
Automation and Testing of Character-Graphic Programs

DON LIBES

National Institute of Standards and Technology, Gaithersburg, MD, 20899, U.S.A.
(email: libes@nist.gov)

SUMMARY

This paper describes a technique that allows automation and testing of character-
graphic programs using existing public-domain tools. Specifically, Tcl, Tk, and
Expect are augmented with a terminal emulator in order to build a screen represen-
tation in memory. This screen can be queried in a high-level way and the interaction
can be further controlled based on the screen representation.

One immediate use of this is to build a test suite for automating standards conform-
ance of the interactive programs in POSIX 1003.2 (Interactive Shells and Utilities).
This technique is portable and inexpensive. All the software described in this paper is
free or in the public domain.

KEY WORDS: conformance testing; Expect; interaction automation; POSIX 1003.2; regression
testing; Tcl/Tk

INTRODUCTION

This paper describes a general technique that allows automation and testing of character-
graphic programs using portable and inexpensive tools. Specifically, Tcl, Tk, and Expect are aug-
mented with a terminal emulator in order to build a screen representation in memory. This screen
can be queried in a high-level way and the interaction can be further controlled based on the
screen representation.

One immediate use of this is to build a test suite for automating standards conformance of the
interactive programs in POSIX 1003.2 (Interactive Shells and Tools).1

BACKGROUND

Tcl (Tool Command Language) is an embeddable language library that can be linked to other
applications. Tcl provides a fairly generic but reasonably high-level language. The language is
interpreted and resembles the UNIX shell in many ways. Elements are also derived from C and
LISP. Despite its mixed heritage, much of the excess baggage from these other languages has been
omitted leaving a modest but capable language.

Tcl is extensible. Two popular Tcl extensions are Tk and Expect. Tk enables control of
graphic user interfaces. Expect enables control of interactive character-oriented interfaces. Both
Tk and Expect can work together. For example, they can be used to layer a graphic user interface
on top of an existing character-oriented program.2
1

Accepted for publication in Software – Practice & Experience, John Wiley & Sons.

Tcl and Tk are described by Ousterhout.3 Expect is described by Libes.4,5 The remainder of
the paper assumes a reasonable understanding of Expect, Tcl, and Tk.

EXPECT PROCESSING IN NON-CHARACTER-GRAPHIC PROGRAMS
In non-character-graphic applications, characters are written on each line from left to right.

After completing a line, characters are written to the next line. When the last line of the screen is
filled, the screen is scrolled. The oldest line at the top of the screen is deleted, all the other lines
are moved up, and new characters are written to the new line at the bottom of the screen.

Since characters appear in exactly the order that they are written, it is simple to wait for spe-
cific patterns. As characters arrive, they are appended to a buffer. The buffer can then be searched
for the patterns of interest.

For example, suppose a program prompts with the string “yes or no:”. This prompt can be
detected by waiting for exactly that string to appear in the output of the program.

Expect is a popular public-domain program that automates interactive programs. Using
Expect, the actual command to wait for the string “yes or no:” is:

expect "yes or no:"

Expect has a rich set of built-in tools to describe patterns. However, they are all serial in
nature. Expect sees a stream of characters and does not attempt to interpret the characters in a dif-
ferent order than they were received.

EXPECT PROCESSING IN CHARACTER-GRAPHIC PROGRAMS
In contrast to non-character-graphic programs, character-graphic programs write characters to

arbitrary character locations on a screen or window. For example, a DEC VT100 terminal can dis-
play a 24 by 80 grid of printable ASCII characters. Characters can only appear in discrete loca-
tions in the grid. However, the grid can be filled in any order and characters at any location may be
replaced at any time by other characters.

Special character sequences, usually beginning with an escape character (ASCII ESC), are
used to position subsequent characters in the grid. These sequences are referred to as positioning
sequences.

Because the grid may be filled in any order, it is not trivial to watch a stream of characters for
patterns. Typically, such programs take advantage of characters that already exist on the screen to
reduce the amount of characters that have to be produced to update the display.

For example, suppose a line on the screen contains “yesterday.”. If this is to be replaced with
the “yes or no:” prompt, the program can rewrite the entire line with “yes or no:”. However,
the program can achieve the same effect by replacing the “te” with “ o” and “day.” with “ no:”.
This is shown in Figure 1.

