi toit.

» Sometimes, the same filename might be represented with a relative name and with an absolute name in different parts
of the debug info, eg: /home/user/proj/proj.hand ../proj.h. In this case, if you use auto-annotation,
the file will be annotated twice with the counts split between the two.

* If you compile some files with —g and some without, some events that take place in a file without debug info could

be attributed to the last line of a file with debug info (whichever one gets placed before the non-debug-info file in
the executable).

95

Cachegrind: a cache and branch-prediction profiler

This list looks long, but these cases should be fairly rare.

5.2.11. Merging Profiles with cg_merge

cg_merge is a simple program which reads multiple profile files, as created by Cachegrind, merges them together, and
writes the results into another file in the same format. You can then examine the merged results using cg_annotate
<filename>, as described above. The merging functionality might be useful if you want to aggregate costs over
multiple runs of the same program, or from a single parallel run with multiple instances of the same program.

cg_merge is invoked as follows:

cg_merge -o outputfile filel file2 file3 ...

It reads and checks filel, then read and checks £ile2 and merges it into the running totals, then the same with
file3, etc. The final results are written to outputf£ile, or to standard out if no output file is specified.

Costs are summed on a per-function, per-line and per-instruction basis. Because of this, the order in which the input
files does not matter, although you should take care to only mention each file once, since any file mentioned twice will
be added in twice.

cg_merge does not attempt to check that the input files come from runs of the same executable. It will happily merge
together profile files from completely unrelated programs. It does however check that the Events: lines of all the
inputs are identical, so as to ensure that the addition of costs makes sense. For example, it would be nonsensical for it
to add a number indicating D1 read references to a number from a different file indicating LL write misses.

A number of other syntax and sanity checks are done whilst reading the inputs. cg_merge will stop and attempt to
print a helpful error message if any of the input files fail these checks.

5.2.12. Differencing Profiles with cg_diff

cg_diff is a simple program which reads two profile files, as created by Cachegrind, finds the difference between
them, and writes the results into another file in the same format. You can then examine the merged results using
cg_annotate <filename>, as described above. This is very useful if you want to measure how a change to a
program affected its performance.

cg_diff is invoked as follows:

cg_diff filel file2

It reads and checks £i1e1, then read and checks £i1le2, then computes the difference (effectively filel - file?2).
The final results are written to standard output.

Costs are summed on a per-function basis. Per-line costs are not summed, because doing so is too difficult. For
example, consider differencing two profiles, one from a single-file program A, and one from the same program A
where a single blank line was inserted at the top of the file. Every single per-line count has changed. In comparison,
the per-function counts have not changed. The per-function count differences are still very useful for determining
differences between programs. Note that because the result is the difference of two profiles, many of the counts will
be negative; this indicates that the counts for the relevant function are fewer in the second version than those in the
first version.

cg_diff does not attempt to check that the input files come from runs of the same executable. It will happily merge
together profile files from completely unrelated programs. It does however check that the Events: lines of all the

96

Cachegrind: a cache and branch-prediction profiler

inputs are identical, so as to ensure that the addition of costs makes sense. For example, it would be nonsensical for it
to add a number indicating D1 read references to a number from a different file indicating LL write misses.

A number of other syntax and sanity checks are done whilst reading the inputs. cg_diff will stop and attempt to print
a helpful error message if any of the input files fail these checks.

Sometimes you will want to compare Cachegrind profiles of two versions of a program that you have sitting side-by-
side. For example, you might have versionl/prog.c and version2/prog.c, where the second is slightly
different to the first. A straight comparison of the two will not be useful -- because functions are qualified with
filenames, a function £ will be listed as versionl/prog.c: f for the first version but version2/prog.c:f
for the second version.

When this happens, you can use the ——mod-filename option. Its argument is a Perl search-and-replace expression
that will be applied to all the filenames in both Cachegrind output files. It can be used to remove minor differences in
filenames. For example, the option ——mod-filename='s/version[0-9]/versionN/’ will suffice for this
case.

Similarly, sometimes compilers auto-generate certain functions and give them randomized names. For example,
GCC sometimes auto-generates functions with names like T.1234, and the suffixes vary from build to build.
You can use the ——mod—-funcname option to remove small differences like these; it works in the same way as
—-mod-filename.

5.3. Cachegrind Command-line Options

Cachegrind-specific options are:

——-Il=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the level 1 instruction cache.

—--Dl=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the level 1 data cache.

—--LL=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the last-level cache.

——cache-sim=nol|yes [yes]
Enables or disables collection of cache access and miss counts.

—-—branch-sim=no|yes [no]

Enables or disables collection of branch instruction and misprediction counts. By default this is disabled as
it slows Cachegrind down by approximately 25%. Note that you cannot specify ——cache-sim=no and
——branch-sim=no together, as that would leave Cachegrind with no information to collect.

——-cachegrind-out-file=<file>
Write the profile data to £i1le rather than to the default output file, cachegrind.out.<pid>. The %$p and %g

format specifiers can be used to embed the process ID and/or the contents of an environment variable in the name, as
is the case for the core option ——log-file.

5.4. cg_annotate Command-line Options

-h —--help
Show the help message.

97

Cachegrind: a cache and branch-prediction profiler

—-—-version
Show the version number.

—--show=A,B,C [default: all, using order in cachegrind.out.<pid>]
Specifies which events to show (and the column order). Default is to use all present in the
cachegrind.out.<pid> file (and use the order in the file). Useful if you want to concentrate on, for

example, I cache misses (——show=I1lmr, ILmr), or data read misses (——show=D1lmr, DLmr), or LL data misses
(-—show=DLmr, DLmw). Best used in conjunction with ——sort.

--sort=A,B,C [default: order in cachegrind.out.<pid>]
Specifies the events upon which the sorting of the function-by-function entries will be based.

—-—threshold=X [default: 0.1%]
Sets the threshold for the function-by-function summary. A function is shown if it accounts for more than X% of the
counts for the primary sort event. If auto-annotating, also affects which files are annotated.

Note: thresholds can be set for more than one of the events by appending any events for the ——sort option with a
colon and a number (no spaces, though). E.g. if you want to see each function that covers more than 1% of LL read
misses or 1% of LL write misses, use this option:

——sort=DLmr:1,DLmw:1

—-—auto=<no|yes> [default: no]
When enabled, automatically annotates every file that is mentioned in the function-by-function summary that can be
found. Also gives a list of those that couldn’t be found.

——context=N [default: 81
Print N lines of context before and after each annotated line. Avoids printing large sections of source files that were
not executed. Use a large number (e.g. 100000) to show all source lines.

-I<dir> —--include=<dir> [default: none]
Adds a directory to the list in which to search for files. Multiple ~I/--include options can be given to add multiple
directories.

5.5. cg_merge Command-line Options

—-o outfile
Write the profile data to out £1i1e rather than to standard output.

5.6. cg_diff Command-line Options

-h —-help
Show the help message.

——version
Show the version number.

——mod-filename=<expr> [default: none]
Specifies a Perl search-and-replace expression that is applied to all filenames. Useful for removing minor differences
in paths between two different versions of a program that are sitting in different directories.

98

Cachegrind: a cache and branch-prediction profiler

—-—-mod-funcname=<expr> [default: none]
Like ——mod-filename, but for filenames. Useful for removing minor differences in randomized names of auto-
generated functions generated by some compilers.

5.7. Acting on Cachegrind’s Information

Cachegrind gives you lots of information, but acting on that information isn’t always easy. Here are some rules of
thumb that we have found to be useful.

First of all, the global hit/miss counts and miss rates are not that useful. If you have multiple programs or multiple runs
of a program, comparing the numbers might identify if any are outliers and worthy of closer investigation. Otherwise,
they’re not enough to act on.

The function-by-function counts are more useful to look at, as they pinpoint which functions are causing large numbers
of counts. However, beware that inlining can make these counts misleading. If a function f is always inlined, counts
will be attributed to the functions it is inlined into, rather than itself. = However, if you look at the line-by-line
annotations for £ you’ll see the counts that belong to £. (This is hard to avoid, it’s how the debug info is structured.)
So it’s worth looking for large numbers in the line-by-line annotations.

The line-by-line source code annotations are much more useful. In our experience, the best place to start is by looking
at the Tr numbers. They simply measure how many instructions were executed for each line, and don’t include any
cache information, but they can still be very useful for identifying bottlenecks.

After that, we have found that LL misses are typically a much bigger source of slow-downs than L1 misses. So
it’s worth looking for any snippets of code with high DLmr or DLmw counts. (You can use ——show=DLmr
—-—-sort=DLmr with cg_annotate to focus just on DLmr counts, for example.) If you find any, it’s still not always easy
to work out how to improve things. You need to have a reasonable understanding of how caches work, the principles
of locality, and your program’s data access patterns. Improving things may require redesigning a data structure, for
example.

Looking at the Bcm and Bim misses can also be helpful. In particular, Bim misses are often caused by switch
statements, and in some cases these switch statements can be replaced with table-driven code. For example, you
might replace code like this:

enum E { A, B, C };
enum E e;
int i;
switch (e)
{
case A: 1 += 1; break;

case B: 1 += 2; break;
case C: 1 += 3; break;

with code like this:

99

Cachegrind: a cache and branch-prediction profiler

enum E { A, B, C };

enum E e;

enum E table[] = { 1, 2, 3 };
int i;

i += tablele];

This is obviously a contrived example, but the basic principle applies in a wide variety of situations.

In short, Cachegrind can tell you where some of the bottlenecks in your code are, but it can’t tell you how to fix them.
You have to work that out for yourself. But at least you have the information!

5.8. Simulation Details

This section talks about details you don’t need to know about in order to use Cachegrind, but may be of interest to
some people.

5.8.1. Cache Simulation Specifics

Specific characteristics of the cache simulation are as follows:

* Write-allocate: when a write miss occurs, the block written to is brought into the D1 cache. Most modern caches
have this property.

* Bit-selection hash function: the set of line(s) in the cache to which a memory block maps is chosen by the middle
bits M--(M+N-1) of the byte address, where:

¢ line size = 2"M bytes
* (cache size / line size / associativity) = 2*N bytes

e Inclusive LL cache: the LL cache typically replicates all the entries of the L1 caches, because fetching into L1
involves fetching into LL first (this does not guarantee strict inclusiveness, as lines evicted from LL still could
reside in L1). This is standard on Pentium chips, but AMD Opterons, Athlons and Durons use an exclusive LL
cache that only holds blocks evicted from 1. Ditto most modern VIA CPUs.

The cache configuration simulated (cache size, associativity and line size) is determined automatically using the x86
CPUID instruction. If you have a machine that (a) doesn’t support the CPUID instruction, or (b) supports it in an early
incarnation that doesn’t give any cache information, then Cachegrind will fall back to using a default configuration
(that of a model 3/4 Athlon). Cachegrind will tell you if this happens. You can manually specify one, two or all
three levels (I1/D1/LL) of the cache from the command line using the ——I1, —-D1 and —-LL options. For cache
parameters to be valid for simulation, the number of sets (with associativity being the number of cache lines in each
set) has to be a power of two.

On PowerPC platforms Cachegrind cannot automatically determine the cache configuration, so you will need to specify
it with the ——TI1, —-D1 and —-LL options.

Other noteworthy behaviour:

100

Cachegrind: a cache and branch-prediction profiler

* References that straddle two cache lines are treated as follows:
« If both blocks hit --> counted as one hit
« If one block hits, the other misses --> counted as one miss.
« If both blocks miss --> counted as one miss (not two)

* Instructions that modify a memory location (e.g. inc and dec) are counted as doing just a read, i.e. a single data
reference. This may seem strange, but since the write can never cause a miss (the read guarantees the block is in
the cache) it’s not very interesting.

Thus it measures not the number of times the data cache is accessed, but the number of times a data cache miss
could occur.

If you are interested in simulating a cache with different properties, it is not particularly hard to write your own cache
simulator, or to modify the existing ones in cg_sim.c. We’d be interested to hear from anyone who does.

5.8.2. Branch Simulation Specifics

Cachegrind simulates branch predictors intended to be typical of mainstream desktop/server processors of around
2004.

Conditional branches are predicted using an array of 16384 2-bit saturating counters. The array index used for a
branch instruction is computed partly from the low-order bits of the branch instruction’s address and partly using the
taken/not-taken behaviour of the last few conditional branches. As a result the predictions for any specific branch
depend both on its own history and the behaviour of previous branches. This is a standard technique for improving
prediction accuracy.

For indirect branches (that is, jumps to unknown destinations) Cachegrind uses a simple branch target address
predictor. Targets are predicted using an array of 512 entries indexed by the low order 9 bits of the branch instruction’s
address. Each branch is predicted to jump to the same address it did last time. Any other behaviour causes a
mispredict.

More recent processors have better branch predictors, in particular better indirect branch predictors. Cachegrind’s
predictor design is deliberately conservative so as to be representative of the large installed base of processors which
pre-date widespread deployment of more sophisticated indirect branch predictors. In particular, late model Pentium
4s (Prescott), Pentium M, Core and Core 2 have more sophisticated indirect branch predictors than modelled by
Cachegrind.

Cachegrind does not simulate a return stack predictor. It assumes that processors perfectly predict function return
addresses, an assumption which is probably close to being true.

See Hennessy and Patterson’s classic text "Computer Architecture: A Quantitative Approach”, 4th edition (2007),
Section 2.3 (pages 80-89) for background on modern branch predictors.

5.8.3. Accuracy

Valgrind’s cache profiling has a number of shortcomings:

* It doesn’t account for kernel activity -- the effect of system calls on the cache and branch predictor contents is
ignored.

« It doesn’t account for other process activity. This is probably desirable when considering a single program.

101

Cachegrind: a cache and branch-prediction profiler

* It doesn’t account for virtual-to-physical address mappings. Hence the simulation is not a true representation of
what’s happening in the cache. Most caches and branch predictors are physically indexed, but Cachegrind simulates
caches using virtual addresses.

* It doesn’t account for cache misses not visible at the instruction level, e.g. those arising from TLB misses, or
speculative execution.

* Valgrind will schedule threads differently from how they would be when running natively. This could warp the
results for threaded programs.

* The x86/amd64 instructions bts, btr and btc will incorrectly be counted as doing a data read if both the
arguments are registers, eg:

btsl %$eax, %edx
This should only happen rarely.

* x86/amd64 FPU instructions with data sizes of 28 and 108 bytes (e.g. fsave) are treated as though they only
access 16 bytes. These instructions seem to be rare so hopefully this won’t affect accuracy much.

Another thing worth noting is that results are very sensitive. Changing the size of the executable being profiled, or the
sizes of any of the shared libraries it uses, or even the length of their file names, can perturb the results. Variations
will be small, but don’t expect perfectly repeatable results if your program changes at all.

More recent GNU/Linux distributions do address space randomisation, in which identical runs of the same program
have their shared libraries loaded at different locations, as a security measure. This also perturbs the results.

While these factors mean you shouldn’t trust the results to be super-accurate, they should be close enough to be useful.

5.9. Implementation Details

This section talks about details you don’t need to know about in order to use Cachegrind, but may be of interest to
some people.

5.9.1. How Cachegrind Works

The best reference for understanding how Cachegrind works is chapter 3 of "Dynamic Binary Analysis and Instru-
mentation", by Nicholas Nethercote. It is available on the Valgrind publications page.

5.9.2. Cachegrind Output File Format

The file format is fairly straightforward, basically giving the cost centre for every line, grouped by files and functions.
It’s also totally generic and self-describing, in the sense that it can be used for any events that can be counted on a
line-by-line basis, not just cache and branch predictor events. For example, earlier versions of Cachegrind didn’t have
a branch predictor simulation. When this was added, the file format didn’t need to change at all. So the format (and
consequently, cg_annotate) could be used by other tools.

The file format:

102

url(http://www.valgrind.org/docs/pubs.html)

Cachegrind: a cache and branch-prediction profiler

file ::=desc_linex cmd_line events_line data_line+ summary_line
desc_line ::= "desc:" ws? non_nl_string
cmd_line = "cmd:" ws? cmd

events_line ::= "events:" ws? (event ws)+
data_line ::= file_line | fn_line | count_1line
file line c:="fl=" filename

fn_line c:= "fn=" fn_name

count_line ::= line_num ws? (count ws)+
summary_line ::= "summary:" ws? (count ws)+
count t:=num | "."

Where:

enon_nl_string is any string not containing a newline.

* cmd is a string holding the command line of the profiled program.
e event is a string containing no whitespace.

e filename and fn_name are strings.

enum and 1ine_num are decimal numbers.

* ws is whitespace.

The contents of the "desc:" lines are printed out at the top of the summary. This is a generic way of providing
simulation specific information, e.g. for giving the cache configuration for cache simulation.

More than one line of info can be presented for each file/fn/line number. In such cases, the counts for the named events
will be accumulated.

non

Counts can be "." to represent zero. This makes the files easier for humans to read.

The number of counts in each 1ine and the summary_1line should not exceed the number of events in the

event_line. If the number in each 1ine is less, cg_annotate treats those missing as though they were a ".
entry. This saves space.

A file_line changes the current file name. A fn_1ine changes the current function name. A count_line
contains counts that pertain to the current filename/fn_name. A "fn=" file_line and a fn_1line must appear
before any count_1ines to give the context of the first count_1lines.

Each file_1line will normally be immediately followed by a fn_1ine. Butitdoesn’t have to be.

The summary line is redundant, because it just holds the total counts for each event. But this serves as a useful sanity
check of the data; if the totals for each event don’t match the summary line, something has gone wrong.

103

6. Callgrind: a call-graph generating
cache and branch prediction profiler

To use this tool, you must specify ——tool=callgrind on the Valgrind command line.

6.1. Overview

Callgrind is a profiling tool that records the call history among functions in a program’s run as a call-graph. By default,
the collected data consists of the number of instructions executed, their relationship to source lines, the caller/callee
relationship between functions, and the numbers of such calls. Optionally, cache simulation and/or branch prediction
(similar to Cachegrind) can produce further information about the runtime behavior of an application.

The profile data is written out to a file at program termination. For presentation of the data, and interactive control of
the profiling, two command line tools are provided:

callgrind_annotate
This command reads in the profile data, and prints a sorted lists of functions, optionally with source annotation.

For graphical visualization of the data, try KCachegrind, which is a KDE/Qt based GUI that makes it easy to navigate
the large amount of data that Callgrind produces.

callgrind_control

This command enables you to interactively observe and control the status of a program currently running under
Callgrind’s control, without stopping the program. You can get statistics information as well as the current stack
trace, and you can request zeroing of counters or dumping of profile data.

6.1.1. Functionality

Cachegrind collects flat profile data: event counts (data reads, cache misses, etc.) are attributed directly to the function
they occurred in. This cost attribution mechanism is called self or exclusive attribution.

Callgrind extends this functionality by propagating costs across function call boundaries. If function foo calls bar,
the costs from bar are added into foo’s costs. When applied to the program as a whole, this builds up a picture of
so called inclusive costs, that is, where the cost of each function includes the costs of all functions it called, directly or
indirectly.

As an example, the inclusive cost of main should be almost 100 percent of the total program cost. Because of costs
arising before main is run, such as initialization of the run time linker and construction of global C++ objects, the
inclusive cost of main is not exactly 100 percent of the total program cost.

Together with the call graph, this allows you to find the specific call chains starting from main in which the majority
of the program’s costs occur. Caller/callee cost attribution is also useful for profiling functions called from multiple
call sites, and where optimization opportunities depend on changing code in the callers, in particular by reducing the
call count.

Callgrind’s cache simulation is based on that of Cachegrind. Read the documentation for Cachegrind: a cache and
branch-prediction profiler first. ~The material below describes the features supported in addition to Cachegrind’s
features.

Callgrind’s ability to detect function calls and returns depends on the instruction set of the platform it is run on. It
works best on x86 and amd64, and unfortunately currently does not work so well on PowerPC, ARM, Thumb or MIPS

104

url(http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex)

Callgrind: a call-graph generating cache and branch prediction profiler

code. This is because there are no explicit call or return instructions in these instruction sets, so Callgrind has to rely
on heuristics to detect calls and returns.

6.1.2. Basic Usage

As with Cachegrind, you probably want to compile with debugging info (the —g option) and with optimization turned
on.

To start a profile run for a program, execute:
valgrind —-tool=callgrind [callgrind options] your-program [program options]

While the simulation is running, you can observe execution with:
callgrind_control -b

This will print out the current backtrace. To annotate the backtrace with event counts, run
callgrind_control -e -b

After program termination, a profile data file named callgrind.out . <pid> is generated, where pid is the process
ID of the program being profiled. The data file contains information about the calls made in the program among the
functions executed, together with Instruction Read (Ir) event counts.

To generate a function-by-function summary from the profile data file, use
callgrind_annotate [options] callgrind.out.<pid>

This summary is similar to the output you get from a Cachegrind run with cg_annotate: the list of functions is ordered
by exclusive cost of functions, which also are the ones that are shown. Important for the additional features of Callgrind
are the following two options:

e ——inclusive=yes: Instead of using exclusive cost of functions as sorting order, use and show inclusive cost.

e ——tree=both: Interleave into the top level list of functions, information on the callers and the callees of each
function. In these lines, which represents executed calls, the cost gives the number of events spent in the call.
Indented, above each function, there is the list of callers, and below, the list of callees. The sum of events in calls to
a given function (caller lines), as well as the sum of events in calls from the function (callee lines) together with the
self cost, gives the total inclusive cost of the function.

105

Callgrind: a call-graph generating cache and branch prediction profiler

Use ——auto=yes to get annotated source code for all relevant functions for which the source can be found. In
addition to source annotation as produced by cg_annotate, you will see the annotated call sites with call counts.
For all other options, consult the (Cachegrind) documentation for cg_annotate.

For better call graph browsing experience, it is highly recommended to use KCachegrind. If your code has a significant
fraction of its cost in cycles (sets of functions calling each other in a recursive manner), you have to use KCachegrind,
as callgrind_annotate currently does not do any cycle detection, which is important to get correct results in
this case.

If you are additionally interested in measuring the cache behavior of your program, use Callgrind with the option
—-—cache-sim=yes. For branch prediction simulation, use ——-branch-sim=yes. Expect a further slow down
approximately by a factor of 2.

If the program section you want to profile is somewhere in the middle of the run, it is beneficial to fast forward to
this section without any profiling, and then enable profiling. This is achieved by using the command line option
—-—instr-atstart=no and running, in a shell: callgrind_control -i on just before the interesting
code section is executed. To exactly specify the code position where profiling should start, use the client request
CALLGRIND_START_INSTRUMENTATION.

If you want to be able to see assembly code level annotation, specify ——dump—-instr=yes. This will produce
profile data at instruction granularity. Note that the resulting profile data can only be viewed with KCachegrind. For
assembly annotation, it also is interesting to see more details of the control flow inside of functions, i.e. (conditional)
jumps. This will be collected by further specifying ——collect—-jumps=yes.

6.2. Advanced Usage

6.2.1. Multiple profiling dumps from one program run

Sometimes you are not interested in characteristics of a full program run, but only of a small part of it, for example
execution of one algorithm. If there are multiple algorithms, or one algorithm running with different input data, it
may even be useful to get different profile information for different parts of a single program run.

Profile data files have names of the form

callgrind.out.pid.part-threadID

where pid is the PID of the running program, part is a number incremented on each dump (".part" is skipped for the
dump at program termination), and threadID is a thread identification ("-threadID" is only used if you request dumps
of individual threads with ——separate-threads=yes).

There are different ways to generate multiple profile dumps while a program is running under Callgrind’s supervision.
Nevertheless, all methods trigger the same action, which is "dump all profile information since the last dump or
program start, and zero cost counters afterwards”. To allow for zeroing cost counters without dumping, there is a
second action "zero all cost counters now". The different methods are:

* Dump on program termination. This method is the standard way and doesn’t need any special action on your
part.

106

url(http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex)

Callgrind: a call-graph generating cache and branch prediction profiler

* Spontaneous, interactive dumping. Use

callgrind_control -d [hint [PID/Name]]

to request the dumping of profile information of the supervised application with PID or Name. hint is an arbitrary
string you can optionally specify to later be able to distinguish profile dumps. The control program will not
terminate before the dump is completely written. Note that the application must be actively running for detection
of the dump command. So, for a GUI application, resize the window, or for a server, send a request.

If you are using KCachegrind for browsing of profile information, you can use the toolbar button Force dump. This
will request a dump and trigger a reload after the dump is written.

* Periodic dumping after execution of a specified number of basic blocks. For this, use the command line option
——dump-every-bb=count.

*Dumping at enter/leave of specified functions. Use the option --dump-before=function
and —--dump-after=function. To zero «cost counters before entering a function, use
——zero-before=function.

You can specify these options multiple times for different functions. Function specifications support wildcards: e.g.
use ——dump-before=’ foox’ to generate dumps before entering any function starting with foo.

* Program controlled dumping. Insert CALLGRIND_DUMP_STATS; at the position in your code where you want
a profile dump to happen. Use CALLGRIND_ZERO_STATS; to only zero profile counters. See Client request
reference for more information on Callgrind specific client requests.

If you are running a multi-threaded application and specify the command line option —-separate-threads=yes,
every thread will be profiled on its own and will create its own profile dump. Thus, the last two methods will only
generate one dump of the currently running thread. With the other methods, you will get multiple dumps (one for each
thread) on a dump request.

6.2.2. Limiting the range of collected events

By default, whenever events are happening (such as an instruction execution or cache hit/miss), Callgrind is
aggregating them into event counters. However, you may be interested only in what is happening within a given
function or starting from a given program phase. To this end, you can disable event aggregation for uninteresting
program parts. While attribution of events to functions as well as producing seperate output per program phase can
be done by other means (see previous section), there are two benefits by disabling aggregation. First, this is very fine-
granular (e.g. just for a loop within a function). Second, disabling event aggregation for complete program phases
allows to switch off time-consuming cache simulation and allows Callgrind to progress at much higher speed with an
slowdown of around factor 2 (identical to valgrind —--tool=none).

There are two aspects which influence whether Callgrind is aggregating events at some point in time of program
execution. First, there is the collection state. If this is off, no aggregation will be done. By changing the collection
state, you can control event aggregation at a very fine granularity. However, there is not much difference in regard
to execution speed of Callgrind. By default, collection is switched on, but can be disabled by different means (see
below). Second, there is the instrumentation mode in which Callgrind is running. This mode either can be on or off.
If instrumentation is off, no observation of actions in the program will be done and thus, no actions will be forwarded
to the simulator which could trigger events. In the end, no events will be aggregated. The huge benefit is the much
higher speed with instrumentation switched off. However, this only should be used with care and in a coarse fashion:
every mode change resets the simulator state (ie. whether a memory block is cached or not) and flushes Valgrinds
internal cache of instrumented code blocks, resulting in latency penalty at switching time. Also, cache simulator
results directly after switching on instrumentation will be skewed due to identified cache misses which would not
happen in reality (if you care about this warm-up effect, you should make sure to temporarly have collection state
switched off directly after turning instrumentation mode on). However, switching instrumentation state is very useful

107

url(http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex)

Callgrind: a call-graph generating cache and branch prediction profiler

to skip larger program phases such as an initialization phase. By default, instrumentation is switched on, but as with
the collection state, can be changed by various means.

Callgrind can start with instrumentation mode switched off by specifying option —-instr-atstart=no.
Afterwards, instrumentation can be controlled in two ways: first, interactively with:
callgrind_control —-i on

(and switching off again by specifying "off" instead of "on"). Second, instrumentation state
can be programatically changed with the macros CALLGRIND_START_INSTRUMENTATION; and
CALLGRIND_STOP_INSTRUMENTATION;.

Similarly, the collection state at program start can be switched off by ——instr-atstart=no. During execution, it
can be controlled programatically with the macro CALLGRIND_TOGGLE_COLLECT;. Further, you can limit event
collection to a specific function by using ——toggle-collect=function. This will toggle the collection state
on entering and leaving the specified function. When this option is in effect, the default collection state at program
start is "off". Only events happening while running inside of the given function will be collected. Recursive calls of
the given function do not trigger any action. This option can be given multiple times to specify different functions of
Interest.

6.2.3. Counting global bus events

For access to shared data among threads in a multithreaded code, synchronization is required to avoid raced
conditions. Synchronization primitives are usually implemented via atomic instructions. However, excessive use
of such instructions can lead to performance issues.

To enable analysis of this problem, Callgrind optionally can count the number of atomic instructions executed. More
precisely, for x86/x86_64, these are instructions using a lock prefix. For architectures supporting LL/SC, these are the
number of SC instructions executed. For both, the term "global bus events" is used.

The short name of the event type used for global bus events is "Ge". To count global bus events, use
——collect-bus=yes.

6.2.4. Avoiding cycles
Informally speaking, a cycle is a group of functions which call each other in a recursive way.

Formally speaking, a cycle is a nonempty set S of functions, such that for every pair of functions F and G in S, it
is possible to call from F to G (possibly via intermediate functions) and also from G to F. Furthermore, S must be
maximal -- that is, be the largest set of functions satisfying this property. For example, if a third function H is called
from inside S and calls back into S, then H is also part of the cycle and should be included in S.

Recursion is quite usual in programs, and therefore, cycles sometimes appear in the call graph output of Callgrind.
However, the title of this chapter should raise two questions: What is bad about cycles which makes you want to avoid
them? And: How can cycles be avoided without changing program code?

Cycles are not bad in itself, but tend to make performance analysis of your code harder. This is because inclusive costs
for calls inside of a cycle are meaningless. The definition of inclusive cost, i.e. self cost of a function plus inclusive
cost of its callees, needs a topological order among functions. For cycles, this does not hold true: callees of a function
in a cycle include the function itself. Therefore, KCachegrind does cycle detection and skips visualization of any
inclusive cost for calls inside of cycles. Further, all functions in a cycle are collapsed into artifical functions called like
Cycle 1.

Now, when a program exposes really big cycles (as is true for some GUI code, or in general code using event or
callback based programming style), you lose the nice property to let you pinpoint the bottlenecks by following call

108

Callgrind: a call-graph generating cache and branch prediction profiler

chains from main, guided via inclusive cost. In addition, KCachegrind loses its ability to show interesting parts of the
call graph, as it uses inclusive costs to cut off uninteresting areas.

Despite the meaningless of inclusive costs in cycles, the big drawback for visualization motivates the possibility to
temporarily switch off cycle detection in KCachegrind, which can lead to misguiding visualization. However, often
cycles appear because of unlucky superposition of independent call chains in a way that the profile result will see a
cycle. Neglecting uninteresting calls with very small measured inclusive cost would break these cycles. In such cases,
incorrect handling of cycles by not detecting them still gives meaningful profiling visualization.

It has to be noted that currently, callgrind_annotate does not do any cycle detection at all. For program executions
with function recursion, it e.g. can print nonsense inclusive costs way above 100%.

After describing why cycles are bad for profiling, it is worth talking about cycle avoidance. The key insight here is that
symbols in the profile data do not have to exactly match the symbols found in the program. Instead, the symbol name
could encode additional information from the current execution context such as recursion level of the current function,
or even some part of the call chain leading to the function. While encoding of additional information into symbols is
quite capable of avoiding cycles, it has to be used carefully to not cause symbol explosion. The latter imposes large
memory requirement for Callgrind with possible out-of-memory conditions, and big profile data files.

A further possibility to avoid cycles in Callgrind’s profile data output is to simply leave out given functions in the
call graph. Of course, this also skips any call information from and to an ignored function, and thus can break
a cycle. Candidates for this typically are dispatcher functions in event driven code. The option to ignore calls
to a function is ——fn-skip=function. Aside from possibly breaking cycles, this is used in Callgrind to skip
trampoline functions in the PLT sections for calls to functions in shared libraries. You can see the difference if you
profile with ——skip-plt=no. If a call is ignored, its cost events will be propagated to the enclosing function.

If you have a recursive function, you can distinguish the first 10 recursion levels by specifying
-—separate-recslO=function. Or for all functions with ——separate-recs=10, but this will give
you much bigger profile data files. In the profile data, you will see the recursion levels of "func" as the different
functions with names "func", "func’2", "func’3" and so on.

If you have call chains "A > B > C" and "A > C > B" in your program, you usually get a "false" cycle "B <> C". Use
—-separate-callers2=B —--separate-callers2=C, and functions "B" and "C" will be treated as different
functions depending on the direct caller. Using the apostrophe for appending this "context" to the function name, you
get "A>B’A>C'B" and "A > C’A > B’C", and there will be no cycle. Use ——separate-callers=2 to geta
2-caller dependency for all functions. Note that doing this will increase the size of profile data files.

6.2.5. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent. To start with
empty profile counter values in the child, the client request CALLGRIND_ZERO_STATS; can be inserted into code
to be executed by the child, directly after fork.

However, you will have to make sure that the output file format string (controlled by ——callgrind-out-file)
does contain $p (which is true by default). Otherwise, the outputs from the parent and child will overwrite each other
or will be intermingled, which almost certainly is not what you want.

You will be able to control the new child independently from the parent via callgrind_control.

6.3. Callgrind Command-line Options

In the following, options are grouped into classes.

Some options allow the specification of a function/symbol name, such as ——dump-before=function, or
-—fn-skip=function. All these options can be specified multiple times for different functions. In addition, the

109

Callgrind: a call-graph generating cache and branch prediction profiler

function specifications actually are patterns by supporting the use of wildcards **’ (zero or more arbitrary characters)
and ’?’ (exactly one arbitrary character), similar to file name globbing in the shell. This feature is important especially
for C++, as without wildcard usage, the function would have to be specified in full extent, including parameter
signature.

6.3.1. Dump creation options

These options influence the name and format of the profile data files.

——callgrind-out-file=<file>

Write the profile data to £1ile rather than to the default output file, callgrind.out.<pid>. The %$p and %g
format specifiers can be used to embed the process ID and/or the contents of an environment variable in the name, as
is the case for the core option ——1og—file. When multiple dumps are made, the file name is modified further; see
below.

——dump-line=<no|yes> [default: vyes]
This specifies that event counting should be performed at source line granularity. This allows source annotation for
sources which are compiled with debug information (-g).

——dump-instr=<no|yes> [default: no]
This specifies that event counting should be performed at per-instruction granularity. This allows for assembly code
annotation. Currently the results can only be displayed by KCachegrind.

—-—compress—-strings=<no|yes> [default: yes]

This option influences the output format of the profile data. It specifies whether strings (file and function names)
should be identified by numbers. This shrinks the file, but makes it more difficult for humans to read (which is not
recommended in any case).

