
SP L I N T

reference v e r s i o n1.03

SPLINT

Alex Shibakov July 21, 2014

1 Introduction

SPLinT 1) (Simple Parsing and Lexing in TEX, or, following the great GNU tradition of creating recursive
names, SPLinT Parses Languages in TEX) is a system (or rather a mélange of systems) designed to facilitate
developing parsing macros in TEX and (to a lesser degree) documenting parsers written in other languages.
As an application, a parser for bison input file syntax has been developed, along with a macro collection
that makes it possible to design and pretty print bison grammars using CWEB.

Developing software in CWEB involves two programs. The first of these is CTANGLE that outputs the actual
code, intended to be in C. In reality, CTANGLE cares very little about the language it produces. Exceptions
are C comments and #line directives that might confuse lesser software, although bison is all too happy to
swallow them (there are also some C specific constructs that CTANGLE tries to recognize). CTANGLE’s main
function is to rearrange the text of the program as written by the programmer (in a way that, hopefully,
emphasizes the internal logic of the code) into an appropriate sequence (e.g. all variable declaration must
textually precede their use). All that is required to adopt CTANGLE to produce bison output is some very
rudimentary post- and pre-processing.

Our main concern is thus CWEAVE that not only pretty prints the program but also creates an index,
cross-references all the sections, etc. Getting CWEAVE to pretty print a language other than C requires some
additional attention. A true digital warrior would probably try to decipher CWEAVE’s output ‘in the raw’ but,
alas, my WebFu is not that strong. The loophole comes in the form of a rarely (for a good reason) used CWEB
command: the verbatim (@=...@>) output. The material to be output by this construct undergoes minimal
processing and is put inside \vb{. . .}. All that is needed now is a way to process this virtually straight text
inside TEX.

2 Using the bison parser

The process of using SPLinT for writing parsing macros in TEX is treated in considerable detail later in
this document. We begin, instead, by outlining how one such parser can be used to pretty print a bison
grammar. Following the convention mentioned above and putting all non-C code inside CWEAVE’s verbatim
blocks, consider the following (meaningless) code fragment. The fragment contains a mixture of C and bison
code, the former appears outside of the verbatim blocks.

@= non_terminal: @>
@= term.1 term.2 {@> a = b; @=}@>
@= | term.3 other_term {@> $$ = $1; @=}@>
@= | still more terms {@> f($1); @=}@>
@= ; @>

The fragment above will appear as (the output of CTANGLE can be examined in sill.y)
〈A silly example 2 〉 =
non terminal :

term1 term2 a⇐ b;
term3 other term Υ ⇐ Υ1 ;
still more terms f(Υ1);

See also sections 3, 5, and 8.

This code is used in section 11.

3 . . . if the syntax is correct. In case it is a bit off, the parser will give up and you will see a different result.
The code in the fragment below is easily recognizable, and some parts of it (all of C code, in fact) are still
pretty printed in CWEAVE. Only the verbatim portion is left unprocessed.
〈A silly example 2 〉 +=
whoops
term.1 term.2 { a⇐ b; }

| term.3 other_term { Υ ⇐ Υ1 ; }

1) I was tempted to call the package ParLALRgram which stands for Parsing LALR Grammars or PinT for ‘Parsing in TEX’ but
both sounded too generic.

3
6 SPLINT USING THE bison PARSER 

| still more terms { f(Υ1); }
;

4 The TEX header that makes such output possible is quite plain. In this example (i.e. this very file) it consists
of

\input limbo.sty
\input frontmatter.sty
\input yy.sty

[more code . . .]

The first two lines are presented here merely for completeness: there is no parsing-relevant code in them.
The line that follows loads the macros that implement the parsing and scanning machinery. This is enough
to set up all the basic mechanisms used by the parsing and lexing macros. The rest of the header provides
a few definitions to fine tune the typesetting of grammar productions. It starts with

\let\currentparsernamespace\parsernamespace
\let\parsernamespace\mainnamespace
\let\currenttokeneq\tokeneq

\def\tokeneq#1#2{\prettytoken{#1}}
\input bo.tok % re-use token equivalence table to set the

\let\tokeneq\currenttokeneq
\input btokenset.sty

[more code . . .]

We will have a chance to discuss all the \. . .namespace macros later, at this point it will suffice to say that
the lines above are responsible for controlling the typesetting of term names. The file bo.tok consists of a
number of lines like the ones below:

\tokeneq {STRING}{{34}{115}{116}{114}{105}{110}{103}{34}}
\tokeneq {PERCENT_TOKEN}{{34}{37}{116}{111}{107}{101}{110}{34}}

[more code . . .]

The cryptic looking sequences of integers above are strings of ASCII codes of the letters that form the name
bison uses when it needs to refer to the corresponding token (thus, the second one is "%token" which might
help explain why such an elaborate scheme has been chosen). The macro \tokeneq is defined in yymisc.sty,
which in turn is input by yy.sty but what about the token names themselves? In this case they were ex-
tracted automatically from the CWEB source file by the parser during the CWEAVE processing stage. All of these
definitions can be overwritten to get the desired output (say, one might want to typeset ID in a roman font,
as ‘identifier’; all that needs to be done is a macro that says \prettywordpair{ID}{{\rm identifier}}).
The file btokenset.sty input above contains a number of such definitions.

5 To round off this short overview, I must mention a caveat associated with using the macros in this collection:
while one of the greatest advantages of using CWEB is its ability to rearrange the code in a very flexible way,
the parser will either give up or produce unintended output if this feature is abused while describing the
grammar. For example, in the code below
〈A silly example 2 〉 +=
next term :

stuff 〈Rest of line 7 〉a⇐ f(x);
〈A production 6 〉

6 the line titled 〈A production 6 〉 is intended to be a rule defined later. Notice that while it seems that the
parser was able to recognize the first code fragment as a valid bison input, it misplaced the 〈Rest of line 7 〉,
having erroneously assumed it to be a part of the action code for this grammar (later on we will go into the
details of why it is necessary to collect all the non-verbatim output of CWEAVE, even the one that contains no

 USING THE bison PARSER SPLINT 6
12

interesting C code; hint: it has something to do with money ($), also known as math and the way CWEAVE
processes the ‘gaps’ between verbatim sections). The production line that follows did not fare as well: the
parser gave up. There is simply no point in including such a small language fragment as a valid input for
the grammar the parser uses to process the verbatim output.
〈A production 6 〉 =

more stuff in this line {b⇐ g(y);}

See also section 9.

This code is cited in section 6.

This code is used in sections 5 and 8.

7 Finally, if you forget that only the verbatim part of the output is looked at by the parser you might get
something unrecognizable, such as
〈Rest of line 7 〉 =

but notall of it

See also section 10.

This code is cited in section 6.

This code is used in sections 5 and 8.

8 To correct this, one can provide a more complete grammar fragment to allow the parser to complete its task
successfully. In some cases, this imposes too strict a constraint on the programmer. Instead, the parser that
pretty prints bison grammars allows one to add hidden context to the code fragments above. The context
is added inside \vb sections using CWEB’s @t. . .@> facility. The CTANGLE output is not affected by this while
the code above can now be typeset as:
〈A silly example 2 〉 +=
next term :

stuff 〈Rest of line 7 〉 a⇐ f(x);
〈A production 6 〉

9 . . . even a single line can now be displayed properly.
〈A production 6 〉 +=

more stuff in this line b⇐ g(y);

10 With enough hidden context, even a small rule fragment can be typeset as intended. The ‘action star’ was
inserted to reveal some of the context.
〈Rest of line 7 〉 +=

but not all of it ?

11 What makes all of this even more confusing is that CTANGLE will have no trouble outputting this as a(n almost,
due to the intentionally bad whoops production above) valid bison file (as can be checked by looking into
sill.y). The author happens to think that one should not fragment the software into pieces that are too
small: bison is not C so it makes sense to write bison code differently. However, if the logic behind your
code organization demands such fine fragmentation, hidden context provides you with a tool to show it off.
A look inside the source of this document shows that adding hidden context can be a bit ugly so it is not
recommended for routine use. The short example above is output in the file below.
〈 sill.y 11 〉 =
〈A silly example 2 〉

12 On debugging

This concludes a short introduction to the bison grammar pretty printing using this macro collection. It
would be incomplete, however, without any reference to debugging 1). There is a fair amount of debugging

1) Here we are talking about debugging the output produced by CWEAVE when the included bison parser is used, not debug-
ging parsers written with the help of this software: the latter topic is covered in more detail later on

12
14 SPLINT ON DEBUGGING 

information that the macros can output, unfortunately, very little of it is tailored to the use of the macros in
the bison parser. Most of it is designed to help build a new parser. If you find that the parser gives up too
often or even crashes (the latter is most certainly a bug in the parser itself), the first approach is to make
sure that your code compiles i.e. forget about the printed output and try to see if the ‘real’ bison accepts
the code (just the syntax, no need to worry about conflicts and such).