The output of this program to produce “yes or no” would be:

yesterday.<positioning sequence> o<positioning sequence> no:

The simple Expect command used earlier would not be able to match “yes or no” in such
output. However, with an understanding of how to interpret the positioning sequences, it is possi-
ble to model the screen and match the string. In that case, the match is not made against the output
directly. Instead, the match is made against the model of the screen.
2

TERMINAL EMULATION

A screen may be modeled using emulation. Indeed, emulation is the basis for terminal emula-
tors. Terminal emulators create a model of the screen and display it on a windowed system such as
the X Window System (X11).6 However, terminal emulators are not designed to support detection
of patterns on the screen.

In this section, a terminal emulator is presented that provides a framework upon which to per-
form screen analysis. Functionally, the emulator is capable of supporting sophisticated character-
graphic programs such as Vi and Emacs.7,8 Hooks are provided so that screen analysis can be done
after each screen update.

There are many ways to maintain a grid of characters. For simplicity, we started out using Tk,
a system for controlling X graphics. A Tk text widget is convenient for maintaining the grid since
Tk can automatically display the grid in a window and the Tk understands typical terminal fea-
tures such as highlighting. In practice, it is not necessary to display the grid. Indeed, nondisplay of
the grid is useful when automating an existing program. In many cases, user comprehension of the
character-graphic user interface is no longer necessary so there is no need to display it. A version
of this work was repeated without using Tk – a simple Tcl array was used to model the screen.

To run processes, a shell is used through which any programs under test are invoked. By using
Expect’s spawn command, a pseudo-terminal is automatically supplied, allowing applications to
believe that they are talking to a real user. Without the pseudo-terminal, many nominally charac-
ter-graphic applications would forego their character-graphic interface, making them impossible
to test. Many applications would refuse to run at all.

In theory, the task of understanding screen manipulation sequences is straightforward. How-
ever, in reality, it is complex. Some of the problems are:

• Many vendors use non-standard screen manipulation sequences.

• Even with a single screen-manipulation definition, there is an infinite number of sequences
that can generate a particular screen image.

• High-level databases and libraries exist to deal with the multi-vendor problem, however
there is no single standard.

• Some programs do not follow the specifications described by the high-level databases/
libraries.

y e s t e r d a y

y e s o r n o

.

:

Characters remaining the same

Before

After

Figure 1. Replacing selected characters on a screen
3

Intuitively, the way to build a terminal emulator is to figure out what the character sequences
mean and model this in computer code. The solution presented in this paper is not far afield from
that idea, but it gets there in a somewhat circuitous route.

First, it is necessary to understand that there is no standard terminal type. While there is an
ANSI standard, it is so limited that all vendors extend it. Naturally, these extensions are rarely
compatible with one another. Indeed, manufacturers often produce extensions that are different
even within their own model lines.

Several attempts have been made to define high-level databases and software interfaces to
understand these hundreds of definitions. However, these interfaces are for producing character
sequences, not consuming them.

Given an arbitrary character sequence, there is no trivial way to figure out what it does. Pre-
suming a particular terminal type simplifies the problem but does not necessarily make it solvable.
Inverting database descriptions may not be possible if any of the sequences are identical. For
instance, consider descriptions that use the same sequence for both highlight and inverse. In this
case, there is no way of telling which one was intended just by knowing the sequence had arrived.
A related problem exists with individual sequences that are identical to a sequence of other
sequences. A different problem arises when terminals are used beyond their documented limits. In
some cases, sequences defined with only enough space for 24 rows can match two different
requests if a terminal with more than 24 rows is emulated. This is a common scenario with emu-
lated terminals where users expand the terminals many times larger than their physical counter-
parts. In such cases, which request is correct can only be determined by the undocumented
operation of the physical terminal itself. This can change from one release to the next and is not
necessarily derivable via software.

To avoid these problems, a theoretically “ideal” terminal was designed. Designing a terminal
from scratch makes it possible to avoid the difficulties of having to deduce the characteristics of
another existing terminal. However, there are two drawbacks of an ideal terminal:

• An ideal terminal cannot be automatically displayed on a terminal emulating a different
type.

• A program that only generates output for a specific type will not necessarily display cor-
rectly on an ideal terminal.