——compress—-pos=<no|yes> [default: vyes]
This option influences the output format of the profile data. It specifies whether numerical positions are always
specified as absolute values or are allowed to be relative to previous numbers. This shrinks the file size.

——combine-dumps=<no|yes> [default: no]
When enabled, when multiple profile data parts are to be generated these parts are appended to the same output file.
Not recommended.

6.3.2. Activity options

These options specify when actions relating to event counts are to be executed. For interactive control use call-
grind_control.

——dump-every-bb=<count> [default: 0, never]

Dump profile data every count basic blocks. Whether a dump is needed is only checked when Valgrind’s internal
scheduler is run. Therefore, the minimum setting useful is about 100000. The count is a 64-bit value to make long
dump periods possible.

——dump-before=<function>
Dump when entering function.

—-—zero-before=<function>
Zero all costs when entering function.

110

Callgrind: a call-graph generating cache and branch prediction profiler

——dump-after=<function>
Dump when leaving function.

6.3.3. Data collection options

These options specify when events are to be aggregated into event counts. Also see Limiting range of event collection.

——instr-atstart=<yes|no> [default: vyes]

Specify if you want Callgrind to start simulation and profiling from the beginning of the program. When set to no,
Callgrind will not be able to collect any information, including calls, but it will have at most a slowdown of around 4,
which is the minimum Valgrind overhead. Instrumentation can be interactively enabled via callgrind_control
—1 Oon.

Note that the resulting call graph will most probably not contain ma in, but will contain all the functions executed after
instrumentation was enabled. Instrumentation can also programatically enabled/disabled. See the Callgrind include
file callgrind.h for the macro you have to use in your source code.

For cache simulation, results will be less accurate when switching on instrumentation later in the program run, as the
simulator starts with an empty cache at that moment. Switch on event collection later to cope with this error.

——collect-atstart=<yes|no> [default: yes]
Specify whether event collection is enabled at beginning of the profile run.

To only look at parts of your program, you have two possibilities:

1. Zero event counters before entering the program part you want to profile, and dump the event counters to a file after
leaving that program part.

2. Switch on/off collection state as needed to only see event counters happening while inside of the program part you
want to profile.

The second option can be used if the program part you want to profile is called many times. Option 1, i.e. creating a
lot of dumps is not practical here.

Collection state can be toggled at entry and exit of a given function with the option ——toggle-collect. Ifyouuse
this option, collection state should be disabled at the beginning. Note that the specification of -—toggle-collect
implicitly sets ——collect-state=no.

Collection state can be toggled also by inserting the client request CALLGRIND_TOGGLE_COLLECT ; at the
needed code positions.

—-—-toggle-collect=<function>
Toggle collection on entry/exit of function.

—-collect-jumps=<no|yes> [default: no]

This specifies whether information for (conditional) jumps should be collected. ~ As above, callgrind_annotate
currently is not able to show you the data. ~ You have to use KCachegrind to get jump arrows in the annotated
code.

——collect-systime=<no|yes> [default: no]
This specifies whether information for system call times should be collected.

111

Callgrind: a call-graph generating cache and branch prediction profiler

——collect-bus=<nol|yes> [default: no]
This specifies whether the number of global bus events executed should be collected. The event type "Ge" is used for
these events.

6.3.4. Cost entity separation options

These options specify how event counts should be attributed to execution contexts. For example, they specify whether
the recursion level or the call chain leading to a function should be taken into account, and whether the thread ID
should be considered. Also see Avoiding cycles.

——separate-threads=<no|yes> [default: no]
This option specifies whether profile data should be generated separately for every thread. If yes, the file names get
"-threadID" appended.

—-—-separate-callers=<callers> [default: 0]
Separate contexts by at most <callers> functions in the call chain. See Avoiding cycles.

——-separate-callers<number>=<function>
Separate number callers for function. See Avoiding cycles.

—-—separate-recs=<level> [default: 2]
Separate function recursions by at most 1evel levels. See Avoiding cycles.

—-—-separate-recs<number>=<function>
Separate number recursions for function. See Avoiding cycles.

——-skip-plt=<no|yes> [default: vyes]
Ignore calls to/from PLT sections.

——-skip-direct-rec=<no|yes> [default: vyes]
Ignore direct recursions.

——fn-skip=<function>
Ignore calls to/from a given function. E.g. if you have a call chain A > B > C, and you specify function B to be
ignored, you will only see A > C.

This is very convenient to skip functions handling callback behaviour. For example, with the signal/slot mechanism
in the Qt graphics library, you only want to see the function emitting a signal to call the slots connected to that signal.
First, determine the real call chain to see the functions needed to be skipped, then use this option.

6.3.5. Simulation options

——cache-sim=<yes|no> [default: no]

Specify if you want to do full cache simulation. By default, only instruction read accesses will be counted ("Ir").
With cache simulation, further event counters are enabled: Cache misses on instruction reads ("Ilmr"/"ILmr"), data
read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"), data write accesses ("Dw") and related cache misses
("D1lmw"/"DLmw"). For more information, see Cachegrind: a cache and branch-prediction profiler.

112

Callgrind: a call-graph generating cache and branch prediction profiler

——branch-sim=<yes|no> [default: no]

Specify if you want to do branch prediction simulation. Further event counters are enabled: Number of executed
conditional branches and related predictor misses ("Bc"/"Bcm"), executed indirect jumps and related misses of the
jump address predictor ("Bi"/"Bim").

6.3.6. Cache simulation options

—--simulate-wb=<yes|no> [default: no]

Specify whether write-back behavior should be simulated, allowing to distinguish LL caches misses with and without
write backs. The cache model of Cachegrind/Callgrind does not specify write-through vs. write-back behavior, and
this also is not relevant for the number of generated miss counts. However, with explicit write-back simulation it can
be decided whether a miss triggers not only the loading of a new cache line, but also if a write back of a dirty cache line
had to take place before. The new dirty miss events are ILdmr, DLdmr, and DLdmw, for misses because of instruction
read, data read, and data write, respectively. As they produce two memory transactions, they should account for a
doubled time estimation in relation to a normal miss.

—-simulate-hwpref=<yes|no> [default: no]

Specify whether simulation of a hardware prefetcher should be added which is able to detect stream access in the
second level cache by comparing accesses to separate to each page. As the simulation can not decide about any timing
issues of prefetching, it is assumed that any hardware prefetch triggered succeeds before a real access is done. Thus,
this gives a best-case scenario by covering all possible stream accesses.

——cacheuse=<yes|no> [default: no]

Specify whether cache line use should be collected. For every cache line, from loading to it being evicted, the number
of accesses as well as the number of actually used bytes is determined. This behavior is related to the code which
triggered loading of the cache line. In contrast to miss counters, which shows the position where the symptoms of
bad cache behavior (i.e. latencies) happens, the use counters try to pinpoint at the reason (i.e. the code with the bad
access behavior). The new counters are defined in a way such that worse behavior results in higher cost. AcCostl and
AcCost2 are counters showing bad temporal locality for .1 and LL caches, respectively. This is done by summing up
reciprocal values of the numbers of accesses of each cache line, multiplied by 1000 (as only integer costs are allowed).
E.g. for a given source line with 5 read accesses, a value of 5000 AcCost means that for every access, a new cache line
was loaded and directly evicted afterwards without further accesses. Similarly, SpLoss1/2 shows bad spatial locality
for L1 and LL caches, respectively. It gives the spatial loss count of bytes which were loaded into cache but never
accessed. It pinpoints at code accessing data in a way such that cache space is wasted. This hints at bad layout of data
structures in memory. Assuming a cache line size of 64 bytes and 100 L1 misses for a given source line, the loading
of 6400 bytes into L1 was triggered. If SpLoss1 shows a value of 3200 for this line, this means that half of the loaded
data was never used, or using a better data layout, only half of the cache space would have been needed. Please note
that for cache line use counters, it currently is not possible to provide meaningful inclusive costs. Therefore, inclusive
cost of these counters should be ignored.

—--Il=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the level 1 instruction cache.

—--Dl=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the level 1 data cache.

113

Callgrind: a call-graph generating cache and branch prediction profiler

—--LL=<size>,<associativity>,<line size>
Specify the size, associativity and line size of the last-level cache.

6.4. Callgrind Monitor Commands

The Callgrind tool provides monitor commands handled by the Valgrind gdbserver (see Monitor command handling
by the Valgrind gdbserver).

edump [<dump_hint>] requests to dump the profile data.
* zero requests to zero the profile data counters.

einstrumentation [on|off] requests to set (if parameter on/off is given) or get the current instrumentation
state.

* status requests to print out some status information.

6.5. Callgrind specific client requests

Callgrind provides the following specific client requests in callgrind.h. See that file for the exact details of their
arguments.

CALLGRIND_DUMP_STATS
Force generation of a profile dump at specified position in code, for the current thread only. Written counters will be
reset to zero.

CALLGRIND_DUMP_STATS_AT (string)
Same as CALLGRIND_DUMP_STATS, but allows to specify a string to be able to distinguish profile dumps.

CALLGRIND_ZERO_STATS
Reset the profile counters for the current thread to zero.

CALLGRIND_TOGGLE_COLLECT
Toggle the collection state. This allows to ignore events with regard to profile counters. See also options
—-collect-atstart and ——toggle-collect.

CALLGRIND_START_INSTRUMENTATION

Start full Callgrind instrumentation if not already enabled. When cache simulation is done, this will flush the simulated
cache and lead to an artifical cache warmup phase afterwards with cache misses which would not have happened in
reality. See also option ——instr—atstart.

CALLGRIND_STOP_INSTRUMENTATION

Stop full Callgrind instrumentation if not already disabled. This flushes Valgrinds translation cache, and does no
additional instrumentation afterwards: it effectivly will run at the same speed as Nulgrind, i.e. at minimal slowdown.
Use this to speed up the Callgrind run for uninteresting code parts. Use CALLGRIND_START_INSTRUMENTATION
to enable instrumentation again. See also option ——instr-atstart.

6.6. callgrind_annotate Command-line Options

114

Callgrind: a call-graph generating cache and branch prediction profiler

-h —--help
Show summary of options.

——-version
Show version of callgrind_annotate.

—--show=A,B,C [default: all]
Only show figures for events A,B,C.

-—-sort=A,B,C
Sort columns by events A,B,C [event column order].

—-threshold=<0--100> [default: 99%]
Percentage of counts (of primary sort event) we are interested in.

——auto=<yes|no> [default: no]
Annotate all source files containing functions that helped reach the event count threshold.

—-—context=N [default: 81
Print N lines of context before and after annotated lines.

——inclusive=<yes|no> [default: no]
Add subroutine costs to functions calls.

—-—tree=<none|caller|calling|both> [default: none]
Print for each function their callers, the called functions or both.

-I, ——include=<dir>
Add dir to the list of directories to search for source files.

6.7. callgrind_control Command-line Options

By default, callgrind_control acts on all programs run by the current user under Callgrind. It is possible to limit the
actions to specified Callgrind runs by providing a list of pids or program names as argument. The default action is to
give some brief information about the applications being run under Callgrind.

-h —-help
Show a short description, usage, and summary of options.

——-version
Show version of callgrind_control.

-1 —--long
Show also the working directory, in addition to the brief information given by default.

-s —--stat
Show statistics information about active Callgrind runs.

-b —--back

Show stack/back traces of each thread in active Callgrind runs. For each active function in the stack trace, also the
number of invocations since program start (or last dump) is shown. This option can be combined with -e to show
inclusive cost of active functions.

115

Callgrind: a call-graph generating cache and branch prediction profiler

-e [A,B,...] (default: all)

Show the current per-thread, exclusive cost values of event counters. If no explicit event names are given, figures for
all event types which are collected in the given Callgrind run are shown. Otherwise, only figures for event types A, B,
... are shown. If this option is combined with -b, inclusive cost for the functions of each active stack frame is provided,
too.

——dump [=<desc>] (default: no description)

Request the dumping of profile information. Optionally, a description can be specified which is written into the dump
as part of the information giving the reason which triggered the dump action. This can be used to distinguish multiple
dumps.

-7z ——zero
Zero all event counters.

-k —-kill
Force a Callgrind run to be terminated.

——instr=<on|off>

Switch instrumentation mode on or off. If a Callgrind run has instrumentation disabled, no simulation is done and no
events are counted. This is useful to skip uninteresting program parts, as there is much less slowdown (same as with
the Valgrind tool "none"). See also the Callgrind option ——instr—atstart.

—-vgdb-prefix=<prefix>

Specify the vgdb prefix to use by callgrind_control. callgrind_control internally uses vgdb to find and control the
active Callgrind runs. If the -—vgdb-prefix option was used for launching valgrind, then the same option must be
given to callgrind_control.

116

7. Helgrind: a thread error detector

To use this tool, you must specify ——tool=helgrind on the Valgrind command line.

7.1. Overview

Helgrind is a Valgrind tool for detecting synchronisation errors in C, C++ and Fortran programs that use the POSIX
pthreads threading primitives.

The main abstractions in POSIX pthreads are: a set of threads sharing a common address space, thread creation,
thread joining, thread exit, mutexes (locks), condition variables (inter-thread event notifications), reader-writer locks,
spinlocks, semaphores and barriers.

Helgrind can detect three classes of errors, which are discussed in detail in the next three sections:

1. Misuses of the POSIX pthreads API.
2. Potential deadlocks arising from lock ordering problems.
3. Data races -- accessing memory without adequate locking or synchronisation.

Problems like these often result in unreproducible, timing-dependent crashes, deadlocks and other misbehaviour, and
can be difficult to find by other means.

Helgrind is aware of all the pthread abstractions and tracks their effects as accurately as it can. On x86 and amd64
platforms, it understands and partially handles implicit locking arising from the use of the LOCK instruction prefix.
On PowerPC/POWER and ARM platforms, it partially handles implicit locking arising from load-linked and store-
conditional instruction pairs.

Helgrind works best when your application uses only the POSIX pthreads API. However, if you want to use
custom threading primitives, you can describe their behaviour to Helgrind using the ANNOTATE_ » macros defined in
helgrind.h.

Following those is a section containing hints and tips on how to get the best out of Helgrind.
Then there is a summary of command-line options.

Finally, there is a brief summary of areas in which Helgrind could be improved.

7.2. Detected errors: Misuses of the POSIX
pthreads API

Helgrind intercepts calls to many POSIX pthreads functions, and is therefore able to report on various common
problems. Although these are unglamourous errors, their presence can lead to undefined program behaviour and
hard-to-find bugs later on. The detected errors are:

 unlocking an invalid mutex

¢ unlocking a not-locked mutex

e unlocking a mutex held by a different thread

117

Helgrind: a thread error detector

* destroying an invalid or a locked mutex

* recursively locking a non-recursive mutex

¢ deallocation of memory that contains a locked mutex

* passing mutex arguments to functions expecting reader-writer lock arguments, and vice versa

* when a POSIX pthread function fails with an error code that must be handled

* when a thread exits whilst still holding locked locks

e calling pthread_cond_wait with a not-locked mutex, an invalid mutex, or one locked by a different thread
* inconsistent bindings between condition variables and their associated mutexes

« invalid or duplicate initialisation of a pthread barrier

e initialisation of a pthread barrier on which threads are still waiting

* destruction of a pthread barrier object which was never initialised, or on which threads are still waiting
* waiting on an uninitialised pthread barrier

« for all of the pthreads functions that Helgrind intercepts, an error is reported, along with a stack trace, if the system
threading library routine returns an error code, even if Helgrind itself detected no error

Checks pertaining to the validity of mutexes are generally also performed for reader-writer locks.

Various kinds of this-can’t-possibly-happen events are also reported. These usually indicate bugs in the system
threading library.

Reported errors always contain a primary stack trace indicating where the error was detected. They may also contain
auxiliary stack traces giving additional information. In particular, most errors relating to mutexes will also tell you
where that mutex first came to Helgrind’s attention (the "was first observed at" part), so you have a chance
of figuring out which mutex it is referring to. For example:

Thread #1 unlocked a not-locked lock at 0x7FEFFFA90
at 0x4C2408D: pthread _mutex_unlock (hg_intercepts.c:492)
by 0x40073A: nearly_main (tc09_bad_unlock.c:27)
by 0x40079B: main (tc09_bad_unlock.c:50)
Lock at OxX7FEFFFA90 was first observed
at 0x4C25D01: pthread_mutex_init (hg_intercepts.c:326)
by 0x40071F: nearly_main (tc09_bad_unlock.c:23)
by 0x40079B: main (tc09_bad_unlock.c:50)

Helgrind has a way of summarising thread identities, as you see here with the text "Thread #1". This is so that it
can speak about threads and sets of threads without overwhelming you with details. See below for more information
on interpreting error messages.

7.3. Detected errors: Inconsistent Lock
Orderings

118

Helgrind: a thread error detector

In this section, and in general, to "acquire" a lock simply means to lock that lock, and to "release" a lock means to
unlock it.

Helgrind monitors the order in which threads acquire locks. This allows it to detect potential deadlocks which could
arise from the formation of cycles of locks. Detecting such inconsistencies is useful because, whilst actual deadlocks
are fairly obvious, potential deadlocks may never be discovered during testing and could later lead to hard-to-diagnose
in-service failures.

The simplest example of such a problem is as follows.

* Imagine some shared resource R, which, for whatever reason, is guarded by two locks, L1 and L2, which must both
be held when R is accessed.

* Suppose a thread acquires L1, then L2, and proceeds to access R. The implication of this is that all threads in the
program must acquire the two locks in the order first L1 then L2. Not doing so risks deadlock.

* The deadlock could happen if two threads -- call them T1 and T2 -- both want to access R. Suppose T1 acquires
L1 first, and T2 acquires L2 first. Then T1 tries to acquire L2, and T2 tries to acquire L1, but those locks are both
already held. So T1 and T2 become deadlocked.

Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When a thread
acquires a new lock, the graph is updated, and then checked to see if it now contains a cycle. The presence of a cycle
indicates a potential deadlock involving the locks in the cycle.

In general, Helgrind will choose two locks involved in the cycle and show you how their acquisition ordering has
become inconsistent. It does this by showing the program points that first defined the ordering, and the program points
which later violated it. Here is a simple example involving just two locks:

Thread #1: lock order "0x7FF0006D0 before 0x7FF0006A0" violated

Observed (incorrect) order is: acquisition of lock at 0x7FFO0006AQ
at 0x4C2BC62: pthread _mutex_lock (hg_intercepts.c:494)
by 0x400825: main (tcl3_laogl.c:23)

followed by a later acquisition of lock at O0x7FF0006DO
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400853: main (tcl3_laogl.c:24)

Required order was established by acquisition of lock at 0x7FF0006DO
at 0x4C2BC62: pthread mutex_lock (hg_intercepts.c:494)
by 0x40076D: main (tcl3_laogl.c:17)

followed by a later acquisition of lock at 0x7FF0006A0
at 0x4C2BC62: pthread mutex_lock (hg_intercepts.c:494)
by 0x40079B: main (tcl3_laogl.c:18)

When there are more than two locks in the cycle, the error is equally serious. However, at present Helgrind does
not show the locks involved, sometimes because that information is not available, but also so as to avoid flooding you
with information. For example, a naive implementation of the famous Dining Philosophers problem involves a cycle
of five locks (see helgrind/tests/tcl4d_laog_dinphils.c). In this case Helgrind has detected that all 5
philosophers could simultaneously pick up their left fork and then deadlock whilst waiting to pick up their right forks.

119

Helgrind: a thread error detector

Thread #6: lock order "0x80499A0 before 0x8049A00" violated

Observed (incorrect) order is: acquisition of lock at 0x8049A00
at 0x40085BC: pthread mutex_lock (hg_intercepts.c:495)
by 0x80485B4: dine (tcl4_laog_dinphils.c:18)
by 0x400BDA4: mythread _wrapper (hg_intercepts.c:219)
by 0x39B924: start_thread (pthread_create.c:297)
by 0x2F107D: clone (clone.S:130)

followed by a later acquisition of lock at 0x80499A0
at 0x40085BC: pthread _mutex_lock (hg_intercepts.c:495)
by 0x80485CD: dine (tcl4_laog_dinphils.c:19)
by 0x400BDA4: mythread_wrapper (hg_intercepts.c:219)
by 0x39B924: start_thread (pthread_create.c:297)
by 0x2F107D: clone (clone.S:130)

7.4. Detected errors: Data Races

A data race happens, or could happen, when two threads access a shared memory location without using suitable locks
or other synchronisation to ensure single-threaded access. Such missing locking can cause obscure timing dependent
bugs. Ensuring programs are race-free is one of the central difficulties of threaded programming.

Reliably detecting races is a difficult problem, and most of Helgrind’s internals are devoted to dealing with it. We
begin with a simple example.

7.4.1. A Simple Data Race

About the simplest possible example of a race is as follows. In this program, it is impossible to know what the value
of var is at the end of the program. Isit2? Or1?

#include <pthread.h>
int var = 0;

voidx child_fn (voidx arg) {
var++; /x Unprotected relative to parent x/ /+ this is line 6 x/
return NULL;

int main (void) {
pthread_t child;
pthread_create(&child, NULL, child_fn, NULL);
var++; /* Unprotected relative to child x/ /% this is line 13 */
pthread_join(child, NULL) ;
return 0;

120

Helgrind: a thread error detector

The problem is there is nothing to stop var being updated simultaneously by both threads. A correct program would
protect var with a lock of type pthread_mutex_t, which is acquired before each access and released afterwards.
Helgrind’s output for this program is:

Thread #1 is the program’s root thread

Thread #2 was created
at 0x511CO8E: clone (in /l1lib64/libc-2.8.s0)
by 0x4E333A4: do_clone (in /lib64/libpthread-2.8.s0)
by 0x4E33A30: pthread_create@R@GLIBC_2.2.5 (in /1ib64/libpthread-2.8.s0)
by 0x4C299D4: pthread_create@* (hg_intercepts.c:214)
by 0x400605: main (simple_race.c:12)

Possible data race during read of size 4 at 0x601038 by thread #1
Locks held: none
at 0x400606: main (simple_race.c:13)

This conflicts with a previous write of size 4 by thread #2
Locks held: none
at 0x4005DC: child_fn (simple_race.c:6)
by 0x4C29AFF: mythread_wrapper (hg_intercepts.c:194)
by 0x4E3403F: start_thread (in /1ib64/libpthread-2.8.s0)
by 0x511COCC: clone (in /1ib64/1libc-2.8.s0)

Location 0x601038 is 0 bytes inside global var "var"
declared at simple_race.c:3

This is quite a lot of detail for an apparently simple error. The last clause is the main error message. It says there is a
race as a result of a read of size 4 (bytes), at 0x601038, which is the address of var, happening in function main at
line 13 in the program.

Two important parts of the message are:

* Helgrind shows two stack traces for the error, not one. By definition, a race involves two different threads accessing
the same location in such a way that the result depends on the relative speeds of the two threads.

The first stack trace follows the text "Possible data race during read of size 4 ..." and the
second trace follows the text "This conflicts with a previous write of size 4 ...". Hel-
grind is usually able to show both accesses involved in a race. At least one of these will be a write (since two
concurrent, unsynchronised reads are harmless), and they will of course be from different threads.

By examining your program at the two locations, you should be able to get at least some idea of what the root cause
of the problem is. For each location, Helgrind shows the set of locks held at the time of the access. This often
makes it clear which thread, if any, failed to take a required lock. In this example neither thread holds a lock during
the access.

121

Helgrind: a thread error detector

* For races which occur on global or stack variables, Helgrind tries to identify the name and defining point
of the variable. Hence the text "Location 0x601038 is 0 bytes inside global var "var"
declared at simple_race.c:3".

Showing names of stack and global variables carries no run-time overhead once Helgrind has your program up
and running. However, it does require Helgrind to spend considerable extra time and memory at program startup
to read the relevant debug info. Hence this facility is disabled by default. ~To enable it, you need to give the
--read-var-info=yes option to Helgrind.

The following section explains Helgrind’s race detection algorithm in more detail.

7.4.2. Helgrind’s Race Detection Algorithm

Most programmers think about threaded programming in terms of the basic functionality provided by the threading
library (POSIX Pthreads): thread creation, thread joining, locks, condition variables, ssmaphores and barriers.

The effect of using these functions is to impose constraints upon the order in which memory accesses can happen.
This implied ordering is generally known as the "happens-before relation”. Once you understand the happens-before
relation, it is easy to see how Helgrind finds races in your code. Fortunately, the happens-before relation is itself easy
to understand, and is by itself a useful tool for reasoning about the behaviour of parallel programs. We now introduce
it using a simple example.

Consider first the following buggy program:
Parent thread: Child thread:
int var;

// create child thread

pthread_create(...)

var = 20; var = 10;
exit

// wait for child
pthread_join(...)
printf ("$d\n", var);

The parent thread creates a child. Both then write different values to some variable var, and the parent then waits
for the child to exit.

What is the value of var at the end of the program, 10 or 20?7 We don’t know. The program is considered buggy (it
has a race) because the final value of var depends on the relative rates of progress of the parent and child threads. If
the parent is fast and the child is slow, then the child’s assignment may happen later, so the final value will be 10; and
vice versa if the child is faster than the parent.

The relative rates of progress of parent vs child is not something the programmer can control, and will often change
from run to run. It depends on factors such as the load on the machine, what else is running, the kernel’s scheduling
strategy, and many other factors.

The obvious fix is to use a lock to protect var. It is however instructive to consider a somewhat more abstract
solution, which is to send a message from one thread to the other:

122

Helgrind: a thread error detector

Parent thread: Child thread:
int var;

// create child thread

pthread_create(...)

var = 20;

// send message to child
// wait for message to arrive
var = 10;
exit

// wait for child
pthread_join(...)
printf ("$d\n", var);

Now the program reliably prints "10", regardless of the speed of the threads. Why? Because the child’s assignment
cannot happen until after it receives the message. And the message is not sent until after the parent’s assignment is
done.

The message transmission creates a "happens-before" dependency between the two assignments: var = 20; must
now happen-before var = 10;. And so there is no longer a race on var.

Note that it’s not significant that the parent sends a message to the child. Sending a message from the child (after
its assignment) to the parent (before its assignment) would also fix the problem, causing the program to reliably print
ll20H.

Helgrind’s algorithm is (conceptually) very simple. It monitors all accesses to memory locations. If a location -- in
this example, var, is accessed by two different threads, Helgrind checks to see if the two accesses are ordered by the
happens-before relation. If so, that’s fine; if not, it reports a race.

It is important to understand that the happens-before relation creates only a partial ordering, not a total ordering. An
example of a total ordering is comparison of numbers: for any two numbers x and y, either x is less than, equal to,
or greater than y. A partial ordering is like a total ordering, but it can also express the concept that two elements are
neither equal, less or greater, but merely unordered with respect to each other.

In the fixed example above, we say that var = 20; "happens-before” var = 10;. But in the original version,
they are unordered: we cannot say that either happens-before the other.

What does it mean to say that two accesses from different threads are ordered by the happens-before relation? It
means that there is some chain of inter-thread synchronisation operations which cause those accesses to happen in a
particular order, irrespective of the actual rates of progress of the individual threads. This is a required property for a
reliable threaded program, which is why Helgrind checks for it.

The happens-before relations created by standard threading primitives are as follows:
* When a mutex is unlocked by thread T1 and later (or immediately) locked by thread T2, then the memory accesses
in T1 prior to the unlock must happen-before those in T2 after it acquires the lock.
* The same idea applies to reader-writer locks, although with some complication so as to allow correct handling of

reads vs writes.

123

Helgrind: a thread error detector

* When a condition variable (CV) is signalled on by thread T1 and some other thread T2 is thereby released from a
wait on the same CV, then the memory accesses in T1 prior to the signalling must happen-before those in T2 after
it returns from the wait. If no thread was waiting on the CV then there is no effect.

« If instead T1 broadcasts on a CV, then all of the waiting threads, rather than just one of them, acquire a happens-
before dependency on the broadcasting thread at the point it did the broadcast.

* A thread T2 that continues after completing sem_wait on a semaphore that thread T1 posts on, acquires a happens-
before dependence on the posting thread, a bit like dependencies caused mutex unlock-lock pairs. However, since
a semaphore can be posted on many times, it is unspecified from which of the post calls the wait call gets its
happens-before dependency.

* For a group of threads T1 .. Tn which arrive at a barrier and then move on, each thread after the call has a happens-
after dependency from all threads before the barrier.

* A newly-created child thread acquires an initial happens-after dependency on the point where its parent created it.
That is, all memory accesses performed by the parent prior to creating the child are regarded as happening-before
all the accesses of the child.

* Similarly, when an exiting thread is reaped via a call to pthread_ join, once the call returns, the reaping thread
acquires a happens-after dependency relative to all memory accesses made by the exiting thread.

In summary: Helgrind intercepts the above listed events, and builds a directed acyclic graph represented the collective
happens-before dependencies. It also monitors all memory accesses.

If a location is accessed by two different threads, but Helgrind cannot find any path through the happens-before graph
from one access to the other, then it reports a race.

There are a couple of caveats:
* Helgrind doesn’t check for a race in the case where both accesses are reads. That would be silly, since concurrent
reads are harmless.

» Two accesses are considered to be ordered by the happens-before dependency even through arbitrarily long chains of
synchronisation events. For example, if T1 accesses some location L, and then pthread_cond_signals T2,
which later pthread_cond_signals T3, which then accesses L, then a suitable happens-before dependency
exists between the first and second accesses, even though it involves two different inter-thread synchronisation
events.

7.4.3. Interpreting Race Error Messages

Helgrind’s race detection algorithm collects a lot of information, and tries to present it in a helpful way when a race is
detected. Here’s an example:

124

Helgrind: a thread error detector

Thread #2 was created
at 0x511CO8E: clone (in /l1lib64/libc-2.8.s0)
by 0x4E333A4: do_clone (in /1ib64/libpthread-2.8.s0)
by 0x4E33A30: pthread_create@R@GLIBC_2.2.5 (in /1ib64/libpthread-2.8.s0)
by 0x4C299D4: pthread_create@+ (hg_intercepts.c:214)
by 0x4008F2: main (tc2l_pthonce.c:86)

Thread #3 was created
at 0x511C08E: clone (in /1ib64/libc-2.8.s0)
by 0x4E333A4: do_clone (in /lib64/libpthread-2.8.s0)
by 0x4E33A30: pthread_create@EGLIBC_2.2.5 (in /1ib64/libpthread-2.8.s0)
by 0x4C299D4: pthread_create@x (hg_intercepts.c:214)
by 0x4008F2: main (tc2l_pthonce.c:86)

Possible data race during read of size 4 at 0x601070 by thread #3
Locks held: none

at 0x40087A: child (tc2l_pthonce.c:74)

by 0x4C29AFF: mythread_wrapper (hg_intercepts.c:194)

by 0x4E3403F: start_thread (in /1ib64/libpthread-2.8.s0)

by 0x511C0CC: clone (in /1ib64/1ibc-2.8.s0)

This conflicts with a previous write of size 4 by thread #2
Locks held: none
at 0x400883: child (tc2l_pthonce.c:74)
by 0x4C29AFF: mythread_wrapper (hg_intercepts.c:194)
by 0x4E3403F: start_thread (in /1ib64/libpthread-2.8.s0)
by 0x511C0OCC: clone (in /1ib64/libc-2.8.s0)

Location 0x601070 is 0 bytes inside local var "unprotected2"
declared at tc2l_pthonce.c:51, in frame #0 of thread 3

Helgrind first announces the creation points of any threads referenced in the error message. This is so it can speak
concisely about threads without repeatedly printing their creation point call stacks. Each thread is only ever announced
once, the first time it appears in any Helgrind error message.

The main error message begins at the text "Possible data race during read". At the startis information
you would expect to see -- address and size of the racing access, whether a read or a write, and the call stack at the
point it was detected.

A second call stack is presented starting at the text "This conflicts with a previous write". This
shows a previous access which also accessed the stated address, and which is believed to be racing against the access
in the first call stack. Note that this second call stack is limited to a maximum of 8 entries to limit the memory usage.

Finally, Helgrind may attempt to give a description of the raced-on address in source level terms. In this example, it
identifies it as a local variable, shows its name, declaration point, and in which frame (of the first call stack) it lives.
Note that this information is only shown when ——read-var-info=yes is specified on the command line. That’s
because reading the DWARF3 debug information in enough detail to capture variable type and location information
makes Helgrind much slower at startup, and also requires considerable amounts of memory, for large programs.

Once you have your two call stacks, how do you find the root cause of the race?

125

Helgrind: a thread error detector

The first thing to do is examine the source locations referred to by each call stack. They should both show an access
to the same location, or variable.

Now figure out how how that location should have been made thread-safe:

* Perhaps the location was intended to be protected by a mutex? If so, you need to lock and unlock the mutex at both
access points, even if one of the accesses is reported to be a read. Did you perhaps forget the locking at one or other
of the accesses? To help you do this, Helgrind shows the set of locks held by each threads at the time they accessed
the raced-on location.

* Alternatively, perhaps you intended to use a some other scheme to make it safe, such as signalling on a condition
variable. In all such cases, try to find a synchronisation event (or a chain thereof) which separates the earlier-
observed access (as shown in the second call stack) from the later-observed access (as shown in the first call stack).
In other words, try to find evidence that the earlier access "happens-before" the later access. See the previous
subsection for an explanation of the happens-before relation.

The fact that Helgrind is reporting a race means it did not observe any happens-before relation between the two
accesses. If Helgrind is working correctly, it should also be the case that you also cannot find any such relation,
even on detailed inspection of the source code. Hopefully, though, your inspection of the code will show where the
missing synchronisation operation(s) should have been.

7.5. Hints and Tips for Effective Use of Helgrind

Helgrind can be very helpful in finding and resolving threading-related problems. Like all sophisticated tools, it is
most effective when you understand how to play to its strengths.

Helgrind will be less effective when you merely throw an existing threaded program at it and try to make sense of any
reported errors. It will be more effective if you design threaded programs from the start in a way that helps Helgrind
verify correctness. The same is true for finding memory errors with Memcheck, but applies more here, because thread
checking is a harder problem. Consequently it is much easier to write a correct program for which Helgrind falsely
reports (threading) errors than it is to write a correct program for which Memcheck falsely reports (memory) errors.

With that in mind, here are some tips, listed most important first, for getting reliable results and avoiding false errors.
The first two are critical. Any violations of them will swamp you with huge numbers of false data-race errors.

1. Make sure your application, and all the libraries it uses, use the POSIX threading primitives. Helgrind needs to
be able to see all events pertaining to thread creation, exit, locking and other synchronisation events. To do so it
intercepts many POSIX pthreads functions.