If this does not shed any light on why the macros seem to fail, turn on the debugging output by saying
\trace. . .true for various trace macros. This can produce a lot of output, even for small fragments, so
turn it on only for a section at a time. If you need still more details of the inner workings of the parser
and the lexer, various other debugging conditionals are available. For example, \yyflexdebugtrue turns on
the debugging output for the scanner. There are a number of such conditionals that are discussed in the
commentary for the appropriate TEX macros.

Remember, what you are seeing at this point is the parsing process of the bison input file, not the one
for your grammar (which might not even be complete at this point). However, if this fails, you are on your
own: drop me a line if you figure out how to fix any bugs you find.

13 Terminology

We now list a few definitions of the concepts used repeatedly in this documentation. Most of this terminology
is rather standard. Formal precision is not the goal here, and intuitive explanations are substituted whenever
possible.

bison parser: while, strictly speaking, not a formally defined term, this combination will always stand for
one of the parsers generated by this package designed to parse a subset of the ‘official’ grammar for bison
input files. All of these parsers are described later in this documentation. The term main parser will be
used as a substitute in example documentation for the same purpose.
driver: a generic but poorly defined concept. In this documentation it is used predominantly to mean both
the C code and the resulting executable that outputs the TEX macros that contain the parser tables, token
values, etc., for the parsers built by the user. It is understood that the C code of the ‘driver’ is unchanged
and the information about the parser itself is obtained by including the C file produced by bison in the
‘driver’ (see the examples supplied with the package).
lexer: a synonym for scanner, a subroutine that performs the lexical analysis phase of the parsing process,
i.e. groups various characters from the input stream into parser tokens.
namespace: this is an overused bit of terminology meaning a set of names grouped together according to
some relatively well defined principle. In a language without a well developed type system (such as TEX)
it is usually accompanied by a specially designed naming scheme. Parser namespaces are commonly used
in this documentation to mean a collection of all the data structures describing a parser and its state,
including tables, stacks, etc., named by using the ‘root’ name (say \yytable) and adding the name of
the parser (for example, [main]). To support this naming scheme, a number of macros work in unison to
create and rename the ‘data macros’ accordingly.
symbolic switch: a macro (or an associative array of macros) that let the TEX parser generated by the
package associate symbolic term names with the terms. Unlike the ‘real’ parser, the parser created with
this suite requires some extra setup as explained in the included examples (one can also consult the source
for this documentation which creates but does not use a symbolic switch).
symbolic term name: a (relatively new) way to refer to stack values in bison. In addition to using
the ‘positional’ names such as $n to refer to term values, one can utilize the new syntax: $[name]. The
‘name’ can be assigned by the user or can be the name of the nonterminal or token used in the productions.
term: in a narrow sense, an ‘element’ of a grammar. Instead of a long winded definition, an example,
such as ýidentifierþ should suffice. Terms are further classified into terminals (tokens) and nonterminals
(which can be intuitively thought of as composite terms).
token: in short, an element of a set. Usually encoded as an integer by most parsers, an indivisible term
produced for the parser by the scanner. TEX’s scanner uses a more sophisticated token classification, for
example, (character code, character category) pairs, etc.

 LANGUAGES, SCANNERS, PARSERS, AND TEX SPLINT 14
15

14 Languages, scanners, parsers, and TEX
Tokens and tables keep macros in check.
Make ’em with bison, use WEAVE as a tool.
Add TEX and CTANGLE, and C to the pool.
Reduce ’em with actions, look forward, not back.
Macros, productions, recursion and stack!

Computer generated (most likely)

In order to understand the parsing routines in this collection, it would help to gain some familiarity with
the internals of the parsers produced by bison for its intended target: C. A person looking inside a parser
delivered by bison would quickly discover that the parsing procedure itself (yyparse) occupies a rather small
portion of the file. If (s)he were to further reduce the size of the file by removing all the preprocessor directives
intended to anticipate every conceivable combination of the operating system, compiler, and C dialect, and
various reporting and error logging functions it would become very clear that the most valuable product
of bison’s labor is a collection of integer tables that control the actions of the parser routine. Moreover,
the routine itself is an extremely concise and well-structured loop composed of goto’s and a number of
numerical conditionals. If one were to think of a way of accessing arrays and processing conditionals in the
language of one’s choice, once the tables produced by bison have been converted into a form suitable for
the consumption by the appropriate language engine, the parser implementation becomes straightforward.
Or nearly so.

The scanning (or lexing) step of this process—a way to convert a stream of symbols into a stream of
integers, also deserves some attention here. There are a number of excellent tools written to automate this
step in much the same fashion as bison automates the generation of parsers. One such tool, flex, though
(in the opinion of this author) slightly lacking in the simplicity and elegance as compared to bison, was
used to implement the lexer for this software suite. Lexing in TEX will be discussed in considerable detail
later in this manual.

The language of interest in our case is, of course, TEX, so our future discussion will revolve around the
five elements mentioned above: (1)data structures (mainly arrays and stacks), (2)converting bison’s output
into a form suitable for TEX’s consumption, (3)processing raw streams of TEX’s tokens and converting them
into streams of parser tokens, (4)the implementation of bison’s yyparse in TEX, and, finally, (5)producing
TEX output via syntax-directed translation (which requires an appropriate abstraction to represent bison’s
actions inside TEX). We shall begin by discussing the parsing process itself.

15 Arrays, stacks and the parser

Let us briefly examine the programming environment offered by TEX. Designed for typesetting, TEX’s
remarkable language provides a layer of macro processing atop of a set of commands that produce the
output fulfilling its primary mission: delivering page layouts. In The TEXbook, macro expansion is likened
to mastication, whereas TEX’s main product, the typographic output is the result of its ‘digestion’ process.
Not everything that goes through TEX’s digestive tract ends up leaving a trace on the final page: a file full of
\relax’s will produce no output, even though \relax is not a macro, and thus would have to be processed
by TEX at the lowest level.

It is time to describe the details of defining suitable data structures in TEX. At first glance, TEX provides
rather standard means of organizing and using general memory. At the core of its generic programming
environment is an array of \count n registers, which may be viewed as general purpose integer variables
that are randomly accessible by their indices. The integer arithmetic machinery offered by TEX is spartan
but is very adequate for the sort of operations a parser would perform: mostly additions and comparisons.

Is the \count array a good way to store tables in TEX? Probably not. The first factor is the size of this
array: only 256 \count registers exist in a standard TEX (the actual number of such registers on a typical
machine running TEX is significantly higher but this author is a great believer in standards, and to his
knowledge, none of the standardization efforts in the TEX world has resulted in anything even close to the
definitive masterpiece that is The TEXbook). The issue of size can be mitigated to some extent by using a
number of other similar arrays used by TEX (\catcode, \uccode, \dimen, \sfcode and others can be used
for this purpose as long as one takes care to restore the ‘sane’ values before control is handed off to TEX’s

15
16 SPLINT ARRAYS, STACKS AND THE PARSER 

typesetting mechanisms). If a table has to span several such arrays, however, the complexity of accessing
code would have to increase significantly, and the issue of size would still haunt the programmer.

The second factor is the use of several registers by TEX for special purposes (in addition, some of these
registers can only store a limited range of values). Thus, the first 10 \count registers are used by plain TEX
for (well, intended for, anyway) the purposes of page accounting: their values would have to be carefully
saved and restored before and after each parsing call, respectively. Other registers (\catcode in particular)
have even more disrupting effects on TEX’s internal mechanisms. While all of this can be managed (after all,
using TEX as an arithmetic engine such as a parser suspends the need for any typographic or other specialized
functions controlled by these arrays), the added complexity of using several memory banks simultaneously
and the speed penalty caused by the need to store and restore register values make this approach much less
attractive.

What other means of storing arrays are provided by TEX? Essentially, only three options remain: \token
registers, macros holding whole arrays, and associative arrays accessed through \csname . . . \endcsname. In
the first two cases if care is taken to store such arrays in an appropriate form one can use TEX’s \ifcase
primitive to access individual elements. The trade-off is the speed of such access: it is linear in the size of
the array for most operations, and worse than that for others, such as removing the last item of an array.
Using clever ways of organizing such arrays, one can improve the linear access time to O(log n) by simply
modifying the access macros but at the moment, a straightforward \ifcase is used after expanding a list
macro or the contents of a \token n register in an unoptimized parser. An optimized parser uses associative
arrays.

The array discussion above is just as applicable to stacks (indeed, an array is the most common form
of stack implementation). Since stacks pop up and disappear frequently (what else are stacks to do?), list
macros are usually used to store them. The optimized parser uses a separate \count register to keep track
of the top of the stack in the appropriate associative array.

Let us now switch our attention to the code that implements the parser and scanner functions. If one
has spent some time writing TEX macros of any sophistication (or any macros, for that matter) (s)he must
be familiar with the general feeling of frustration and the desire to ‘just call a function here and move on’.
Macros produce tokens, however, and tokens must either expand to nothing or stay and be contributed to
your input, or worse, be out of place and produce an error. One way to sustain a stream of execution with
macros is tail recursion (i.e. always expanding the last token left standing).

As we have already discussed, bison’s yyparse () is a well laid out loop organized as a sequence of goto’s
(no reason to become religious about structured programming here). This fact, and the following well known
trick, make C to TEX translation almost straightforward.

label A: ...
[more code . . .]

if(condition)
goto C;

[more code . . .]

label B: ...
[more code . . .]

goto A;
[more code . . .]

label C: ...
[more code . . .]