Fortunately, both of these are moot. The first drawback is irrelevant partly because typically
the emulator itself provides a display. This display process is described later. In addition, the emu-
lator can be augmented to consume characters meant for one terminal type and convert this into
characters to drive yet another type. The second drawback is irrelevant because the programs of
interest should not be tied to a particular terminal type but should be terminal independent. While
it is possible to force the emulator to understand a particular terminal type, it can be much more
difficult because the ideal terminal is invariably much simpler than any real terminal.

Defining Terminal Definitions
An arbitrary terminal definition would be meaningless if there were no way to inform pro-

grams of it, but the same databases as before serve this purpose. The approach taken by modern
databases is to support arbitrary terminal types through the use of a terminal description language.
Unfortunately, there is no single standard.
4

In UNIX environments, there are two “standards” – Termcap and Terminfo.9 The presence of
one of these can often be explained by the derivation of the system. Termcap was invented at Ber-
keley and can be found on Berkeley-derived systems. Terminfo was a redesign provided by AT&T
and can be found on AT&T (i.e., SV) derived systems. Many systems support both and it is not
uncommon to find half the utilities on the system using Termcap and half using Terminfo. Hence,
the solution in this paper necessarily implements both. The script is forgiving in that it runs even if
one of the two implementations is absent.

Fortunately, it is much easier to design a terminal description from scratch than it is to mimic
an existing terminal description. The reason is that few sequences are actually mandatory. For
instance, relative cursor motion can be simulated with absolute cursor motion. This one observa-
tion alone dramatically simplifies descriptions since there are often dozens of relative cursor
motions that can be replaced by a single absolute cursor motion definition. Using a single, albeit
more complex, definition also turns out to be more efficient than many relative cursor motion
operations. The explanation for this efficiency is described later.

The following code establishes descriptions in both Termcap and Terminfo style using the
ideal terminal type, arbitrarily named “tk”. The code succeeds even if Termcap and Terminfo are
not supported on the system. This code actually has to be executed before the spawn shown earlier
in order for the environment variables to be inherited by the process.

The Termcap and Terminfo definitions are very similar so only the Termcap definition is
described here. The definition is made up of several capabilities. Each capability describes one
feature of the terminal. A capability is expressed in the form xx=value, where xx is a capability
label and value is the actual string that the emulator receives. For instance the up capability
moves the cursor up one line. Its value is the sequence: escape, “[”, “A”. These sequences are not
interpreted at all by Tcl so they may look peculiar. The complicated-looking sequence (cm) per-
forms absolute cursor motion. The row and column are substituted for each %d before it is trans-
mitted. The character string “\E” is replaced with a true escape character. The remaining
capabilities are nondestructive space (nd), clear screen (cl), down one line (do), begin standout
mode (so) and end standout mode (se). The actual definitions are based on the ANSI terminal def-
inition.10 This is a purely arbitrary choice.

set env(TERM) "tk"
set env(TERMCAP) {tk:

:cm=\E[%d;%dH:
:up=\E[A:
:nd=\E[C:
:cl=\E[H\E[J:
:do=^J:
:so=\E[7m:
:se=\E[m:

}

set env(TERMINFO) /tmp
set ttsrc "/tmp/tk.src"
set file [open $tksrc w]

puts $file {tk,
cup=\E[%p1%d;%p2%dH,
cuu1=\E[A,
cuf1=\E[C,
clear=\E[H\E[J,
5

ind=\n,
cr=\r,
smso=\E[7m,
rmso=\E[m,

}
close $file
catch {exec tic $tksrc}
exec rm $tksrc

A generic standout mode is used for brevity in this paper. Extending it to specific ones such as
underlining and highlighting is straightforward.

Maintaining and Querying the Terminal Display
The text widget maintains the terminal display internally. Most of the details are not relevant

to this paper and names such as term_init and term_clear should be intuitively obvious. One
procedure will be described in more detail to provide a taste for the implementation and in order
to understand some of the problems encountered.

The term_down procedure moves the cursor down one line. If the cursor is already at the end
of the screen, the text widget appears to scroll. This is accomplished by deleting the first line and
then creating a new one at the end.

proc term_down {} {
global cur_row rows cols term

if {$cur_row < $rows} {
incr cur_row

} else {
already at last line of term, so scroll screen up
$term delete 1.0 "1.end + 1 chars"

recreate line at end
$term insert end [format %*s $cols ""]\n

}
}

There is no correspondingly complex routine to scroll up because the Termcap/Terminfo
libraries never request it. Instead, they simulate it with other capabilities. In fact, the Termcap/
Terminfo libraries never request that the cursor scroll past the bottom line either. However, non-
character-graphic programs such as cat and ls do, so the terminal emulator understands how to
handle this case.