Do not roll your own threading primitives (mutexes, etc) from combinations of the Linux futex syscall, atomic
counters, etc. These throw Helgrind’s internal what’s-going-on models way off course and will give bogus results.

Also, do not reimplement existing POSIX abstractions using other POSIX abstractions. For example, don’t build
your own semaphore routines or reader-writer locks from POSIX mutexes and condition variables. Instead use
POSIX reader-writer locks and semaphores directly, since Helgrind supports them directly.

Helgrind directly supports the following POSIX threading abstractions: mutexes, reader-writer locks, condition
variables (but see below), semaphores and barriers. Currently spinlocks are not supported, although they could be
in future.

At the time of writing, the following popular Linux packages are known to implement their own threading
primitives:

126

Helgrind: a thread error detector

* Qt version 4.X. % 3.X is harmless in that it only uses POSIX pthreads primitives. Unfortunately Qt 4.X has its

* Bwntimp iR ReRn ot SN FORRIRY Rl Rt 0 (¢ 5pingt iﬁié%ﬁ?.ﬁ@% ¥BRgNS dife@Pupport HRPAK
(RPRNH T eRei BRI dRABHR r ISR S LI SYREIrORISIIORFRIIMIYGS BSING SO B ntions, of
flarHe ML B B ueBd ORI pHIfCA oY Ay CRISRS P BpEhARR MR AR HCRE Db s Falti SRR
aﬁﬁeébﬁ%efeedback from folks who have used Helgrind to successfully debug Qt 4 and/or KDE4 applications.

Fortunately, this can be solved using a configuration-time option (for GCC). Rebuild GCC from source, and
configure using ——disable—-linux—-futex. This makes libgomp.so use the standard POSIX threading
primitives instead. Note that this was tested using GCC 4.2.3 and has not been re-tested using more recent
GCC versions. We would appreciate hearing about any successes or failures with more recent versions.

If you must implement your own threading primitives, there are a set of client request macros in helgrind.h to
help you describe your primitives to Helgrind. You should be able to mark up mutexes, condition variables, etc,
without difficulty.

It is also possible to mark up the effects of thread-safe reference counting using the ANNOTATE_HAPPENS_BEFORE,
ANNOTATE_HAPPENS_AFTER and ANNOTATE_HAPPENS_BEFORE_FORGET_ALL, macros. Thread-safe
reference counting using an atomically incremented/decremented refcount variable causes Helgrind problems
because a one-to-zero transition of the reference count means the accessing thread has exclusive ownership of the
associated resource (normally, a C++ object) and can therefore access it (normally, to run its destructor) without
locking. Helgrind doesn’t understand this, and markup is essential to avoid false positives.

Here are recommended guidelines for marking up thread safe reference counting in C++. You only need to mark
up your release methods -- the ones which decrement the reference count. Given a class like this:

class MyClass {
unsigned int mRefCount;

void Release (void) {
unsigned int newCount = atomic_decrement (&mRefCount) ;
if (newCount == 0) {
delete this;

the release method should be marked up as follows:

void Release (void) {

unsigned int newCount = atomic_decrement (&mRefCount) ;

if (newCount == 0) {
ANNOTATE_HAPPENS_AFTER (&mRefCount) ;
ANNOTATE_HAPPENS_BEFORE_FORGET_ALL (&mRefCount) ;
delete this;

} else {
ANNOTATE_HAPPENS_BEFORE (&mRefCount) ;

There are a number of complex, mostly-theoretical objections to this scheme. From a theoretical standpoint it
appears to be impossible to devise a markup scheme which is completely correct in the sense of guaranteeing to
remove all false races. The proposed scheme however works well in practice.

127

Helgrind: a thread error detector

2. Avoid memory recycling. If you can’t avoid it, you must use tell Helgrind what is going on via the
VALGRIND_HG_CLEAN_MEMORY client request (in helgrind.h).

Helgrind is aware of standard heap memory allocation and deallocation that occurs viamalloc/free/new/delete
and from entry and exit of stack frames. In particular, when memory is deallocated via free, delete, or
function exit, Helgrind considers that memory clean, so when it is eventually reallocated, its history is irrelevant.

However, it is common practice to implement memory recycling schemes. In these, memory to be freed is not
handed to free/delete, but instead put into a pool of free buffers to be handed out again as required. The
problem is that Helgrind has no way to know that such memory is logically no longer in use, and its history is
irrelevant. Hence you must make that explicit, using the VALGRIND_HG_CLEAN_MEMORY client request to
specify the relevant address ranges. It’s easiest to put these requests into the pool manager code, and use them
either when memory is returned to the pool, or is allocated from it.

3. Avoid POSIX condition variables. If you can, use POSIX semaphores (sem_t, sem_post, sem_wait) to do
inter-thread event signalling. Semaphores with an initial value of zero are particularly useful for this.

Helgrind only partially correctly handles POSIX condition variables. This is because Helgrind can see inter-thread
dependencies betweenapthread_cond_wait callandapthread_cond_signal/pthread_cond_broadcast
call only if the waiting thread actually gets to the rendezvous first (so that it actually calls pthread_cond_wait).

It can’t see dependencies between the threads if the signaller arrives first. In the latter case, POSIX guidelines

imply that the associated boolean condition still provides an inter-thread synchronisation event, but one which is
invisible to Helgrind.

The result of Helgrind missing some inter-thread synchronisation events is to cause it to report false positives.

The root cause of this synchronisation lossage is particularly hard to understand, so an example is helpful. It was
discussed at length by Arndt Muehlenfeld ("Runtime Race Detection in Multi-Threaded Programs", Dissertation,
TU Graz, Austria). The canonical POSIX-recommended usage scheme for condition variables is as follows:

b is a Boolean condition, which is False most of the time
cv 1s a condition variable
mx 1is its associated mutex

Signaller: Waiter:

lock (mx) lock (mx)

b = True while (b == False)
signal (cv) wait (cv, mx)
unlock (mx) unlock (mx)

Assume b is False most of the time. If the waiter arrives at the rendezvous first, it enters its while-loop, waits for
the signaller to signal, and eventually proceeds. Helgrind sees the signal, notes the dependency, and all is well.

If the signaller arrives first, b is set to true, and the signal disappears into nowhere. When the waiter later arrives, it
does not enter its while-loop and simply carries on. But even in this case, the waiter code following the while-loop
cannot execute until the signaller sets b to True. Hence there is still the same inter-thread dependency, but this
time it is through an arbitrary in-memory condition, and Helgrind cannot see it.

By comparison, Helgrind’s detection of inter-thread dependencies caused by semaphore operations is believed to
be exactly correct.

As far as I know, a solution to this problem that does not require source-level annotation of condition-variable wait
loops is beyond the current state of the art.

128

Helgrind: a thread error detector

4. Make sure you are using a supported Linux distribution. At present, Helgrind only properly supports glibc-2.3
or later. This in turn means we only support glibc’s NPTL threading implementation. The old LinuxThreads
implementation is not supported.

5.If your application is using thread local wvariables, helgrind might report false positive race con-
ditions on these variables, despite being very probably race free. On Linux, you can use
--sim-hints=deactivate-pthread-stack-cache-via-hack to avoid such false positive er-
ror messages (see --sim-hints).

6. Round up all finished threads using pthread_join. Avoid detaching threads: don’t create threads in the
detached state, and don’t call pthread_detach on existing threads.

Using pthread_join to round up finished threads provides a clear synchronisation point that both Helgrind and
programmers can see. If you don’t call pthread_join on a thread, Helgrind has no way to know when it
finishes, relative to any significant synchronisation points for other threads in the program. So it assumes that the
thread lingers indefinitely and can potentially interfere indefinitely with the memory state of the program. It has
every right to assume that -- after all, it might really be the case that, for scheduling reasons, the exiting thread did
run very slowly in the last stages of its life.

7. Perform thread debugging (with Helgrind) and memory debugging (with Memcheck) together.

Helgrind tracks the state of memory in detail, and memory management bugs in the application are liable to cause
confusion. In extreme cases, applications which do many invalid reads and writes (particularly to freed memory)
have been known to crash Helgrind. So, ideally, you should make your application Memcheck-clean before using
Helgrind.

It may be impossible to make your application Memcheck-clean unless you first remove threading bugs. In
particular, it may be difficult to remove all reads and writes to freed memory in multithreaded C++ destructor
sequences at program termination. So, ideally, you should make your application Helgrind-clean before using
Memcheck.

Since this circularity is obviously unresolvable, at least bear in mind that Memcheck and Helgrind are to some
extent complementary, and you may need to use them together.

8. POSIX requires that implementations of standard I/O (printf, fprintf, fwrite, fread, etc) are thread safe.
Unfortunately GNU libc implements this by using internal locking primitives that Helgrind is unable to intercept.
Consequently Helgrind generates many false race reports when you use these functions.

Helgrind attempts to hide these errors using the standard Valgrind error-suppression mechanism. So, at least for
simple test cases, you don’t see any. Nevertheless, some may slip through. Just something to be aware of.

9. Helgrind’s error checks do not work properly inside the system threading library itself (Libpthread. so), and it
usually observes large numbers of (false) errors in there. Valgrind’s suppression system then filters these out, so
you should not see them.

If you see any race errors reported where 1ibpthread. so or 1d. so is the object associated with the innermost
stack frame, please file a bug report at http://www.valgrind.org/.

7.6. Helgrind Command-line Options

The following end-user options are available:

129

url(http://www.valgrind.org/)

Helgrind: a thread error detector

—-—free-is-write=no|yes [default: no]

When enabled (not the default), Helgrind treats freeing of heap memory as if the memory was written immediately
before the free. This exposes races where memory is referenced by one thread, and freed by another, but there is no
observable synchronisation event to ensure that the reference happens before the free.

This functionality is new in Valgrind 3.7.0, and is regarded as experimental. It is not enabled by default because its
interaction with custom memory allocators is not well understood at present. User feedback is welcomed.

—-—track-lockorders=no|yes [default: vyes]

When enabled (the default), Helgrind performs lock order consistency checking. For some buggy programs, the large
number of lock order errors reported can become annoying, particularly if you’re only interested in race errors. You
may therefore find it helpful to disable lock order checking.

—-history-level=none|approx|full [default: full]

——history-level=full (the default) causes Helgrind collects enough information about "old" accesses that it
can produce two stack traces in a race report -- both the stack trace for the current access, and the trace for the older,
conflicting access. To limit memory usage, "old" accesses stack traces are limited to a maximum of 8 entries, even if
—-—num-callers value is bigger.

Collecting such information is expensive in both speed and memory, particularly for programs that do many inter-
thread synchronisation events (locks, unlocks, etc). Without such information, it is more difficult to track down the
root causes of races. Nonetheless, you may not need it in situations where you just want to check for the presence or
absence of races, for example, when doing regression testing of a previously race-free program.

—-—history-level=none is the opposite extreme. It causes Helgrind not to collect any information about
previous accesses. This can be dramatically faster than ——history-level=full.

—-—history-level=approx provides a compromise between these two extremes. It causes Helgrind to
show a full trace for the later access, and approximate information regarding the earlier access. This approx-
imate information consists of two stacks, and the earlier access is guaranteed to have occurred somewhere be-
tween program points denoted by the two stacks. This is not as useful as showing the exact stack for the pre-
vious access (as ——history-level=full does), but it is better than nothing, and it is almost as fast as
—-history-level=none.

—-conflict-cache-size=N [default: 1000000]
This flag only has any effect at ——history-level=full.

Information about "old" conflicting accesses is stored in a cache of limited size, with LRU-style management. This
is necessary because it isn’t practical to store a stack trace for every single memory access made by the program.
Historical information on not recently accessed locations is periodically discarded, to free up space in the cache.

This option controls the size of the cache, in terms of the number of different memory addresses for which conflicting
access information is stored. If you find that Helgrind is showing race errors with only one stack instead of the
expected two stacks, try increasing this value.

The minimum value is 10,000 and the maximum is 30,000,000 (thirty times the default value). Increasing the value
by 1 increases Helgrind’s memory requirement by very roughly 100 bytes, so the maximum value will easily eat up
three extra gigabytes or so of memory.

——check-stack-refs=no|yes [default: vyes]

By default Helgrind checks all data memory accesses made by your program. This flag enables you to skip checking
for accesses to thread stacks (local variables). This can improve performance, but comes at the cost of missing races
on stack-allocated data.

130

Helgrind: a thread error detector

—-—ignore-thread-creation=<yes|no> [default: no]

Controls whether all activities during thread creation should be ignored. By default enabled only on Solaris. Solaris
provides higher throughput, parallelism and scalability than other operating systems, at the cost of more fine-grained
locking activity. This means for example that when a thread is created under glibc, just one big lock is used for
all thread setup. Solaris libc uses several fine-grained locks and the creator thread resumes its activities as soon as
possible, leaving for example stack and TLS setup sequence to the created thread. This situation confuses Helgrind as
it assumes there is some false ordering in place between creator and created thread; and therefore many types of race
conditions in the application would not be reported. To prevent such false ordering, this command line option is set to
yes by default on Solaris. All activity (loads, stores, client requests) is therefore ignored during:

* pthread_create() call in the creator thread
« thread creation phase (stack and TLS setup) in the created thread

Also new memory allocated during thread creation is untracked, that is race reporting is suppressed there. DRD does
the same thing implicitly. This is necessary because Solaris libc caches many objects and reuses them for different
threads and that confuses Helgrind.

7.7. Helgrind Monitor Commands

The Helgrind tool provides monitor commands handled by Valgrind’s built-in gdbserver (see Monitor command
handling by the Valgrind gdbserver).

einfo locks [lock_addr] shows the list of locks and their status. If 1ock_addr is given, only shows the
lock located at this address.

In the following example, helgrind knows about one lock. This lock is located at the guest address ga
0x8049a20. The lock kind is rdwr indicating a reader-writer lock. Other possible lock kinds are nonRec
(simple mutex, non recursive) and mbRec (simple mutex, possibly recursive). The lock kind is then followed by the
list of threads helding the lock. In the below example, R1:thread #6 tid 3 indicates that the helgrind thread
#6 has acquired (once, as the counter following the letter R is one) the lock in read mode. The helgrind thread nr is
incremented for each started thread. The presence of ’tid 3’ indicates that the thread #6 is has not exited yet and is
the valgrind tid 3. If a thread has terminated, then this is indicated with ’tid (exited)’.

(gdb) monitor info locks
Lock ga 0x8049a20 {
kind rdwr
{ Rl:thread #6 tid 3 }
}
(gdb)

If you give the option ——read-var-info=yes, then more information will be provided about the lock location,
such as the global variable or the heap block that contains the lock:

Lock ga 0x8049a20 {
Location 0x8049a20 is 0 bytes inside global var "s_rwlock"
declared at rwlock_race.c:17
kind rdwr
{ Rl:thread #3 tid 3 }
}

131

Helgrind: a thread error detector

eaccesshistory <addr> [<len>] shows the access history recorded for <len> (default 1) bytes starting
at <addr>. For each recorded access that overlaps with the given range, accesshistory shows the operation
type (read or write), the address and size read or written, the helgrind thread nr/valgrind tid number that did the
operation and the locks held by the thread at the time of the operation. The oldest access is shown first, the most
recent access is shown last.

In the following example, we see first a recorded write of 4 bytes by thread #7 that has modified the given 2 bytes
range. The second recorded write is the most recent recorded write : thread #9 modified the same 2 bytes as part of
a 4 bytes write operation. The list of locks held by each thread at the time of the write operation are also shown.

(gdb) monitor accesshistory 0x8049D8A 2
write of size 4 at 0x8049D88 by thread #7 tid 3
==6319== Locks held: 2, at address 0x8049D8C (and 1 that can’t be shown)

==6319== at 0x804865F: child_fnl (locked_vs_unlocked2.c:29)
==6319== by 0x400AE61: mythread_wrapper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: clone (clone.S:130)

write of size 4 at 0x8049D88 by thread #9 tid 2
==6319== Locks held: 2, at addresses 0x8049DA4 0x8049DD4

==6319== at 0x804877B: child_fn2 (locked_vs_unlocked2.c:45)
==6319== by 0x400AE61: mythread wrapper (hg_intercepts.c:234)
==6319== by 0x39B924: start_thread (pthread_create.c:297)
==6319== by 0x2F107D: clone (clone.S:130)

7.8. Helgrind Client Requests

The following client requests are defined in helgrind.h. See that file for exact details of their arguments.

* VALGRIND_HG_CLEAN_MEMORY

This makes Helgrind forget everything it knows about a specified memory range. This is particularly useful for
memory allocators that wish to recycle memory.

¢ ANNOTATE_HAPPENS_BEFORE

* ANNOTATE_HAPPENS_AFTER

¢ ANNOTATE_NEW_MEMORY

¢ ANNOTATE_RWLOCK_CREATE

* ANNOTATE_RWLOCK_DESTROY

¢ ANNOTATE_RWLOCK_ACQUIRED

¢ ANNOTATE_RWLOCK_RELEASED

These are used to describe to Helgrind, the behaviour of custom (non-POSIX) synchronisation primitives, which it

otherwise has no way to understand. See comments in helgrind.h for further documentation.

132

Helgrind: a thread error detector

7.9. A To-Do List for Helgrind

The following is a list of loose ends which should be tidied up some time.

* For lock order errors, print the complete lock cycle, rather than only doing for size-2 cycles as at present.

* The conflicting access mechanism sometimes mysteriously fails to show the conflicting access’ stack, even when
provided with unbounded storage for conflicting access info. This should be investigated.

* Document races caused by GCC’s thread-unsafe code generation for speculative stores. In the interim see
http://gcc.gnu.org/ml/gcc/2007-10/msg00266.html andhttp://lkml.org/lkml/2007/10/24/673.

*Don’t update the lock-order graph, and don’t check for errors, when a "try"-style lock operation happens (e.g.
pthread_mutex_trylock). Such calls do not add any real restrictions to the locking order, since they can
always fail to acquire the lock, resulting in the caller going off and doing Plan B (presumably it will have a Plan B).
Doing such checks could generate false lock-order errors and confuse users.

* Performance can be very poor. Slowdowns on the order of 100:1 are not unusual. There is limited scope for
performance improvements.

133

8. DRD: a thread error detector

To use this tool, you must specify ——tool=drd on the Valgrind command line.

8.1. Overview

DRD is a Valgrind tool for detecting errors in multithreaded C and C++ programs. The tool works for any program that
uses the POSIX threading primitives or that uses threading concepts built on top of the POSIX threading primitives.

8.1.1. Multithreaded Programming Paradigms

There are two possible reasons for using multithreading in a program:

* To model concurrent activities. Assigning one thread to each activity can be a great simplification compared to
multiplexing the states of multiple activities in a single thread. This is why most server software and embedded
software is multithreaded.

* To use multiple CPU cores simultaneously for speeding up computations. This is why many High Performance
Computing (HPC) applications are multithreaded.

Multithreaded programs can use one or more of the following programming paradigms. Which paradigm is appropriate
depends e.g. on the application type. Some examples of multithreaded programming paradigms are:

* Locking. Data that is shared over threads is protected from concurrent accesses via locking. E.g. the POSIX threads
library, the Qt library and the Boost.Thread library support this paradigm directly.

» Message passing. No data is shared between threads, but threads exchange data by passing messages to each other.
Examples of implementations of the message passing paradigm are MPI and CORBA.

* Automatic parallelization. A compiler converts a sequential program into a multithreaded program. The original
program may or may not contain parallelization hints. One example of such parallelization hints is the OpenMP
standard. In this standard a set of directives are defined which tell a compiler how to parallelize a C, C++ or Fortran
program. OpenMP is well suited for computational intensive applications. As an example, an open source image
processing software package is using OpenMP to maximize performance on systems with multiple CPU cores. GCC
supports the OpenMP standard from version 4.2.0 on.

* Software Transactional Memory (STM). Any data that is shared between threads is updated via transactions. After
each transaction it is verified whether there were any conflicting transactions. If there were conflicts, the transaction
is aborted, otherwise it is committed. This is a so-called optimistic approach. There is a prototype of the Intel C++
Compiler available that supports STM. Research about the addition of STM support to GCC is ongoing.

DRD supports any combination of multithreaded programming paradigms as long as the implementation of these
paradigms is based on the POSIX threads primitives. DRD however does not support programs that use e.g. Linux’
futexes directly. Attempts to analyze such programs with DRD will cause DRD to report many false positives.

8.1.2. POSIX Threads Programming Model

POSIX threads, also known as Pthreads, is the most widely available threading library on Unix systems.

The POSIX threads programming model is based on the following abstractions:

134

DRD: a thread error detector

* A shared address space. All threads running within the same process share the same address space. All data, whether
shared or not, is identified by its address.

* Regular load and store operations, which allow to read values from or to write values to the memory shared by all
threads running in the same process.

» Atomic store and load-modify-store operations. While these are not mentioned in the POSIX threads standard, most
MiCroprocessors support atomic memory operations.

* Threads. Each thread represents a concurrent activity.

* Synchronization objects and operations on these synchronization objects. The following types of synchronization
objects have been defined in the POSIX threads standard: mutexes, condition variables, semaphores, reader-writer
synchronization objects, barriers and spinlocks.

Which source code statements generate which memory accesses depends on the memory model of the programming
language being used. There is not yet a definitive memory model for the C and C++ languages. For a draft memory
model, see also the document WG21/N2338: Concurrency memory model compiler consequences.

For more information about POSIX threads, see also the Single UNIX Specification version 3, also known as IEEE
Std 1003.1.

8.1.3. Multithreaded Programming Problems

Depending on which multithreading paradigm is being used in a program, one or more of the following problems can
occur:

* Data races. One or more threads access the same memory location without sufficient locking. Most but not all data
races are programming errors and are the cause of subtle and hard-to-find bugs.
* Lock contention. One thread blocks the progress of one or more other threads by holding a lock too long.

* Improper use of the POSIX threads API. Most implementations of the POSIX threads API have been optimized for
runtime speed. Such implementations will not complain on certain errors, e.g. when a mutex is being unlocked by
another thread than the thread that obtained a lock on the mutex.

* Deadlock. A deadlock occurs when two or more threads wait for each other indefinitely.
* False sharing. If threads that run on different processor cores access different variables located in the same cache

line frequently, this will slow down the involved threads a lot due to frequent exchange of cache lines.

Although the likelihood of the occurrence of data races can be reduced through a disciplined programming style, a tool
for automatic detection of data races is a necessity when developing multithreaded software. DRD can detect these, as
well as lock contention and improper use of the POSIX threads APL

8.1.4. Data Race Detection

The result of load and store operations performed by a multithreaded program depends on the order in which memory
operations are performed. This order is determined by:

1. All memory operations performed by the same thread are performed in program order, that is, the order determined
by the program source code and the results of previous load operations.

135

url(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html)
url(http://www.opengroup.org/onlinepubs/000095399/idx/threads.html)
url(http://www.opengroup.org/onlinepubs/000095399/idx/threads.html)

DRD: a thread error detector

2. Synchronization operations determine certain ordering constraints on memory operations performed by different
threads. These ordering constraints are called the synchronization order.

The combination of program order and synchronization order is called the happens-before relationship. This concept
was first defined by S. Adve et al in the paper Detecting data races on weak memory systems, ACM SIGARCH
Computer Architecture News, v.19 n.3, p.234-243, May 1991.

Two memory operations conflict if both operations are performed by different threads, refer to the same memory
location and at least one of them is a store operation.

A multithreaded program is data-race free if all conflicting memory accesses are ordered by synchronization
operations.

A well known way to ensure that a multithreaded program is data-race free is to ensure that a locking discipline is
followed. It is e.g. possible to associate a mutex with each shared data item, and to hold a lock on the associated mutex
while the shared data is accessed.

All programs that follow a locking discipline are data-race free, but not all data-race free programs follow a locking
discipline. There exist multithreaded programs where access to shared data is arbitrated via condition variables,
semaphores or barriers. As an example, a certain class of HPC applications consists of a sequence of computation
steps separated in time by barriers, and where these barriers are the only means of synchronization. Although there
are many conflicting memory accesses in such applications and although such applications do not make use mutexes,
most of these applications do not contain data races.

There exist two different approaches for verifying the correctness of multithreaded programs at runtime. The approach
of the so-called Eraser algorithm is to verify whether all shared memory accesses follow a consistent locking strategy.
And the happens-before data race detectors verify directly whether all interthread memory accesses are ordered by
synchronization operations. While the last approach is more complex to implement, and while it is more sensitive to
OS scheduling, it is a general approach that works for all classes of multithreaded programs. An important advantage
of happens-before data race detectors is that these do not report any false positives.

DRD is based on the happens-before algorithm.

8.2. Using DRD
8.2.1. DRD Command-line Options

The following command-line options are available for controlling the behavior of the DRD tool itself:

——check-stack-var=<yes|no> [default: no]
Controls whether DRD detects data races on stack variables. Verifying stack variables is disabled by default because
most programs do not share stack variables over threads.

——exclusive-threshold=<n> [default: off]
Print an error message if any mutex or writer lock has been held longer than the time specified in milliseconds. This
option enables the detection of lock contention.

—--join-list-vol=<n> [default: 10]

Data races that occur between a statement at the end of one thread and another thread can be missed if memory access
information is discarded immediately after a thread has been joined. This option allows to specify for how many joined
threads memory access information should be retained.

136

DRD: a thread error detector

—-—first-race-only=<yes|no> [default: no]
Whether to report only the first data race that has been detected on a memory location or all data races that have been
detected on a memory location.

——free-is-write=<yes|no> [default: no]
Whether to report races between accessing memory and freeing memory. Enabling this option may cause DRD to run
slightly slower. Notes:

* Don’t enable this option when using custom memory allocators that use the VG_USERREQ__ MALLOCLIKE_BLOCK
and VG_USERREQ__ FREELIKE_BLOCK because that would result in false positives.

*Don’t enable this option when using reference-counted objects because that will result in false pos-
itives, even when that code has been annotated properly with ANNOTATE_HAPPENS_BEFORE and
ANNOTATE_HAPPENS_AFTER. See e.g. the output of the following command for an example: valgrind
-—tool=drd --free-is-write=yes drd/tests/annotate_smart_pointer.

——-report-signal-unlocked=<yes|no> [default: yes]

Whether to report calls to pthread_cond_signal and pthread_cond_broadcast where the mutex associ-
ated with the signal through pthread_cond_wait or pthread_cond_timed_waitis not locked at the time
the signal is sent. Sending a signal without holding a lock on the associated mutex is a common programming error
which can cause subtle race conditions and unpredictable behavior. There exist some uncommon synchronization
patterns however where it is safe to send a signal without holding a lock on the associated mutex.

—-—-segment-merging=<yes|no> [default: vyes]

Controls segment merging. Segment merging is an algorithm to limit memory usage of the data race detection
algorithm. Disabling segment merging may improve the accuracy of the so-called ’other segments’ displayed in
race reports but can also trigger an out of memory error.

—--segment-merging-interval=<n> [default: 10]

Perform segment merging only after the specified number of new segments have been created. This is an advanced
configuration option that allows to choose whether to minimize DRD’s memory usage by choosing a low value or to
let DRD run faster by choosing a slightly higher value. The optimal value for this parameter depends on the program
being analyzed. The default value works well for most programs.

——-shared-threshold=<n> [default: off]
Print an error message if a reader lock has been held longer than the specified time (in milliseconds). This option
enables the detection of lock contention.

——show—-confl-seg=<yes|no> [default: vyes]
Show conflicting segments in race reports. Since this information can help to find the cause of a data race, this option
is enabled by default. Disabling this option makes the output of DRD more compact.

—-—-show-stack—-usage=<yes|no> [default: no]

Print stack usage at thread exit time. When a program creates a large number of threads it becomes important to limit
the amount of virtual memory allocated for thread stacks. This option makes it possible to observe how much stack
memory has been used by each thread of the client program. Note: the DRD tool itself allocates some temporary data
on the client thread stack. The space necessary for this temporary data must be allocated by the client program when
it allocates stack memory, but is not included in stack usage reported by DRD.

137

DRD: a thread error detector

—-—ignore-thread-creation=<yes|no> [default: no]

Controls whether all activities during thread creation should be ignored. By default enabled only on Solaris. Solaris
provides higher throughput, parallelism and scalability than other operating systems, at the cost of more fine-grained
locking activity. This means for example that when a thread is created under glibc, just one big lock is used for
all thread setup. Solaris libc uses several fine-grained locks and the creator thread resumes its activities as soon as
possible, leaving for example stack and TLS setup sequence to the created thread. This situation confuses DRD as it
assumes there is some false ordering in place between creator and created thread; and therefore many types of race
conditions in the application would not be reported. To prevent such false ordering, this command line option is set to
yes by default on Solaris. All activity (loads, stores, client requests) is therefore ignored during:

e pthread_create() call in the creator thread

* thread creation phase (stack and TLS setup) in the created thread

The following options are available for monitoring the behavior of the client program:

—-—trace—-addr=<address> [default: none]

Trace all load and store activity for the specified address. This option may be specified more than once.

—-—ptrace-addr=<address> [default: none]

Trace all load and store activity for the specified address and keep doing that even after the memory at that address has

been freed and reallocated.

—-—trace-alloc=<yes|no> [default: no]

Trace all memory allocations and deallocations. May produce a huge amount of output.

—-—trace-barrier=<yes|no> [default: no]
Trace all barrier activity.

——trace—-cond=<yes|no> [default: noj
Trace all condition variable activity.

——trace-fork—-join=<yes|no> [default: no]
Trace all thread creation and all thread termination events.

——trace-hb=<yes|no> [default: no]
Trace execution of the ANNOTATE_HAPPENS BEFORE (),
ANNOTATE_HAPPENS_DONE () client requests.

——trace-mutex=<yes|no> [default: no]
Trace all mutex activity.

—-—trace-rwlock=<yes|no> [default: no]
Trace all reader-writer lock activity.

ANNOTATE_HAPPENS_AFTER ()

and

138

DRD: a thread error detector

—-—trace-semaphore=<yes|no> [default: no]
Trace all semaphore activity.

8.2.2. Detected Errors: Data Races

DRD prints a message every time it detects a data race. Please keep the following in mind when interpreting DRD’s
output:

¢ Every thread is assigned a thread ID by the DRD tool. A thread ID is a number. Thread ID’s start at one and are
never recycled.

* The term segment refers to a consecutive sequence of load, store and synchronization operations, all issued by the
same thread. A segment always starts and ends at a synchronization operation. Data race analysis is performed
between segments instead of between individual load and store operations because of performance reasons.

* There are always at least two memory accesses involved in a data race. Memory accesses involved in a data race are
called conflicting memory accesses. DRD prints a report for each memory access that conflicts with a past memory
access.

Below you can find an example of a message printed by DRD when it detects a data race:
$ valgrind —--tool=drd --read-var-info=yes drd/tests/rwlock_race

==9466== Thread 3:
==9466== Conflicting load by thread 3 at 0x006020b8 size 4

==9466== at 0x400B6C: thread_func (rwlock_race.c:29)

==9466== by 0x4C291DF: vg_thread wrapper (drd_pthread intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /1lib64/libpthread-2.8.s0)
==9466== by 0x53250CC: clone (in /1ib64/1libc-2.8.s0)

==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
==9466== Other segment start (thread 2)

==9466== at 0x4C2847D: pthread_rwlock_rdlockx (drd_pthread_intercepts.c:813)
==9466== by 0x400B6B: thread_func (rwlock_race.c:28)

==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_ intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /1ib64/libpthread-2.8.s0)

==9466== by 0x53250CC: clone (in /1ib64/1libc-2.8.s0)

==9466== Other segment end (thread 2)

==9466== at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
==9466== by 0x400B84: thread_func (rwlock_race.c:30)

==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_ intercepts.c:186)
==9466== by 0x4E3403F: start_thread (in /1ib64/libpthread-2.8.s0)

==9466== by 0x53250CC: clone (in /1ib64/1libc-2.8.s0)

The above report has the following meaning:

* The number in the column on the left is the process ID of the process being analyzed by DRD.

139

DRD: a thread error detector

* The first line ("Thread 3") tells you the thread ID for the thread in which context the data race has been detected.

* The next line tells which kind of operation was performed (load or store) and by which thread. On the same line the
start address and the number of bytes involved in the conflicting access are also displayed.

* Next, the call stack of the conflicting access is displayed. If your program has been compiled with debug information
(—9), this call stack will include file names and line numbers. The two bottommost frames in this call stack (c1lone
and start_thread) show how the NPTL starts a thread. The third frame (vg_thread_wrapper) is added by
DRD. The fourth frame (thread_func) is the first interesting line because it shows the thread entry point, that is
the function that has been passed as the third argument to pthread_create.

* Next, the allocation context for the conflicting address is displayed. For dynamically allocated data the allocation
call stack is shown. For static variables and stack variables the allocation context is only shown when the
option ——read-var—info=yes has been specified. Otherwise DRD will print Allocation context:
unknown.

* A conflicting access involves at least two memory accesses. For one of these accesses an exact call stack is displayed,
and for the other accesses an approximate call stack is displayed, namely the start and the end of the segments of
the other accesses. This information can be interpreted as follows:

1. Start at the bottom of both call stacks, and count the number stack frames with identical function name, file name
and line number. In the above example the three bottommost frames are identical (clone, start_thread
and vg_thread_wrapper).

2. The next higher stack frame in both call stacks now tells you between in which source code region the other
memory access happened. The above output tells that the other memory access involved in the data race happened
between source code lines 28 and 30 in file rwlock_race.c.

8.2.3. Detected Errors: Lock Contention

Threads must be able to make progress without being blocked for too long by other threads. Sometimes a thread
has to wait until a mutex or reader-writer synchronization object is unlocked by another thread. This is called lock
contention.

Lock contention causes delays. Such delays should be as short as possible. The two command line options
—-—exclusive-threshold=<n> and —-shared-threshold=<n> make it possible to detect excessive lock
contention by making DRD report any lock that has been held longer than the specified threshold. An example:

$ valgrind —-tool=drd —--exclusive-threshold=10 drd/tests/hold_lock —-i 500

==10668== Acquired at:

==10668== at 0x4C267C8: pthread mutex_lock (drd_pthread_intercepts.c:395)
==10668== by 0x400D92: main (hold_lock.c:51)

==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms) .
==10668== at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
==10668== by 0x400DB5: main (hold_lock.c:55)

The hold_lock test program holds a lock as long as specified by the —1i (interval) argument. The DRD output
reports that the lock acquired at line 51 in source file hold_lock. c and released at line 55 was held during 503 ms,
while a threshold of 10 ms was specified to DRD.