Given the code on the left (where goto’s are
\if(condition)

\let\next=\labelC
\else

\let\next=\labelAtail

the only means of branching but can appear
inside conditionals), one way to translate it
into TEX is to define a set of macros (call
them \labelA, \labelAtail and so forth for
clarity) that end in \next (a common name
for this purpose). Now, \labelA will imple-
ment the code that comes between label A: and goto C;, whereas \labelAtail
is responsible for the code after goto C; and before label B: (provided no other
goto’s intervene which can always be arranged). The conditional which precedes
goto C; can now be written in TEX as presented on the right, where (condition) is
an appropriate translation of the corresponding condition in the code being trans-
lated (usually, one of ‘=’ or ‘6=’). Further details can be extracted from the TEX
code that implements these functions where the corresponding C code is presented

alongside the macros that mimic its functionality 1). This concludes an overview of the general approach,
It is time to consider the way characters get consumed on the lower levels of the macro hierarchy and the
interaction between the different layers of the package.

1) Running the risk of overloading the reader with details, the author would like to note that the actual implementation fol-
lows a slightly different route in order to avoid any \let assignments or changing the meaning of \next

 TEX INTO TOKENS SPLINT 16
16

16 TEX into tokens

Thus far we have covered the ideas behind items (1) and (4) on our list. It is time to discuss the lowest level
of processing done by these macros: converting TEX’s tokens into the tokens consumed by the parser, i.e.
part(3) of the plan. Perhaps, it would be most appropriate to begin by defining the term token.

As commonly defined, a token is simply an element of a set. Depending on how much structure the
said set possesses, a token can be represented by an integer or a more complicated data structure. In the
discussion below, we will be dealing with two kinds of tokens: the tokens consumed by the parsers and the
TEX tokens seen by the input routines. The latter play the role of characters that combine to become the
former. bison’s internal representation for its tokens is non-negative integers so this is what a scanner must
produce.

TEX’s tokens are a good deal more sophisticated: they can be either pairs (cch, ccat), where cch is the
character code and ccat is TEX’s category code (1 and 2 for group characters, 5 for end of line, etc.), or
control sequences, such as \relax. Some of these tokens (control sequences and active, i.e. category 13
characters) can have complicated internal structure (expansion). The situation is further complicated by
TEX’s \let facility, which can create ‘character-like’ control sequences, and the lack of conditionals to
distinguish them from the ‘real’ characters. Finally, not all pairs can appear as part of the input (say, there
is no (n, 0) token for any n, in the terminology above).

The scanner expects to see characters in its input, which are represented by their ASCII codes, i.e. integers
between 0 and 255 (actually, a more general notion of the Unicode character is supported but we will
not discuss it further). Before character codes appear as the input to the scanner, however, and make its
integer table-driven mechanism ‘tick’, a lot of work must be done to collect and process the stream of TEX
tokens produced after CWEAVE is done with your input. This work becomes further complicated when the
typesetting routines that interpret the parser’s output must sneak outside of the parsed stream of text (which
is structured by the parser) and insert the original TEX code produced by CWEAVE into the page.
SPLinT comes with a customizeable input routine of moderate complexity (\yyinput) that classifies all

TEX tokens into seven categories: ‘normal’ spaces (i.e. category 10 tokens, skipped by TEX’s parameter
scanning mechanism), ‘explicit’ spaces (includes the control sequences \let to , as well as \), groups
(avoid using \bgroup and \egroup in your input but ‘real’, {. . .} groups are fine), active characters, normal
characters (of all character categories that can appear in TEX input, including $, ^, # , a–Z, etc.), single letter
control sequences, and multi-letter control sequences. Each of these categories can be processed separately
to ‘fine-tune’ the input routine to the problem at hand. The input routine is not very fast, instead, flexibility
was the main goal. Therefore, if speed is desirable, a customized input routine is a great place to start. As
an example, a minimalistic \yyinputtrivial macro is included.

When \yyinput ‘returns’ by calling \yyreturn (which is a macro you design), your lexing routines have
access to three registers: \yycp@, that holds the character value of the character just consumed by \yyinput,
\yybyte, that most of the time holds the token just removed from the input, and \yybytepure, that
(again, with very few exceptions) holds a ‘normalized’ version of the read character (i.e. a character of the
same character code as \yycp@, and category 11 (to be even more precise (and to use nested parentheses),
‘normalized’ characters have the same category code as the current category code of @)).

Most of the time it is the character code one needs (say, in the case of \{, \}, \& and so on) but under
some circumstances the distinction is important (outside of \vb{. . .}, the sequence \1 has nothing to do with
the digit ‘1’). This mechanism makes it easy to examine the consumed token. It also forms the foundation
of the ‘hidden context’ passing mechanism described later.

The remainder of this section discusses the internals of \yyinput and some of the design trade-offs one
has to make while working on processing general TEX token streams. It is typeset in ‘small print’ and can
be skipped if desired.
To examine every token in its path (including spaces that are
easy to skip), the input routine uses one of the two well-known
TEXnologies: \futurelet\next\examinenext or equally effec-
tive \afterassignment\next\let= . Recursively inserting one
of these sequences, \yyinput can go through any list of tokens,
as long as it knows where to stop (i.e. return an end of file
character). The signal to stop is provided by the \yyeof prim-

itive which should not appear in any ‘ordinary’ text presented
for parsing, other than for the purpose of providing such a stop
signal. Even the dependence on \yyeof can be eliminated if
one is willing to invest the time in writing macros that jug-
gle TEX’s \token registers and only limit oneself to input from
such registers (which is, aside from an obvious efficiency hit,
a strain on TEX’s memory, as you have to store multiple (3 in

16
17 SPLINT TEX INTO TOKENS 

the general case) copies of your input to be able to back up
when the lexer makes a wrong choice). There does not seem
to be a way of doing it unless the text has been stored in a
\token register first (or storing the whole input as a parameter
for the appropriate macro: this scheme is remarkably powerful
and leads to expandable versions of very complicated macros,
although the amount of effort required to write such macros
grows at a frightening rate). All of these are non-issues for
the text inside \vb{. . .} and the care that \yyinput takes in
processing characters inside such lists is an overkill. In a more
‘hostile’ environment (such as the one encountered by the now
obsolete \Tex macros), this extra attention to detail pays off
in the form of a more robust input mechanism.
One subtlety deserves a special mention here, as it can be im-
portant to the designer of ‘higher-level’ scanning macros. Two
types of tokens are extremely difficult to deal with whenever
TEX’s own lexing mechanisms are used: (implicit) spaces and
even more so, braces. We will only discuss braces here, how-
ever, almost everything that follows applies equally well to
spaces (category 10 tokens to be precise), with a few simplifi-
cations (or complications, in a couple of places). To understand
the difficulty, let’s consider one of the approaches above:

\futurelet\next\examinenext.

The macro \examinenext usually looks at \next and inserts
another macro (usually also called \next) at the very end of
its expansion list. This macro usually takes one parameter,
to consume the next token. This mechanism works flawlessly,
until the lexer encounters a {br,sp}ace. The \next sequence,
seen by \examinenext contains a lot of information about the
brace ahead: it knows its category code (left brace, so 1),
its character code (in case there was, say a \catcode‘\[=1
earlier) but not whether it is a ‘real’ brace (i.e. a character {1)
or an implicit one (a \bgroup). There is no way to find that
out until the control sequence ‘launched’ by \examinenext sees
the token as a parameter.
If the next token is a ‘real’ brace, however, \examinenext’s suc-
cessor will never see the token itself: the braces are stripped
by TEX’s scanning mechanism. Even if it finds a \bgroup as
the parameter, there is no guarantee that the actual input was
not {\bgroup}. One way to handle this is by using \string
ahead of any consumption of the next token. If prior to ex-
panding \string care has been taken to set the \escapechar
appropriately (remember, we know the character code in ad-
vance), as soon as one sees a character with \escapechar’s
character code, (s)he knows that an implicit brace has just
been seen. One added complication to all this is that a very
determined programmer can insert an active character (using,
say, the \uccode mechanism) that has the same character code
as the brace token that it has been \let to! Setting this possi-
bility aside, the \string mechanism (or, its cousin, \meaning)

is not perfect: both produce a sequence of category 12 and
10 tokens. If it is indeed a brace character that we just saw,
we can consume the next token and move on but what if this
was a control sequence? After all, just as easily as \string
makes a sequence into characters, \csname . . . \endcsname pair
will make any sequence of characters into a control sequence.
Huh . . .
What we need is a backup mechanism: if one has a copy of
the token sequence ahead, one can use \string to see if it
is a real brace first, and if it is, consume it and move on (the
active character case can be handled as the implicit case below,
with one extra backup to count how many tokens have been
consumed). At this point one has to reinsert the brace in
case, at some point, a future ‘back up’ requires that the rest
of the tokens are removed from the output (to avoid ‘Too many
}’s’ complaints from TEX). This can be done by using the
\iftrue{\else}\fi trick but of course, some bookkeeping is
needed to keep track of how far inside the brace groups we are.
If it is an implicit brace, more work is needed: read all the
characters that \string produced (an maybe more), then re-
member the number of characters consumed. Remove the rest
of the input using the method described above and restart the
scanning from the same point knowing that the next token can
be scanned as a parameter.
Another strategy is to design a general enough macro that
counts tokens in a token register and simply recount the tokens
after every brace was consumed.
Either way, it takes a lot of work. If anyone would like to pur-
sue the counting strategy, simple counting macros are provided
in /examples/count/count.sty. The macros in this example
supply a very general counting mechanism that does not de-
pend on \yyeof (or any other token) being ‘special’ and can
count the tokens in any token register, as long as none of those
tokens is an \outer control sequence. In other words, if the
macro is used immediately after the assignment to the token
register, it should always produce a correct count.
Needless to say, if such a general mechanism is desired, one
has to look elsewhere. The added complications of treating
spaces (TEX tends to ignore them most of the time) make this
a torturous exercise in TEX’s macro wizardry. The included
\yyinput has two ways of dealing with braces: strip them
or view the whole group as a token. Pick one or write a
different \yyinput. Spaces, implicit or explicit are reported
as a specially selected character code and consumed with a
likeness of

\afterassignment\moveon\let\next= .