The term_insert procedure writes a string to the current location on the screen. Due to the
nature of Tk’s text widgets, the procedure does its work by first deleting the existing characters
and then inserting the new characters. This is a good example of where Termcap/Terminfo fail to
have the ability to adequately describe a terminal. The text widget is essentially always in “insert”
mode but Termcap/Terminfo have no way of describing this.

One capability of which the script cannot take advantage, is that Termcap/Terminfo can be
told not to write across line boundaries. Again however, programs such as cat and ls expect to be
able to write over line boundaries.

At the very end of term_insert is a call to term_chars_changed. This is a user-defined pro-
cedure called whenever visible characters have changed. For example, the following code finds
when the string foo appears on line 4 column 7:
6

if {[string match foo* [$term get 4.7 4.end]]}

The following code tests if character at row 4 col 5 is in standout mode
if {-1 != [lsearch [$term tag names 4.5] standout]} ...

Information can also be retrieved. For example to return the entire screen image:
$term get 1.0 end

The following example code returns indices of the first string on lines 4 to 6 that is in standout
mode

$term tag nextrange standout 4.0 6.end

The utility procedure term_update_cursor is called to update the visible cursor. This proce-
dure calls a user-defined procedure, term_cursor_changed. A possible definition might be to test
if the cursor is at some specific location:

if {$cur_row == 1 && $cur_col == 0} ...

A single expect command suffices to read and parse the sequences. The command has a pat-
tern to match each possible sequence. An abbreviated implementation is shown below. For
instance, a nondestructive space sequences causes the current column to be incremented. A car-
riage-return sets the current column to 0. Notice how simple the code is for absolute cursor
motion. It is basically two assignment statements. Because it is so simple, there is no need to sup-
ply Termcap/Terminfo with information on relative cursor motion commands. They cannot be
substantially faster.1

expect_background {
-re "^\[^\x01-\x1f]+" { # Text

term_insert $expect_out(0,string)
term_update_cursor

} "^\r" { # (cr,) Go to beginning of line
set cur_col 0
term_update_cursor

} "^\n" { # (ind,do) Move cursor down one line
term_down
term_update_cursor

} "^\033\\\[C" { # (cuf1,nd) Nondestructive space
incr cur_col
term_update_cursor

} -re "^\033\\\[(\[0-9]*);(\[0-9]*)H" {
(cup,cm) Move to row y col x

set cur_row [expr $expect_out(1,string)+1]
set cur_col $expect_out(2,string)
term_update_cursor

}

Bindings define how the emulator should handle user events such as user keystrokes and
mouse motion. For example, the following statement defines a binding that applies to any key-
press event. Upon occurrence of such an event, its action sends the corresponding ASCII charac-
ter to the process. Keypress events that do not have an associated ASCII character, such as “shift”
and “control”, are discarded.

1.The definition for nondestructive space might be seen as a concession to speed, but in fact it is required by some buggy versions of Termcap that
operate incorrectly if the capability not defined. The other relative motion capabilities are assumed by the terminal driver for non-character-graphic
tools such as cat and ls.
7

bind $term <Any-KeyPress> {
if {"%A" != ""} {

exp_send "%A"
}

}

The meta key is simulated by sending an escape character. Most programs understand this
convention, and it is convenient because it works over telnet links.

These bindings are the same for any terminal and thus are not defined by explicit capabilities.
Bindings that are unusual do require capabilities. For example, some terminals have function
keys that generate a string of characters, typically unique to a particular brand of terminal. This
behavior is described using a capability. For instance, the capability for function key 1 to send
escape, “O”, and “P” could be described in either of two ways:

:k1=\EOP: Termcap-style
:kf1=\EOP: Terminfo-style

The matching binding is:
bind $term <F1> {exp_send "\033OP"}

Another event that could be handled is an X configure event, which is generated when the user
changes the size of the terminal window. For simplicity, the code shown here does not support
this. The actual code is not significant, however it requires additional interfaces. For example, the
user should be able to choose between various behaviors such as whether or not characters should
be “forgotten” if the screen is temporarily shortened and then lengthened.