140

DRD: a thread error detector

8.2.4. Detected Errors: Misuse of the POSIX threads API

DRD is able to detect and report the following misuses of the POSIX threads API:
* Passing the address of one type of synchronization object (e.g. a mutex) to a POSIX API call that expects a pointer
to another type of synchronization object (e.g. a condition variable).
* Attempts to unlock a mutex that has not been locked.
 Attempts to unlock a mutex that was locked by another thread.
* Attempts to lock a mutex of type PTHREAD_MUTEX_NORMAL or a spinlock recursively.
* Destruction or deallocation of a locked mutex.
* Sending a signal to a condition variable while no lock is held on the mutex associated with the condition variable.

e Calling pthread_cond_wait on a mutex that is not locked, that is locked by another thread or that has been
locked recursively.

* Associating two different mutexes with a condition variable through pthread_cond_wait.

* Destruction or deallocation of a condition variable that is being waited upon.

* Destruction or deallocation of a locked reader-writer synchronization object.

* Attempts to unlock a reader-writer synchronization object that was not locked by the calling thread.

* Attempts to recursively lock a reader-writer synchronization object exclusively.

* Attempts to pass the address of a user-defined reader-writer synchronization object to a POSIX threads function.

* Attempts to pass the address of a POSIX reader-writer synchronization object to one of the annotations for user-
defined reader-writer synchronization objects.

* Reinitialization of a mutex, condition variable, reader-writer lock, semaphore or barrier.
* Destruction or deallocation of a semaphore or barrier that is being waited upon.
» Missing synchronization between barrier wait and barrier destruction.

* Exiting a thread without first unlocking the spinlocks, mutexes or reader-writer synchronization objects that were
locked by that thread.

¢ Passing an invalid thread ID to pthread_join or pthread_cancel.

8.2.5. Client Requests

Just as for other Valgrind tools it is possible to let a client program interact with the DRD tool through client requests.
In addition to the client requests several macros have been defined that allow to use the client requests in a convenient
way.

The interface between client programs and the DRD tool is defined in the header file <valgrind/drd.h>. The
available macros and client requests are:

141

DRD: a thread error detector

* The macro DRD_GET_VALGRIND_THREADID and the corresponding client request VG_USERREQ__ DRD_GET_VALGRIND_THR
Query the thread ID that has been assigned by the Valgrind core to the thread executing this client request. Valgrind’s
thread ID’s start at one and are recycled in case a thread stops.

* The macro DRD_GET_DRD_THREADID and the corresponding client request VG_USERREQ__DRD_GET_DRD_THREAD_ID.
Query the thread ID that has been assigned by DRD to the thread executing this client request. These are the thread
ID’s reported by DRD in data race reports and in trace messages. DRD’s thread ID’s start at one and are never
recycled.

* The macros DRD_IGNORE_VAR (x), ANNOTATE_TRACE_MEMORY (&x) and the corresponding client request
VG_USERREQ__DRD_START_SUPPRESSION. Some applications contain intentional races. There exist e.g.
applications where the same value is assigned to a shared variable from two different threads. It may be more
convenient to suppress such races than to solve these. This client request allows to suppress such races.

* The macro DRD_STOP_IGNORING_VAR (x) and the corresponding client request VG_USERREQ__DRD_FINISH_SUPPRESSIC
Tell DRD to no longer ignore data races for the address range that was suppressed either via the macro
DRD_IGNORE_VAR (x) or via the client request VG_USERREQ__DRD_START_SUPPRESSION.

* The macro DRD_TRACE_VAR (x). Trace all load and store activity for the address range starting at &x and
occupying sizeof (x) bytes. When DRD reports a data race on a specified variable, and it’s not immediately
clear which source code statements triggered the conflicting accesses, it can be very helpful to trace all activity on
the offending memory location.

* The macro DRD_STOP_TRACING_VAR (x). Stop tracing load and store activity for the address range starting at
&x and occupying sizeof (x) bytes.

* The macro ANNOTATE_TRACE_MEMORY (&x). Trace all load and store activity that touches at least the single
byte at the address &x.

* The client request VG_USERREQ__DRD_START_TRACE_ADDR, which allows to trace all load and store activity
for the specified address range.

* The client request VG_USERREQ__ DRD_STOP_TRACE_ADDR. Do no longer trace load and store activity for the
specified address range.

* The macro ANNOTATE_HAPPENS_BEFORE (addr) tells DRD to insert a mark. Insert this macro just after an
access to the variable at the specified address has been performed.

*The macro ANNOTATE_HAPPENS_AFTER (addr) tells DRD that the next access to the variable at
the specified address should be considered to have happened after the access just before the latest
ANNOTATE_HAPPENS_BEFORE (addr) annotation that references the same variable. The purpose of
these two macros is to tell DRD about the order of inter-thread memory accesses implemented via atomic memory
operations. See also drd/tests/annotate_smart_pointer.cpp for an example.

*The macro ANNOTATE_RWLOCK_CREATE (rwlock) tells DRD that the object at address rwlock is a
reader-writer synchronization object that is not a pthread_rwlock_t synchronization object. See also
drd/tests/annotate_rwlock.c for an example.

* The macro ANNOTATE_RWLOCK_DESTROY (rwlock) tells DRD that the reader-writer synchronization object
at address rwlock has been destroyed.

* The macro ANNOTATE_WRITERLOCK_ACQUIRED (rwlock) tells DRD that a writer lock has been acquired on
the reader-writer synchronization object at address rwlock.

* The macro ANNOTATE_READERLOCK_ACQUIRED (rwlock) tells DRD that a reader lock has been acquired on
the reader-writer synchronization object at address rwlock.

142

DRD: a thread error detector

¢ The macro ANNOTATE_RWLOCK_ACQUIRED (rwlock, is_w) tells DRD that a writer lock (when is_w !=
0) or that a reader lock (when is_w == 0) has been acquired on the reader-writer synchronization object at
address rwlock.

¢ The macro ANNOTATE_WRITERLOCK_RELEASED (rwlock) tells DRD that a writer lock has been released on
the reader-writer synchronization object at address rwlock.

¢ The macro ANNOTATE_READERLOCK_RELEASED (rwlock) tells DRD that a reader lock has been released on
the reader-writer synchronization object at address rwlock.

¢ The macro ANNOTATE_RWLOCK_RELEASED (rwlock, is_w) tells DRD that a writer lock (when is_w !=
0) or that a reader lock (when is_w == 0) has been released on the reader-writer synchronization object at address
rwlock.

eThe macro ANNOTATE_BARRIER_INIT (barrier, count, reinitialization_allowed) tells
DRD that a new barrier object at the address barrier has been initialized, that count threads participate in
each barrier and also whether or not barrier reinitialization without intervening destruction should be reported as an
error. See also drd/tests/annotate_barrier. c for an example.

* The macro ANNOTATE_BARRIER_DESTROY (barrier) tells DRD that a barrier object is about to be destroyed.

* The macro ANNOTATE_BARRIER_WAIT_BEFORE (barrier) tells DRD that waiting for a barrier will start.
* The macro ANNOTATE_BARRIER_WAIT_AFTER (barrier) tells DRD that waiting for a barrier has finished.

* The macro ANNOTATE_BENIGN_RACE_SIZED (addr, size, descr) tells DRD that any races detected
on the specified address are benign and hence should not be reported. The descr argument is ignored but can be
used to document why data races on addr are benign.

* The macro ANNOTATE_BENIGN_RACE_STATIC (var, descr) tells DRD that any races detected on the
specified static variable are benign and hence should not be reported. The descr argument is ignored but can
be used to document why data races on var are benign. Note: this macro can only be used in C++ programs and
not in C programs.

* The macro ANNOTATE_IGNORE_READS_BEGIN tells DRD to ignore all memory loads performed by the current
thread.

* The macro ANNOTATE_IGNORE_READS_END tells DRD to stop ignoring the memory loads performed by the
current thread.

* The macro ANNOTATE_IGNORE_WRITES_BEGIN tells DRD to ignore all memory stores performed by the
current thread.

* The macro ANNOTATE_IGNORE_WRITES_END tells DRD to stop ignoring the memory stores performed by the
current thread.

*The macro ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN tells DRD to ignore all memory accesses
performed by the current thread.

* The macro ANNOTATE_IGNORE_READS_AND_WRITES_END tells DRD to stop ignoring the memory accesses
performed by the current thread.

* The macro ANNOTATE_NEW_MEMORY (addr, size) tells DRD that the specified memory range has been
allocated by a custom memory allocator in the client program and that the client program will start using this
memory range.

143

DRD: a thread error detector

* The macro ANNOTATE_THREAD_NAME (name) tells DRD to associate the specified name with the current thread
and to include this name in the error messages printed by DRD.

* The macros VALGRIND_MALLOCLIKE_BLOCK and VALGRIND_FREELIKE_BLOCK from the Valgrind core

are implemented; they are described in The Client Request mechanism.

Note: if you compiled Valgrind yourself, the header file <valgrind/drd.h> will have been installed in the
directory /usr/include by the command make install. If you obtained Valgrind by installing it as a package
however, you will probably have to install another package with a name like valgrind-devel before Valgrind’s
header files are available.

8.2.6. Debugging C++11 Programs

If you want to use the C++11 class std::thread you will need to do the following to annotate the std::shared_ptr<>
objects used in the implementation of that class:

* Add the following code at the start of a common header or at the start of each source file, before any C++ header
files are included:

#include <valgrind/drd.h>
#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE (addr) ANNOTATE_HAPPENS_BEFORE (addr)

#define _GLIBCXX_ SYNCHRONIZATION_HAPPENS_AFTER (addr) ANNOTATE_HAPPENS_AFTER (addr)

*Download the gcc source code and from source file libstdc++-v3/src/c++11/thread.cc copy the implementa-
tion of the execute_native_thread_routine () and std::thread:: M start_thread() func-
tions into a source file that is linked with your application. Make sure that also in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.

For more information, see also The GNU C++ Library Manual, Debugging Support (http://gcc.gnu.org/onlinedocs/libstdc++/manual/deb

8.2.7. Debugging GNOME Programs

GNOME applications use the threading primitives provided by the g1 ib and gthread libraries. These libraries are
built on top of POSIX threads, and hence are directly supported by DRD. Please keep in mind that you have to call
g_thread_init before creating any threads, or DRD will report several data races on glib functions. See also the
GLib Reference Manual for more information about g_thread_init.

One of the many facilities provided by the glib library is a block allocator, called g_slice. You have
to disable this block allocator when using DRD by adding the following to the shell environment variables:
G_SLICE=always-malloc. See also the GLib Reference Manual for more information.

8.2.8. Debugging Boost.Thread Programs

The Boost.Thread library is the threading library included with the cross-platform Boost Libraries. This threading
library is an early implementation of the upcoming C++0x threading library.

Applications that use the Boost.Thread library should run fine under DRD.

More information about Boost.Thread can be found here:

144

url(http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html)
url(http://library.gnome.org/devel/glib/stable/glib-Threads.html)
url(http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html)

DRD: a thread error detector

* Anthony Williams, Boost.Thread Library Documentation, Boost website, 2007.

* Anthony Williams, What’s New in Boost Threads?, Recent changes to the Boost Thread library, Dr. Dobbs
Magazine, October 2008.

8.2.9. Debugging OpenMP Programs

OpenMP stands for Open Multi-Processing. The OpenMP standard consists of a set of compiler directives for C, C++
and Fortran programs that allows a compiler to transform a sequential program into a parallel program. OpenMP is
well suited for HPC applications and allows to work at a higher level compared to direct use of the POSIX threads
API. While OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still contain data races. So
it definitely makes sense to verify OpenMP programs with a thread checking tool.

DRD supports OpenMP shared-memory programs generated by GCC. GCC supports OpenMP since version 4.2.0.
GCC’s runtime support for OpenMP programs is provided by a library called 1ibgomp. The synchronization
primitives implemented in this library use Linux’ futex system call directly, unless the library has been configured
with the ——disable-1linux-futex option. DRD only supports libgomp libraries that have been configured with
this option and in which symbol information is present. For most Linux distributions this means that you will have to
recompile GCC. See also the script drd/scripts/download-and-build-gcc in the Valgrind source tree for
an example of how to compile GCC. You will also have to make sure that the newly compiled 1ibgomp. so library
is loaded when OpenMP programs are started. This is possible by adding a line similar to the following to your shell
startup script:

export LD_LIBRARY PATH=~/gcc-4.4.0/1ib64:~/gcc-4.4.0/1ib:

As an example, the test OpenMP test program drd/tests/omp_matinv triggers a data race when the option -r
has been specified on the command line. The data race is triggered by the following code:

fpragma omp parallel for private(3J)
for (j =0; j < rows; J++)
{
if (1 !'= 3)
{
const elem_t factor = a[j » cols + i];
for (k = 0; k < cols; k++)
{
al[j x cols + k] —= a[i * cols + k] % factor;
}
}
}

The above code is racy because the variable k has not been declared private. DRD will print the following error
message for the above code:

145

url(http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html)
url(http://www.ddj.com/cpp/211600441)

DRD: a thread error detector

$ valgrind —-tool=drd —--check-stack-var=yes —-read-var—-info=yes drd/tests/omp_matinv 3 -t 2 -

Conflicting store by thread 1/1 at Ox7fefffbc4 size 4
at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
by 0x401211: gj (omp_matinv.c:159)
by 0x40166A: invert_matrix (omp_matinv.c:238)
by 0x4019B4: main (omp_matinv.c:316)
Location Ox7fefffbcd4 is 0 bytes inside local var "k"
declared at omp_matinv.c:160, in frame #0 of thread 1

In the above output the function name gj.omp_fn. 0 has been generated by GCC from the function name gj. The
allocation context information shows that the data race has been caused by modifying the variable k.

Note: for GCC versions before 4.4.0, no allocation context information is shown. With these GCC versions the most
usable information in the above output is the source file name and the line number where the data race has been
detected (omp_matinv.c:203).

For more information about OpenMP, see also openmp.org.

8.2.10. DRD and Custom Memory Allocators

DRD tracks all memory allocation events that happen via the standard memory allocation and deallocation functions
(malloc, free, new and delete), via entry and exit of stack frames or that have been annotated with Valgrind’s
memory pool client requests. DRD uses memory allocation and deallocation information for two purposes:

* To know where the scope ends of POSIX objects that have not been destroyed explicitly. It is e.g. not required
by the POSIX threads standard to call pthread_mutex_destroy before freeing the memory in which a mutex
object resides.

* To know where the scope of variables ends. If e.g. heap memory has been used by one thread, that thread frees that
memory, and another thread allocates and starts using that memory, no data races must be reported for that memory.

It is essential for correct operation of DRD that the tool knows about memory allocation and deallocation events. When
analyzing a client program with DRD that uses a custom memory allocator, either instrument the custom memory
allocator with the VALGRIND_MALLOCLIKE_BLOCK and VALGRIND_ FREELIKE_BLOCK macros or disable the
custom memory allocator.

As an example, the GNU libstdc++ library can be configured to use standard memory allocation functions instead
of memory pools by setting the environment variable GLIBCXX_FORCE_NEW. For more information, see also the
libstdc++ manual.

8.2.11. DRD Versus Memcheck

It is essential for correct operation of DRD that there are no memory errors such as dangling pointers in the client
program. Which means that it is a good idea to make sure that your program is Memcheck-clean before you analyze
it with DRD. It is possible however that some of the Memcheck reports are caused by data races. In this case it makes
sense to run DRD before Memcheck.

146

url(http://openmp.org/)
url(http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html)

DRD: a thread error detector

So which tool should be run first? In case both DRD and Memcheck complain about a program, a possible approach
is to run both tools alternatingly and to fix as many errors as possible after each run of each tool until none of the two
tools prints any more error messages.

8.2.12. Resource Requirements

The requirements of DRD with regard to heap and stack memory and the effect on the execution time of client programs
are as follows:

* When running a program under DRD with default DRD options, between 1.1 and 3.6 times more memory will be
needed compared to a native run of the client program. More memory will be needed if loading debug information
has been enabled (——read-var—-info=yes).

* DRD allocates some of its temporary data structures on the stack of the client program threads. This amount of data
is limited to 1 - 2 KB. Make sure that thread stacks are sufficiently large.

* Most applications will run between 20 and 50 times slower under DRD than a native single-threaded run. The
slowdown will be most noticeable for applications which perform frequent mutex lock / unlock operations.

8.2.13. Hints and Tips for Effective Use of DRD

The following information may be helpful when using DRD:

* Make sure that debug information is present in the executable being analyzed, such that DRD can print function
name and line number information in stack traces. Most compilers can be told to include debug information via
compiler option —g.

* Compile with option —01 instead of —00. This will reduce the amount of generated code, may reduce the amount
of debug info and will speed up DRD’s processing of the client program. For more information, see also Getting
started.

*If DRD reports any errors on libraries that are part of your Linux distribution like e.g. libc.so or
libstdc++. so, installing the debug packages for these libraries will make the output of DRD a lot more
detailed.

* When using C++, do not send output from more than one thread to std: : cout. Doing so would not only generate
multiple data race reports, it could also result in output from several threads getting mixed up. Either use printf
or do the following:

1. Derive a class from std: : ost reambuf and let that class send output line by line to stdout. This will avoid
that individual lines of text produced by different threads get mixed up.

2. Create one instance of std: :ostream for each thread. This makes stream formatting settings thread-local.
Pass a per-thread instance of the class derived from std: : ostreambuf to the constructor of each instance.

3. Let each thread send its output to its own instance of std: : ost ream instead of std: : cout.

147

DRD: a thread error detector

8.3. Using the POSIX Threads API Effectively
8.3.1. Mutex types

The Single UNIX Specification version two defines the following four mutex types (see also the documentation of
pthread_mutexattr_settype):

normal, which means that no error checking is performed, and that the mutex is non-recursive.
* error checking, which means that the mutex is non-recursive and that error checking is performed.
* recursive, which means that a mutex may be locked recursively.

e default, which means that error checking behavior is undefined, and that the behavior for recursive locking is also
undefined. Or: portable code must neither trigger error conditions through the Pthreads API nor attempt to lock a
mutex of default type recursively.

In complex applications it is not always clear from beforehand which mutex will be locked recursively and which
mutex will not be locked recursively. Attempts lock a non-recursive mutex recursively will result in race conditions
that are very hard to find without a thread checking tool. So either use the error checking mutex type and consistently
check the return value of Pthread API mutex calls, or use the recursive mutex type.

8.3.2. Condition variables

A condition variable allows one thread to wake up one or more other threads. Condition variables are often used to
notify one or more threads about state changes of shared data. Unfortunately it is very easy to introduce race conditions
by using condition variables as the only means of state information propagation. A better approach is to let threads
poll for changes of a state variable that is protected by a mutex, and to use condition variables only as a thread wakeup
mechanism. See also the source file drd/tests/monitor_example.cpp for an example of how to implement
this concept in C++. The monitor concept used in this example is a well known and very useful concept -- see also
Wikipedia for more information about the monitor concept.

8.3.3. pthread_cond_timedwait and timeouts

Historically the function pthread_cond_timedwait only allowed the specification of an absolute timeout, that is
a timeout independent of the time when this function was called. However, almost every call to this function expresses
a relative timeout. This typically happens by passing the sum of clock_gettime (CLOCK_REALTIME) and a
relative timeout as the third argument. This approach is incorrect since forward or backward clock adjustments by e.g.
ntpd will affect the timeout. A more reliable approach is as follows:

*When initializing a condition variable through pthread cond_init, specify that the timeout of
pthread_cond_timedwait will use the clock CLOCK_MONOTONIC instead of CLOCK_REALTIME.
You can do this via pthread_condattr_setclock (..., CLOCK_MONOTONIC).

* When calling pthread_cond_timedwait, pass the sum of clock_gettime (CLOCK_MONOTONIC) and a
relative timeout as the third argument.

148

url(http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html)
url(http://en.wikipedia.org/wiki/Monitor_(synchronization))

DRD: a thread error detector

See also drd/tests/monitor_example.cpp for an example.

8.4. Limitations

DRD currently has the following limitations:

* DRD, just like Memcheck, will refuse to start on Linux distributions where all symbol information has been removed
from 1d. so. This is e.g. the case for the PPC editions of openSUSE and Gentoo. You will have to install the glibc
debuginfo package on these platforms before you can use DRD. See also openSUSE bug 396197 and Gentoo bug
214065.

* With gcc 4.4.3 and before, DRD may report data races on the C++ class std: : st ring in a multithreaded program.
This is a know 1ibstdc++ issue -- see also GCC bug 40518 for more information.

* If you compile the DRD source code yourself, you need GCC 3.0 or later. GCC 2.95 is not supported.

* Of the two POSIX threads implementations for Linux, only the NPTL (Native POSIX Thread Library) is supported.
The older LinuxThreads library is not supported.

8.5. Feedback

If you have any comments, suggestions, feedback or bug reports about DRD, feel free to either post a message on the
Valgrind users mailing list or to file a bug report. See also http://www.valgrind.org/ for more information.

149

url(http://bugzilla.novell.com/show_bug.cgi?id=396197)
url(http://bugs.gentoo.org/214065)
url(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518)
url(http://www.valgrind.org/)

9. Massif: a heap profiler

To use this tool, you must specify ——tool=massif on the Valgrind command line.

9.1. Overview

Massif is a heap profiler. It measures how much heap memory your program uses. This includes both the useful
space, and the extra bytes allocated for book-keeping and alignment purposes. It can also measure the size of your
program’s stack(s), although it does not do so by default.

Heap profiling can help you reduce the amount of memory your program uses. On modern machines with virtual
memory, this provides the following benefits:
* It can speed up your program -- a smaller program will interact better with your machine’s caches and avoid paging.
* If your program uses lots of memory, it will reduce the chance that it exhausts your machine’s swap space.

Also, there are certain space leaks that aren’t detected by traditional leak-checkers, such as Memcheck’s. That’s
because the memory isn’t ever actually lost -- a pointer remains to it -- but it’s not in use. Programs that have leaks
like this can unnecessarily increase the amount of memory they are using over time. Massif can help identify these
leaks.

Importantly, Massif tells you not only how much heap memory your program is using, it also gives very detailed
information that indicates which parts of your program are responsible for allocating the heap memory.

9.2. Using Massif and ms_print

First off, as for the other Valgrind tools, you should compile with debugging info (the —g option). It shouldn’t matter
much what optimisation level you compile your program with, as this is unlikely to affect the heap memory usage.

Then, you need to run Massif itself to gather the profiling information, and then run ms_print to present it in a readable
way.

9.2.1. An Example Program

An example will make things clear. Consider the following C program (annotated with line numbers) which allocates
a number of different blocks on the heap.

150

Massif: a heap profiler

O ~J o U b w N

WWWNNDNNNNNDNONNDNDNNDRRRR R P PP
N R O WOowWw-=-UoU d WNRE O WOW-Uo U d WPk o

9.2.2. Running Massif

To gather heap profiling information about the program prog, type:

valgrind ——tool=massif prog

#include <stdlib.h>

void g(void)
{

malloc (4000);
}

void f (void)

{
malloc (2000);
g();

}

int main (void)
{

int i;

intx a[l1l0];

for (1 =0; i < 10; i++)
al[i] = malloc(1000);

return 0;

The program will execute (slowly). Upon completion, no summary statistics are printed to Valgrind’s commentary;
all of Massif’s profiling data is written to a file. By default, this file is called massif.out.<pid>, where <pid>
is the process ID, although this filename can be changed with the ——massif-out—file option.

9.2.3. Running ms_print

To see the information gathered by Massif in an easy-to-read form, use ms_print.

massif.out.12345, type:

If the output file’s name is

151

Massif: a heap profiler

ms_print massif.out.12345

ms_print will produce (a) a graph showing the memory consumption over the program’s execution, and (b) detailed
information about the responsible allocation sites at various points in the program, including the point of peak memory
allocation. The use of a separate script for presenting the results is deliberate: it separates the data gathering from its
presentation, and means that new methods of presenting the data can be added in the future.

9.2.4. The Output Preamble

After running this program under Massif, the first part of ms_print’s output contains a preamble which just states how
the program, Massif and ms_print were each invoked:

Command: example
Massif arguments: (none)
ms_print arguments: massif.out.12797

9.2.5. The Output Graph

The next part is the graph that shows how memory consumption occurred as the program executed:

152

Massif: a heap profiler

KB
19.63" #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| o H
| i
| s
0O +-————————""———— >ki

Number of snapshots: 25
Detailed snapshots: [9, 14 (peak), 24]

Why is most of the graph empty, with only a couple of bars at the very end? By default, Massif uses "instructions
executed" as the unit of time. For very short-run programs such as the example, most of the executed instructions
involve the loading and dynamic linking of the program. The execution of main (and thus the heap allocations) only
occur at the very end. For a short-running program like this, we can use the ——t ime—-unit=B option to specify that
we want the time unit to instead be the number of bytes allocated/deallocated on the heap and stack(s).

If we re-run the program under Massif with this option, and then re-run ms_print, we get this more useful graph:

153

Massif: a heap profiler

19.63" i
| #
| oo
| # o0
| HE R
| oo
| # : o
| # 5o
| 38898888888 #
| # o
| 283888 # =
| @e@: # Q@
| @ : # @
| @ # @
| @ # @
| @ # @
| @ # @
| @ # @
| @ # @
| @ # @

0 o >KB

Number of snapshots: 25
Detailed snapshots: [9, 14 (peak), 24]

The size of the graph can be changed with ms_print’s ——x and ——y options. Each vertical bar represents a snapshot,
i.e. a measurement of the memory usage at a certain point in time. If the next snapshot is more than one column away,
a horizontal line of characters is drawn from the top of the snapshot to just before the next snapshot column. The text
at the bottom show that 25 snapshots were taken for this program, which is one per heap allocation/deallocation, plus
a couple of extras. Massif starts by taking snapshots for every heap allocation/deallocation, but as a program runs for
longer, it takes snapshots less frequently. It also discards older snapshots as the program goes on; when it reaches
the maximum number of snapshots (100 by default, although changeable with the -—max—snapshots option) half
of them are deleted. This means that a reasonable number of snapshots are always maintained.

Most snapshots are normal, and only basic information is recorded for them. Normal snapshots are represented in the
graph by bars consisting of ’:” characters.

Some snapshots are detailed. Information about where allocations happened are recorded for these snapshots, as we
will see shortly. Detailed snapshots are represented in the graph by bars consisting of * @’ characters. The text at the
bottom show that 3 detailed snapshots were taken for this program (snapshots 9, 14 and 24). By default, every 10th
snapshot is detailed, although this can be changed via the ——detailed-freq option.

Finally, there is at most one peak snapshot. The peak snapshot is a detailed snapshot, and records the point where
memory consumption was greatest. The peak snapshot is represented in the graph by a bar consisting of "#’ characters.
The text at the bottom shows that snapshot 14 was the peak.

Massif’s determination of when the peak occurred can be wrong, for two reasons.

154

Massif: a heap profiler

* Peak snapshots are only ever taken after a deallocation happens. This avoids lots of unnecessary peak snapshot
recordings (imagine what happens if your program allocates a lot of heap blocks in succession, hitting a new peak
every time). But it means that if your program never deallocates any blocks, no peak will be recorded. It
also means that if your program does deallocate blocks but later allocates to a higher peak without subsequently
deallocating, the reported peak will be too low.

* Even with this behaviour, recording the peak accurately is slow. So by default Massif records a peak whose size
is within 1% of the size of the true peak. This inaccuracy in the peak measurement can be changed with the
——-peak-inaccuracy option.

The following graph is from an execution of Konqueror, the KDE web browser. It shows what graphs for larger
programs look like.

MB
3.952~7 #
| (R
| HICHCE3H
| @@::::QQ#:
| @ :: :QQ#::
| @QRR :: :QQ@#::
| @@:QRE@ :: :@Q#::
| t::@ :QQ@ :: :@@Q#::
| :Q@ :QQQ :: :Q@#::
| $@: :@ :Q@Q@ :: :@Q#::
| @@:Q@: :@ :@@Q@ :: :QQ#:::
| g 2 $:@Q@:@: :@ :Q@Q@ :: :Q@#:::
| 1Q@: i 1:::@Q@@:::@@:@: @ Q@@ :: :@@#:::
| $:0:@Q@: rr:orriiii: @ :::@@:@: :@ :QEQ@ :: :QQ#:::
| @: ::@@: ::: o z:rzzss: @ :::@@:@: :@ Q@@ :: :@@#:::
| @: ::@@: :s:: z::r:ss: @ :::@@:@: :@ :@@@ :: :@@#:::
| @: ::@@::zzs: ooz @ :::@@:@: :@ :QQQ@ :: :@Q@#:::
| $:@@@: ::@@:: oz @ :::@@:@: @ Q@@ :: :QQ#:::
| T @@: @@ o ozrriio: @ :D::@@:@: :@ :QQ@ :z: :@@#:::
| @@:::::@@: ::@@:: s:: zorrzz: @ :::@Q@:@: :@ :QQ@ :: :@@#:::
0O +———————————— >Mi
0 626.4

Number of snapshots: 63
Detailed snapshots: [3, 4, 10, 11, 15, 16, 29, 33, 34, 36, 39, 41,
42, 43, 44, 49, 50, 51, 53, 55, 56, 57 (peak)]

Note that the larger size units are KB, MB, GB, etc. As is typical for memory measurements, these are based on a
multiplier of 1024, rather than the standard SI multiplier of 1000. Strictly speaking, they should be written KiB, MiB,
GiB, etc.

9.2.6. The Snapshot Details

Returning to our example, the graph is followed by the detailed information for each snapshot. The first nine snapshots
are normal, so only a small amount of information is recorded for each one:

155

Massif: a heap profiler

n time (B) total (B) useful-heap(B) extra-heap (B) stacks (B)
0 0 0 0 0 0

1 1,008 1,008 1,000 8 0

2 2,016 2,016 2,000 16 0

3 3,024 3,024 3,000 24 0

4 4,032 4,032 4,000 32 0

5 5,040 5,040 5,000 40 0

6 6,048 6,048 6,000 48 0

7 7,056 7,056 7,000 56 0

8 8,064 8,064 8,000 64 0

Each normal snapshot records several things.

e [ts number.

* The time it was taken. In this case, the time unit is bytes, due to the use of ——t ime-unit=B.

* The total memory consumption at that point.

* The number of useful heap bytes allocated at that point. This reflects the number of bytes asked for by the program.

* The number of extra heap bytes allocated at that point. This reflects the number of bytes allocated in excess of what
the program asked for. There are two sources of extra heap bytes.

First, every heap block has administrative bytes associated with it. The exact number of administrative bytes depends
on the details of the allocator. By default Massif assumes 8 bytes per block, as can be seen from the example, but
this number can be changed via the -—heap-admin option.

Second, allocators often round up the number of bytes asked for to a larger number, usually 8 or 16. This is required
to ensure that elements within the block are suitably aligned. If N bytes are asked for, Massif rounds N up to the
nearest multiple of the value specified by the ——alignment option.

* The size of the stack(s). By default, stack profiling is off as it slows Massif down greatly. Therefore, the stack
column is zero in the example. Stack profiling can be turned on with the ——stacks=yes option.

156

Massif: a heap profiler

The next snapshot is detailed. As well as the basic counts, it gives an allocation tree which indicates exactly which
pieces of code were responsible for allocating heap memory:

9 9,072 9,072 9,000 72 0
99.21% (9,000B) (heap allocation functions) malloc/new/new[], ——alloc-fns, etc.
->99.21% (9,000B) 0x804841A: main (example.c:20)

The allocation tree can be read from the top down. The first line indicates all heap allocation functions such as
malloc and C++ new. All heap allocations go through these functions, and so all 9,000 useful bytes (which is
99.21% of all allocated bytes) go through them. But how were malloc and new called? At this point, every
allocation so far has been due to line 20 inside main, hence the second line in the tree. The —> indicates that main
(line 20) called malloc.

Let’s see what the subsequent output shows happened next:

n time (B) total (B) useful-heap (B) extra—-heap (B) stacks (B)
10 10,080 10,080 10,000 80 0
11 12,088 12,088 12,000 88 0
12 16,096 16,096 16,000 96 0
13 20,104 20,104 20,000 104 0
14 20,104 20,104 20,000 104 0
99.48% (20,000B) (heap allocation functions) malloc/new/new[], ——alloc-fns, etc.

->49.74% (10,000B) 0x804841A: main (example.c:20)

\

->39.79% (8,000B) 0x80483C2: g (example.c:5)

| —>19.90% (4,000B) 0x80483E2: f (example.c:11)

| | =>19.90% (4,000B) 0x8048431: main (example.c:23)

[

| =>19.90% (4,000B) 0x8048436: main (example.c:25)

\

->09.95% (2,000B) 0x80483DA: f (example.c:10)
->09.95% (2,000B) 0x8048431: main (example.c:23)

The first four snapshots are similar to the previous ones. But then the global allocation peak is reached, and a detailed
snapshot (number 14) is taken. Its allocation tree shows that 20,000B of useful heap memory has been allocated, and
the lines and arrows indicate that this is from three different code locations: line 20, which is responsible for 10,000B
(49.74%); line 5, which is responsible for 8,000B (39.79%); and line 10, which is responsible for 2,000B (9.95%).

We can then drill down further in the allocation tree. For example, of the §,000B asked for by line 5, half of it was
due to a call from line 11, and half was due to a call from line 25.

In short, Massif collates the stack trace of every single allocation point in the program into a single tree, which gives
a complete picture at a particular point in time of how and why all heap memory was allocated.

Note that the tree entries correspond not to functions, but to individual code locations. For example, if function A
calls malloc, and function B calls A twice, once on line 10 and once on line 11, then the two calls will result in two

157

Massif: a heap profiler

distinct stack traces in the tree. In contrast, if B calls A repeatedly from line 15 (e.g. due to a loop), then each of those
calls will be represented by the same stack trace in the tree.

Note also that each tree entry with children in the example satisfies an invariant: the entry’s size is equal to the sum
of its children’s sizes. For example, the first entry has size 20,000B, and its children have sizes 10,000B, 8,000B,
and 2,000B. In general, this invariant almost always holds. However, in rare circumstances stack traces can be
malformed, in which case a stack trace can be a sub-trace of another stack trace. This means that some entries in the
tree may not satisfy the invariant -- the entry’s size will be greater than the sum of its children’s sizes. This is not
a big problem, but could make the results confusing. Massif can sometimes detect when this happens; if it does, it
issues a warning:

Warning: Malformed stack trace detected. In Massif’s output,
the size of an entry’s child entries may not sum up
to the entry’s size as they normally do.

However, Massif does not detect and warn about every such occurrence. Fortunately, malformed stack traces are rare
in practice.