Now that a steady stream of character codes is arriving at
\yylex after \yyreturn the job of converting it into numerical
tokens is performed by the scanner (or lexer , or tokenizer , or
even tokener), discussed in the next section.

17 Lexing in TEX

In a typical system that uses a parser to process text, the parsing pass is usually split into several stages: the
raw input, the lexical analysis (or simply lexing), and the parsing proper. The lexing (also called scanning, we
use these terms interchangeably) clumps various sequences of characters into tokens to facilitate the parsing
stage. The reasons for this particular hierarchy are largely pragmatic and are partially historic (there is no
reason that parsing cannot be done in multiple phases, as well, although it usually isn’t).

If one remembers a few basic facts from the formal language theory, it becomes obvious that a lexer, that
parses regular languages, can (theoretically) be replaced by an LALR parser, that parses context-free ones
(or some subset thereof, which is still a super set of all regular languages). A common justification given for
creating specialized lexers is efficiency and speed. The reality is somewhat more subtle. While we do care
about the efficiency of parsing in TEX, having a specialized scanner is important for a number of different
reasons.

The real advantage of having a dedicated scanner is the ease with which it can match incomplete inputs

 LEXING IN TEX SPLINT 17
17

and back up. A parser can, of course, recognize any valid input that is also acceptable to a lexer, as well
as reject any input that does not form a valid token. Between those two extremes, however, lies a whole
realm of options that a traditional parser will have great difficulty exploring. Thus, to mention just one
example, it is relatively easy to set up a DFA 1) so that the longest matching input is accepted. The only
straightforward way to do this with a traditional parser is to parse longer and longer inputs again and again.
While this process can be optimized to a certain degree, the fact that a parser has a stack to maintain limits
its ability to back up.

As an aside, the mechanism by which CWEB assembles its ‘scraps’ into chunks of recognized code is
essentially iterative lexing, very similar to what a human does to make sense of complicated texts. Instead
of trying to match the longest running piece of text, CWEB simply looks for patterns to combine inputs into
larger chunks, which can later be further combined. Note that this is not quite the same as the approach
taken by, say GLR parsers, where the parser must match the whole input or declare a failure. Where a
CWEB-type parser may settle for the first available match (or the longest available) a GLR parser must try all
possible matches or use an algorithm to reject the majority of the ones that are bound to fail in the end.

This ‘CWEB way’ is also different from a traditional ‘strict’ LR parser/scanner approach and certainly
deserves serious consideration when the text to be parsed possesses some rigid structure but the parser is
only allowed to process it one small fragment at a time.

Returning to the present macro suite, the lexer produced by flex uses integer tables similar to those
employed by bison so the usual TEXniques used in implementing \yyparse are fully applicable to \yylex.

An additional advantage provided by having a flex scanner implemented as part of the suite is the
availability of the original bison scanner written in C for the use by the macro package.

This said, the code generated by flex contains a few idiosyncrasies not present in the bison output.
These ‘quirks’ mostly involve handling of end of input and error conditions. A quick glance at the \yylex
implementation will reveal a rather extensive collection of macros designed to deal with end of input actions.

Another difficulty one has to face in translating flex output into TEX is a somewhat unstructured
namespace delivered in the final output (this is partially due to the POSIX standard that flex strives
to follow). One consequence of this ‘messy’ approach is that the writer of a flex scanner targeted to TEX
has to declare flex ‘states’ (more properly called subautomata) twice: first for the benefit of flex itself,
and then again, in the C preamble portion of the code to output the states to be used by the action code
in the lexer. Define_State(. . .) macro is provided for this purpose. This macro can be used explicitly by
the programmer or be inserted by a specially designed parser. Using CWEB helps to keep these declarations
together.

The ‘hand-off’ from the scanner to the parser is implemented through a pair of registers: \yylval, a
token register containing the value of the returned token and \yychar, a \count register that contains the
numerical value of the token to be returned.

Upon matching a token, the scanner passes one crucial piece of information to the user: the character
sequence representing the token just matched (\yytext). This is not the whole story though. There are
three more token sequences that are made available to the parser writer whenever a token is matched.

The first of these is simply a ‘normalized’ version of \yytext (called \yytextpure). In most cases it is a
sequence of TEX tokens with the same character codes as the one in \yytext but with their category codes
set to 11. In cases when the tokens in \yytext are not (cch, ccat) pairs, a few simple conventions are followed,
some of which will be explained below. This sequence is provided merely for convenience and its typical use
is to generate a key for an associate array.

The other two sequences are special ‘stream pointers’ that provide access to the extended scanner mech-
anism in order to implement passing of ‘formatting hints’ to the parser without introducing any changes to
the original grammar. As the mechanism itself and the motivation behind it are somewhat subtle, let me
spend a few moments discussing the range of formatting options desirable in a generic pretty-printer.

Unlike strict parsers employed by most compilers, a parser designed for pretty printing cannot afford being
too picky about the structure of its input ([Go] calls such parsers ‘loose’). To provide a simple illustration,
an isolated identifier, such as ‘lg_integer’ can be a type name, a variable name, or a structure tag (in a

1) Which stands for Deterministic Finite Automaton, a common (and mathematically unique) way of implementing a scanner
for regular languages. Incidentally LALR mentioned above is short for Look Ahead Left to Right.

17
17 SPLINT LEXING IN TEX 

language like C for example). If one expects the pretty printer to typeset this identifier in a correct style,
some context must be supplied, as well. There are several strategies a pretty printer can employ to get a
hold of the necessary context. Perhaps the simplest way to handle this, and to reduce the complexity of the
pretty printing algorithm is to insist on the user providing enough context for the parser to do its job. For
short examples like the one above, this is an acceptable strategy. Unfortunately, it is easy to come up with
longer snippets of grammatically deficient text that a pretty printer should be expected to handle. Some
pretty printers, such as the one employed by CWEB and its ilk (the original WEB, FWEB), use a very flexible
bottom-up technique that tries to make sense of as large a portion of the text as it can before outputting
the result (see also [Wo], which implements a similar algorithm in LATEX).

The expectation is that this algorithm will handle the majority (about 90%? it would be interesting to
carry out a study in the spirit of the ones discussed in [Jo] to find out) of the cases with the remaining few
left for the author to correct. The question is, how can such a correction be applied?
CWEB itself provides two rather different mechanisms for handling these exceptions. The first uses direct

typesetting commands (for example, @/ and @# for canceling and introducing a line break, resp.) to change
the typographic output.

The second (preferred) way is to supply hidden context to the pretty-printer. Two commands, @; and
@[. . .@] are used for this purpose. The former introduces a ‘virtual semicolon’ that acts in every way like a
real one except it is not typeset (it is not output in the source file generated by CTANGLE, either but this has
nothing to do with pretty printing, so I will not mention CTANGLE anymore). For instance, from the parser’s
point of view, if the preceding text was parsed as a ‘scrap’ of type exp, the addition of @; will make it into a
‘scrap’ of type stmt in CWEB’s parlance. The second construct (@[. . .@]), is used to create an exp scrap out
of whatever happens to be inside the brackets.

This is a powerful tool at the author’s disposal. Stylistically, this is the right way to handle exceptions as it
forces the writer to emphasize the logical structure of the formal text. If the pretty printing style is changed
extensively later, the texts with such hidden contexts should be able to survive intact in the final document
(as an example, using a break after every statement in C may no longer be considered appropriate, so any
forced break introduced to support this convention would now have to be removed, whereas @;’s would
simply quietly disappear into the background).