There are no Termcap/Terminfo capabilities to describe this behavior. There should be such
capabilities, but it requires a survey of terminal vendors to see what is actually implemented. The
obvious choices are “blank fill everything” or “restore everything”. Yet some tools, such as the
ubiquitous xterm program, have mixtures such as “blank fill when widening” and “restore when
lengthening”.

Termcap/Terminfo are missing many important capabilities. Another example is whether or
not to restore the screen to the way it looked prior to the application’s execution. Some terminals
do it one way, some the other. An emulator can do it either way of course. But since Termcap/
Terminfo provide no capability for it, another interface must be provided.

USING THE TERMINAL EMULATOR FOR TESTING AND AUTOMATION

It is possible to use the terminal emulator described in the previous section to partially or fully
automate or test character-graphic applications. For instance, each expect-like operation could be
a loop that repeatedly performs various tests of interest on the text widget contents. In the follow-
ing code, the entrance to the loop is protected by “tkwait var test_pats”. This blocks the loop
from proceeding until the test_pats variable is changed. The variable is changed by the
term_chars_changed procedure, invoked whenever the screen changes. Using this idea, the fol-
lowing code waits for a % prompt anywhere on the first line:

proc term_chars_changed {} {
uplevel #0 set test_pats 1

}

while 1 {
if {!$test_pats} {tkwait var test_pats}
set test_pats 0
8

if {[regexp "%" [$term get 1.0 1.end]]} break
}

Writing a substantial script this way would be clumsy. Furthermore, it prevents the use of con-
trol flow commands in the actions. One solution is to create a procedure that does all of the work
handling the semaphore and hiding the while loop. Such a procedure is described in the next sec-
tion.

Term_expect
term_expect is a procedure that simplifies the writing of expect-like operations. term_expect

replaces the ubiquitious while loop (see above) and the other control machinery. The interface of
term_expect is similar to the original expect. Timeouts, defaults, patterns, and actions are all
supported.

A significant difference is that instead of patterns, the user provides executable tests. Thus,
term_expect is written as a series of test-action pairs:

expect_term test1 action1 test2 action2 . . .

Since the tests can be arbitrarily large lists of statements, they are grouped with braces. For
example, the previous test could be written:

expect_term {[regexp "%" [$term get 1.0 1.end]]} {;# no-op}

Any number of test-action pairs can be provided. The action can be omitted if empty as is the
case here. Actions can contain multiple statements. They can also involve flow control such as
break, continue, and return.

Tests can contain multiple statements. Since the tests can be arbitrarily large lists of state-
ments, they are grouped with braces. Any nonzero test result causes term_expect to be satisfied
whereupon it executes the associated action. One special test (“timeout”) is provided to support
timeouts, analogous to expect.

The implementation of term_expect follows the model shown above, using a loop and wait-
ing to be called back when the screen has been updated. The actual code is more complicated
because it addresses scoping problems and must handle flow control and timeouts.

Example of Partial Automation – Rogue
Rogue is an adventure game that presents a player with various physical attributes, such as

strength and health. The attributes are displayed using character graphics. For instance “Str: 16”
indicates a strength of 16. This strength value is the default but the game randomly provides a
much better strength of 18. It is provided rarely however and quitting the game is clumsy enough
that players do not repeatedly restart the game in hopes of getting the high strength. In particular,
the game is quit by initially pressing “Q”. The game then fills in the word “Quit” and asks “Are
you sure?”. The user must answer “y”, wait for the shell prompt to reappear and then re-enter
the name of the game (“rogue”) to restart it.

One of the earliest examples of Expect was a script that automated this particular interaction,
allowing users to always be able to start with optimal initial configurations for the game.11 How-
ever, because the game uses character graphics, the script could conceivably miss the patterns for
which it is looking.