Returning now to ms_print’s output, the final part is similar:

n time (B) total (B) useful-heap (B) extra-heap (B) stacks (B)
15 21,112 19,096 19,000 96 0
16 22,120 18,088 18,000 88 0
17 23,128 17,080 17,000 80 0
18 24,136 16,072 16,000 72 0
19 25,144 15,064 15,000 64 0
20 26,152 14,056 14,000 56 0
21 27,160 13,048 13,000 48 0
22 28,168 12,040 12,000 40 0
23 29,176 11,032 11,000 32 0
24 30,184 10,024 10,000 24 0
99.76% (10,000B) (heap allocation functions) malloc/new/new[], ——alloc-fns, etc.

->79.81% (8,000B) 0x80483C2: g (example.c:5)

| —>39.90% (4,000B) 0x80483E2: f (example.c:11)

| | =>39.90% (4,000B) 0x8048431: main (example.c:23)
[

| =>39.90% (4,000B) 0x8048436: main (example.c:25)

\

->19.95% (2,000B) 0x80483DA: f (example.c:10)

| —>19.95% (2,000B) 0x8048431: main (example.c:23)

->00.00% (0OB) in 1+ places, all below ms_print’s threshold (01.00%)

The final detailed snapshot shows how the heap looked at termination. The 00.00% entry represents the code locations
for which memory was allocated and then freed (line 20 in this case, the memory for which was freed on line 28).
However, no code location details are given for this entry; by default, Massif only records the details for code locations

158

Massif: a heap profiler

responsible for more than 1% of useful memory bytes, and ms_print likewise only prints the details for code locations
responsible for more than 1%. The entries that do not meet this threshold are aggregated. This avoids filling up the
output with large numbers of unimportant entries. The thresholds can be changed with the ——threshold option
that both Massif and ms_print support.

9.2.7. Forking Programs

If your program forks, the child will inherit all the profiling data that has been gathered for the parent.

If the output file format string (controlled by ——-massif-out-file) does not contain $p, then the outputs from
the parent and child will be intermingled in a single output file, which will almost certainly make it unreadable by
ms_print.

9.2.8. Measuring All Memory in a Process

It is worth emphasising that by default Massif measures only heap memory, i.e. memory allocated with malloc,
calloc, realloc, memalign, new, new(], and a few other, similar functions. (And it can optionally measure
stack memory, of course.) This means it does not directly measure memory allocated with lower-level system calls
such as mmap, mremap, and brk.

Heap allocation functions such as malloc are built on top of these system calls. For example, when needed, an
allocator will typically call mmap to allocate a large chunk of memory, and then hand over pieces of that memory
chunk to the client program in response to calls to malloc et al. Massif directly measures only these higher-level
malloc et al calls, not the lower-level system calls.

Furthermore, a client program may use these lower-level system calls directly to allocate memory. By default, Massif
does not measure these. Nor does it measure the size of code, data and BSS segments. Therefore, the numbers
reported by Massif may be significantly smaller than those reported by tools such as top that measure a program’s
total size in memory.

However, if you wish to measure all the memory used by your program, you can use the -—pages—as-heap=yes.
When this option is enabled, Massif’s normal heap block profiling is replaced by lower-level page profiling. Every
page allocated via mmap and similar system calls is treated as a distinct block. ~ This means that code, data and
BSS segments are all measured, as they are just memory pages. Even the stack is measured, since it is ultimately
allocated (and extended when necessary) via mmap; for this reason ——stacks=yes is not allowed in conjunction
with ——pages-as—heap=yes.

After ——pages—as—-heap=yes is used, ms_print’s output is mostly unchanged. One difference is that the start of
each detailed snapshot says:

(page allocation syscalls) mmap/mremap/brk, ——alloc-fns, etc.

instead of the usual

(heap allocation functions) malloc/new/new[], ——alloc-fns, etc.

The stack traces in the output may be more difficult to read, and interpreting them may require some detailed
understanding of the lower levels of a program like the memory allocators. But for some programs having the
full information about memory usage can be very useful.

159

Massif: a heap profiler

9.2.9. Acting on Massif’s Information

Massif’s information is generally fairly easy to act upon. The obvious place to start looking is the peak snapshot.

It can also be useful to look at the overall shape of the graph, to see if memory usage climbs and falls as you expect;
spikes in the graph might be worth investigating.

The detailed snapshots can get quite large. It is worth viewing them in a very wide window. It’s also a good idea
to view them with a text editor. That makes it easy to scroll up and down while keeping the cursor in a particular
column, which makes following the allocation chains easier.

9.3. Massif Command-line Options

Massif-specific command-line options are:

——heap=<yes|no> [default: yes]
Specifies whether heap profiling should be done.

——-heap-admin=<size> [default: 8]

If heap profiling is enabled, gives the number of administrative bytes per block to use. This should be an estimate
of the average, since it may vary. For example, the allocator used by glibc on Linux requires somewhere between 4
to 15 bytes per block, depending on various factors. That allocator also requires admin space for freed blocks, but
Massif cannot account for this.

—--stacks=<yes|no> [default: no]

Specifies whether stack profiling should be done. This option slows Massif down greatly, and so is off by default.
Note that Massif assumes that the main stack has size zero at start-up. This is not true, but doing otherwise accurately
is difficult. Furthermore, starting at zero better indicates the size of the part of the main stack that a user program
actually has control over.

——pages—as—heap=<yes|no> [default: no]
Tells Massif to profile memory at the page level rather than at the malloc’d block level. See above for details.

——depth=<number> [default: 30]
Maximum depth of the allocation trees recorded for detailed snapshots. Increasing it will make Massif run somewhat
more slowly, use more memory, and produce bigger output files.

160

Massif: a heap profiler

——alloc-fn=<name>

Functions specified with this option will be treated as though they were a heap allocation function such as malloc.
This is useful for functions that are wrappers to malloc or new, which can fill up the allocation trees with
uninteresting information. This option can be specified multiple times on the command line, to name multiple
functions.

Note that the named function will only be treated this way if it is the top entry in a stack trace, or just below
another function treated this way. For example, if you have a function mallocl that wraps malloc, and
malloc?2 that wraps mallocl, just specifying ——alloc-fn=malloc?2 will have no effect. You need to specify
—-—alloc-fn=mallocl aswell. Thisis alittle inconvenient, but the reason is that checking for allocation functions
is slow, and it saves a lot of time if Massif can stop looking through the stack trace entries as soon as it finds one that
doesn’t match rather than having to continue through all the entries.

Note that C++ names are demangled. Note also that overloaded C++ names must be written in full. Single quotes
may be necessary to prevent the shell from breaking them up. For example:

——alloc-fn='operator new (unsigned, std::nothrow_t consté&)’

——ignore—-fn=<name>

Any direct heap allocation (i.e. a call tomalloc, new, etc, or a call to a function named by an ——alloc—£fn option)
that occurs in a function specified by this option will be ignored. This is mostly useful for testing purposes. This
option can be specified multiple times on the command line, to name multiple functions.

Any realloc of an ignored block will also be ignored, even if the realloc call does not occur in an ignored
function. This avoids the possibility of negative heap sizes if ignored blocks are shrunk with realloc.

The rules for writing C++ function names are the same as for ——alloc—fn above.

——threshold=<m.n> [default: 1.0]

The significance threshold for heap allocations, as a percentage of total memory size. Allocation tree entries that
account for less than this will be aggregated. Note that this should be specified in tandem with ms_print’s option of
the same name.

—-—peak-inaccuracy=<m.n> [default: 1.0]
Massif does not necessarily record the actual global memory allocation peak; by default it records a peak only when
the global memory allocation size exceeds the previous peak by at least 1.0%. This is because there can be many local
allocation peaks along the way, and doing a detailed snapshot for every one would be expensive and wasteful, as all
but one of them will be later discarded. This inaccuracy can be changed (even to 0.0%) via this option, but Massif
will run drastically slower as the number approaches zero.

——time-unit=<i|ms|B> [default: 1i]

The time unit used for the profiling. There are three possibilities: instructions executed (i), which is good for most
cases; real (wallclock) time (ms, i.e. milliseconds), which is sometimes useful; and bytes allocated/deallocated on the
heap and/or stack (B), which is useful for very short-run programs, and for testing purposes, because it is the most
reproducible across different machines.

—-—detailed-freg=<n> [default: 10]
Frequency of detailed snapshots. With ——detailed-freg=1, every snapshot is detailed.

——-max—-snapshots=<n> [default: 100]
The maximum number of snapshots recorded. If set to N, for all programs except very short-running ones, the final
number of snapshots will be between N/2 and N.

161

Massif: a heap profiler

——massif-out-file=<file> [default: massif.out.%p]

Write the profile data to £i1e rather than to the default output file, massif.out.<pid>. The $p and $q format
specifiers can be used to embed the process ID and/or the contents of an environment variable in the name, as is the
case for the core option ——log-file.

9.4. Massif Monitor Commands

The Massif tool provides monitor commands handled by the Valgrind gdbserver (see Monitor command handling by
the Valgrind gdbserver).

e snapshot [<filename>] requests to take a snapshot and save it in the given <filename> (default mas-
sif.vgdb.out).

edetailed_snapshot [<filename>] requests to take a detailed snapshot and save it in the given <filename>
(default massif.vgdb.out).

*all_snapshots [<filename>] requests to take all captured snapshots so far and save them in the given
<filename> (default massif.vgdb.out).

9.5. Massif Client Requests

Massif does not have a massif.h file, but it does implement two of the core client requests:
VALGRIND_MALLOCLIKE_BLOCK and VALGRIND_FREELIKE_BLOCK; they are described in The Client
Request mechanism.

9.6. ms_print Command-line Options

ms_print’s options are:
-h —--help
Show the help message.

——-version
Show the version number.

—-—threshold=<m.n> [default: 1.0]
Same as Massif’s ——threshold option, but applied after profiling rather than during.

——x=<4..1000> [default: 721
Width of the graph, in columns.

——y=<4..1000> [default: 20]
Height of the graph, in rows.

9.7. Massif’s Output File Format

Massif’s file format is plain text (i.e. not binary) and deliberately easy to read for both humans and machines.
Nonetheless, the exact format is not described here. This is because the format is currently very Massif-specific.
In the future we hope to make the format more general, and thus suitable for possible use with other tools. Once this
has been done, the format will be documented here.

162

10. DHAT: a dynamic heap analysis tool

To use this tool, you must specify ——tool=exp-dhat on the Valgrind command line.

10.1. Overview

DHAT is a tool for examining how programs use their heap allocations.
It tracks the allocated blocks, and inspects every memory access to find which block, if any, it is to. The following
data is collected and presented per allocation point (allocation stack):

* Total allocation (number of bytes and blocks)

* maximum live volume (number of bytes and blocks)

« average block lifetime (number of instructions between allocation and freeing)

* average number of reads and writes to each byte in the block ("access ratios")

« for allocation points which always allocate blocks only of one size, and that size is 4096 bytes or less: counts
showing how often each byte offset inside the block is accessed.

Using these statistics it is possible to identify allocation points with the following characteristics:

* potential process-lifetime leaks: blocks allocated by the point just accumulate, and are freed only at the end of the
run.

* excessive turnover: points which chew through a lot of heap, even if it is not held onto for very long
* excessively transient: points which allocate very short lived blocks

e useless or underused allocations: blocks which are allocated but not completely filled in, or are filled in but not
subsequently read.

* blocks with inefficient layout -- areas never accessed, or with hot fields scattered throughout the block.

163

DHAT: a dynamic heap analysis tool

As with the Massif heap profiler, DHAT measures program progress by counting instructions, and so presents all
age/time related figures as instruction counts. This sounds a little odd at first, but it makes runs repeatable in a way
which is not possible if CPU time is used.

10.2. Understanding DHAT’s output

DHAT provides a lot of useful information on dynamic heap usage. Most of the art of using it is in interpretation of
the resulting numbers. That is best illustrated via a set of examples.

10.2.1. Interpreting the max-live, tot-alloc and deaths
fields

10.2.1.1. A simple example

guest_insns: 1,045,339,534
[cool

max—live: 63,490 in 984 blocks
tot—-alloc: 1,904,700 in 29,520 blocks (avg size 64.52)
deaths: 29,520, at avg age 22,227,424

acc-ratios: 6.37 rd, 1.14 wr (12,141,526 b-read, 2,174,460 b-written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x40350E: tcc_malloc (tinycc.c:6712)
by 0x404580: tok_alloc_new (tinycc.c:7151)
by 0x40870A: next_nomacrol (tinycc.c:9305)

Over the entire run of the program, this stack (allocation point) allocated 29,520 blocks in total, containing 1,904,700
bytes in total. By looking at the max-live data, we see that not many blocks were simultaneously live, though: at the
peak, there were 63,490 allocated bytes in 984 blocks. This tells us that the program is steadily freeing such blocks
as it runs, rather than hanging on to all of them until the end and freeing them all.

The deaths entry tells us that 29,520 blocks allocated by this stack died (were freed) during the run of the program.
Since 29,520 is also the number of blocks allocated in total, that tells us that all allocated blocks were freed by the end
of the program.

It also tells us that the average age at death was 22,227,424 instructions. From the summary statistics we see that
the program ran for 1,045,339,534 instructions, and so the average age at death is about 2% of the program’s total run
time.

10.2.1.2. Example of a potential process-lifetime leak

This next example (from a different program than the above) shows a potential process lifetime leak. A process
lifetime leak occurs when a program keeps allocating data, but only frees the data just before it exits. Hence the
program’s heap grows constantly in size, yet Memcheck reports no leak, because the program has freed up everything
at exit. This is particularly a hazard for long running programs.

164

DHAT: a dynamic heap analysis tool

guest_insns: 418,901,537
[...]

max—-live: 32,512 in 254 blocks
tot—-alloc: 32,512 in 254 blocks (avg size 128.00)
deaths: 254, at avg age 300,467,389

acc—ratios: 0.26 rd, 0.20 wr (8,756 b-read, 6,604 b—written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x4C27632: realloc (vg_replace_malloc.c:525)
by 0x56FF41D: QtFontStyle: :pixelSize (unsigned short, bool) (gfontdatabase.cpp:269)

by 0x5700D69: loadFontConfig() (gfontdatabase_x11.cpp:1146)

There are two tell-tale signs that this might be a process-lifetime leak. Firstly, the max-live and tot-alloc numbers are
identical. The only way that can happen is if these blocks are all allocated and then all deallocated.

Secondly, the average age at death (300 million insns) is 71% of the total program lifetime (419 million insns), hence
this is not a transient allocation-free spike -- rather, it is spread out over a large part of the entire run. One interpretation
is, roughly, that all 254 blocks were allocated in the first half of the run, held onto for the second half, and then freed
just before exit.

10.2.2. Interpreting the acc-ratios fields

10.2.2.1. A fairly harmless allocation point record

max—live: 49,398 in 808 blocks
tot-alloc: 1,481,940 in 24,240 blocks (avg size 61.13)
deaths: 24,240, at avg age 34,611,026

acc-ratios: 2.13 rd, 0.91 wr (3,166,650 b-read, 1,358,820 b-written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x40350E: tcc_malloc (tinycc.c:6712)
by 0x404580: tok_alloc_new (tinycc.c:7151)
by 0x4046C4: tok_alloc (tinycc.c:7190)

The acc-ratios field tells us that each byte in the blocks allocated here is read an average of 2.13 times before the
block is deallocated. Given that the blocks have an average age at death of 34,611,026, that’s one read per block per
approximately every 15 million instructions. So from that standpoint the blocks aren’t "working" very hard.

More interesting is the write ratio: each byte is written an average of 0.91 times. This tells us that some parts of the
allocated blocks are never written, at least 9% on average. To completely initialise the block would require writing
each byte at least once, and that would give a write ratio of 1.0. The fact that some block areas are evidently unused
might point to data alignment holes or other layout inefficiencies.

Well, at least all the blocks are freed (24,240 allocations, 24,240 deaths).
If all the blocks had been the same size, DHAT would also show the access counts by block offset, so we could see

where exactly these unused areas are. However, that isn’t the case: the blocks have varying sizes, so DHAT can’t

165

DHAT: a dynamic heap analysis tool

perform such an analysis. We can see that they must have varying sizes since the average block size, 61.13, isn’t a
whole number.

10.2.2.2. A more suspicious looking example

max—-live: 180,224 in 22 blocks
tot—-alloc: 180,224 in 22 blocks (avg size 8192.00)
deaths: none (none of these blocks were freed)

acc-ratios: 0.00 rd, 0.00 wr (0 b-read, 0 b—written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x40350E: tcc_malloc (tinycc.c:6712)
by 0x40369C: _ sym_malloc (tinycc.c:6787)
by 0x403711: sym_malloc (tinycc.c:6805)

Here, both the read and write access ratios are zero. Hence this point is allocating blocks which are never used,
neither read nor written. Indeed, they are also not freed ("deaths: none") and are simply leaked. So, here is 180k of
completely useless allocation that could be removed.

Re-running with Memcheck does indeed report the same leak. What DHAT can tell us, that Memcheck can’t, is that
not only are the blocks leaked, they are also never used.

10.2.2.3. Another suspicious example

Here’s one where blocks are allocated, written to, but never read from. We see this immediately from the zero read
access ratio. They do get freed, though:

max—live: 54 in 3 blocks
tot-alloc: 1,620 in 90 blocks (avg size 18.00)
deaths: 90, at avg age 34,558,236

acc-ratios: 0.00 rd, 1.11 wr (0 b-read, 1,800 b-written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x40350E: tcc_malloc (tinycc.c:6712)
by 0x4035BD: tcc_strdup (tinycc.c:6750)
by 0x41FEBB: tcc_add_sysinclude_path (tinycc.c:20931)

In the previous two examples, it is easy to see blocks that are never written to, or never read from, or some combination
of both. Unfortunately, in C++ code, the situation is less clear. That’s because an object’s constructor will write to
the underlying block, and its destructor will read from it. So the block’s read and write ratios will be non-zero even if
the object, once constructed, is never used, but only eventually destructed.

Really, what we want is to measure only memory accesses in between the end of an object’s construction and the start
of its destruction. Unfortunately I do not know of a reliable way to determine when those transitions are made.

10.2.3. Interpreting "Aggregated access counts by
offset” data

For allocation points that always allocate blocks of the same size, and which are 4096 bytes or smaller, DHAT counts
accesses per offset, for example:

166

DHAT: a dynamic heap analysis tool

max—-live: 317,408 in 5,668 blocks
tot—-alloc: 317,408 in 5,668 blocks (avg size 56.00)
deaths: 5,668, at avg age 622,890,597

acc—-ratios: 1.03 rd, 1.28 wr (327,642 b-read, 408,172 b—-written)
at 0x4C275B8: malloc (vg_replace_malloc.c:236)
by 0x5440Cl6: QDesignerPropertySheetPrivate: :ensureInfo (ghash.h:515)
by 0x544350B: QDesignerPropertySheet::setVisible (gdesigner_propertysh...)
by 0x5446232: QDesignerPropertySheet: :QDesignerPropertySheet (gdesigne...)

Aggregated access counts by offset:

[0] 28782 28782 28782 28782 28782 28782 28782 28782
[8] 20638 20638 20638 20638 0 0 0 0

[] 22738 22738 22738 22738 22738 22738 22738 22738
[24] 6013 6013 6013 6013 6013 6013 6013 6013

[32] 18883 18883 18883 37422 0 00 0

[] 5668 11915 5668 5668 11336 11336 11336 11336

[] 6166 6166 6166 6166 0 0 0 O

This is fairly typical, for C++ code running on a 64-bit platform. Here, we have aggregated access statistics for 5668
blocks, all of size 56 bytes. Each byte has been accessed at least 5668 times, except for offsets 12--15, 36--39 and
52--55. These are likely to be alignment holes.

Careful interpretation of the numbers reveals useful information. Groups of N consecutive identical numbers that
begin at an N-aligned offset, for N being 2, 4 or 8, are likely to indicate an N-byte object in the structure at that point.
For example, the first 32 bytes of this object are likely to have the layout

] 64-bit type

] 32-bit type
2] 32-bit alignment hole
6] 64-bit type
4

[0
[8
[1
[1
[24] 64-bit type

As a counterexample, it’s also clear that, whatever is at offset 32, it is not a 32-bit value. That’s because the last
number of the group (37422) is not the same as the first three (18883 18883 18883).

This example leads one to enquire (by reading the source code) whether the zeroes at 12--15 and 52--55 are alignment
holes, and whether 48--51 is indeed a 32-bit type. If so, it might be possible to place what’s at 48--51 at 12--15

instead, which would reduce the object size from 56 to 48 bytes.

Bear in mind that the above inferences are all only "maybes". That’s because they are based on dynamic data, not
static analysis of the object layout. For example, the zeroes might not be alignment holes, but rather just parts of the

structure which were not used at all for this particular run. Experience shows that’s unlikely to be the case, but it
could happen.

10.3. DHAT Command-line Options

DHAT-specific command-line options are:

167

DHAT: a dynamic heap analysis tool

—-—-show-top—-n=<number> [default: 10]

At the end of the run, DHAT sorts the accumulated allocation points according to some metric, and shows the highest
scoring entries. ——-show—top-n controls how many entries are shown. The default of 10 is quite small. For
realistic applications you will probably need to set it much higher, at least several hundred.

—-—-sort-by=<string> [default: max-bytes-live]

At the end of the run, DHAT sorts the accumulated allocation points according to some metric, and shows the highest
scoring entries. ——sort-by selects the metric used for sorting:

max-bytes—-live maximum live bytes [default]

tot-bytes—allocd total allocation (turnover)

max—-blocks-live maximum live blocks

This controls the order in which allocation points are displayed. You can choose to look at allocation points with the
highest maximum liveness, or the highest total turnover, or by the highest number of live blocks. These give usefully
different pictures of program behaviour. For example, sorting by maximum live blocks tends to show up allocation
points creating large numbers of small objects.

One important point to note is that each allocation stack counts as a seperate allocation point. Because stacks by
default have 12 frames, this tends to spread data out over multiple allocation points. You may want to use the flag
--num-callers=4 or some such small number, to reduce the spreading.

168

11. SGCheck: an experimental stack
and global array overrun detector

To use this tool, you must specify ——tool=exp-sgcheck on the Valgrind command line.

11.1. Overview

SGCheck is a tool for finding overruns of stack and global arrays. It works by using a heuristic approach derived
from an observation about the likely forms of stack and global array accesses.

11.2. SGCheck Command-line Options

There are no SGCheck-specific command-line options at present.

11.3. How SGCheck Works

When a source file is compiled with —g, the compiler attaches DWARF3 debugging information which describes the
location of all stack and global arrays in the file.

Checking of accesses to such arrays would then be relatively simple, if the compiler could also tell us which array (if
any) each memory referencing instruction was supposed to access. Unfortunately the DWARF3 debugging format
does not provide a way to represent such information, so we have to resort to a heuristic technique to approximate it.
The key observation is that if a memory referencing instruction accesses inside a stack or global array once, then it is
highly likely to always access that same array.

To see how this might be useful, consider the following buggy fragment:

{ int i, a[1l0]; // both are auto vars

for (i = 0; <=10; i++)
ali] = 42;

At run time we will know the precise address of a [] on the stack, and so we can observe that the first store resulting
froma[i] = 42 writes a[], and we will (correctly) assume that that instruction is intended always to access a [].
Then, on the 11th iteration, it accesses somewhere else, possibly a different local, possibly an un-accounted for area
of the stack (eg, spill slot), so SGCheck reports an error.

There is an important caveat.

Imagine a function such as memcpy, which is used to read and write many different areas of memory over the lifetime
of the program. If we insist that the read and write instructions in its memory copying loop only ever access one
particular stack or global variable, we will be flooded with errors resulting from calls to memcpy.

To avoid this problem, SGCheck instantiates fresh likely-target records for each entry to a function, and discards them
on exit. This allows detection of cases where (e.g.) memcpy overflows its source or destination buffers for any
specific call, but does not carry any restriction from one call to the next. Indeed, multiple threads may make multiple
simultaneous calls to (e.g.) memcpy without mutual interference.

169

SGCheck: an experimental stack and global array overrun detector

11.4. Comparison with Memcheck

SGCheck and Memcheck are complementary: their capabilities do not overlap. Memcheck performs bounds checks
and use-after-free checks for heap arrays. It also finds uses of uninitialised values created by heap or stack allocations.
But it does not perform bounds checking for stack or global arrays.

SGCheck, on the other hand, does do bounds checking for stack or global arrays, but it doesn’t do anything else.

11.5. Limitations

This is an experimental tool, which relies rather too heavily on some not-as-robust-as-I-would-like assumptions on the
behaviour of correct programs. There are a number of limitations which you should be aware of.

* False negatives (missed errors): it follows from the description above (How SGCheck Works) that the first access
by a memory referencing instruction to a stack or global array creates an association between that instruction and
the array, which is checked on subsequent accesses by that instruction, until the containing function exits. Hence,
the first access by an instruction to an array (in any given function instantiation) is not checked for overrun, since
SGCheck uses that as the "example" of how subsequent accesses should behave.

* False positives (false errors): similarly, and more serious, it is clearly possible to write legitimate pieces of code
which break the basic assumption upon which the checking algorithm depends. For example:

{ int a[10], b[10], *p, i;
for (1 = 0; 1 < 10; i++) {
p = /* arbitrary condition x/ 2 &al[i] : &b[i];
*p = 42;

In this case the store sometimes accesses a [] and sometimes b [], but in no cases is the addressed array overrun.
Nevertheless the change in target will cause an error to be reported.

It is hard to see how to get around this problem. The only mitigating factor is that such constructions appear very
rare, at least judging from the results using the tool so far. Such a construction appears only once in the Valgrind
sources (running Valgrind on Valgrind) and perhaps two or three times for a start and exit of Firefox. The best that
can be done is to suppress the errors.

* Performance: SGCheck has to read all of the DWARF3 type and variable information on the executable and its
shared objects. This is computationally expensive and makes startup quite slow. You can expect debuginfo
reading time to be in the region of a minute for an OpenOffice sized application, on a 2.4 GHz Core 2 machine.
Reading this information also requires a lot of memory. To make it viable, SGCheck goes to considerable trouble
to compress the in-memory representation of the DWARF3 data, which is why the process of reading it appears
slow.

¢ Performance: SGCheck runs slower than Memcheck. This is partly due to a lack of tuning, but partly due to
algorithmic difficulties. The stack and global checks can sometimes require a number of range checks per memory
access, and these are difficult to short-circuit, despite considerable efforts having been made. A redesign and
reimplementation could potentially make it much faster.

170

SGCheck: an experimental stack and global array overrun detector

» Coverage: Stack and global checking is fragile. If a shared object does not have debug information attached, then
SGCheck will not be able to determine the bounds of any stack or global arrays defined within that shared object,
and so will not be able to check accesses to them. This is true even when those arrays are accessed from some
other shared object which was compiled with debug info.

At the moment SGCheck accepts objects lacking debuginfo without comment. This is dangerous as it causes
SGCheck to silently skip stack and global checking for such objects. It would be better to print a warning in such
circumstances.

* Coverage: SGCheck does not check whether the areas read or written by system calls do overrun stack or global
arrays. This would be easy to add.

¢ Platforms: the stack/global checks won’t work properly on PowerPC, ARM or S390X platforms, only on X86 and
AMDG64 targets. That’s because the stack and global checking requires tracking function calls and exits reliably,
and there’s no obvious way to do it on ABIs that use a link register for function returns.

* Robustness: related to the previous point. Function call/exit tracking for X86 and AMD64 is believed to work
properly even in the presence of longjmps within the same stack (although this has not been tested). However, code
which switches stacks is likely to cause breakage/chaos.

11.6. Still To Do: User-visible Functionality

» Extend system call checking to work on stack and global arrays.

* Print a warning if a shared object does not have debug info attached, or if, for whatever reason, debug info could
not be found, or read.

* Add some heuristic filtering that removes obvious false positives. This would be easy to do. For example, an
access transition from a heap to a stack object almost certainly isn’t a bug and so should not be reported to the user.

11.7. Still To Do: Implementation Tidying

Items marked CRITICAL are considered important for correctness: non-fixage of them is liable to lead to crashes or
assertion failures in real use.

*sg_main.c: Redesign and reimplement the basic checking algorithm. It could be done much faster than it is -- the
current implementation isn’t very good.

*sg_main.c: Improve the performance of the stack / global checks by doing some up-front filtering to ignore
references in areas which "obviously" can’t be stack or globals. This will require using information that
m_aspacemgr knows about the address space layout.

*sg_main.c: fix compute_II_hash to make it a bit more sensible for ppc32/64 targets (except that sg_ doesn’t work
on ppc32/64 targets, so this is a bit academic at the moment).

171

12. BBV: an experimental basic block
vector generation tool

To use this tool, you must specify ——tool=exp-bbv on the Valgrind command line.

12.1. Overview

A basic block is a linear section of code with one entry point and one exit point. A basic block vector (BBV) is a list
of all basic blocks entered during program execution, and a count of how many times each basic block was run.

BBV is a tool that generates basic block vectors for use with the SimPoint analysis tool. The SimPoint methodology
enables speeding up architectural simulations by only running a small portion of a program and then extrapolating
total behavior from this small portion. Most programs exhibit phase-based behavior, which means that at various
times during execution a program will encounter intervals of time where the code behaves similarly to a previous
interval. If you can detect these intervals and group them together, an approximation of the total program behavior
can be obtained by only simulating a bare minimum number of intervals, and then scaling the results.

In computer architecture research, running a benchmark on a cycle-accurate simulator can cause slowdowns on the
order of 1000 times, making it take days, weeks, or even longer to run full benchmarks. By utilizing SimPoint this
can be reduced significantly, usually by 90-95%, while still retaining reasonable accuracy.

A more complete introduction to how SimPoint works can be found in the paper "Automatically Characterizing Large
Scale Program Behavior" by T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

12.2. Using Basic Block Vectors to create
SimPoints

To quickly create a basic block vector file, you will call Valgrind like this:
valgrind —-tool=exp-bbv /bin/ls

In this case we are running on /bin/1s, but this can be any program. By default a file called bb.out .PID will
be created, where PID is replaced by the process ID of the running process. This file contains the basic block vector.
For long-running programs this file can be quite large, so it might be wise to compress it with gzip or some other
compression program.

To create actual SimPoint results, you will need the SimPoint utility, available from the SimPoint webpage. Assuming
you have downloaded SimPoint 3.2 and compiled it, create SimPoint results with a command like the following:

./SimPoint.3.2/bin/simpoint —inputVectorsGzipped \
-loadFVFile bb.out.1234.gz \
-k 5 —saveSimpoints results.simpts \
—saveSimpointWeights results.weights

where bb.out.1234.gz is your compressed basic block vector file generated by BBV.

The SimPoint utility does random linear projection using 15-dimensions, then does k-mean clustering to calculate
which intervals are of interest. In this example we specify 5 intervals with the -k 5 option.

172

url(http://www.cse.ucsd.edu/~calder/simpoint/)
url(http://www.cse.ucsd.edu/~calder/simpoint/)

BBYV: an experimental basic block vector generation tool

The outputs from the SimPoint run are the results.simpts and results.weights files. The first holds the
5 most relevant intervals of the program. The seconds holds the weight to scale each interval by when extrapolating
full-program behavior. The intervals and the weights can be used in conjunction with a simulator that supports fast-
forwarding; you fast-forward to the interval of interest, collect stats for the desired interval length, then use statistics
gathered in conjunction with the weights to calculate your results.

12.3. BBV Command-line Options

BBV-specific command-line options are:

——bb-out-file=<name> [default: bb.out.%p]
This option selects the name of the basic block vector file. The $p and $q format specifiers can be used to embed the
process ID and/or the contents of an environment variable in the name, as is the case for the core option ——log-file.

——pc-out—-file=<name> [default: pc.out.%p]

This option selects the name of the PC file. This file holds program counter addresses and function name info for
the various basic blocks. This can be used in conjunction with the basic block vector file to fast-forward via function
names instead of just instruction counts. The $p and % g format specifiers can be used to embed the process ID and/or
the contents of an environment variable in the name, as is the case for the core option ——1og-file.

—-interval-size=<number> [default: 100000000]

This option selects the size of the interval to use. The default is 100 million instructions, which is a commonly used
value. Other sizes can be used; smaller intervals can help programs with finer-grained phases. However smaller
interval size can lead to accuracy issues due to warm-up effects (When fast-forwarding the various architectural
features will be un-initialized, and it will take some number of instructions before they "warm up" to the state a
full simulation would be at without the fast-forwarding. Large interval sizes tend to mitigate this.)

——instr-count-only [default: no]

This option tells the tool to only display instruction count totals, and to not generate the actual basic block vector file.
This is useful for debugging, and for gathering instruction count info without generating the large basic block vector
files.

12.4. Basic Block Vector File Format

The Basic Block Vector is dumped at fixed intervals. This is commonly done every 100 million instructions; the
——interval-size option can be used to change this.

The output file looks like this:

T:45:1024 :189:99343
T:11:78573 :15:1353 :56:1
T:18:45 :12:135353 :56:78 314:4324263

Each new interval starts with a T. This is followed on the same line by a series of basic block and frequency pairs, one
for each basic block that was entered during the interval. The format for each block/frequency pair is a colon, followed
by a number that uniquely identifies the basic block, another colon, and then the frequency (which is the number of
times the block was entered, multiplied by the number of instructions in the block). The pairs are separated from each
other by a space.

The frequency count is multiplied by the number of instructions that are in the basic block, in order to weigh the count
so that instructions in small basic blocks aren’t counted as more important than instructions in large basic blocks.

173

BBYV: an experimental basic block vector generation tool

The SimPoint program only processes lines that start with a "T". All other lines are ignored. Traditionally comments
are indicated by starting a line with a "#" character. Some other BBV generation tools, such as PinPoints, generate
lines beginning with letters other than "T" to indicate more information about the program being run. We do not
generate these, as the SimPoint utility ignores them.

12.5. Implementation

Valgrind provides all of the information necessary to create BBV files. In the current implementation, all instructions
are instrumented. This is slower (by approximately a factor of two) than a method that instruments at the basic block
level, but there are some complications (especially with rep prefix detection) that make that method more difficult.

Valgrind actually provides instrumentation at a superblock level. A superblock has one entry point but unlike basic
blocks can have multiple exit points. Once a branch occurs into the middle of a block, it is split into a new basic
block. Because Valgrind cannot produce "true" basic blocks, the generated BBV vectors will be different than those
generated by other tools. In practice this does not seem to affect the accuracy of the SimPoint results. We do internally
force the ——vex—guest—-chase-thresh=0 option to Valgrind which forces a more basic-block-like behavior.