The same hidden context idea has another important advantage: with careful grammar fragmenting
(facilitated by CWEB’s or any other literate programming tool’s ‘hypertext’ structure) and a more diverse
hidden context (or even arbitrary hidden text) mechanism, it is possible to use a strict parser to parse
incomplete language fragments. For example, the productions that are needed to parse C’s expressions form
a complete subset of the grammar. If the grammar’s ‘start’ symbol is changed to expression (instead of the
translation-unit as it is in the full C grammar), a variety of incomplete C fragments can now be parsed and
pretty-printed. Whenever such granularity is still too ‘coarse’, carefully supplied hidden context will give
the pretty printer enough information to adequately process each fragment. A number of such sub-parsers
can be tried on each fragment (this may sound computationally expensive, however, in practice, a carefully
chosen hierarchy of parsers will finish the job rather quickly) until a correct parser produced the desired
output (this approach is similar to, although not quite the same one employed by the General LR parsers).

This somewhat lengthy discussion brings us to the question directly related to the tools described in this
article: how does one provide typographical hints or hidden context to the parser?

One obvious solution is to build such hints directly into the grammar. The parser designer can, for
instance, add new tokens (say, BREAK_LINE) to the grammar and extend the production set to incorporate
the new additions. The risk of introducing new conflicts into the grammar is low (although not entirely non-
existent, due to the lookahead limitations of LR(1) grammars) and the changes required are easy, although
very tedious, to incorporate.

In addition to being labor intensive, this solution has two other significant shortcomings: it alters the
original grammar and hides its logical structure; it also ‘bakes in’ the pretty-printing conventions into the
language structure (making ‘hidden’ context much less ‘stealthy’). It does avoid the ‘synchronicity problem’
mentioned below.

A marginally better technique is to introduce a new regular expression recognizable by the scanner which
will then do all the necessary bookkeeping upon matching the sequence. All the difficulties with altering the

 LEXING IN TEX SPLINT 17
18

grammar mentioned above apply in this case, as well, only at the ‘lexical analysis level’. At a minimum, the
set of tokens matched by the scanner would have to be changed.

A much better approach involves inserting the hints at the input stage and passing this information to
the scanner and parser as part of the token ‘values’. The hints themselves can masquerade as characters
ignored by the scanner (white space, for example) and preprocessed by a specially designed input routine.
The scanner then simply passes on the values to the parser. This makes hints, in effect, invisible.

The difficulty lies in synchronizing the token production with the parser. This subtle complication is very
familiar to anyone who has designed TEX’s output routines: the parser and the lexer are not synchronous, in
the sense that the scanner might be reading several (in the case of the general LR(n) parsers) tokens ahead
of the parser before deciding on how to proceed (the same way TEX can consume a whole paragraph’s worth
of text before exercising its page builder).

If we simple-mindedly let the scanner return every hint it has encountered so far, we may end up feeding
the parser the hints meant for the token that appears after the fragment the parser is currently working on.
In other words, when the scanner ‘backs up’ it must correctly back up the hints as well.

This is exactly what the scanner produced by the tools in this package does: along with the main stream
of tokens meant for the parser, it produces two hidden streams (called the \format stream and the \stash
stream) and provides the parser with two strings (currently only strings of digits are used although arbitrary
sequences of TEX tokens can be used as pointers) with the promise that all the ‘hints’ between the beginning
of the corresponding stream and the point labeled by the current stream pointer appeared among the characters
up to and, possibly, including the ones matched as the current token. The macros to extract the relevant
parts of the streams (\yyreadfifo and its cousins) are provided for the convenience of the parser designer.
The interested reader can consult the input routine macros for the details of the internal representation of
the streams.

In the interest of full disclosure, let me point out that this simple technique introduces a significant strain
on TEX’s computational resources: the lowest level macros, the ones that handle character input and are
thus executed (sometimes multiple times), for every character in the input stream are rather complicated
and therefore, slow. Whenever the use of such streams is not desired a simpler input routine can be written
to speed up the process (see \yyinputtrivial for a working example of such macro).

Finally, while probably not directly related to the present discussion, this approach has one more interesting
feature: after the parser is finished, the parser output and the streams exist ‘statically’, fully available for
any last minute preprocessing or for debugging purposes, if necessary. Under most circumstances, the parser
output is ‘executed’ and the macros in the output are the ones reading the various streams using the pointers
supplied at the parsing stage (at least, this is the case for all the parsers supplied with the package).

18 Inside semantic actions: switch statements and ‘functions’ in TEX

Now you have a lexer for your input, and a grammar ready to be put into action (we will talk about actions
a bit later). It is time to discuss how the tables produced by bison get converted into TEX macros that
drive the parser in TEX.

The tables that drive the bison input parsers are collected in various {b,d,f,g,n}yytab.tex and
small_tab.tex. Each one of these files contains the tables that implement a specific parser used during
different stages of processing. Their exact function is well explained in the source file produced by bison
(how this is done is explained elsewhere, see [Ah] for a good reference). It would suffice to mention here that
there are three types of tables in this file: (1)numerical tables such as \yytable and \yycheck (both are
either TEX’s token registers in an unoptimized parser or associate arrays in an optimized version of such as
discussed below), (2)a string array \yytname, and (3)an action switch. The action switch is what gets called
when the parser does a reduction. It is easy to notice that the numerical tables come ‘premade’ whereas the
string array consisting of token names is difficult to recognize. This is intentional: this form of initialization
is designed to allow the widest range of characters to appear inside names. The macros that do this reside
in yymisc.sty. The generated table files also contain constant and token declarations used by the parser.

The description of the process used to output bison tables in an appropriate form continues in the section
about outputting TEX tables, we pick it up here with the description of the syntax-directed translation and

18
18 SPLINT INSIDE SEMANTIC ACTIONS: SWITCH STATEMENTS AND ‘FUNCTIONS’ IN TEX 

the actions. The line
\switchon\next\in\currentswitch

is responsible for calling an appropriate action in the current switch, as is easy to infer. A switch is also a
macro that consists of strings of TEX tokens intermixed with TEX macros inside braces. Each group of macros
gets executed whenever the character or the group of characters in \next matches a substring preceding
the braced group. If there are two different substrings that match, only the earliest group of macros gets
expanded. Before a state is used, a special control sequence, \setspecialcharsfrom\switchname can be
used to put the TEX tokens in a form suitable for the consumption by \switchon’s. The most important
step it performs is it turns every token in the list into a character with the same character code and category
12 . Thus \{ becomes {12. There are other ways of inserting tokens into a state: enclosing a token or a
string of tokens in \raw...\raw adds it to the state macro unchanged. If you have a sequence of category
12 characters you want to add to the state, put it after \classexpand (such sequences are usually prepared
by the \setspecialchars macro that uses the token tables generated by bison from your grammar).

You can give a case a readable label (say, brackets) and enclose this label in \raw. . .\raw. A word of
caution: an ‘a’ inside of \raw. . .\raw (which is most likely an a11 unless you played with category codes
before loading the \switchon macros) and the one outside it are two different characters, as one is no longer
a letter (category 11) in the eyes of TEX whereas the other one still is. For this reason one should not use
characters other than letters in h{is,er} state names: the way a state picks an action does not distinguish
between, say, a ‘(’ in ‘(letter)’ and a stand alone ‘(’ and may pick an action that you did not intend.
This applies even if ‘(’ is not among the characters explicitly inserted in the state macro: if an action for
a given character is not found in the state macro, the \switchon macro will insert a current \default
action instead, which most often you would want to be \yylex or \yyinput (i.e. skip this token). If ‘(’ or
‘)’ matches the braced group that follows ‘(letter)’ chaos may ensue (most likely TEX will keep reading
past the \end or \yyeof that should have terminated the input). Make the names of character categories
as unique as possible: the \switchon is simply a string matching mechanism, with the added distinction
between characters of different categories.

Finally, the construct \statecommentanything\statecoment allows you to insert comments in the state
sequence (note that the state name is put at the beginning of the state macro (by \setspecialcharsfrom)
in the form of a special control sequence that expands to nothing: this elaborate scheme is needed because
another control sequence can be \let to the state macro which makes the debugging information difficult to
decipher). The debugging mode for the lexer implemented with these macros is activated by \tracedfatrue.

The functionality of the \switchon macros (for ‘historical’ reasons, one can also use \action as a synonym)
has been implemented in a number of other macro packages (see [Fi] that discusses the well-known and widely
used \CASE and \FIND macros). The macros in this collection have the additional property that the only
assignments that persist after the \switchon completes are the ones performed by the user code inside the
selected case.

This last property of the switch macros is implemented using another mechanism that is part of this macro
suite: the ‘subroutine-like’ macros, \begingroup. . .\tokreturn. For examples, an interested reader can take
a look at the macros included with the package. A typical use is \begingroup. . .\tokreturn{}{\toks0 }{}
which will preserve all the changes to \toks0 and have no other side effects (if, for example, in typical TEX
vernacular, \next is used to implement tail recursion inside the group, after the \tokreturn, \next will
still have the same value it had before the group was entered). This functionality comes at the expense of
some computational efficiency.

This covers most of the routine computations inside semantic actions, all that is left is a way to ‘tap’ into
the stack automaton built by bison using an interface similar to the special $n variables utilized by the
‘genuine’ bison parsers (i.e. written in C or any other target language supported by bison).