Using the term_expect procedure described above, it is possible to write a replacement script
for Rogue that fully understands the character graphics. For instance, the first test looks for the
shell prompt (“%”) in either the first or second line on the screen. After sending “rogue”, the script
9

looks for both a strength of 16 or 18. If 18 is found, the break action is executed causing the loop
to break. A strength of 16 causes the script to terminate the game and restart a new one for exam-
ination. The meaning of the rest of the script should be obvious.

while 1 {
term_expect {regexp "%" [$term get 1.0 2.end]}
exp_send "rogue\r"
term_expect {regexp "Str: 18" [$term get 24.0 24.end]} break \

{regexp "Str: 16" [$term get 24.0 24.end]} {}
exp_send "Q"
term_expect {regexp "quit" [$term get 1.0 1.end]}
exp_send "y"

}

In contrast to the original Rogue script, there is no interact command at the end of this one.
Because of the bindings, the script is always listening to the keyboard! If desired, this implicit
interaction can be disabled by removing or overriding the KeyPress bindings that appear at the
end of the terminal emulator.

Example of Total Automation – Querying a Database
The following example connects to the Cornell University Library and makes a number of

queries through its menu system. Interestingly, this library expects to drive a 3270 terminal. A
3270 terminal is not like a typical serial terminal and traditional programs such as telnet and rlo-
gin do not support the 3270 interface. Thus, Expect uses the tn3270 program to convert the 3270
interaction to a Curses-style character stream, which can then be handled as usual.

First, the shell prompt is waited for and the 3270 emulator is started.
term_expect {regexp {.*[>%]} [$term get 1.0 3.end]}
exp_send "tn3270 notis.library.cornell.edu\r"

The next step is to get through the library’s login interaction.
term_expect {regexp "desk" [$term get 19.0 19.end]} {
 exp_send "\r"

}

Once in the library system, all the menus prompt the same way. This is a common situation
and calls for yet higher-level tools than term_expect. It is difficult to define such higher-level
tools in a way that would be reusable to others. Fortunately, they are almost always short, so it is
not difficult to write them anew each time. Here are example utility routines to handle this repeti-
tive situation for the Cornell University Library.

proc waitfornext {} {
 global cur_row cur_col term
 term_expect {expr {$cur_col==15 && $cur_row == 24 && \
 " NEXT COMMAND: " == [$term get 24.0 24.16]}} {}
}

proc sendcommand {command} {
 global cur_col
 exp_send $command
 term_expect {expr {$cur_col == 79}} {}

}

10

Now the interactions with the library are trivial. The remaining commands look for a book
using the keywords “sound” and “scottish”. The first book is selected and its long form is dis-
played. Finally the next page of the long form is shown.

waitfornext
sendcommand "k=sound and scottish\r"
waitfornext
sendcommand "1\r"
waitfornext
sendcommand "lon\r"
waitfornext
sendcommand "for\r"

The view of the Tk terminal emulator, after these queries, is shown in Figure 2.

Testing
In the automation examples, only the desired outcome was anticipated by the script. Consider

the database query example. If the network was down, the connection to Cornell would fail. A
new release of the tn3270 program might have a bug in it. Many other problems are possible.
Robust scripts must be able to deal with all of these alternative outcomes.

Handling different outcomes is possible by adding additional tests to each call of
term_expect command as was done in the Rogue example to check for the strength of 16 and 18
simultaneously. Conformance testing, which either succeeds or fails, requires only the desired
pattern and the lack of the pattern within a given amount of time. For example, the following
script checks for a shell prompt. If found, it prints “found”. If not found within 20 seconds, it
prints “not found”.

set timeout 20

term_expect {
set line [$term get 1.0 2.end]
regexp "%" $line

} {
puts "found"

} timeout {
puts "not found"

}

Figure 2.Terminal emulator after several queries to Cornell University Library
11

The special pattern timeout matches when sufficient time has expired, just as the expect

command does. The associated action is executed as with any successful pattern match. Unlike
the expect command, a test for end-of-file is not provided since a terminal emulator should not
exit just because the applications making use of it do so.