When a superblock is run for the first time, it is instrumented with our BBV routine. A block info (bbInfo) structure is
allocated which holds the various information and statistics for the block. A unique block ID is assigned to the block,
and then the structure is placed into an ordered set. Then each native instruction in the block is instrumented to call an
instruction counting routine with a pointer to the block info structure as an argument.

At run-time, our instruction counting routines are called once per native instruction. The relevant block info structure
is accessed and the block count and total instruction count is updated. If the total instruction count overflows the
interval size then we walk the ordered set, writing out the statistics for any block that was accessed in the interval, then
resetting the block counters to zero.

On the x86 and amd64 architectures the counting code has extra code to handle rep-prefixed string instructions. This
is because actual hardware counts a rep-prefixed instruction as one instruction, while a naive Valgrind implementation
would count it as many (possibly hundreds, thousands or even millions) of instructions. = We handle rep-prefixed
instructions specially, in order to make the results match those obtained with hardware performance counters.

BBYV also counts the fldcw instruction. This instruction is used on x86 machines in various ways; it is most commonly
found when converting floating point values into integers. On Pentium 4 systems the retired instruction performance
counter counts this instruction as two instructions (all other known processors only count it as one). This can affect
results when using SimPoint on Pentium 4 systems. We provide the fldcw count so that users can evaluate whether it
will impact their results enough to avoid using Pentium 4 machines for their experiments. It would be possible to add
an option to this tool that mimics the double-counting so that the generated BBV files would be usable for experiments
using hardware performance counters on Pentium 4 systems.

12.6. Threaded Executable Support

BBV supports threaded programs. When a program has multiple threads, an additional basic block vector file is
created for each thread (each additional file is the specified filename with the thread number appended at the end).

There is no official method of using SimPoint with threaded workloads. The most common method is to run SimPoint
on each thread’s results independently, and use some method of deterministic execution to try to match the original
workload. This should be possible with the current BBV.

12.7. Validation

BBV has been tested on x86, amd64, and ppc32 platforms. An earlier version of BBV was tested in detail using
hardware performance counters, this work is described in a paper from the HIPEAC’08 conference, "Using Dynamic

174

BBYV: an experimental basic block vector generation tool

Binary Instrumentation to Generate Multi-Platform SimPoints: Methodology and Accuracy" by V.M. Weaver and S.A.
McKee.

12.8. Performance

Using this program slows down execution by roughly a factor of 40 over native execution. This varies depending on
the machine used and the benchmark being run. On the SPEC CPU 2000 benchmarks running on a 3.4GHz Pentium
D processor, the slowdown ranges from 24x (mcf) to 340x (vortex.2).

175

13. Lackey: an example tool

To use this tool, you must specify ——tool=1ackey on the Valgrind command line.

13.1. Overview

Lackey is a simple Valgrind tool that does various kinds of basic program measurement. It adds quite a lot of simple
instrumentation to the program’s code. It is primarily intended to be of use as an example tool, and consequently
emphasises clarity of implementation over performance.

13.2. Lackey Command-line Options

Lackey-specific command-line options are:

—-—basic-counts=<no|yes> [default: yes]
When enabled, Lackey prints the following statistics and information about the execution of the client program:

1. The number of calls to the function specified by the ——fnname option (the default is main). If the program has
had its symbols stripped, the count will always be zero.

2. The number of conditional branches encountered and the number and proportion of those taken.

3. The number of superblocks entered and completed by the program. Note that due to optimisations done by the
JIT, this is not at all an accurate value.

4. The number of guest (x86, amd64, ppc, etc.) instructions and IR statements executed. IR is Valgrind’s RISC-like
intermediate representation via which all instrumentation is done.

5. Ratios between some of these counts.
6. The exit code of the client program.

——detailed-counts=<no|yes> [default: noj
When enabled, Lackey prints a table containing counts of loads, stores and ALU operations, differentiated by their IR
types. The IR types are identified by their IR name ("I1", "I8", ... "1128", "F32", "F64", and "V128").

——trace-mem=<no|yes> [default: noj

When enabled, Lackey prints the size and address of almost every memory access made by the program. See
the comments at the top of the file lackey/1k_main.c for details about the output format, how it works, and
inaccuracies in the address trace. Note that this option produces immense amounts of output.

—-—trace-superblocks=<no|yes> [default: no]

When enabled, Lackey prints out the address of every superblock (a single entry, multiple exit, linear chunk of code)
executed by the program. This is primarily of interest to Valgrind developers. See the comments at the top of the file
lackey/1lk_main. c for details about the output format. Note that this option produces large amounts of output.

——fnname=<name> [default: main]
Changes the function for which calls are counted when —-basic-counts=yes is specified.

176

14. Nulgrind: the minimal Valgrind tool

To use this tool, you must specify ——tool=none on the Valgrind command line.

14.1. Overview

Nulgrind is the simplest possible Valgrind tool. It performs no instrumentation or analysis of a program, just runs it
normally. It is mainly of use for Valgrind’s developers for debugging and regression testing.

Nonetheless you can run programs with Nulgrind. They will run roughly 5 times more slowly than normal, for no
useful effect. Note that you need to use the option ——tool=none to run Nulgrind (ie. not -——tool=nulgrind).

177

Valgrind FAQ

Release 3.11.0 22 September 2015
Copyright © 2000-2015 Valgrind Developers
Email: valgrind@valgrind.org

url(http://www.valgrind.org/info/developers.html)

Valgrind FAQ

Table of Contents

Valgrind Frequently Asked QUESHONSttt ettt e 1

clxxix

Valgrind Frequently Asked Questions

Valgrind Frequently Asked Questions

1. Background 1
1.1. How do you pronounce "Valgrind"? e 1
1.2. Where does the name "Valgrind" come from? i 1
2. Compiling, installing and CONfigUIingo it it it i 2
2.1. When building Valgrind, 'make’ dies partway with an assertion failure, something like this: 2
2.2. When building Valgrind, *make’ fails with this: 2
3. Valgrind aborts unexpectedly 2
3.1. Programs run OK on Valgrind, but at exit produce a bunch of errors involving _ 1ibc_freeres and

then die with a segmentation fault. 3
3.2. My (buggy) program dies like this: 3
3.3. My program dies, printing a message like this along the way:o ... 3
3.4. I tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind but

something went wrong. Does Valgrind handle such programs? 3
4. Valgrind behaves unexpectedlyt 4
4.1. My program uses the C++ STL and string classes. Valgrind reports ’still reachable’ memory leaks

involving these classes at the exit of the program, but there should benone. 4
4.2. The stack traces given by Memcheck (or another tool) aren’t helpful. How can I improve them? 4
4.3. The stack traces given by Memcheck (or another tool) seem to have the wrong function name in them.

What’s happening?t 6
4.4. My program crashes normally, but doesn’t under Valgrind, or vice versa. What’s happening? 6
4.5. Memcheck doesn’t report any errors and I know my program has errors. 6
4.6. Why doesn’t Memcheck find the array overruns in this program? 7
5. MISCEllan@OoUS 7
5.1. Itried writing a suppression but it didn’t work. Can you write my suppression for me? 7
5.2. With Memcheck’s memory leak detector, what’s the difference between "definitely lost", "indirectly lost",

"possibly lost", "still reachable”, and "suppressed”"? ... 7

5.3. Memcheck’s uninitialised value errors are hard to track down, because they are often reported some time
after they are caused. Could Memcheck record a trail of operations to better link the cause to the effect?

Or maybe just eagerly report any copies of uninitialised memory values? 8
5.4. Is it possible to attach Valgrind to a program that is already running?, 8
6. How To Get Further ASSIStANCEo e 8

1. Background

1.1. How do you pronounce "Valgrind"?

The "Val" as in the word "value". The "grind" is pronounced with a short ’i’ -- ie. "grinned" (rhymes with
"tinned") rather than "grined" (thymes with "find").

Don’t feel bad: almost everyone gets it wrong at first.

1.2. Where does the name "Valgrind" come from?

Valgrind Frequently Asked Questions

From Nordic mythology. Originally (before release) the project was named Heimdall, after the watchman of
the Nordic gods. He could "see a hundred miles by day or night, hear the grass growing, see the wool growing
on a sheep’s back", etc. This would have been a great name, but it was already taken by a security package
"Heimdal".

Keeping with the Nordic theme, Valgrind was chosen. Valgrind is the name of the main entrance to Valhalla
(the Hall of the Chosen Slain in Asgard). Over this entrance there resides a wolf and over it there is the head
of a boar and on it perches a huge eagle, whose eyes can see to the far regions of the nine worlds. Only those
judged worthy by the guardians are allowed to pass through Valgrind. All others are refused entrance.

It’s not short for "value grinder", although that’s not a bad guess.

2. Compiling, installing and configuring

2.1.

2.2.

When building Valgrind, *'make’ dies partway with an assertion failure, something like this:

Q

% make: expand.c:489: allocated_variable_append:
Assertion ’'current_variable_set_list->next != 0’ failed.

It’s probably a bug in 'make’. Some, but not all, instances of version 3.79.1 have this bug, see this. Try
upgrading to a more recent version of 'make’. Alternatively, we have heard that unsetting the CFLAGS
environment variable avoids the problem.

When building Valgrind, *make’ fails with this:

/usr/bin/ld: cannot find -lc
collect2: 1d returned 1 exit status

You need to install the glibc-static-devel package.

url(http://www.mail-archive.com/bug-make@gnu.org/msg01658.html)

Valgrind Frequently Asked Questions

3. Valgrind aborts unexpectedly

3.1. Programs run OK on Valgrind, but at exit produce a bunch of errors involving __libc_freeres and then
die with a segmentation fault.

When the program exits, Valgrind runs the procedure __libc_freeres in glibc. This is a hook for
memory debuggers, so they can ask glibc to free up any memory it has used. Doing that is needed to ensure
that Valgrind doesn’t incorrectly report space leaks in glibc.

The problem is that running ___1ibc_freeres in older glibc versions causes this crash.

Workaround for 1.1.X and later versions of Valgrind: use the ——run-libc-freeres=no option. You
may then get space leak reports for glibc allocations (please don’t report these to the glibc people, since they
are not real leaks), but at least the program runs.

3.2. My (buggy) program dies like this:
valgrind: m_mallocfree.c:248 (get_lbszB_as_is): Assertion "bszB_lo == bszB_hi’ failed.
or like this:
valgrind: m_mallocfree.c:442 (mk_inuse_bszB): Assertion 'bszB != 0’ failed.
or otherwise aborts or crashes in m_mallocfree.c.

If Memcheck (the memory checker) shows any invalid reads, invalid writes or invalid frees in your program,
the above may happen. Reason is that your program may trash Valgrind’s low-level memory manager, which
then dies with the above assertion, or something similar. The cure is to fix your program so that it doesn’t do
any illegal memory accesses. The above failure will hopefully go away after that.

3.3. My program dies, printing a message like this along the way:
vex x86—>IR: unhandled instruction bytes: 0x66 O0xF 0x2E 0x5

One possibility is that your program has a bug and erroneously jumps to a non-code address, in which case
you’ll get a SIGILL signal. Memcheck may issue a warning just before this happens, but it might not if the
jump happens to land in addressable memory.

Another possibility is that Valgrind does not handle the instruction. If you are using an older Valgrind, a
newer version might handle the instruction. However, all instruction sets have some obscure, rarely used
instructions. Also, on amd64 there are an almost limitless number of combinations of redundant instruction
prefixes, many of them undocumented but accepted by CPUs. So Valgrind will still have decoding failures
from time to time. If this happens, please file a bug report.

3.4.1 tried running a Java program (or another program that uses a just-in-time compiler) under Valgrind but
something went wrong. Does Valgrind handle such programs?

Valgrind Frequently Asked Questions

Valgrind can handle dynamically generated code, so long as none of the generated code is later overwritten
by other generated code. If this happens, though, things will go wrong as Valgrind will continue running
its translations of the old code (this is true on x86 and amd64, on PowerPC there are explicit cache flush
instructions which Valgrind detects and honours). You should try running with ——smc—check=all in this
case. Valgrind will run much more slowly, but should detect the use of the out-of-date code.

Alternatively, if you have the source code to the JIT compiler you can insert calls to the
VALGRIND_DISCARD_TRANSLATIONS client request to mark out-of-date code, saving you from
using ——smc—-check=all.

Apart from this, in theory Valgrind can run any Java program just fine, even those that use JNI and are partially
implemented in other languages like C and C++. In practice, Java implementations tend to do nasty things
that most programs do not, and Valgrind sometimes falls over these corner cases.

If your Java programs do not run under Valgrind, even with ——smc-check=all, please file a bug report and
hopefully we’ll be able to fix the problem.

4. Valgrind behaves unexpectedly

4.1. My program uses the C++ STL and string classes. Valgrind reports ’still reachable’ memory leaks involving
these classes at the exit of the program, but there should be none.

First of all: relax, it’s probably not a bug, but a feature. Many implementations of the C++ standard libraries
use their own memory pool allocators. Memory for quite a number of destructed objects is not immediately
freed and given back to the OS, but kept in the pool(s) for later re-use. The fact that the pools are not freed
at the exit of the program cause Valgrind to report this memory as still reachable. The behaviour not to free
pools at the exit could be called a bug of the library though.

Using GCC, you can force the STL to use malloc and to free memory as soon as possible by globally disabling
memory caching. Beware! Doing so will probably slow down your program, sometimes drastically.

* With GCC 2.91, 2.95, 3.0 and 3.1, compile all source using the STL with -D__ USE_MALLOC. Beware!
This was removed from GCC starting with version 3.3.

* With GCC 3.2.2 and later, you should export the environment variable GLIBCPP_FORCE_NEW before
running your program.

* With GCC 3.4 and later, that variable has changed name to GLIBCXX_FORCE_NEW.

There are other ways to disable memory pooling: using the malloc_alloc template with your objects (not
portable, but should work for GCC) or even writing your own memory allocators. But all this goes beyond the
scope of this FAQ. Start by reading http://gcc.gnu.org/onlinedocs/libstdc++/fag/index.html#4_4_leak if you
absolutely want to do that. But beware: allocators belong to the more messy parts of the STL and people went
to great lengths to make the STL portable across platforms. Chances are good that your solution will work on
your platform, but not on others.

4.2. The stack traces given by Memcheck (or another tool) aren’t helpful. How can I improve them?

url(http://gcc.gnu.org/onlinedocs/libstdc++/faq/index.html#4_4_leak)

Valgrind Frequently Asked Questions

If they’re not long enough, use ——num-callers to make them longer.

If they’re not detailed enough, make sure you are compiling with —g to add debug information. And don’t strip
symbol tables (programs should be unstripped unless you run ’strip’ on them; some libraries ship stripped).

Also, for leak reports involving shared objects, if the shared object is unloaded before the program terminates,
Valgrind will discard the debug information and the error message will be full of 2?2 entries. The workaround
here is to avoid calling d1close on these shared objects.

Also, ~fomit-frame-pointer and —~fstack-check can make stack traces worse.

Some example sub-traces:

* With debug information and unstripped (best):

Invalid write of size 1
at 0x80483BF: really (mallocl.c:20)
by 0x8048370: main (mallocl.c:9)

* With no debug information, unstripped:

Invalid write of size 1
at 0x80483BF: really (in /auto/homes/nijn25/grind/head5/a.out)
by 0x8048370: main (in /auto/homes/njn25/grind/head5/a.out)

* With no debug information, stripped:

Invalid write of size 1
at 0x80483BF: (within /auto/homes/njn25/grind/head5/a.out)
by 0x8048370: (within /auto/homes/njn25/grind/head5/a.out)
by 0x42015703: __libc_start_main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC: (within /auto/homes/njn25/grind/head5/a.out)

* With debug information and -fomit-frame-pointer:

Invalid write of size 1
at 0x80483C4: really (mallocl.c:20)
by 0x42015703: _ libc_start_main (in /lib/tls/libc-2.3.2.s0)
by 0x80482CC: ??? (start.S:81)

Valgrind Frequently Asked Questions

4.3.

44.

4.5.

* A leak error message involving an unloaded shared object:

84 bytes in 1 blocks are possibly lost in loss record 488 of 713
at 0x1B9036DA: operator new (unsigned) (vg_replace_malloc.c:132)
by O0x1DB63EEB: 27?7
by 0x1DB4B800: 2?7?27
by 0x1D65E007: 2?27
by 0x8049EE6: main (main.cpp:24)

The stack traces given by Memcheck (or another tool) seem to have the wrong function name in them. What’s
happening?

Occasionally Valgrind stack traces get the wrong function names. This is caused by glibc using aliases
to effectively give one function two names. Most of the time Valgrind chooses a suitable name, but very
occasionally it gets it wrong. Examples we know of are printing bcmp instead of memcmp, i ndex instead of
strchr, and rindex instead of strrchr.

My program crashes normally, but doesn’t under Valgrind, or vice versa. What’s happening?

When a program runs under Valgrind, its environment is slightly different to when it runs natively. For
example, the memory layout is different, and the way that threads are scheduled is different.

Most of the time this doesn’t make any difference, but it can, particularly if your program is buggy. For
example, if your program crashes because it erroneously accesses memory that is unaddressable, it’s possible
that this memory will not be unaddressable when run under Valgrind. Alternatively, if your program has data
races, these may not manifest under Valgrind.

There isn’t anything you can do to change this, it’s just the nature of the way Valgrind works that it cannot
exactly replicate a native execution environment. In the case where your program crashes due to a memory
error when run natively but not when run under Valgrind, in most cases Memcheck should identify the bad
memory operation.

Memcheck doesn’t report any errors and I know my program has errors.
There are two possible causes of this.

First, by default, Valgrind only traces the top-level process. So if your program spawns children, they won’t
be traced by Valgrind by default. Also, if your program is started by a shell script, Perl script, or something
similar, Valgrind will trace the shell, or the Perl interpreter, or equivalent.

To trace child processes, use the ——trace-children=yes option.

If you are tracing large trees of processes, it can be less disruptive to have the output sent over the network.
Give Valgrind the option ——log-socket=127.0.0.1:12345 (if you want logging output sent to port
12345 o0n localhost). You can use the valgrind-listener program to listen on that port:

valgrind-listener 12345

Obviously you have to start the listener process first. See the manual for more details.

Valgrind Frequently Asked Questions

Second, if your program is statically linked, most Valgrind tools will only work well if they are able to
replace certain functions, such as malloc, with their own versions. By default, statically linked malloc
functions are not replaced. A key indicator of this is if Memcheck says:

All heap blocks were freed —- no leaks are possible

when you know your program calls malloc. The workaround is to use the option
—-—soname-synonyms=somalloc=NONE or to avoid statically linking your program.

There will also be no replacement if you use an alternative malloc library such as tcmalloc, jemalloc,
In such a case, the option ——soname-synonyms=somalloc=zzzz (Where zzzz is the soname of the
alternative malloc library) will allow Valgrind to replace the functions.

4.6. Why doesn’t Memcheck find the array overruns in this program?

int static([5];

int main (void)
{
int stack([5];

static[5] = 0;
stack [5] = 0;

return 0O;

}

Unfortunately, Memcheck doesn’t do bounds checking on global or stack arrays. We’d like to, but it’s just not
possible to do in a reasonable way that fits with how Memcheck works. Sorry.

However, the experimental tool SGcheck can detect errors like this. Run Valgrind with the
-—tool=exp-sgcheck option to try it, but be aware that it is not as robust as Memcheck.

5. Miscellaneous

5.1.1 tried writing a suppression but it didn’t work. Can you write my suppression for me?
Yes! Use the -——gen-suppressions=yes feature to spit out suppressions automatically for you. You
can then edit them if you like, eg. combining similar automatically generated suppressions using wildcards

like " ="

If you really want to write suppressions by hand, read the manual carefully. Note particularly that C++
function names must be mangled (that is, not demangled).

5.2. With Memcheck’s memory leak detector, what’s the difference between "definitely lost", "indirectly lost",

non

"possibly lost", "still reachable", and "suppressed"?
The details are in the Memcheck section of the user manual.

In short:

Valgrind Frequently Asked Questions

* "definitely lost" means your program is leaking memory -- fix those leaks!

"

* "indirectly lost" means your program is leaking memory in a pointer-based structure. (E.g. if the root node
of a binary tree is "definitely lost", all the children will be "indirectly lost".) If you fix the "definitely lost"
leaks, the "indirectly lost" leaks should go away.

* "possibly lost" means your program is leaking memory, unless you’re doing unusual things with pointers
that could cause them to point into the middle of an allocated block; see the user manual for some possible
causes. Use ——show-possibly—-lost=no if you don’t want to see these reports.

« "still reachable" means your program is probably ok -- it didn’t free some memory it could have. This is
quite common and often reasonable. Don’t use ——show-reachable=yes if you don’t want to see these
reports.

* "suppressed” means that a leak error has been suppressed. There are some suppressions in the default
suppression files. You can ignore suppressed errors.

5.3. Memcheck’s uninitialised value errors are hard to track down, because they are often reported some time after
they are caused. Could Memcheck record a trail of operations to better link the cause to the effect? Or maybe
just eagerly report any copies of uninitialised memory values?

Prior to version 3.4.0, the answer was "we don’t know how to do it without huge performance penalties". As
of 3.4.0, try using the ——track-origins=yes option. It will run slower than usual, but will give you
extra information about the origin of uninitialised values.

Or if you want to do it the old fashioned way, you can use the client request VALGRIND_CHECK_VALUE_IS_DEFINED
to help track these errors down -- work backwards from the point where the uninitialised error occurs, checking

suspect values until you find the cause. This requires editing, compiling and re-running your program multiple

times, which is a pain, but still easier than debugging the problem without Memcheck’s help.

As for eager reporting of copies of uninitialised memory values, this has been suggested multiple times.
Unfortunately, almost all programs legitimately copy uninitialised memory values around (because compilers
pad structs to preserve alignment) and eager checking leads to hundreds of false positives. ~ Therefore
Memcheck does not support eager checking at this time.

5.4.1s it possible to attach Valgrind to a program that is already running?

No. The environment that Valgrind provides for running programs is significantly different to that for normal
programs, e.g. due to different layout of memory. Therefore Valgrind has to have full control from the very
start.

It is possible to achieve something like this by running your program without any instrumentation (which
involves a slow-down of about 5x, less than that of most tools), and then adding instrumentation once you get
to a point of interest. Support for this must be provided by the tool, however, and Callgrind is the only tool
that currently has such support. See the instructions on the callgrind_control program for details.

Valgrind Frequently Asked Questions

6. How To Get Further Assistance
Read the appropriate section(s) of the Valgrind Documentation.
Search the valgrind-users mailing list archives, using the group name gmane . comp . debugging.valgrind.
If you think an answer in this FAQ is incomplete or inaccurate, please e-mail valgrind @valgrind.org.

If you have tried all of these things and are still stuck, you can try mailing the valgrind-users mailing list.
Note that an email has a better change of being answered usefully if it is clearly written. Also remember
that, despite the fact that most of the community are very helpful and responsive to emailed questions, you are
probably requesting help from unpaid volunteers, so you have no guarantee of receiving an answer.

url(http://www.valgrind.org/docs/manual/index.html)
url(http://search.gmane.org)
url(http://news.gmane.org/gmane.comp.debugging.valgrind)
url(mailto:valgrind@valgrind.org)
url(http://www.valgrind.org/support/mailing_lists.html)

Valgrind Technical Documentation

Release 3.11.0 22 September 2015
Copyright © 2000-2015 Valgrind Developers
Email: valgrind@valgrind.org

url(http://www.valgrind.org/info/developers.html)

Valgrind Technical Documentation

Table of Contents

1. The Design and Implementation of Valgrind i i 1
2. Writing a New Valgrind TOOL e e 2
2.1 INtrodUCHION ..o e 2
2.2 BaSICS .ttt 2
2.2.1. HOow tools WOTK 2
2.2.2. Getting the COde 2
223, Getting started 2
224, Writing the COde . ..ot 3
2.2.5. Initialisation 4
2.2.6. InStIUMENTAtIONttt ettt et et e e e e 4
2.2.7. FInalisation 4
2.2.8. Other Important Information 4
2.3 Advanced TOPICS ... e ittt 5
2.3.1. Debug@ing TIPSuvte et e e e 5
2.3.2. SUPPIESSIONS . o e ettt ettt et e e e e e e e 5
2.3.3. DOCUMENtAtiON e 6
2.3.4. Regression Tests 7
2.3.5. Profiling ..o 7
2.3.6. Other Makefile Hackery e 7
2.3.7. The Core/tool Interfaceo e 7
2.4, FInal WOrds 7
3. Callgrind Format Specification 9
B OVEIVIBW oottt 9
3 1.1 Basic SIIUCHUIE . ..ottt et e e e e 9
3.1.2. Simple EXampleo 9
3130 ASSOCIALIONS . ..ottt ettt et e e e e e e e e 10
3.1.4. Extended Example 10
3.1.5. Name COMPIESSIONttt ittt ettt et e e e e et et e 11
3.1.6. Subposition COMPIESSION . .. ettt ettt ettt ettt ettt e e et e e e et 12
317 MISCRIIANEOUS ...ttt e 13
B2 REOICNCEot 14
32,10 GramIMArttt e ettt e e e e 14
3.2.2. Description of Header Lines 16
3.2.3. Description of Body Lines i 18

X1

1. The Design and Implementation of
Valgrind

A number of academic publications nicely describe many aspects of Valgrind’s design and implementation. Online
copies of all of them, and others, are available on the Valgrind publications page.

The following paper gives a good overview of Valgrind, and explains how it differs from other dynamic binary
instrumentation frameworks such as Pin and DynamoRIO.

e Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. Nicholas Nethercote and
Julian Seward. Proceedings of ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007), San Diego, California, USA, June 2007.

The following two papers together give a comprehensive description of how most of Memcheck works. The first
paper describes in detail how Memcheck’s undefined value error detection (a.k.a. V bits) works. The second paper
describes in detail how Memcheck’s shadow memory is implemented, and compares it to other alternative approaches.

« Using Valgrind to detect undefined value errors with bit-precision. Julian Seward and Nicholas Nethercote.
Proceedings of the USENIX’05 Annual Technical Conference, Anaheim, California, USA, April 2005.

How to Shadow Every Byte of Memory Used by a Program. Nicholas Nethercote and Julian Seward. Pro-
ceedings of the Third International ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environ-
ments (VEE 2007), San Diego, California, USA, June 2007.

The following paper describes Callgrind.

¢ A Tool Suite for Simulation Based Analysis of Memory Access Behavior. Josef Weidendorfer, Markus
Kowarschik and Carsten Trinitis. Proceedings of the 4th International Conference on Computational
Science (ICCS 2004), Krakow, Poland, June 2004.

The following dissertation describes Valgrind in some detail (many of these details are now out-of-date) as well as
Cachegrind, Annelid and Redux. It also covers some underlying theory about dynamic binary analysis in general and
what all these tools have in common.

*Dynamic Binary Analysis and Instrumentation. Nicholas Nethercote. =~ PhD Dissertation, University of
Cambridge, November 2004.

url(http://www.valgrind.org/docs/pubs.html)

2. Writing a New Valgrind Tool

So you want to write a Valgrind tool? Here are some instructions that may help.

2.1. Introduction

The key idea behind Valgrind’s architecture is the division between its core and fools.

The core provides the common low-level infrastructure to support program instrumentation, including the JIT
compiler, low-level memory manager, signal handling and a thread scheduler. It also provides certain services
that are useful to some but not all tools, such as support for error recording, and support for replacing heap allocation
functions such asmalloc.

But the core leaves certain operations undefined, which must be filled by tools. ~Most notably, tools define how
program code should be instrumented. They can also call certain functions to indicate to the core that they would like
to use certain services, or be notified when certain interesting events occur. But the core takes care of all the hard
work.

2.2. Basics

2.2.1. How tools work

Tools must define various functions for instrumenting programs that are called by Valgrind’s core. They are then
linked against Valgrind’s core to define a complete Valgrind tool which will be used when the ——t ool option is used
to select it.

2.2.2. Getting the code

To write your own tool, you’ll need the Valgrind source code. You’ll need a check-out of the Subversion repository for
the automake/autoconf build instructions to work. See the information about how to do check-out from the repository
at the Valgrind website.

2.2.3. Getting started

Valgrind uses GNU automake and autoconf for the creation of Makefiles and configuration. But don’t worry,
these instructions should be enough to get you started even if you know nothing about those tools.

In what follows, all filenames are relative to Valgrind’s top-level directory valgrind/.
1. Choose a name for the tool, and a two-letter abbreviation that can be used as a short prefix. We’ll use foobar
and fb as an example.
2. Make three new directories foobar/, foobar/docs/ and foobar/tests/.
3. Create an empty file foobar/tests/Makefile.am.

4.Copy none/Makefile.aminto foobar/. Edititby replacing all occurrences of the strings "none", "nl_"
and "nl1-" with "foobar", "fb_" and " fb—-" respectively.

url(http://www.valgrind.org/downloads/repository.html)

Writing a New Valgrind Tool

5.Copy none/nl_main.c into foobar/, renaming it as fb_main.c. Editit by changing the details lines
innl_pre_clo_init tosomething appropriate for the tool. These fields are used in the startup message, except
for bug_reports_to which is used if a tool assertion fails. Also, replace the string "n1_" throughout with
"fb_" again.

6. Edit Makefile.am, adding the new directory foobar to the TOOLS or EXP_TOOLS variables.
7.Edit configure.in, adding foobar/Makefile and foobar/tests/Makefile tothe AC_OUTPUT list.

8. Run:

autogen.sh

./configure ——-prefix=‘pwd‘/inst
make

make install

It should automake, configure and compile without errors, putting copies of the tool in foobar/ and
inst/lib/valgrind/.

9. You can test it with a command like:

inst/bin/valgrind ——tool=foobar date

(almost any program should work; date is just an example). The output should be something like this:

==738== foobar-0.0.1, a foobarring tool.

==738== Copyright (C) 2002-2009, and GNU GPL’d, by J. Programmer.

==738== Using Valgrind-3.5.0.SVN and LibVEX; rerun with —-h for copyright info
==738== Command: date

==738==

Tue Nov 27 12:40:49 EST 2007

==738==

The tool does nothing except run the program uninstrumented.

These steps don’t have to be followed exactly -- you can choose different names for your source files, and use a
different ——prefix for . /configure.

Now that we’ve setup, built and tested the simplest possible tool, onto the interesting stuff...

2.2.4. Writing the code

A tool must define at least these four functions:

pre_clo_init ()
post_clo_init ()
instrument ()
fini ()

The names can be different to the above, but these are the usual names. The first one is registered using the macro
VG_DETERMINE_INTERFACE_VERSION. The last three are registered using the VG_ (basic_tool_funcs)
function.

Writing a New Valgrind Tool

In addition, if a tool wants to use some of the optional services provided by the core, it may have to define other
functions and tell the core about them.

2.2.5. Initialisation

Most of the initialisation should be done in pre_clo_init. Only use post_clo_init if a tool provides
command line options and must do some initialisation after option processing takes place ("clo" stands for
"command line options").

First of all, various "details" need to be set for a tool, using the functions VG_ (details_x). Some are all
compulsory, some aren’t. Some are used when constructing the startup message, detail_bug_reports_tois
used if VG__ (tool_panic) is ever called, or a tool assertion fails. Others have other uses.

Second, various "needs" can be set for a tool, using the functions VG__ (needs_x). They are mostly booleans, and
can be left untouched (they default to False). They determine whether a tool can do various things such as: record,
report and suppress errors; process command line options; wrap system calls; record extra information about heap
blocks; etc.

For example, if a tool wants the core’s help in recording and reporting errors, it must call
VG_ (needs_tool_errors) and provide definitions of eight functions for comparing errors, printing out
errors, reading suppressions from a suppressions file, etc. While writing these functions requires some work, it’s
much less than doing error handling from scratch because the core is doing most of the work.

Third, the tool can indicate which events in core it wants to be notified about, using the functions VG_ (track_x*).
These include things such as heap blocks being allocated, the stack pointer changing, a mutex being locked, etc. If a
tool wants to know about this, it should provide a pointer to a function, which will be called when that event happens.

For example, if the tool want to be notified when a new heap block is allocated, it should call
VG_ (track_new_mem_heap) with an appropriate function pointer, and the assigned function will be called each
time this happens.

non

More information about "details", "needs" and "trackable events" can be foundin include/pub_tool_tooliface.h.

2.2.6. Instrumentation

instrument is the interesting one. It allows you to instrument VEX IR, which is Valgrind’s RISC-like intermediate
language. VEX IR is described in the comments of the header file VEX/pub/libvex_ir.h.

The easiest way to instrument VEX IR is to insert calls to C functions when interesting things happen. See the tool
"Lackey" (Lackey/1lk_main. c) for a simple example of this, or Cachegrind (cachegrind/cg_main.c) fora
more complex example.

2.2.7. Finalisation

This is where you can present the final results, such as a summary of the information collected. Any log files should
be written out at this point.

2.2.8. Other Important Information

Please note that the core/tool split infrastructure is quite complex and not brilliantly documented. Here are some
important points, but there are undoubtedly many others that I should note but haven’t thought of.

Writing a New Valgrind Tool

The files include/pub_tool_x*.h contain all the types, macros, functions, etc. that a tool should (hopefully)
need, and are the only . h files a tool should need to #include. They have a reasonable amount of documentation
in it that should hopefully be enough to get you going.

Note that you can’t use anything from the C library (there are deep reasons for this, trust us). Valgrind provides an
implementation of a reasonable subset of the C library, details of which are in pub_tool_libcx*.h.

When writing a tool, in theory you shouldn’t need to look at any of the code in Valgrind’s core, but in practice it might
be useful sometimes to help understand something.

The include/pub_tool_basics.h and VEX/pub/libvex_basictypes.h files have some basic types
that are widely used.

Ultimately, the tools distributed (Memcheck, Cachegrind, Lackey, etc.) are probably the best documentation of all, for
the moment.

The VG_ macro is used heavily. This just prepends a longer string in front of names to avoid potential namespace
clashes. Itis defined in include/pub_tool_basics.h.

There are some assorted notes about various aspects of the implementation in docs/internals/. Much of itisn’t
that relevant to tool-writers, however.

2.3. Advanced Topics

Once a tool becomes more complicated, there are some extra things you may want/need to do.

2.3.1. Debugging Tips

Writing and debugging tools is not trivial. Here are some suggestions for solving common problems.

If you are getting segmentation faults in C functions used by your tool, the usual GDB command:

gdb <prog> core

usually gives the location of the segmentation fault.