This role is played by the several varieties of \yy p command sequences (for the sake of completeness, p
stands for one of (n), [name],]name[or n, here n is a string of digits, and a ‘name’ is any name acceptable
as a symbolic name for a term in bison). Instead of going into the minutia of various flavors of \yy-macros,
let me just mention that one can get by with only two ‘idioms’ and still be able to write parsers of arbitrary
sophistication: \yy(n) can be treated as a token register containing the value of the n-th term of the rule’s
right hand side, n > 0. The left hand side of a production is accessed through \yyval. A convenient

 INSIDE SEMANTIC ACTIONS: SWITCH STATEMENTS AND ‘FUNCTIONS’ IN TEX SPLINT 18
20

shortcut is \yy0{TEX material} which will expand the ‘TEX material inside the braces. Thus, a simple way
to concatenate the values of the first two production terms is \yy0{\the\yy(1)\the\yy(2)}. The included
bison parser can also be used to provide support for ‘symbolic names’, analogous to bison’s $[name] but
this requires a bit more effort on the user’s part to initialize such support. It could make the parser more
readable and maintainable, however.

Naturally, a parser writer may need a number of other data abstractions to complete the task. Since
these are highly dependent on the nature of the processing the parser is supposed to provide, we refer the
interested reader to the parsers included in the package as a source of examples of such specialized data
structures.

One last remark about the parser operation is worth making here: the parser automaton itself does not
make any \global assignments. This (along with some careful semantic action writing) can be used to
‘localize’ the effects of the parser operation and, most importantly, to create ‘reentrant’ parsers that can,
e.g. call themselves recursively.

19 ‘Optimization’

By default, the generated parser and scanner keep all of their tables in separate token registers. Each stack
is kept in a single macro (this description is further complicated by the support for parser namespaces that
exists even for unoptimized parsers but this subtlety will not be mentioned again—see the macros in the
package for further details). Thus, every time a table is accessed, it has to be expanded making the table
access latency linear in the size of the table. The same holds for stacks and the action ‘switches’, of course.
While keeping the parser tables (which are immutable) in token registers does not have any better rationale
than saving the control sequence memory (the most abundant memory in TEX), this way of storing stacks
does have an advantage when multiple parsers get to play simultaneously. All one has to do to switch from
one parser to another is to save the state by renaming the stack control sequences accordingly.

When the parser and scanner are ‘optimized’, all these control sequenced are ‘spread over’ appropriate
associative arrays. One caveat to be aware of: the action switches for both the parser and the scanner have to
be output differently (a command line option is used to control this) for optimized and unoptimized parsers.
While it is certainly possible to optimize only some of the parsers (if your document uses multiple) or even
only some parts of a given parser (or scanner), the details of how to do this are rather technical and are left
for the reader to discover by reading the examples supplied with the package. At least at the beginning it is
easier to simply set the highest optimization level and use it consistently throughout the document.

20 TEX with a different slant or do you C an escape?

Some TEX productions below probably look like alien script. The authors of [Er] cite a number of reasons
pretty printing of TEX in general is a nearly impossible task. The macros included with the package follow
a very straightforward strategy and do not try to be very comprehensive. Instead, the burden of presenting
TEX code in a readable form is placed on the programmer. Appropriate hints can be supplied by means
of indenting the code, using assignments (=) where appropriate, etc. If you would rather look at straight
TEX instead, the line \def\texnspace{other} at the beginning of this section can be uncommented and
nox•(Υ← 〈Υ1〉) becomes \noexpand \inmath { \yy 0{ \yy 1{ } } }. There is, however, more to this story. A
look at the actual file will reveal that the line above was typed as

TeX_("/noexpand/inmath{/yy0{/yy1{}}}");

The ‘escape character’ is leaning the other way! The lore of TEX is uncompromising: ‘\’ is the escape
character. What is the reason to avoid it in this case?

The mystery is not very deep: ‘/’ was chosen as an escape character by the parser macros (a quick glance
at ?yytab.tex will reveal as much). There is, of course, nothing sacred (other than tradition, which this
author is trying his hardest to follow) about what character code the escape character has. The reason for
this choice is straightforward: ‘\’ is a special character in C, as well (also an ‘escape’ in fact). The line
TeX_("..."); is a macro-call but . . . in C. This function simply prints out (almost ‘as-is’) the line in
parenthesis. An attempt at TeX_("\noexpand"); would result in

20
22 SPLINT TEX WITH A DIFFERENT SLANT OR DO YOU C AN ESCAPE? 

01 01

02 oexpand 02

Other escape combinations 1) are even worse: most are simply undefined. If anyone feels trapped without
an escape, however, the same line can be typed as

TeX_("\\noexpand\\inmath{\\yy0{\\yy1{}}}");

Twice the escape!
If one were to look closer at the code, another oddity stands out: there are no $’s anywhere in sight.

The big money, $ is a beloved character in bison. It is used in action code to reference the values of the
appropriate terms in a production. If mathematics pays your bills, use \inmath instead.

21 The bison parser(s)

Let’s take a short break for a broad overview of the input file. The basic structure is that of an ordinary
bison file that produces plain C output. The C actions, however, are programmed to output TEX.
〈 bg.yy 21 〉 =
···
〈Grammar parser C preamble 95 〉
···
〈Grammar parser bison options 25 〉
〈union〉 〈Union of grammar parser types 100 〉
···
〈Grammar parser C postamble 96 〉
···
〈Tokens and types for the grammar parser 26 〉

〈Fake start symbol for rules only grammar 31 〉
〈Parser common productions 44 〉
〈Parser grammar productions 60 〉

22 Bootstrap mode is next. The reason for a separate bootstrap parser is to collect the minimal amount of
information to ‘spool up’ the ‘production’ parsers. To understand the mechanics and the reasons behind it,
consider what happens following a declaration such as %token TOKEN "token" (or, as it would be typeset
by the macros in this package ‘〈token〉 TOKEN token’; see the index entries for more details). The two names
for the same token are treated very differently. TOKEN becomes an enum constant in the C parser generated
by bison. Even when that parser becomes part of the ‘driver’ program that outputs the TEX version of the
parser tables, there is no easy way to output the names of the appropriate enum constants. The other name
("token") becomes an entry in the yytname array. These names can be output by either the ‘driver’ or TEX
itself after the \yytname table has been input. The scanner, on the other hand, will use the first version
(TOKEN). Therefore, it is important to establish an equivalence between the two versions of the name. In the
‘real’ parser, the token values are output in a special header file. Hence, one has to either parse the header
file to establish the equivalences or find some other means to find out the numerical values of the tokens.

One approach is to parse the file containing the declarations and extract the equivalences between the
names from it. This is the function of the bootstrap parser. Since the lexer is reused, some token values
need to be known in advance (and the rest either ignored or replaced by some ‘made up’ values). These
tokens are ‘hard coded’ into the parser file generated by bison and output using a special function. The
switch ‘#define BISON_BOOTSTRAP_MODE’ tells the ‘driver’ program to output the hard coded token values.

Note that the equivalence of the two versions of token names would have to be established every time a
‘string version’ of a token is declared in the bison file and the ‘macro name version’ of the token is used
by the corresponding scanner. To establish this equivalence, however, the bootstrapping parser below is not

1) Here is a full list of defined escaped characters in C: \a, \b, \f, \n, \r, \t, \v, \[octal digit], \’, \", \?, \\, \x, \u, \U. Note
that the last three combinations must be followed by a specific string of characters to appear in the input without generating
errors.

 THE bison PARSER(S) SPLINT 22
24

always necessary (see the xxpression example, specifically, the file xxpression.w in the examples directory
for an example of using a different parser for this purpose). The reason it is necessary here is that a parser
for an appropriate subset of the bison syntax is not yet available (indeed, any functional parser for a bison
syntax subset would have to use the same scanner (unless you want to write a custom scanner for it), which
would need to know how to output tokens, for which it would need a parser for a subset of bison syntax . . .
it is a ‘chicken and egg’). Hence the name ‘bootstrap’. Once a functional parser for a large enough subset
of the bison input grammar is operational, it can be used to pair up the token names.

The second function of the bootstrap parser is to collect information about the scanner’s states. The
mechanism is slightly different for states. While the token equivalences are collected purely in ‘TEX mode’,
the bootstrap parser collects all the state names into a special C header file. The reason is simple: unlike
the token values, the numerical values of the scanner states are not passed to the ‘driver’ program in any
data structure and are instead defined as ordinary macros. The header file is the information the ‘driver’
file needs to output the state values.