More sophisticated checking can require the addition of many other tests and failure modes.
For example, consider testing a character-graphic editor such as Vi. It is not sufficient to look for a
particular pattern. Rather, the entire screen must be correct after an interaction. Doing such a test
is straightforward using Tcl’s built-in string comparison command:

string compare $desired_image [$term get 1.0 24.end]

Since tests may execute arbitrary commands, this can also be done using algorithms rather
than literal patterns. For example, Vi begins with a screen displaying tildes down the left-most
column. The following code tests for this.

for {set i 1} {$i<=24} {incr i} {
if ["~" != [string trimright [$term get $i.0 $i.end]]] {

return 1
}

}
return 0

Other tests may be useful to handle unusual but possible conditions. For example, when test-
ing Emacs, occasional messages appear such as those relating to garbage collection. Assuming
the status line is stored in the variable status_line, the unpredictable messages from Emacs
could be detected with the following tests:

string match "Garbage collecting...Done" $status_line
string match "Garbage collecting..." $status_line
string match "Auto-saving...Done" $status_line
string match "Auto-saving..." $status_line

A large body of tests and testing expertise has been constructed using Expect.12,13 As in the
Rogue example, it is straightforward to convert expect-style tests to term_expect-style tests. In
many cases, the term_expect-style tests are more robust and it is likely that some test suites will
be rewritten to take advantage of this additional rigor. However, little actual experience has been
collected.

At the same time, expect_term shares with expect one difficulty of constructing such tests.
Namely, there is a tradition of avoiding formal test specifications for user interfaces. As an exam-
ple, POSIX lacks such test specifications. Thus, test implementation often includes specification
of the test as well. For this reason, substantial time must be allotted to designers of test suites for
character-graphic interfaces.

Note that the emulator is not a tool for testing Termcap, Terminfo, or other terminal libraries.
The emulator defines a very small number of minimal capabilities, exactly the opposite of what is
needed to test capability libraries. The emulator necessarily assumes Termcap and/or Terminfo
are functioning normally.

ALTERNATIVES

ExpecTerm was earlier work that implemented a universal terminal emulator inside of Expect
itself.14 The emulator was written in C. Access to the terminal emulator was provided by several
additional flags to the spawn and expect commands. For instance, the following expect com-
12

mand looked for “aaaaa” in the first five columns of the first row and “bbbbb” in the first five col-
umns of the second row.

expect -rows 0:1 -cols 0:4 "aaaa\nbbbbb"

Expecterm provided access to character attributes (reverse, dim, blink, etc.) and had a variety
of other options. For instance -rrows allowed relative region specifications and negative integers
indexed from the end of the region.

Expecterm suffered exactly the difficulties of a universal terminal emulator mentioned earlier.
In particular, because it was not possible to invert Termcap/Terminfo, entries had to be hand-edit-
ted. This was not a task for most users. To ameliorate this, Expecterm came with its own Ter-
minfo file for a few particularly popular terminals. The replacement definitions were subsets
guaranteed to be clean of ambiguities, exactly like the Tk definition shown earlier.

The Expecterm command interface pushed the complexity of the screen modeling into Expect
itself. The primary disadvantage was that it defined yet a new sub-language that users had to
learn. (Users already had to master Expect’s original sub-language for expressing patterns in a
serial stream.) And because terminal emulator pattern matching was performed by compiled
code, when patterns did not match, it could become very difficult for users to figure out what was
going wrong. In contrast, the term_expect approach uses the existing Expect pattern-matching
sub-language tied together with existing control flow commands, both of which users are already
familiar with. The ability to use control flow commands in tests permits algorithmic tests as in the
Vi example.

The Expecterm internals and interface have not continued to be maintained and have not been
supported by Expect for four years. However, Expecterm is not being ignored. The term_expect
approach described in this paper should merely be considered an alternative interface – currently
in favor. It remains to be seen whether the term_expect procedure is a desirable user interface.
Because it is modifiable by the user, it is likely, however, that this will more easily serve as a test-
bed for better future interfaces.

CONCLUSIONS

A terminal emulator has been described that provides an infrastructure for testing and automa-
tion of character-graphic programs. The tool is stable and robust. At the same time, since it is
implemented entirely in interpretive Tcl, it is accessible to the user and easily modified should the
need for extension or the desire to experiment arise.