If you want to debug C functions used by your tool, there are instructions on how to do so in the file
README_DEVELOPERS.

If you are having problems with your VEX IR instrumentation, it’s likely that GDB won’t be able to help at all. In
this case, Valgrind’s ——trace—flags option is invaluable for observing the results of instrumentation.

If you just want to know whether a program point has been reached, using the OINK macro (in
include/pub_tool_libcprint.h) can be easier than using GDB.

The other debugging command line options can be useful too (run valgrind --help-debug for the list).

2.3.2. Suppressions

If your tool reports errors and you want to suppress some common ones, you can add suppressions to the suppression
files. The relevant files are » . supp; the final suppression file is aggregated from these files by combining the relevant
. supp files depending on the versions of linux, X and glibc on a system.

Writing a New Valgrind Tool

Suppression types have the form tool_name:suppression_name. The tool_name here is the name you
specify for the tool during initialisation with VG__ (details_name).

2.3.3. Documentation

If you are feeling conscientious and want to write some documentation for your tool, please use XML as the rest of
Valgrind does. The file docs/README has more details on getting the XML toolchain to work; this can be difficult,
unfortunately.

To write the documentation, follow these steps (using foobar as the example tool name again):

1. The docs go in foobar/docs/, which you will have created when you started writing the tool.

2.Copy the XML documentation file for the tool Nulgrind from none/docs/nl-manual.xml to
foobar/docs/, and rename it to foobar/docs/fb-manual . xml.

Note: there is a tetex bug involving underscores in filenames, so don’t use °_’.

3. Write the documentation. There are some helpful bits and pieces on using XML markup in
docs/xml/xml_help.txt.

4.Include it in the User Manual by adding the relevant entry to docs/xml/manual.xml. Copy and edit an
existing entry.

5. Include it in the man page by adding the relevant entry to docs/xml/valgrind-manpage.xml. Copy and
edit an existing entry.

6. Validate foobar/docs/fb-manual.xml using the following command from within docs/:
make valid
You may get errors that look like this:

./xml/index.xml:5: element chapter: validity error : No declaration for
attribute base of element chapter

Ignore (only) these -- they’re not important.

Because the XML toolchain is fragile, it is important to ensure that fb-manual.xml won’t break the documen-
tation set build. Note that just because an XML file happily transforms to html does not necessarily mean the same
holds true for pdf/ps.

7. You can (re-)generate the HTML docs while you are writing fb-manual . xml to help you see how it’s looking.
The generated files end up in docs/html/. Use the following command, within docs/:

make html-docs

Writing a New Valgrind Tool

8. When you have finished, try to generate PDF and PostScript output to check all is well, from within docs/:
make print-docs

Check the output .pdf and .ps files in docs/print/.

Note that the toolchain is even more fragile for the print docs, so don’t feel too bad if you can’t get it working.

2.3.4. Regression Tests

Valgrind has some support for regression tests. If you want to write regression tests for your tool:

1. The tests go in foobar/tests/, which you will have created when you started writing the tool.
2. Write foobar/tests/Makefile.am. Use memcheck/tests/Makefile.am asan example.

3. Write the tests, . vgtest test description files, . stdout .exp and . stderr.exp expected output files. (Note
that Valgrind’s output goes to stderr.) Some details on writing and running tests are given in the comments at the
top of the testing script tests/vg_regtest.

4. Write a filter for stderr results foobar/tests/filter_stderr. Itcan call the existing filters in tests/.
See memcheck/tests/filter_stderr for an example; in particular note the $dir trick that ensures the
filter works correctly from any directory.

2.3.5. Profiling

Lots of profiling tools have trouble running Valgrind. For example, trying to use gprof is hopeless.
Probably the best way to profile a tool is with OProfile on Linux.

You can also use Cachegrind on it. Read README_DEVELOPERS for details on running Valgrind under Valgrind;
it’s a bit fragile but can usually be made to work.

2.3.6. Other Makefile Hackery

If you add any directories under foobar/, you will need to add an appropriate Makefile.am to it, and add a
corresponding entry to the AC_OUTPUT listin configure.in.

If you add any scripts to your tool (see Cachegrind for an example) you need to add them to the bin_SCRIPTS
variable in foobar/Makefile.am and possible also to the AC_OUTPUT listin configure.in.

2.3.7. The Core/tool Interface

The core/tool interface evolves over time, but it’s pretty stable. We deliberately do not provide backward compatibility
with old interfaces, because it is too difficult and too restrictive. ~We view this as a good thing -- if we had to be
backward compatible with earlier versions, many improvements now in the system could not have been added.

Because tools are statically linked with the core, if a tool compiles successfully then it should be compatible with the
core. We would not deliberately violate this property by, for example, changing the behaviour of a core function
without changing its prototype.

Writing a New Valgrind Tool

2.4. Final Words

Writing a new Valgrind tool is not easy, but the tools you can write with Valgrind are among the most powerful
programming tools there are. Happy programming!

3. Callgrind Format Specification

This chapter describes the Callgrind Profile Format, Version 1.

A synonymous name is "Calltree Profile Format". These names actually mean the same since Callgrind was previously
named Calltree.

The format description is meant for the user to be able to understand the file contents; but more important, it is given
for authors of measurement or visualization tools to be able to write and read this format.

3.1. Overview

The profile data format is ASCII based. It is written by Callgrind, and it is upwards compatible to the format used by
Cachegrind (ie. Cachegrind uses a subset). It can be read by callgrind_annotate and KCachegrind.

This chapter gives on overview of format features and examples. For detailed syntax, look at the format reference.

3.1.1. Basic Structure

Each file has a header part of an arbitrary number of lines of the format "key: value". After the header, lines specifying
profile costs follow. Everywhere, comments on own lines starting with °# are allowed. The header lines with keys
"positions" and "events" define the meaning of cost lines in the second part of the file: the value of "positions" is a list
of subpositions, and the value of "events" is a list of event type names. Cost lines consist of subpositions followed by
64-bit counters for the events, in the order specified by the "positions" and "events" header line.

The "events" header line is always required in contrast to the optional line for "positions", which defaults to "line", i.e.
a line number of some source file. In addition, the second part of the file contains position specifications of the form

"spec=name". "spec" can be e.g. "fn" for a function name or "fl" for a file name. Cost lines are always related to the
function/file specifications given directly before.

3.1.2. Simple Example

The event names in the following example are quite arbitrary, and are not related to event names used by Callgrind.
Especially, cycle counts matching real processors probably will never be generated by any Valgrind tools, as these are
bound to simulations of simple machine models for acceptable slowdown. However, any profiling tool could use the
format described in this chapter.

events: Cycles Instructions Flops
fl=file.f

fn=main

15 90 14 2

16 20 12

The above example gives profile information for event types "Cycles", "Instructions", and "Flops". Thus, cost lines
give the number of CPU cycles passed by, number of executed instructions, and number of floating point operations
executed while running code corresponding to some source position. As there is no line specifying the value of
"positions", it defaults to "line", which means that the first number of a cost line is always a line number.

Thus, the first cost line specifies that in line 15 of source file £i1le. f there is code belonging to function main. While
running, 90 CPU cycles passed by, and 2 of the 14 instructions executed were floating point operations. Similarly, the
next line specifies that there were 12 instructions executed in the context of function main which can be related to

9

Callgrind Format Specification

line 16infile file. £, taking 20 CPU cycles. If a cost line specifies less event counts than given in the "events" line,
the rest is assumed to be zero. l.e. there was no floating point instruction executed relating to line 16.

Note that regular cost lines always give self (also called exclusive) cost of code at a given position. If you specify
multiple cost lines for the same position, these will be summed up. On the other hand, in the example above there is
no specification of how many times function main actually was called: profile data only contains sums.

3.1.3. Associations

The most important extension to the original format of Cachegrind is the ability to specify call relationship among
functions. More generally, you specify associations among positions. For this, the second part of the file also can
contain association specifications. These look similar to position specifications, but consist of two lines. For calls, the
format looks like

calls=(Call Count) (Target position)
(Source position) (Inclusive cost of call)

The destination only specifies subpositions like line number. Therefore, to be able to specify a call to another
function in another source file, you have to precede the above lines with a "cfn=" specification for the name of the
called function, and optionally a "cfi=" specification if the function is in another source file ("cfl="is an alternative
specification for "cfi=" because of historical reasons, and both should be supported by format readers). The second line
looks like a regular cost line with the difference that inclusive cost spent inside of the function call has to be specified.

Other associations are for example (conditional) jumps. See the reference below for details.

3.1.4. Extended Example

The following example shows 3 functions, main, funcl, and func2. Function main calls funcl once and func?
3 times. funcl calls func?2 2 times.

10

Callgrind Format Specification

events: Instructions

fl=filel.c
fn=main

16 20
cfn=funcl
calls=1 50
16 400
cfi=file2.c
cfn=func?2
calls=3 20
16 400

fn=funcl

51 100
cfi=file2.c
cfn=func?2
calls=2 20
51 300

fl=file2.c
fn=func?2
20 700

One can see that in main only code from line 16 is executed where also the other functions are called. Inclusive cost
of main is 820, which is the sum of self cost 20 and costs spent in the calls: 400 for the single call to funcl and 400
as sum for the three calls to func2.

Function funcl is located in filel.c, the same as main. Therefore, a "cfi=" specification for the call to funcl
is not needed. The function funcl only consists of code at line 51 of filel.c, where func? is called.

3.1.5. Name Compression

With the introduction of association specifications like calls it is needed to specify the same function or same file name
multiple times. As absolute filenames or symbol names in C++ can be quite long, it is advantageous to be able to
specify integer IDs for position specifications. Here, the term "position" corresponds to a file name (source or object
file) or function name.

To support name compression, a position specification can be not only of the format "spec=name", but also "spec=(ID)
name" to specify a mapping of an integer ID to a name, and "spec=(ID)" to reference a previously defined ID mapping.
There is a separate ID mapping for each position specification, i.e. you can use ID 1 for both a file name and a symbol
name.

With string compression, the example from 1.4 looks like this:

11

Callgrind Format Specification

events: Instructions

fl=(1) filel.c
fn=(1) main

16 20

cfn=(2) funcl
calls=1 50

16 400

cfi=(2) file2.c
cfn=(3) func2
calls=3 20

16 400

51 100
cfi=(2)
cfn=(3)
calls=2 20
51 300

As position specifications carry no information themselves, but only change the meaning of subsequent cost lines or
associations, they can appear everywhere in the file without any negative consequence. Especially, you can define
name compression mappings directly after the header, and before any cost lines. Thus, the above example can also be

written as
events: Instructions

define file ID mapping

fl1=(1) filel.c
fl=(2) file2.c

define function ID mapping

fn=(1) main
fn=(2) funcl
fn=(3) func?2

f1=(1)
fn=(1)
16 20

3.1.6. Subposition Compression

If a Callgrind data file should hold costs for each assembler instruction of a program, you specify subposition "instr" in
the "positions:" header line, and each cost line has to include the address of some instruction. Addresses are allowed to
have a size of 64 bits to support 64-bit architectures. Thus, repeating similar, long addresses for almost every line in the
data file can enlarge the file size quite significantly, and motivates for subposition compression: instead of every cost
line starting with a 16 character long address, one is allowed to specify relative addresses. This relative specification

12

Callgrind Format Specification

is not only allowed for instruction addresses, but also for line numbers; both addresses and line numbers are called
"subpositions".

A relative subposition always is based on the corresponding subposition of the last cost line, and starts with a "+" to
specify a positive difference, a "-" to specify a negative difference, or consists of "*" to specify the same subposition.
Because absolute subpositions always are positive (ie. never prefixed by "-"), any relative specification is non-
ambiguous; additionally, absolute and relative subposition specifications can be mixed freely. Assume the following
example (subpositions can always be specified as hexadecimal numbers, beginning with "0x"):

positions: instr line

events: ticks

fn=func

0x80001234 90 1
0x80001237 90 5
0x80001238 91 6

With subposition compression, this looks like
positions: instr line
events: ticks

fn=func
0x80001234 90 1
+3 x5

+1 +1 6

Remark: For assembler annotation to work, instruction addresses have to be corrected to correspond to addresses
found in the original binary. L.e. for relocatable shared objects, often a load offset has to be subtracted.

3.1.7. Miscellaneous

3.1.7.1. Cost Summary Information

For the visualization to be able to show cost percentage, a sum of the cost of the full run has to be known. Usually, it
is assumed that this is the sum of all cost lines in a file. But sometimes, this is not correct. Thus, you can specify a
"summary:" line in the header giving the full cost for the profile run. An import filter may use this to show a progress
bar while loading a large data file.

3.1.7.2. Long Names for Event Types and inherited Types

Event types for cost lines are specified in the "events:" line with an abbreviated name. For visualization, it makes sense
to be able to specify some longer, more descriptive name. For an event type "Ir" which means "Instruction Fetches",
this can be specified the header line

event: Ir : Instruction Fetches

events: Ir Dr

In this example, "Dr" itself has no long name associated. The order of "event:" lines and the "events:" line is of no
importance. Additionally, inherited event types can be introduced for which no raw data is available, but which are
calculated from given types. Suppose the last example, you could add

13

Callgrind Format Specification

event: Sum = Ir + Dr

to specify an additional event type "Sum", which is calculated by adding costs for "Ir and "Dr".

3.2. Reference

3.2.1. Grammar

ProfileDataFile := FormatVersion? Creator? PartDatax
FormatVersion := "version: 1\n"

Creator := "creator:" NoNewLineChar* "\n"

PartData := (HeaderLine "\n")+ (BodyLine "\n")+

HeaderLine := (empty line)
| (’"#’ NoNewLineCharx)
| PartDetail
| Description
| EventSpecification
| CostLineDef

PartDetail := TargetCommand | TargetID

TargetCommand := "cmd:" Spacex NoNewLineCharx

TargetID := ("pid"|"thread" |"part") ":" Spacex* Number

Description := "desc:" Spacex Name Spacex* ":" NoNewLineCharx*
EventSpecification := "event:" Spacex Name InheritedDef? LongNameDef?
InheritedDef := "=" InheritedExpr

InheritedExpr := Name

| Number Spacex ("x" Spacex)? Name
| InheritedExpr Spacex "+" Space* InheritedExpr

LongNameDef := ":" NoNewLineCharx

14

Callgrind Format Specification

CostLineDef := "events:" Spacex Name (Space+ Name) x

| "positions:" "instr"? (Space+ "line")?
BodyLine := (empty line)

| (’'#’ NoNewLineCharx)

| CostLine

| PositionSpec

| CallSpec

| UncondJumpSpec

| CondJumpSpec
CostLine := SubPositionList Costs?
SubPositionList := (SubPosition+ Space+) +
SubPosition := Number | "+" Number | "-" Number | "x"
Costs := (Number Space+)+
PositionSpec := Position "=" Spacex PositionName
Position := CostPosition | CalledPosition
CostPosition := "ob" | "£f1" | "fi" | "fe" | "fn"
CalledPosition := " "cob" | "cfi" | "cfl" | "cfn"
PositionName := (" (" Number ")")? (Spacex* NoNewLineCharx)?
CallSpec := CallLine "\n" CostLine

Callline := "calls=" Spacex* Number Space+ SubPositionList
UncondJumpSpec := "jump=" Spacex* Number Space+ SubPositionList

CondJunmpSpec := "jcnd=" Spacex Number Space+ Number Space+ SubPositionList

Space g= T T | "\t"

15

Callgrind Format Specification

Number := HexNumber | (Digit)+

Digit := "0" | ... | "9"

HexNumber := "0x" (Digit | HexChar) +

HexChar :="a" | ... | "f" | "A" | "g"
Name = Alpha (Digit | Alpha) *

Alpha = "a" | ... "z" | "A" | ... | "Z"
NoNewLineChar := all characters without "\n"

A profile data file ("ProfileDataFile") starts with basic information such as the version and creator information, and
then has a list of parts, where each part has its own header and body. Parts typically are different threads and/or time

spans/phases within a profiled application run.

Note that callgrind_annotate currently only supports profile data files with one part. Callgrind may produce multiple

parts for one profile run, but defaults to one output file for each part.

3.2.2. Description of Header Lines

Basic information in the first lines of a profile data file:

eversion: number [Callgrind]

This is used to distinguish future profile data formats.
compatible with Cachegrind’s format. It is optional; if not appearing, version 1 is assumed. Otherwise, this has to

be the first header line.

ecreator: string [Callgrind]

This is an arbitrary string to denote the creator of this file. Optional.

A major version of 0 or 1 is supposed to be upwards

The header for each part has an arbitrary number of lines of the format "key: value". Possible key values for the header

are:

epid: process id [Callgrind]

Optional. This specifies the process ID of the supervised application for which this profile was generated.

ecmd: program name + args [Cachegrind]

Optional. This specifies the full command line of the supervised application for which this profile was generated.

16

Callgrind Format Specification

epart: number [Callgrind]
Optional. This specifies a sequentially incremented number for each dump generated, starting at 1.
edesc: type: value [Cachegrind]

This specifies various information for this dump. For some types, the semantic is defined, but any description type
is allowed. Unknown types should be ignored.

There are the types "Il cache", "D1 cache", "LL cache", which specify parameters used for the cache simulator.
These are the only types originally used by Cachegrind. Additionally, Callgrind uses the following types:
"Timerange" gives a rough range of the basic block counter, for which the cost of this dump was collected. Type
"Trigger" states the reason of why this trace was generated. E.g. program termination or forced interactive dump.

epositions: [instr] [line] [Callgrind]

For cost lines, this defines the semantic of the first numbers. Any combination of "instr", "bb" and "line" is allowed,
but has to be in this order which corresponds to position numbers at the start of the cost lines later in the file.

If "instr" is specified, the position is the address of an instruction whose execution raised the events given later on
the line. This address is relative to the offset of the binary/shared library file to not have to specify relocation info.
For "line", the position is the line number of a source file, which is responsible for the events raised. Note that the
mapping of "instr" and "line" positions are given by the debugging line information produced by the compiler.

This header line is optional, defaulting to "positions: line" if not specified.
eevents: event type abbreviations [Cachegrind]

A list of short names of the event types logged in cost lines in this part of the profile data file. Arbitrary short names
are allowed. The order given specifies the required order in cost lines. Thus, the first event type is the second or
third number in a cost line, depending on the value of "positions". Required to appear for each header part exactly
once.

esummary: costs [Callgrind]

Optional. This header line specifies a summary cost, which should be equal or larger than a total over all self costs.
It may be larger as the cost lines may not represent all cost of the program run.

etotals: costs [Cachegrind]

Optional. Should appear at the end of the file (although looking like a header line). Must give the total of all cost
lines, to allow for a consistency check.

17

Callgrind Format Specification

3.2.3. Description of Body Lines

The regular body line is a cost line consisting of one or two position numbers (depending on "positions:" header line,
see above) and an array of cost numbers. A position number either is a line numbers into a source file or an instruction
address within binary code, with source/binary file names specified as position names (see below). The cost numbers
get mapped to event types in the same order as specified in the "events:" header line. If less numbers than event types
are given, the costs default to zero for the remaining event types.

Further, there exist lines spec=position name. A position name is an arbitrary string. If it starts with "(" and a
digit, it’s a string in compressed format. Otherwise it’s the real position string. This allows for file and symbol names
as position strings, as these never start with "(" + digit. The compressed format is either "(" number ")" space position
or only "(" number ")". The first relates position to number in the context of the given format specification from this
line to the end of the file; it makes the (number) an alias for position. Compressed format is always optional.

Position specifications allowed:

ob= [Callgrind]

The ELF object where the cost of next cost lines happens.
e £1= [Cachegrind]
e fi= [Cachegrind]
» fe= [Cachegrind]

The source file including the code which is responsible for the cost of next cost lines. "fi="/"fe=" is used when the
source file changes inside of a function, i.e. for inlined code.

e fn= [Cachegrind]
The name of the function where the cost of next cost lines happens.
* cob= [Callgrind]
The ELF object of the target of the next call cost lines.
e cfi= [Callgrind]
The source file including the code of the target of the next call cost lines.
e cf 1= [Callgrind]
Alternative spelling for ¢ £ 1= specification (because of historical reasons).
e cfn= [Callgrind]
The name of the target function of the next call cost lines.

The last type of body line provides specific costs not just related to one position as regular cost lines. It starts with
specific strings similar to position name specifications.

18

Callgrind Format Specification

ecalls=count target-position [Callgrind]

Call executed "count" times to "target-position". After a "calls="line there MUST be a cost line. This provides the
source position of the call and the cost spent in the called function in total.

* jump=count target-position [Callgrind]
Unconditional jump, executed "count" times, to "target-position".
* jcnd=exe—-count jump-count target-position [Callgrind]

Conditional jump, executed "exe-count" times with "jump-count” jumps happening (rest is fall-through) to "target-
position".

19

Valgrind Distribution Documents

Release 3.11.0 22 September 2015
Copyright © 2000-2015 Valgrind Developers
Email: valgrind@valgrind.org

url(http://www.valgrind.org/info/developers.html)

Valgrind Distribution Documents

Table of Contents

L. AUTHORS . 1
2. N EW S L 3
3. OLDER NEW S . 60
4. README . ..o 98
5. README_MISSING_SYSCALL_OR_IOCTL i e 100
6. README_DEVELOPERS ... 105
7. README_PACKAGERS 111
8. README.S300 ..o e 113
9. README.android 115
10. README.android_emulator i 119
11. README.MIPS ... e 121
12. README.SOIAIIS i ettt e e e e 123

XX1

1. AUTHORS

Julian Seward was the original founder, designer and author of
Valgrind, created the dynamic translation frameworks, wrote Memcheck,
the 3.X versions of Helgrind, SGCheck, DHAT, and did lots of other
things.

Nicholas Nethercote did the core/tool generalisation, wrote
Cachegrind and Massif, and tons of other stuff.

Tom Hughes did a vast number of bug fixes, helped out with support for
more recent Linux/glibc versions, set up the present build system, and has
helped out with test and build machines.

Jeremy Fitzhardinge wrote Helgrind (in the 2.X line) and totally
overhauled low-level syscall/signal and address space layout stuff,
among many other things.

Josef Weidendorfer wrote and maintains Callgrind and the associated
KCachegrind GUI.

Paul Mackerras did a lot of the initial per-architecture factoring

that forms the basis of the 3.0 line and was also seen in 2.4.0.

He also did UCode-based dynamic translation support for PowerPC, and
created a set of ppc-linux derivatives of the 2.X release line.

Greg Parker wrote the Mac OS X port.

Dirk Mueller contributed the malloc/free mismatch checking
and other bits and pieces, and acts as our KDE liaison.

Robert Walsh added file descriptor leakage checking, new library
interception machinery, support for client allocation pools, and minor
other tweakage.

Bart Van Assche wrote and maintains DRD.

Cerion Armour-Brown worked on PowerPC instruction set support in the
Vex dynamic-translation framework. Maynard Johnson improved the

Power6 support.

Kirill Batuzov and Dmitry Zhurikhin did the NEON instruction set
support for ARM. Donna Robinson did the v6 media instruction support.

Donna Robinson created and maintains the very excellent
http://www.valgrind.org.

Vince Weaver wrote and maintains BBV.

Frederic Gobry helped with autoconf and automake.

AUTHORS

Daniel Berlin modified readelf’s dwarf2 source line reader, written by Nick
Clifton, for use in Valgrind.o

Michael Matz and Simon Hausmann modified the GNU binutils demangler(s) for
use in Valgrind.

David Woodhouse has helped out with test and build machines over the course
of many releases.

Florian Krohm and Christian Borntraeger wrote and maintain the
S390X/Linux port. Florian improved and ruggedised the regression test
system during 2011.

Philippe Waroquiers wrote and maintains the embedded GDB server. He
also made a bunch of performance and memory-reduction fixes across
diverse parts of the system.

Carl Love and Maynard Johnson contributed IBM Power6 and Power7
support, and generally deal with ppc{32,64}-linux issues.

Petar Jovanovic and Dejan Jevtic wrote and maintain the mips32-linux
port.

Dragos Tatulea modified the arm-android port so it also works on
x86-android.

Jakub Jelinek helped out extensively with the AVX and AVX2 support.

Mark Wielaard fixed a bunch of bugs and acts as our Fedora/RHEL
liaison.

Maran Pakkirisamy implemented support for decimal floating point on
$390.

Many, many people sent bug reports, patches, and helpful feedback.

Development of Valgrind was supported in part by the Tri-Lab Partners
(Lawrence Livermore National Laboratory, Los Alamos National
Laboratory, and Sandia National Laboratories) of the U.S. Department
of Energy’s Advanced Simulation & Computing (ASC) Program.

2. NEWS

Release 3.11.0 (22 September 2015)

3.11.0 is a feature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux,
ARMO64/Linux, PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux,
MIPS32/Linux, MIPS64/Linux, ARM/Android, ARM64/Android,
MIPS32/Android, X86/Android, X86/Solaris, AMDG64/Solaris, X86/MacOSX
10.10 and AMD64/MacOSX 10.10. There is also preliminary support for
X86/MacOSX 10.11, AMD64/MacOSX 10.11 and TILEGX/Linux.

*k

PLATFORM CHANGES

Support for Solaris/x86 and Solaris/amd64 has been added.
Preliminary support for Mac OS X 10.11 (El Capitan) has been added.
Preliminary support for the Tilera TileGX architecture has been added.

s390x: It is now required for the host to have the "long displacement"”

facility. The oldest supported machine model is z990.

x86: on an SSE2 only host, Valgrind in 32 bit mode now claims to be a

Pentium 4. 3.10.1 wrongly claimed to be a Core 2, which is SSSE3.

The JIT’s register allocator is significantly faster, making the JIT
as a whole somewhat faster, so JIT-intensive activities, for example

program startup, are modestly faster, around 5%.

There have been changes to the default settings of several command
line flags, as detailed below.

Intel AVX2 support is more complete (64 bit targets only). On AVX2

capable hosts, the simulated CPUID will now indicate AVX2 support.

TOOL CHANGES

Memcheck:

- The default value for --leak-check-heuristics has been changed from
"none" to "all". This helps to reduce the number of possibly
lost blocks, in particular for C++ applications.

- The default value for --keep-stacktraces has been changed from

"malloc-then-free" to "malloc-and-free". This has a small cost in
memory (one word per malloc-ed block) but allows Memcheck to show the
3 stacktraces of a dangling reference: where the block was allocated,

NEWS

where it was freed, and where it is acccessed after being freed.

- The default value for --partial-loads-ok has been changed from "no" to
"yes", so as to avoid false positive errors resulting from some kinds
of vectorised loops.

- A new monitor command ’xb <addr> <len>" shows the validity bits of
<len> bytes at <addr>. The monitor command ’xb’ is easier to use
than get_vbits when you need to associate byte data value with
their corresponding validity bits.

- The ’block_list’” monitor command has been enhanced:

0 it can print a range of loss records

0 it now accepts an optional argument ’limited <max_blocks>’
to control the number of blocks printed.

o if a block has been found using a heuristic, then
’block_list” now shows the heuristic after the block size.

o the loss records/blocks to print can be limited to the blocks
found via specified heuristics.

- The C helper functions used to instrument loads on
x86-{linux,solaris} and arm-linux (both 32-bit only) have been
replaced by handwritten assembly sequences. This gives speedups
in the region of 0% to 7% for those targets only.

- A new command line option, --expensive-definedness-checks=yeslIno,
has been added. This is useful for avoiding occasional invalid
uninitialised-value errors in optimised code. Watch out for
runtime degradation, as this can be up to 25%. As always, though,
the slowdown is highly application specific. The default setting
is "no".

* Massif:

- A new monitor command ’all_snapshots <filename>’ dumps all
snapshots taken so far.

* Helgrind:

- Significant memory reduction and moderate speedups for
--history-level=full for applications accessing a lot of memory
with many different stacktraces.

- The default value for --conflict-cache-size=N has been doubled to
2000000. Users that were not using the default value should
preferably also double the value they give.

The default was changed due to the changes in the "full history"
implementation. Doubling the value gives on average a slightly more
complete history and uses similar memory (or significantly less memory
in the worst case) than the previous implementation.

- The Helgrind monitor command ’info locks’ now accepts an optional
argument ’lock_addr’, which shows information about the lock at the

NEWS

given address only.

- When using --history-level=full, the new Helgrind monitor command
“accesshistory <addr> [<len>]" will show the recorded accesses for
<len> (or 1) bytes at <addr>.

OTHER CHANGES

The default value for the --smc-check option has been changed from
"stack” to "all-non-file" on targets that provide automatic D-I

cache coherence (x86, amd64 and s390x). The result is to provide,

by default, transparent support for JIT generated and self-modifying

code on all targets.

Mac OS X only: the default value for the --dsymutil option has been
changed from "no" to "yes", since any serious usage on Mac OS X
always required it to be "yes".

The command line options --db-attach and --db-command have been removed.
They were deprecated in 3.10.0.

When a process dies due to a signal, Valgrind now shows the signal
and the stacktrace at default verbosity (i.e. verbosity 1).

The address description logic used by Memcheck and Helgrind now
describes addresses in anonymous segments, file mmap-ed segments,
shared memory segments and the brk data segment.

The new option --error-markers=<begin>,<end> can be used to mark the
begin/end of errors in textual output mode, to facilitate
searching/extracting errors in output files that mix valgrind errors

with program output.

The new option --max-threads=<number> can be used to change the number
of threads valgrind can handle. The default is 500 threads which
should be more than enough for most applications.

The new option --valgrind-stacksize=<number> can be used to change the
size of the private thread stacks used by Valgrind. This is useful

for reducing memory use or increasing the stack size if Valgrind

segfaults due to stack overflow.

The new option --avg-transtab-entry-size=<number> can be used to specify
the expected instrumented block size, either to reduce memory use or

to avoid excessive retranslation.

Valgrind can be built with Intel’s ICC compiler, version 14.0 or later.

New and modified GDB server monitor features:

- When a signal is reported in GDB, you can now use the GDB convenience
variable $_siginfo to examine detailed signal information.

- Valgrind’s gdbserver now allows the user to change the signal

NEWS

to deliver to the process. So, use ’signal SIGNAL’ to continue execution
with SIGNAL instead of the signal reported to GDB. Use ’signal 0’ to
continue without passing the signal to the process.

- With GDB >= 7.10, the command ’target remote’
will automatically load the executable file of the process running
under Valgrind. This means you do not need to specify the executable
file yourself, GDB will discover it itself. See GDB documentation about
’gXfer:exec-file:read’ packet for more info.

FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got a bugzilla entry. We encourage you to file bugs in
bugzilla (https://bugs.kde.org/enter_bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that
are not entered into bugzilla tend to get forgotten about or ignored.

To see details of a given bug, visit
https://bugs.kde.org/show_bug.cgi?id=XXXXXX
where XXXXXX is the bug number as listed below.

116002
155125
197259
201152
201216
201435
208217
211256
211529
211926
212291

226609
231257
254164
269360
302630

312989
319274
324181
327745
330147
333051

334802
335618
335785

VG_(printf): Problems with justification of strings and integers
avoid cutting away file:lineno after long function name
Unsupported arch_prtctl PR_SET_GS option

ppc64: Assertion in ppc32g_dirtyhelper MFSPR_268_269

Fix Valgrind does not support pthread_sigmask() on OS X

Fix Darwin: -v does not show kernel version

"Warning: noted but unhandled ioctl 0x2000747b" on Mac OS X
Fixed an outdated comment regarding the default platform.
Incomplete call stacks for code compiled by newer versions of MSVC
Avoid compilation warnings in valgrind.h with -pedantic

Fix unhandled syscall: unix:132 (mkfifo) on OS X

== 263119

Crediting upstream authors in man page

Valgrind omits path when executing script from shebang line

OS X task_info: UNKNOWN task message [id 3405, to mach_task_self() [..]
$390x: Fix addressing mode selection for compare-and-swap
Memcheck: Assertion failed: ’sizeof(UWord) == sizeof(Ulnt)’

== 326797

ioctl handling needs to do POST handling on generic ioctls and [..]
Fix unhandled syscall: unix:410 (sigsuspend_nocancel) on OS X
mmap does not handle MAP_32BIT (handle it now, rather than fail it)
Fix valgrind 3.9.0 build fails on Mac OS X 10.6.8

libmpiwrap PMPI_Get_count returns undefined value

mmap of huge pages fails due to incorrect alignment

== 339163

valgrind does not always explain why a given option is bad

mov.w N, pc/sp (ARM32)

amd64->IR 0xC4 O0xE2 0x75 Ox2F (vmaskmovpd)

== 307399

== 343175

== 342740

NEWS

335907
338602
338606
338731
338995
339045

339156
339215
339288
339636
339442
339542
339563
339688

339745
339755
339778
339780
339789
339808
339820
340115
340392

340430
341238
341419
341539

341613
341615
341698
341789
341997
342008
342038
342063
342117
342221
342353
342571

342603
342635
342683
342783
342795
342841
343012

== 346912

segfault when running wine’s ddrawex/tests/surface.c under valgrind
AVX2 bit in CPUID missing

Strange message for scripts with invalid interpreter

ppc: Fix testuite build for toolchains not supporting -maltivec

shmat with hugepages (SHM_HUGETLB) fails with EINVAL

Getting valgrind to compile and run on OS X Yosemite (10.10)

== 340252

gdbsrv not called for fatal signal

Valgrind 3.10.0 contain 2013 in copyrights notice

support Cavium Octeon MIPS specific BBIT*32 instructions

Use fxsave64 and fxrstor64 mnemonics instead of old-school rex64 prefix
Fix testsuite build failure on OS X 10.9

Enable compilation with Intel’s ICC compiler

The DVB demux DMX_STOP ioctl doesn’t have a wrapper

Mac-specific ASM does not support .version directive (cpuid,

tronical and pushfpopf tests)

Valgrind crash when check Marmalade app (partial fix)

Fix known deliberate memory leak in setenv() on Mac OS X 10.9
Linux/TileGx platform support for Valgrind

Fix known uninitialised read in pthread_rwlock_init() on Mac OS X 10.9
Fix none/tests/execve test on Mac OS X 10.9

Fix none/tests/rlimit64_nofile test on Mac OS X 10.9

vex amd64->IR: 0x66 OxF 0x3A 0x63 0xA 0x42 0x74 0x9 (pcmpistri $0x42)
Fix none/tests/cmdline[112] tests on systems which define TMPDIR
Allow user to select more accurate definedness checking in memcheck
to avoid invalid complaints on optimised code

Fix some grammatical weirdness in the manual.