An additional subtlety in the case of state value output is that the main lexer for the bison grammar
utilizes states extensively and thus cannot be easily used with the bootstrap parser before the state values
are known. The solution is to substitute a very simple scanner barely capable of lexing state declarations.
Such a scanner is implemented in ssffo.w (the somewhat cryptic name stands for ‘simple scanner for flex
options’).
〈 bb.yy 22 〉 =
···
〈Grammar parser C preamble 95 〉

#define BISON_BOOTSTRAP_MODE
···
〈Grammar parser bison options 25 〉
〈union〉 〈Union of grammar parser types 100 〉
···
〈Bootstrap parser C postamble 97 〉
···
〈Tokens and types for the grammar parser 26 〉

〈Fake start symbol for bootstrap grammar 32 〉
〈Parser bootstrap productions 52 〉
〈 flex options parser productions 40 〉
〈List of symbols 55 〉
〈Definition of symbol 84 〉

23 The prologue parser is responsible for parsing various grammar declarations as well as parser options.
〈 bd.yy 23 〉 =
···
〈Grammar parser C preamble 95 〉
···
〈Grammar parser bison options 25 〉
〈union〉 〈Union of grammar parser types 100 〉
···
〈Grammar parser C postamble 96 〉
···
〈Tokens and types for the grammar parser 26 〉

〈Fake start symbol for prologue grammar 34 〉
〈Parser common productions 44 〉
〈Parser prologue productions 35 〉

24
27 SPLINT THE bison PARSER(S) 

24 Full bison input parser is used when a complete bison file is expected. It is also capable of parsing a
‘skeleton’ of such a file, similar to the one that follows this paragraph.
〈 bf.yy 24 〉 =
···
〈Grammar parser C preamble 95 〉
···
〈Grammar parser bison options 25 〉
〈union〉 〈Union of grammar parser types 100 〉
···
〈Grammar parser C postamble 96 〉
···
〈Tokens and types for the grammar parser 26 〉

〈Parser common productions 44 〉
〈Parser prologue productions 35 〉
〈Parser grammar productions 60 〉
〈Parser full productions 29 〉

25 The first two options are essential for the parser operation. The start symbol can be set implicitly by listing
the appropriate production first.
〈Grammar parser bison options 25 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 input

This code is used in sections 21, 22, 23, and 24.

26 Grammar rules

Most of the original comments present in the grammar file used by bison itself have been preserved and
appear in italics at the beginning of each appropriate section.

To facilitate the bootstrapping of the parser (see above), some declarations have been separated into their
own sections. Also, a number of new rules have been introduced to create a hierarchy of ‘subparsers’ that
parse subsets of the grammar. We begin by listing most of the tokens used by the grammar. Only the string
versions are kept in the yytname array, which, in part is the reason for a special bootstrapping parser as
explained earlier.
〈Tokens and types for the grammar parser 26 〉 =
end of file (GRAM_EOF):0
string (ýstringþ)
〈token〉 (PERCENT_TOKEN)
〈nterm〉 (PERCENT_NTERM)
〈type〉 (PERCENT_TYPE)
〈destructor〉 (PERCENT_DESTRUCTOR)
〈printer〉 (PERCENT_PRINTER)

〈left〉 (PERCENT_LEFT)
〈right〉 (PERCENT_RIGHT)
〈nonassoc〉 (PERCENT_NONASSOC)
〈precedence〉 (PERCENT_PRECEDENCE)
〈prec〉 (PERCENT_PREC)
〈dprec〉 (PERCENT_DPREC)
〈merge〉 (PERCENT_MERGE)

〈Global Declarations 27 〉
See also sections 28, 46, and 70.

This code is used in sections 21, 22, 23, and 24.

 GRAMMAR RULES SPLINT 27
32

27 We continue with the list of tokens below, following the layout of the original parser.
〈Global Declarations 27 〉 =
〈code〉 (PERCENT_CODE)
〈default-prec〉 (PERCENT_DEFAULT_PREC)
〈define〉 (PERCENT_DEFINE)
〈defines〉 (PERCENT_DEFINES)
〈error-verbose〉 (PERCENT_ERROR_VERBOSE)
〈expect〉 (PERCENT_EXPECT)
〈expect-rr〉 (PERCENT_EXPECT_RR)
〈?〉 (PERCENT_FLAG)
〈file-prefix〉 (PERCENT_FILE_PREFIX)
〈glr-parser〉 (PERCENT_GLR_PARSER)
〈initial-action〉 (PERCENT_INITIAL_ACTION)
〈language〉 (PERCENT_LANGUAGE)
〈name-prefix〉 (PERCENT_NAME_PREFIX)
〈no-default-prec〉 (PERCENT_NO_DEFAULT_PREC)
〈no-lines〉 (PERCENT_NO_LINES)
〈non...ic-parser〉 (PER...NON...IC_PARSER)
〈output〉 (PERCENT_OUTPUT)
〈require〉 (PERCENT_REQUIRE)
〈skeleton〉 (PERCENT_SKELETON)
〈start〉 (PERCENT_START)

〈token-table〉 (PERCENT_TOKEN_TABLE)
〈verbose〉 (PERCENT_VERBOSE)
〈yacc〉 (PERCENT_YACC)
{...} (BRACED_CODE)
%?{...} (BRACED_PREDICATE)
[identifier] (BRACKETED_ID)
char (char)
epilogue (EPILOGUE)
= (EQUAL)
identifier (ýidentifierþ)
identifier: (ýidentifier: þ)
〈%〉 (PERCENT_PERCENT)
| (PIPE)
%{...%} (PROLOGUE)
; (SEMICOLON)
<tag> (<tag>)
<*> (TAG_ANY)
<> (TAG_NONE)
integer (int)
〈param〉 (PERCENT_PARAM: 〈union〉.param)

This code is used in section 26.

28 Extra tokens for typesetting flex state declarations and options are declared in addition to the ones that a
standard bison parser recognizes.
〈Tokens and types for the grammar parser 26 〉 +=
〈option〉f 〈auto〉 〈state-x〉f 〈auto〉

〈state-s〉f 〈auto〉

29 We are ready to describe the top levels of the parse tree. The first ‘sub parser’ we consider is a ‘full’ parser,
that is the parser that expects a full grammar file, complete with the prologue, declarations, etc. This parser
can be used to extract information from the grammar that is otherwise absent from the executable code
generated by bison. This includes, for example, the ‘name’ part of $[name]. This parser is therefore used
to generate the ‘symbolic switch’ to provide support for symbolic term names similar to ‘genuine’ bison’s
$[. . .] syntax.
〈Parser full productions 29 〉 =
input : prologue declarations 〈%〉 grammar epilogueopt 〈Finish the input setup 30 〉

This code is used in section 24.

30 The action of the parser in this case is simply to separate the accumulated ‘parse tree’ from the auxiliary
information carried by the parser on the stack.
〈Finish the input setup 30 〉 =
π2(Υ3) 7→ va . extract grammar contents /
Υ← 〈xvay〉 Ω = Υ0

This code is used in section 29.

31 Another subgrammar deals with the syntax of isolated bison rules. This is the most commonly used
‘subparser’ since a rules cluster is the most natural ‘unit’ to include in a CWEB file.
〈Fake start symbol for rules only grammar 31 〉 =
input : grammar epilogueopt π2(Υ1) 7→ Ω

This code is used in section 21.

32
37 SPLINT GRAMMAR RULES 

32 The bootstrap parser has a very narrow set of goals: it is concerned with 〈token〉 and 〈nterm〉 declarations
only in order to supply the token information to the lexer (since, as noted above, such information is not
kept in the yytname array). It also extends the syntax of a grammar declaration by allowing a declaration
with or without semicolon at the end (the latter is only allowed in the prologue). This works since the token
declarations have been carefully separated from the rest of the grammar in different CWEB sections. The
range of tokens understood by the bootstrap parser is limited, hence most of the other rules are ignored.
〈Fake start symbol for bootstrap grammar 32 〉 =
input : grammar declarations Ω = Υ1

grammar declarations :
symbol declaration ;opt 〈Carry on 33 〉
flex declaration ;opt 〈Carry on 33 〉
grammar declarations symbol declaration ;opt Υ← 〈val Υ1val Υ2〉
grammar declarations flex declaration ;opt Υ← 〈val Υ1val Υ2〉

;opt : ◦ | ;
This code is used in section 22.

33 The following is perhaps the most common action performed by the parser. It is done automatically by the
parser code but this feature is undocumented so we supply an explicit action in each case.
〈Carry on 33 〉 =

Υ← 〈val Υ1〉
This code is used in sections 32, 37, 39, 40, 44, 47, 53, 55, 56, 57, 58, 61, 69, 81, 87, 88, 89, 90, 91, 92, and 93.

34 Next, a subgrammar for processing prologue declarations. Finer differentiation is possible but the ‘subparsers’
described here work pretty well and impose a mild style on the grammar writer.
〈Fake start symbol for prologue grammar 34 〉 =
input : prologue declarations epilogueopt π2(Υ1) 7→ Ω

prologue declarations 〈%〉 〈%〉 EPILOGUE π2(Υ1) 7→ Ω
prologue declarations 〈%〉 〈%〉 π2(Υ1) 7→ Ω

This code is used in section 23.

35 Declarations: before the first 〈%〉. We are now ready to deal with the specifics of the declarations themselves.
The \grammar macro is a ‘structure’, whose first ‘field’ is the grammar itself, whereas the second carries the
type of the last declaration added to the grammar.
〈Parser prologue productions 35 〉 =
prologue declarations :
◦ Υ← 〈nx\grammar { }{ nx∅ }〉
prologue declarations prologue declaration 〈Attach a prologue declaration 36 〉

See also sections 37, 39, and 93.

This code is used in sections 23 and 24.

36 〈Attach a prologue declaration 36 〉 =
〈Attach a productions cluster 63 〉

This code is used in section 35.