Much of the credit for the features and simplicity are due to the supporting tools in which the
work was implemented. Specifically, Expect, Tcl, and Tk provide a convenient environment for
the implementation of this work. Expect provides a pseudo-terminal to make applications run as if
they were directly connected to a user at a real terminal. There is no other tool that provides
access to pseudo-terminals trivially and portably. Expect additionally provides convenient com-
mands for pattern matching regular expressions from a stream of characters, much in the style of
Lex. This is a good fit to the problem of parsing terminal sequences. Tcl provides a high-level
interface for control. Since Expect was originally designed to be controlled by Tcl, it should not
be surprising that the combination of the two works well here. Similarly, Tk extends Tcl with the
ability to display X windows. This solves the problem of displaying the results of the emulator
and providing data structures for the display. Since there is a well-known tool (Expectk) that pro-
vides Tcl, Tk, and Expect together, the triad was an obvious tool to apply to this problem.
13

Availability
This software described in this paper is freely available. However, the author and NIST would

appreciate credit if this software, documentation, ideas, or portions of them are used.
The scripts and programs described in this document may be ftp’d as pub/expect/expect.tar.Z

from ftp.cme.nist.gov. The software will be mailed to you if you send the mail message “send
pub/expect/expect.tar.Z” (without quotes) to library@cme.nist.gov.

Acknowledgments
Much of the development of Expect was funded by the NIST Scientific and Technical

Research Services. The Tk-less implementation was done by Adrian Moriano, Cornell University.
Adrian also wrote the script to interact with the Cornell University Library. Thanks to Steve Ray,
Josh Lubell, Kathy Miles, and several anonymous reviewers for proofreading this paper.

REFERENCES

1. Portable Operating System Interface (POSIX) - Part 2: Shell and Utilities, Federal Information Pro-
cessing Standards Publication 189, National Institute of Standards and Technology, October 11, 1994.

2. D. Libes, “X Wrappers for Non-Graphic Interactive Programs”, Proceedings of Xhibition 94, San Jo-
se, California, June 20-24, 1994.

3. J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, ISBN 0-201-63337-X, April 1994.

4. D. Libes, “Expect: Scripts for Controlling Interactive Programs”, Computing Systems, pp. 99-126,
Vol. 4, No. 2, University of California Press Journals, CA, Spring 1991.

5. D. Libes, Exploring Expect: A Tcl-based Toolkit for Automating Interactive Programs, O’Reilly & As-
sociates, Inc., pp. 602, ISBN 1-56592-090-2, January 1995.

6. A. Nye, T. O’Reilly, et al, The X Window System Series, O’Reilly & Associates, Inc., Sebastopol, CA.

7. L. Lamb, Learning the vi Editor, O’Reilly & Associates, Inc., ISBN 0-937175-67-6, October 1990.

8. R. Stallman, GNU Emacs Manual, Free Software Foundation, Inc., ISBN 1-88211404-3, July 1994.

9. B. Goodheart, UNIX Curses Explained, Prentice Hall, 1991.

10. ANSI X3.64-1979 (R1990) - Additional Controls for Use with the American National Standards Code
for Information Interchange, ANSI, 1990.

11. D. Libes, “Expect: Curing Those Uncontrollable Fits of Interaction”, Proceedings of the Summer 1990
USENIX Conference, pp. 183-192, Anaheim, CA, June 11-15, 1990.

12. D. Libes, “Regression Testing and Conformance Testing Interactive Programs”, Proceedings of the
Summer 1992 USENIX Conference, San Antonio, TX, June 8-12, 1992.

13. R. Savoye, “The Solution: DejaGnu”, Free Software Report, Mountain View, CA, Vol 3, No 1.

14. C.J. Matheus and M.D. Weissman, expecTerm, URL:ftp://ftp.aud.alcatel.com/tcl/extensions/
expecTerm1.0beta.tar.gz, May 1992.
14

	Automation and Testing of Character-Graphic Programs
	DON LIBES
	National Institute of Standards and Technology, Gaithersburg, MD, 20899, U.S.A.
	(email: libes@nist.gov)

	SUMMARY
	INTRODUCTION
	BACKGROUND
	EXPECT PROCESSING IN NON-CHARACTER-GRAPHIC PROGRAMS
	EXPECT PROCESSING IN CHARACTER-GRAPHIC PROGRAMS
	Figure 1. Replacing selected characters on a screen

	TERMINAL EMULATION
	Defining Terminal Definitions
	Maintaining and Querying the Terminal Display

	USING THE TERMINAL EMULATOR FOR TESTING AND AUTOMATION
	Term_expect
	Example of Partial Automation – Rogue
	Example of Total Automation – Querying a Database
	Figure 2. Terminal emulator after several queries to Cornell University Library

	Testing

	ALTERNATIVES
	CONCLUSIONS
	Availability
	Acknowledgments

	REFERENCES