Recognize GCC5/DWARFvS DW_LANG constants (Go, C11, C++11, C++14)
Signal handler ucontext_t not filled out correctly on OS X
VG_(describe_addr) should not describe address as belonging to client
segment if it is past the heap end

Enable building of manythreads and thread-exits tests on Mac OS X

Fix none/tests/darwin/access_extended test on Mac OS X

Valgrind’s AESKEYGENASSIST gives wrong result in words 0 and 2 [..]
aarch64: shmat fails with valgrind on ARMvS§

MIPS64: Cavium OCTEON insns - immediate operand handled incorrectly
valgrind.h needs type cast [..] for clang/llvm in 64-bit mode

Unhandled syscalls on aarch64 (mbind/get/set_mempolicy)

wrong format specifier for test mcblocklistsearch in gdbserver_tests

Hang when loading PDB file for MSVC compiled Firefox under Wine
socket connect false positive uninit memory for unknown af family
Allow dumping full massif output while valgrind is still running
Valgrind chokes on AVX compare intrinsic with _CMP_GE_QS

== 346476

== 348387

== 350593

Add I2C_SMBUS ioctl support

OS X 10.10 (Yosemite) - missing system calls and fentl code

Mark memory past the initial brk limit as unaddressable

arm: unhandled instruction OXEEFE1ACA = "vcvt.s32.f32 s3, s3, #12"
Internal glibc _ GI_mempcpy call should be intercepted

$390x: Support instructions fiebr(a) and fidbr(a)

Unhandled syscall 319 (memfd_create)

NEWS

343069
343173
343219
343303
343306
343332
343335
343523
343525
343597
343649
343663
343732
343733
343802
343902
343967
343978
344007
344033
344054
344416
344235
344279
344295
344307
344314
344318
344337
344416
344499
344512

344559
344560
344621
344686
344702

344936
344939
345016
345079
345126
345177
345215
345248
345338
345394
345637
345695
345824
345887
345928

Patch updating v412 API support

helgrind crash during stack unwind

fix GET_STARTREGS for arm

Fix known deliberate memory leak in setenv() on Mac OS X 10.10
OS X 10.10: UNKNOWN mach_msg unhandled MACH_SEND_TRAILER option
Unhandled instruction 0x9E310021 (fcvtmu) on aarch64

unhandled instruction Ox1E638400 (fccmp) aarch64

OS X mach_ports_register: UNKNOWN task message [id 3403, to [..]
OS X host_get_special_port: UNKNOWN host message [id 412, to [..]
ppcb4le: incorrect use of offseof macro

OS X host_create_mach_voucher: UNKNOWN host message [id 222, to [..]
OS X 10.10 Memchecj always reports a leak regardless of [..]
Unhandled syscall 144 (setgid) on aarch64

Unhandled syscall 187 (msgctl and related) on aarch64

s390x: False positive "conditional jump or move depends on [..]
--vgdb=yes doesn’t break when --xml=yes is used

Don’t warn about setuid/setgid/setcap executable for directories
Recognize DWARF5/GCC5 DW_LANG_Fortran 2003 and 2008 constants
accept4 syscall unhandled on arm64 (242) and ppc64 (344)

Helgrind on ARM32 loses track of mutex state in pthread_cond_wait
www - update info for Solaris/illumos

’make regtest’ does not work cleanly on OS X

Remove duplicate include of pub_core_aspacemgr.h

syscall sendmmsg on arm64 (269) and ppc32/64 (349) unhandled
syscall recvmmsg on arm64 (243) and ppc32/64 (343) unhandled

2 unhandled syscalls on aarch64/arm64: umount2(39), mount (40)
callgrind_annotate ... warnings about commands containing newlines
socketcall should wrap recvmmsg and sendmmsg

Fix unhandled syscall: mach:41 (_kernelrpc_mach_port_guard_trap)
Fix ’make regtest’ does not work cleanly on OS X

Fix compilation for Linux kernel >= 4.0.0

OS X: unhandled syscall: unix:348 (__pthread_chdir),

unix:349 (__pthread_fchdir)

Garbage collection of unused segment names in address space manager
Fix stack traces missing penultimate frame on OS X

Fix memcheck/tests/err_disable4 test on OS X

Fix suppression for pthread_rwlock_init on OS X 10.10

Fix missing libobjc suppressions on OS X 10.10

== 344543

Fix unhandled syscall: unix:473 (readlinkat) on OS X 10.10

Fix memcheck/tests/xmll on OS X 10.10
helgrind/tests/locked_vs_unlocked2 is failing sometimes

Fix build problems in VEX/useful/test_main.c

Incorrect handling of VIDIOC_G_AUDIO and G_AUDOUT

arm64: prfm (reg) not implemented

Performance improvements for the register allocator

add support for Solaris OS in valgrind

TIOCGSERIAL and TIOCSSERIAL ioctl support on Linux

Fix memcheck/tests/strchr on OS X

Fix memcheck/tests/sendmsg on OS X

Add POWERPC support for AT_DCACHESIZE and HWCAP2

Fix aspacem segment mismatch: seen with none/tests/bigcode

Fix an assertion in the address space manager

amd64: callstack only contains current function for small stacks

NEWS

345984
345987
346031
346185
346267

346270

346307
346324
346411
346416
346474
346487
346562

346801
347151
347233
347322
347379

347389
347686
347978
347982
347988

348102
348247
348269
348334
348345
348377
348565
348574
348728
348748
348890
348949
349034
349086
349087
349626
349769
349790
349828
349874
349879
349941
350062
350202
350290
350359

disInstr(arm): unhandled instruction: OXEE193F1E

MIPS64: Implement cavium LHX instruction

MIPS: Implement support for the CvmCount register (rhwr %0, 31)
Fix typo saving altivec register v24

Compiler warnings for PPC64 code on call to LibVEX_GuestPPC64_get_ XER()
and LibVEX_GuestPPC64_get_CR()

Regression tests none/tests/jm_vec/isa_2_07 and
none/tests/test_isa_2_07_part2 have failures on PPC64 little endian
fuse filesystem syscall deadlocks

PPC64 missing support for lbarx, lharx, stbcx and sthcx instructions
MIPS: SysRes::_valEx handling is incorrect

Add support for LL_IOC_PATH2FID and LL_IOC_GETPARENT Lustre ioctls
PPC64 Power 8, spr TEXASRU register not supported

Compiler generates "note" about a future ABI change for PPC64
MIPS64: Iwl/lwr instructions are performing 64bit loads

and causing spurious "invalid read of size 8" warnings

Fix link error on OS X: _vgModuleLocal_sf_maybe_extend_stack

Fix suppression for pthread_rwlock_init on OS X 10.8

Fix memcheck/tests/strchr on OS X 10.10 (Haswell)

Power PC regression test cleanup

valgrind --leak-check=full leak errors from system libs on OS X 10.8
== 217236

unhandled syscall: 373 (Linux ARM syncfs)

Patch set to cleanup PPC64 regtests

Remove bash dependencies where not needed

OS X: undefined symbols for architecture x86_64: "_global" [..]
Memcheck: the ’impossible’ happened: unexpected size for Addr (OSX/wine)
== 345929

Patch updating v412 API support

amd64 front end: jno jumps wrongly when overflow is not set
Improve mmap MAP_HUGETLB support.

(ppc) valgrind does not simulate dcbfl - then my program terminates
Assertion fails for negative lineno

Unsupported ARM instruction: yield

Fix detection of command line option availability for clang

vex amd64->IR pcmpistri SSE4.2 unsupported (pcmpistri $0x18)

Fix broken check for VIDIOC_G_ENC_INDEX

Fix redundant condition

Fix clang warning about unsupported --param inline-unit-growth=900
Bogus "ERROR: --ignore-ranges: suspiciously large range"

Add Lustre ioctls LL_IOC_GROUP_LOCK and LL_IOC_GROUP_UNLOCK
Fix UNKNOWN task message [id 3406, to mach_task_self(), [..]

Fix UNKNOWN task message [id 3410, to mach_task_self(), [..]
Implemented additional Xen hypercalls

Clang/osx: 1d: warning: -read_only_relocs cannot be used with x86_64
Clean up of the hardware capability checking utilities.

memcpy intercepts memmove causing src/dst overlap error (ppc64 1d.so)
Fix typos in source code

memcheck: add handwritten assembly for helperc_LOADV*
di_notify_mmap might create wrong start/size DebuglnfoMapping

vex x86->IR: 0x66 OxF 0x3A 0xB (ROUNDSD) on OS X

Add limited param to ’monitor block_list’

s390x: Support instructions fixbr(a)

memcheck/tests/x86/fxsave hangs indefinetely on OS X

NEWS

350809 Fix none/tests/async-sigs for Solaris

350811 Remove reference to --db-attach which has been removed.

350813 Memcheck/x86: enable handwritten assembly helpers for x86/Solaris too

350854 hard-to-understand code in VG_(load_ELF)()

351140 arm64 syscalls setuid (146) and setresgid (149) not implemented

351386 Solaris: Cannot run 1d.so.l under Valgrind

351474 Fix VG_(iseqsigset) as obvious

351534 Fix incorrect header guard

351632 Fix UNKNOWN fentl 97 on OS X 10.11

351756 Intercept platform_memchr$VARIANT$Haswell on OS X

351858 ldsoexec support on Solaris

351873 Newer gcc doesn’t allow __builtin_tabortdc[i] in ppc32 mode

352130 helgrind reports false races for printfs using mempcpy on FILE* state

352284 s390: Conditional jump depends on uninitialised value(s) in vfprintf

352320 arm64 crash on none/tests/nestedfs

352765 Vbit test fails on Power 6

352768 The mbar instruction is missing from the Power PC support

352769 Power PC program priority register (PPR) is not supported

n-i-bz Provide implementations of certain compiler builtins to support
compilers that may not provide those

n-i-bz Old STABS code is still being compiled, but never used. Remove it.

n-i-bz Fix compilation on distros with glibc < 2.5

n-i-bz (vex 3098) Avoid generation of Neon insns on non-Neon hosts

n-i-bz Enable rt_sigpending syscall on ppc64 linux.

n-i-bz mremap did not work properly on shared memory

n-i-bz Fix incorrect sizeof expression in syswrap-xen.c reported by Coverity

n-i-bz In VALGRIND_PRINTF write out thread name, if any, to xml

(3.11.0.TEST1: 8 September 2015, vex r3187, valgrind r15646)
(3.11.0.TEST2: 21 September 2015, vex r3193, valgrind r15667)
(3.11.0: 22 September 2015, vex r3195, valgrind r15674)

Release 3.10.1 (25 November 2014)

3.10.1 is a bug fix release. It fixes various bugs reported in 3.10.0

and backports fixes for all reported missing AArch64 ARMvS instructions
and syscalls from the trunk. If you package or deliver 3.10.0 for others
to use, you might want to consider upgrading to 3.10.1 instead.

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got a bugzilla entry. We encourage you to file bugs in
bugzilla (https://bugs.kde.org/enter_bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that
are not entered into bugzilla tend to get forgotten about or ignored.

To see details of a given bug, visit
https://bugs.kde.org/show_bug.cgi?id=XXXXXX
where XXXXXX is the bug number as listed below.

335440 arm64: 1d1 (single structure) is not implemented
335713 arm64: unhanded instruction: prfm (immediate)

10

NEWS

339020
339182
339336
339433
339645
339706
339721
339853
339855
339858
339926
339927
339938

339940
340033
340028
340036
340236
340509
340630
340632
340722
340725
340788
340807
340856
340922
350251
350407
350809
350811
350813
350854
351140
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz
n-i-bz

(3.10.1:

ppc64: memcheck/tests/ppc64/power_ISA2_05 failing in nightly build
ppc64: AvSplat ought to load destination vector register with [..]
PPC64 store quad instruction (stq) is not supposed to change [..]
ppc64 Ixvw4x instruction uses four 32-byte loads
Use correct tag names in sys_getdents/64 wrappers
Fix false positive for ioctl(TIOCSIG) on linux
assertion ’check_sibling == sibling’ failed in readdwarf3.c ...
arm64 times syscall unknown
arm64 unhandled getsid/setsid syscalls
arm64 dmb sy not implemented
Unhandled instruction Ox1E674001 (frintx) on aarm64
Unhandled instruction 0x9E7100C6 (fcvtmu) on aarch64
disInstr(arm64): unhandled instruction 0x4F8010A4 (fmla)
== 339950
arm64: unhandled syscall: 83 (sys_fdatasync) + patch
arm64: unhandled insn dmb ishld and some other isb-dmb-dsb variants
unhandled syscalls for arm64 (msync, pread64, setreuid and setregid)
arm64: Unhandled instruction 1d4 (multiple structures, no offset)
arm64: unhandled syscalls: mknodat, fchdir, chroot, fchownat
arm64: unhandled instruction fcvtas
arm64: fchmod (52) and fchown (55) syscalls not recognized
arm64: unhandled instruction fcvtas
Resolve "UNKNOWN attrlist flags 0:0x10000000"
AVX2: Incorrect decoding of vpbroadcast{b,w} reg,reg forms
warning: unhandled syscall: 318 (getrandom)
disInstr(arm): unhandled instruction: OXEE989B20
disInstr(arm64): unhandled instruction 0x1E634C45 (fcsel)
arm64: unhandled getgroups/setgroups syscalls
Fix typo in VEX utility program (test_main.c).
arm64: unhandled instruction ucvtf (vector, integer)
none/tests/async-sigs breaks when run under cron on Solaris
update README.solaris after r15445
Use handwritten memcheck assembly helpers on x86/Solaris [..]
strange code in VG_(load_ELF)()
arm64 syscalls setuid (146) and setresgid (149) not implemented
DRD and Helgrind: Handle Imbe_CancelReservation (clrex on ARM)
Add missing]] to terminate CDATA.
Glibc versions prior to 2.5 do not define PTRACE_GETSIGINFO
Enable sys_fadvise64_64 on arm32.

Add test cases for all remaining AArch64 SIMD, FP and memory insns.

Add test cases for all known arm64 load/store instructions.

PRE(sys_openat): when checking whether ARG1 == VKI_AT_FDCWD [..]

Add detection of old ppc32 magic instructions from bug 278808.
exp-dhat: Implement missing function "dh_malloc_usable_size".
arm64: Implement "fcvtpu w, s".

arm64: implement ADDP and various others

arm64: Implement {S,U}CVTF (scalar, fixedpt).

arm64: enable FCVT{AN}S X,S.

25 November 2014, vex 13026, valgrind r14785)

Release 3.10.0 (10 September 2014)

11

NEWS

3.

10.0 is a feature release with many improvements and the usual

collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM32/Linux, ARM64/Linux,
PPC32/Linux, PPC64BE/Linux, PPC64LE/Linux, S390X/Linux, MIPS32/Linux,
MIPS64/Linux, ARM/Android, MIPS32/Android, X86/Android, X86/MacOSX 10.9
and AMD64/MacOSX 10.9. Support for MacOSX 10.8 and 10.9 is

significantly improved relative to the 3.9.0 release.

*

PLATFORM CHANGES
Support for the 64-bit ARM Architecture (AArch64 ARMvS). This port
is mostly complete, and is usable, but some SIMD instructions are as
yet unsupported.

Support for little-endian variant of the 64-bit POWER architecture.
Support for Android on MIPS32.

Support for 64bit FPU on MIPS32 platforms.

Both 32- and 64-bit executables are supported on MacOSX 10.8 and 10.9.

Configuration for and running on Android targets has changed.
See README.android in the source tree for details.

DEPRECATED FEATURES

--db-attach is now deprecated and will be removed in the next

valgrind feature release. The built-in GDB server capabilities are

superior and should be used instead. Learn more here:
http://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.gdbserver

TOOL CHANGES

Memcheck:

- Client code can now selectively disable and re-enable reporting of
invalid address errors in specific ranges using the new client
requests VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE and
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE.

- Leak checker: there is a new leak check heuristic called
"length64". This is used to detect interior pointers pointing 8
bytes inside a block, on the assumption that the first 8 bytes
holds the value "block size - 8". This is used by
sqlite(3MemMalloc, for example.

- Checking of system call parameters: if a syscall parameter
(e.g. bind struct sockaddr, sendmsg struct msghdr, ...) has
several fields not initialised, an error is now reported for each
field. Previously, an error was reported only for the first

12

NEWS

uninitialised field.

- Mismatched alloc/free checking: a new flag
--show-mismatched-frees=nolyes [yes] makes it possible to turn off
such checks if necessary.

* Helgrind:
- Improvements to error messages:

o Race condition error message involving heap allocated blocks also
show the thread number that allocated the raced-on block.

o All locks referenced by an error message are now announced.
Previously, some error messages only showed the lock addresses.

o The message indicating where a lock was first observed now also
describes the address/location of the lock.

- Helgrind now understands the Ada task termination rules and
creates a happens-before relationship between a terminated task
and its master. This avoids some false positives and avoids a big
memory leak when a lot of Ada tasks are created and terminated.
The interceptions are only activated with forthcoming releases of
gnatpro >= 7.3.0w-20140611 and gcc >= 5.0.

- A new GDB server monitor command "info locks" giving the list of
locks, their location, and their status.

* Callgrind:

- callgrind_control now supports the --vgdb-prefix argument,
which is needed if valgrind was started with this same argument.

* OTHER CHANGES

* Unwinding through inlined function calls. Stack unwinding can now
make use of Dwarf3 inlined-unwind information if it is available.
The practical effect is that inlined calls become visible in stack
traces. The suppression matching machinery has been adjusted
accordingly. This is controlled by the new option
--read-inline-info=yeslno. Currently this is enabled by default
only on Linux and Android targets and only for the tools Memcheck,
Helgrind and DRD.

* Valgrind can now read EXIDX unwind information on 32-bit ARM
targets. If an object contains both CFI and EXIDX unwind
information, Valgrind will prefer the CFI over the EXIDX. This
facilitates unwinding through system libraries on arm-android
targets.

* Address description logic has been improved and is now common

between Memcheck and Helgrind, resulting in better address
descriptions for some kinds of error messages.

13

NEWS

Error messages about dubious arguments (eg, to malloc or calloc) are
output like other errors. This means that they can be suppressed
and they have a stack trace.

The C++ demangler has been updated for better C++11 support.
New and modified GDB server monitor features:
- Thread local variables/storage (__thread) can now be displayed.

- The GDB server monitor command "v.info location <address>"
displays information about an address. The information produced
depends on the tool and on the options given to valgrind.
Possibly, the following are described: global variables, local
(stack) variables, allocated or freed blocks, ...

" "

- The option "--vgdb-stop-at=eventl,event2,..." allows the user to
ask the GDB server to stop at the start of program execution, at
the end of the program execution and on Valgrind internal errors.

- A new monitor command "v.info stats" shows various Valgrind core
and tool statistics.

- A new monitor command "v.set hostvisibility" allows the GDB server
to provide access to Valgrind internal host status/memory.

A new option "--aspace-minaddr=<address>" can in some situations

allow the use of more memory by decreasing the address above which

Valgrind maps memory. It can also be used to solve address

conflicts with system libraries by increasing the default value.

See user manual for details.

The amount of memory used by Valgrind to store debug info (unwind
info, line number information and symbol data) has been

significantly reduced, even though Valgrind now reads more
information in order to support unwinding of inlined function calls.

Dwarf3 handling with --read-var-info=yes has been improved:
- Ada and C struct containing VLAs no longer cause a "bad DIE" error

- Code compiled with
-ffunction-sections -fdata-sections -WI,--gc-sections
no longer causes assertion failures.

Improved checking for the --sim-hints= and --kernel-variant=
options. Unknown strings are now detected and reported to the user
as a usage error.

The semantics of stack start/end boundaries in the valgrind.h
VALGRIND_STACK_REGISTER client request has been clarified and
documented. The convention is that start and end are respectively
the lowest and highest addressable bytes of the stack.

14

NEWS

FIXED BUGS

The following bugs have been fixed or resolved. Note that "n-i-bz"
stands for "not in bugzilla" -- that is, a bug that was reported to us
but never got a bugzilla entry. We encourage you to file bugs in
bugzilla (https://bugs.kde.org/enter_bug.cgi?product=valgrind) rather
than mailing the developers (or mailing lists) directly -- bugs that
are not entered into bugzilla tend to get forgotten about or ignored.

To see details of a given bug, visit
https://bugs.kde.org/show_bug.cgi?id=XXXXXX
where XXXXXX is the bug number as listed below.

175819
232510
249435
278972

291310
303536
308729
315199
315952
323178
323179
324050
325110
325124
325477
325538
325628
325714
325751
325816
325856
326026
326436
326444
326462
326469
326623
326724
326816
326921
326983
327212
327223
327238
327284
327639
327837
327916
327943

Support for ipv6 socket reporting with --track-fds

make distcheck fails

Analyzing wine programs with callgrind triggers a crash

support for inlined function calls in stacktraces and suppression

== 199144

FXSAVE instruction marks memory as undefined on amd64

ioctl for SIOCETHTOOL (ethtool(8)) isn’t wrapped

vex x86->IR: unhandled instruction bytes Oxf 0x5 (syscall)

vgcore file for threaded app does not show which thread crashed
tun/tap ioctls are not supported

Unhandled instruction: PLDW register (ARM)

Unhandled instruction: PLDW immediate (ARM)

Helgrind: SEGV because of unaligned stack when using movdqa

Add test-cases for Power ISA 2.06 insns: divdo/divdo. and divduo/divduo.
[MIPSEL] Compilation error

Phase 4 support for IBM Power ISA 2.07

cavium octeon mips64, valgrind reported "dumping core" [...]

Phase 5 support for IBM Power ISA 2.07

Empty vgcore but RLIMIT_CORE is big enough (too big)

Missing the two privileged Power PC Transactional Memory Instructions
Phase 6 support for IBM Power ISA 2.07

Make SGCheck fail gracefully on unsupported platforms

Iop names for count leading zeros/sign bits incorrectly imply [..]
DRD: False positive in libstdc++ std::list::push_back

Cavium MIPS Octeon Specific Load Indexed Instructions

Refactor vgdb to isolate invoker stuff into separate module
amd64->IR: 0x66 OxF 0x3A 0x63 0xCl OxE (pcmpistri 0xOE)

DRD: false positive conflict report in a field assignment

Valgrind does not compile on OSX 1.9 Mavericks

Intercept for __strncpy_sse2_unaligned missing?

coregrind fails to compile m_trampoline.S with MIPS/Linux port of V
Clear direction flag after tests on amd64.

Do not prepend the current directory to absolute path names.

Support for Cavium MIPS Octeon Atomic and Count Instructions
Callgrind Assertion ’passed <= last_bb->cjmp_count’ failed

$390x: Fix translation of the risbg instruction

vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x34
dwz compressed alternate .debug_info and .debug_str not read correctly
DW_TAG_typedef may have no name

s390x: add a redirection for the ’index’ function

15

NEWS

328100
328205
328454
328455
328711
328878
329612
329694
329956
330228
330257
330319
330459
330469
330594
330622
330939

330941
331057
331254
331255
331257
331305
331337
331380
331476
331829
331830
331839
331847
332037
332055

332263

332265

332276
332658
332765
333072
333145
333228
333230
333248
333428
333501

333666
333788
333817

XABORT not implemented

Implement additional Xen hypercalls

add support Backtraces with ARM unwind tables (EXIDX)
s390x: SIGILL after emitting wrong register pair for ldxbr
valgrind.1 manpage "memcheck options" section is badly generated
vex amd64->IR pcmpestri SSE4.2 instruction is unsupported 0x14
Incorrect handling of AT_BASE for image execution

clang warns about using uninitialized variable

valgrind crashes when Imw/stmw instructions are used on ppc64
mmap must align to VKI_SHMLBA on mips32

LLVM does not support ‘-mno-dynamic-no-pic‘ option
amd64->IR: unhandled instruction bytes: OxF Ox1 0xD5 (xend)
--track-fds=yes doesn’t track eventfds

Add clock_adjtime syscall support

Missing sysalls on PowerPC / uClibc

Add test to regression suite for POWER instruction: dcbzl
Support for AMD’s syscall instruction on x86

== 308729

Typo in PRE(poll) syscall wrapper

unhandled instruction: OXEEEO1B20 (vfma.f64) (has patch)
Fix expected output for memcheck/tests/dw4

Fix race condition in test none/tests/coolo_sigaction

Fix type of jump buffer in test none/tests/faultstatus

configure uses bash specific syntax

$390x WARNING: unhandled syscall: 326 (dup3)

Syscall param timer_create(evp) points to uninitialised byte(s)
Patch to handle ioctl 0x5422 on Linux (x86 and amd64)
Unexpected ioctl opcode sign extension

ppc64: WARNING: unhandled syscall: 96/97
drd/tests/sem_open specifies invalid semaphore name

outcome of drd/tests/thread_name is nondeterministic

Valgrind cannot handle Thumb "add pc, reg"

drd asserts on platforms with VG_STACK_REDZONE_SZB == 0 and
consistency checks enabled

intercepts for pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock are incorrect

drd could do with post-rwlock_init and pre-rwlock_destroy
client requests

Implement additional Xen hypercalls

ldrd.w rl, r2, [PC, #imm] does not adjust for 32bit alignment
Fix ms_print to create temporary files in a proper directory
drd: Add semaphore annotations

Tests for missaligned PC+#imm access for arm

AAarch64 Missing instruction encoding: mrs %[reg], ctr_el0
AAarch64 missing instruction encodings: dc, ic, dsb.
WARNING: unhandled syscall: unix:443

ldr.w pc [rD, #imm] instruction leads to assertion

cachegrind: assertion: Cache set count is not a power of two.
== 336577

== 292281

Recognize MPX instructions and bnd prefix.

Valgrind does not support the CDROM_DISC_STATUS ioctl (has patch)
Valgrind reports the memory areas written to by the SG_IO
ioctl as untouched

16

NEWS

334049
334384

334585
334705
334727
334788
334834
334836
334936
335034
335155
335262
335263
335441
335496
335554
335564
335735
335736
335848
335902
335903
336055
336062
336139
336189
336435
336619
336772
336957
337094
337285
337528
337740
337762
337766
337871
338023
338024
338106
338115
338160
338205
338300
338445
338499
338615
338681
338698
338703
338791
338878
338932

Izent fails silently (x86_32)

Valgrind does not have support Little Endian support for
IBM POWER PPC 64

recvmmsg unhandled (+patch) (arm)

sendmsg and recvmsg should guard against bogus msghdr fields.

Build fails with -Werror=format-security

clarify doc about --log-file initial program directory
PPC64 Little Endian support, patch 2

PPC64 Little Endian support, patch 3 testcase fixes
patch to fix false positives on alsa SNDRV_CTL_* ioctls
Unhandled ioctl: HCIGETDEVLIST

vgdb, fix error print statement.

arm64:
arm64:
unhandled ioctl 0x8905 (SIOCATMARK) when running wine under valgrind
arm64:
arm64:
arm64:
arm64:
arm64:
arm64:
arm64:
arm64:
arm64:
arm64:
mip64:
arm64:
Valgrind hangs in pthread_spin_lock consuming 100% CPU

valgrind --read-var-info=yes doesn’t handle DW_TAG_restrict_type

movi 8bit version is not supported
dmb instruction is not implemented

sbc/abe instructions are not implemented
unhandled instruction: abs

unhandled instruction: fcvtpu Xn, Sn
unhandled instruction: cnt

unhandled instruction: uaddlv

unhandled instruction: {s,u}cvtf
unhandled instruction: sli

unhandled instruction: umull (vector)
unhandled instruction: mov (element)
unhandled instruction: shrn{,2}

[...] valgrind hangs and spins on a single core [...]
unhandled Instruction: mvn

Make moans about unknown ioctls more informative

Add a section about the Solaris/illumos port on the webpage

ifunc wrapper is broken on ppc64

fentl commands F_OFD_SETLK, F_OFD_SETLKW, and F_OFD_GETLK not supported
leak check heuristic for block prefixed by length as 64bit number

Implement additional Xen hypercalls

guest_arm64_tolR.c:4166 (dis_ ARM64_load_store): Assertion ‘0’ failed.
arm64-linux: unhandled syscalls mlock (228) and mlockall (230)

deprecate --db-attach

Add support for all V4L2/media ioctls

inlined functions are not shown if DW_AT_ranges is used
Add support for ’kemp’ syscall

DRD: computed conflict set differs from actual after fork
implement display of thread local storage in gdbsrv
configure.ac and check for -Wno-tautological-compare
coredumps are missing one byte of every segment

amd64 vbit-test fails with unknown opcodes used by arm64 VEX

--sim-hints parsing broken due to wrong order in tokens

suppress glibc 2.20 optimized strcmp implementation for ARMv7
Unable to unwind through clone thread created on 1386-linux

race condition between gdbsrv and vgdb on startup

helgrind on arm-linux gets false positives in dynamic loader

alt dwz files can be relative of debug/main file

on MacOS: assertion VG_IS_PAGE_ALIGNED(clstack_end+1)’ failed

build V-trunk with gcc-trunk

17

NEWS

338974 glibc 2.20 changed size of struct sigaction sa_flags field on s390
345079 Fix build problems in VEX/useful/test_main.c

n-i-bz Fix KVM_CREATE_IRQCHIP ioctl handling

n-i-bz s390x: Fix memory corruption for multithreaded applications

n-i-bz vex arm->IR: allow PC as basereg in some LDRD cases

n-i-bz internal error in Valgrind if vgdb transmit signals when ptrace invoked
n-i-bz Fix mingw64 support in valgrind.h (dev@, 9 May 2014)

n-i-bz drd manual: Document how to C++11 programs that use class "std::thread"
n-i-bz Add command-line option --default-suppressions

n-i-bz Add support for BLKDISCARDZEROES ioctl

n-i-bz ppc32/64: fix a regression with the mtfsbO/mtfsbl instructions

n-i-bz Add support for sys_pivot_root and sys_unshare

(3.10.0.BETA1: 2 September 2014, vex 12940, valgrind r14428)
(3.10.0.BETA2: 8 September 2014, vex r2950, valgrind r14503)
(3.10.0: 10 September 2014, vex r2950, valgrind r14514)

Release 3.9.0 (31 October 2013)
3.9.0 is a feature release with many improvements and the usual
collection of bug fixes.

This release supports X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, ARM/Android,

X86/Android, X86/MacOSX 10.7 and AMD64/MacOSX 10.7. Support for

MacOSX 10.8 is significantly improved relative to the 3.8.0 release.

* PLATFORM CHANGES

* Support for MIPS64 LE and BE running Linux. Valgrind has been
tested on MIPS64 Debian Squeeze and Debian Wheezy distributions.

* Support for MIPS DSP ASE on MIPS32 platforms.

* Support for s390x Decimal Floating Point instructions on hosts that
have the DFP facility installed.

* Support for POWERS (Power ISA 2.07) instructions

* Support for Intel AVX2 instructions. This is available only on 64
bit code.

* Initial support for Intel Transactional Synchronization Extensions,
both RTM and HLE.

* Initial support for Hardware Transactional Memory on POWER.

* Improved support for MacOSX 10.8 (64-bit only). Memcheck can now
run large GUI apps tolerably well.

* TOOL CHANGES

18

NEWS

* Memcheck:

- Improvements in handling of vectorised code, leading to
significantly fewer false error reports. You need to use the flag
--partial-loads-ok=yes to get the benefits of these changes.

- Better control over the leak checker. It is now possible to
specify which leak kinds (definite/indirect/possible/reachable)
should be displayed, which should be regarded as errors, and which
should be suppressed by a given leak suppression. This is done
using the options --show-leak-kinds=kind1,kind2,..,
--errors-for-leak-kinds=kind1,kind2,.. and an optional
"match-leak-kinds:" line in suppression entries, respectively.

Note that generated leak suppressions contain this new line and
are therefore more specific than in previous releases. To get the
same behaviour as previous releases, remove the "match-leak-kinds:
line from generated suppressions before using them.

"

- Reduced "possible leak" reports from the leak checker by the use
of better heuristics. The available heuristics provide detection
of valid interior pointers to std::stdstring, to new[] allocated
arrays with elements having destructors and to interior pointers
pointing to an inner part of a C++ object using multiple
inheritance. They can be selected individually using the
option --leak-check-heuristics=heurl,heur2,...

- Better control of stacktrace acquisition for heap-allocated
blocks. Using the --keep-stacktraces option, it is possible to
control independently whether a stack trace is acquired for each
allocation and deallocation. This can be used to create better
"use after free" errors or to decrease Valgrind’s resource
consumption by recording less information.

- Better reporting of leak suppression usage. The list of used
suppressions (shown when the -v option is given) now shows, for
each leak suppressions, how many blocks and bytes it suppressed
during the last leak search.

* Helgrind:
- False errors resulting from the use of statically initialised
mutexes and condition variables (PTHREAD_MUTEX_INITIALISER, etc)

have been removed.

- False errors resulting from the use of pthread_cond_waits that
timeout, have been removed.

* OTHER CHANGES

* Some attempt to tune Valgrind’s space requirements to the expected
capabilities of the target:

- The default size of the translation cache has been reduced from 8

19

NEWS

sectors to 6 on Android platforms, since each sector occupies
about 40MB when using Memcheck.

- The default size of the translation cache has been increased to 16
sectors on all other platforms, reflecting the fact that large
applications require instrumentation and storage of huge amounts
of code. For similar reasons, the number of memory mapped
segments that can be tracked has been increased by a factor of 6.

- In all cases, the maximum number of sectors in the translation
cache can be controlled by the new flag --num-transtab-sectors.

Changes in how debug info (line numbers, etc) is read:

- Valgrind no longer temporarily mmaps the entire object to read
from it. Instead, reading is done through a small fixed sized
buffer. This avoids virtual memory usage spikes when Valgrind
reads debuginfo from large shared objects.

- A new experimental remote debug info server. Valgrind can read
debug info from a different machine (typically, a build host)
where debuginfo objects are stored. This can save a lot of time
and hassle when running Valgrind on resource-constrained targets
(phones, tablets) when the full debuginfo objects are stored
somewhere else. This is enabled by the --debuginfo-server=
option.

- Consistency checking between main and debug objects can be
disabled using the --allow-mismatched-debuginfo option.

Stack unwinding by stack scanning, on ARM. Unwinding by stack
scanning can recover stack traces in some cases when the normal
unwind mechanisms fail. Stack scanning is best described as "a
nasty, dangerous and misleading hack" and so is disabled by default.
Use --unw-stack-scan-thresh and --unw-stack-scan-frames to enable
and control it.

Detection and merging of recursive stack frame cycles. When your
program has recursive algorithms, this limits the memory used by
Valgrind for recorded stack traces and avoids recording
uninteresting repeated calls. This is controlled by the command
line option --merge-recursive-frame and by the monit