37 Here is a list of most kinds of declarations that can appear in the prologue. The scanner returns the ‘stream
pointers’ for all the keywords so the declaration ‘structures’ pass on those pointers to the grammar list. The
original syntax has been left intact even though for the purposes of this parser some of the inline rules are
unnecessary.
〈Parser prologue productions 35 〉 +=
prologue declaration :

grammar declaration 〈Carry on 33 〉
%{...%} Υ← 〈nx\prologuecode val Υ1〉
〈?〉 Υ← 〈nx\optionflag val Υ1〉

 GRAMMAR RULES SPLINT 37
41

〈define〉 variable value Υ← 〈nx\vardef { val Υ2 }{ val Υ3 }val Υ1〉
〈defines〉 Υ← 〈nx\optionflag { defines }{ }val Υ1〉
〈defines〉 ýstringþ va← 〈 defines〉 〈Prepare one parametric option 38 〉
〈error-verbose〉 Υ← 〈nx\optionflag { error verbose }{ }val Υ1〉
〈expect〉 int va← 〈 expect〉 〈Prepare one parametric option 38 〉
〈expect-rr〉 int va← 〈 expect-rr〉 〈Prepare one parametric option 38 〉
〈file-prefix〉 ýstringþ va← 〈 file prefix〉 〈Prepare one parametric option 38 〉
〈glr-parser〉 Υ← 〈nx\optionflag { glr parser }{ }val Υ1〉
〈initial-action〉 {...} Υ← 〈nx\initaction val Υ2〉
〈language〉 ýstringþ va← 〈 language〉 〈Prepare one parametric option 38 〉
〈name-prefix〉 ýstringþ va← 〈 name prefix〉 〈Prepare one parametric option 38 〉
〈no-lines〉 Υ← 〈nx\optionflag { no lines }{ }val Υ1〉
〈non...ic-parser〉 Υ← 〈nx\optionflag { nondet. parser }{ }val Υ1〉
〈output〉 ýstringþ va← 〈 output〉 〈Prepare one parametric option 38 〉
〈param〉 � params Υ← 〈nx\paramdef { val Υ3 }val Υ1〉
〈require〉 ýstringþ va← 〈 require〉 〈Prepare one parametric option 38 〉
〈skeleton〉 ýstringþ va← 〈 skeleton〉 〈Prepare one parametric option 38 〉
〈token-table〉 Υ← 〈nx\optionflag { token table }{ }val Υ1〉
〈verbose〉 Υ← 〈nx\optionflag { verbose }{ }val Υ1〉
〈yacc〉 Υ← 〈nx\optionflag { yacc }{ }val Υ1〉
; Υ← 〈nx∅〉

params :
params {...} Υ← 〈val Υ1

nx\braceit val Υ2〉
{...} Υ← 〈nx\braceit val Υ1〉

38 This is a typical parser action: encapsulate the ‘type’ of the construct just parsed and attach some auxiliary
info, in this case the stream pointers.
〈Prepare one parametric option 38 〉 =

Υ← 〈nx\oneparametricoption { xvay }{ val Υ2 }val Υ1〉
This code is used in sections 37 and 44.

39 Some extra declarations to typeset flex options and declarations. These are not part of the bison syntax
but their structure is similar enough that they can be included in the grammar.
〈Parser prologue productions 35 〉 +=
prologue declaration :

flex declaration 〈Carry on 33 〉
〈 flex options parser productions 40 〉

40 The syntax of flex options was extracted from flex documentation so it is not guaranteed to be correct.
〈 flex options parser productions 40 〉 =

ex declaration :
〈option〉f flex option list 〈Define flex option list 41 〉
flex state symbols1 〈Define flex states 42 〉

ex state :
〈state-x〉f Υ← 〈nx\flexxstatedecls val Υ1〉
〈state-s〉f Υ← 〈nx\flexsstatedecls val Υ1〉

ex option list :
flex option 〈Carry on 33 〉
flex option list flex option 〈Add a flex option 43 〉

ex option :
ýidentifierþ Υ← 〈nx\flexoptionpair { val Υ1 }{ }〉
ýidentifierþ = symbol Υ← 〈nx\flexoptionpair { val Υ1 }{ val Υ3 }〉

This code is used in sections 22 and 39.

41
47 SPLINT GRAMMAR RULES 

41 〈Define flex option list 41 〉 =
Υ← 〈nx\flexoptiondecls { val Υ2 }val Υ1〉

This code is used in section 40.

42 〈Define flex states 42 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

π3(Υ1) 7→ vc

Υ← 〈xvay{ val Υ2 }{ xvby }{ xvcy }〉
This code is used in section 40.

43 〈Add a flex option 43 〉 =
π2(Υ2) 7→ va . the identifier /
π4(va) 7→ vb . the format pointer /
π5(va) 7→ vc . the stash pointer /
Υ← 〈val Υ1

nx { xvby }{ xvcy }val Υ2〉
This code is used in section 40.

44 Grammar declarations. These declarations can appear in both prologue and the rules sections. Their
treatment is very similar to prologue-only options.
〈Parser common productions 44 〉 =
grammar declaration :

precedence declaration 〈Carry on 33 〉
symbol declaration 〈Carry on 33 〉
〈start〉 symbol va← 〈 start〉 〈Prepare one parametric option 38 〉
code props type {...} generic symlist 〈Assign a code fragment to symbols 45 〉
〈default-prec〉 Υ← 〈nx\optionflag { default prec. }{ }val Υ1〉
〈no-default-prec〉 Υ← 〈nx\optionflag { no default prec. }{ }val Υ1〉
〈code〉 {...} Υ← 〈nx\codeassoc { code }{ }val Υ2val Υ1〉
〈code〉 ýidentifierþ {...} Υ← 〈nx\codeassoc { code }{ val Υ2 }val Υ3val Υ1〉

code props type :
〈destructor〉 Υ← 〈{ destructor }val Υ1〉
〈printer〉 Υ← 〈{ printer }val Υ1〉

See also sections 47, 51, 53, 54, 56, 83, and 94.

This code is used in sections 21, 23, and 24.

45 〈Assign a code fragment to symbols 45 〉 =
π1(Υ1) 7→ va . name of the property /
π1(Υ2) 7→ vb . contents of the braced code /
π2(Υ2) 7→ vc . braced code format pointer /
π3(Υ2) 7→ vd . braced code stash pointer /
π2(Υ1) 7→ ve . code format pointer /
π3(Υ1) 7→ vf . code stash pointer /
Υ← 〈nx\codepropstype { xvay }{ xvby }{ val Υ3 }{ xvcy }{ xvdy }{ xvey }{ xvfy }〉

This code is used in section 44.

46 〈Tokens and types for the grammar parser 26 〉 +=
〈union〉 (PERCENT_UNION)

47 〈Parser common productions 44 〉 +=
union name : ◦ | ýidentifierþ 〈Carry on 33 〉
grammar declaration : 〈union〉 union name {...} 〈Prepare union definition 48 〉
symbol declaration : 〈type〉 <tag> symbols1 〈Define symbol types 49 〉
precedence declaration :

 GRAMMAR RULES SPLINT 47
56

precedence declarator tagopt symbols.prec 〈Define symbol precedences 50 〉
precedence declarator :

〈left〉 | 〈right〉 | 〈nonassoc〉 | 〈precedence〉 Υ← 〈nx\preckind { precedence }val Υ1〉
tagopt : ◦ | <tag> 〈Carry on 33 〉

48 〈Prepare union definition 48 〉 =
Υ← 〈nx\codeassoc { union }{ val Υ2 }val Υ3val Υ1〉

This code is used in section 47.

49 〈Define symbol types 49 〉 =
Υ← 〈nx\typedecls { val Υ2 }{ val Υ3 }val Υ1〉

This code is used in section 47.

50 〈Define symbol precedences 50 〉 =
π3(Υ1) 7→ va . format pointer /
π4(Υ1) 7→ vb . stash pointer /
π2(Υ1) 7→ vc . kind of precedence /
Υ← 〈nx\precdecls { xvcy }{ val Υ2 }{ val Υ3 }{ xvay }{ xvby }〉

This code is used in section 47.

51 The bootstrap grammar forms the smallest subset of the full grammar.
〈Parser common productions 44 〉 +=
〈Parser bootstrap productions 52 〉

52 These are the two most important rules for the bootstrap parser.
〈Parser bootstrap productions 52 〉 =
symbol declaration :
〈nterm〉 � symbol defs1 Υ← 〈nx\ntermdecls { val Υ3 }val Υ1〉
〈token〉 � symbol defs1 Υ← 〈nx\tokendecls { val Υ3 }val Υ1〉

See also sections 57, 58, 82, and 86.

This code is used in sections 22 and 51.

53 Just like symbols1 but accept int for the sake of POSIX. Perhaps the only point worth mentioning here is
the inserted separator (\hspace). Like any other separator, it takes two parameters, stream pointers. In
this case, however, both pointers are null since there seems to be no other meaningful assignment. If any
formatting or stash information is needed, it can be extracted by the symbols themselves.
〈Parser common productions 44 〉 +=
symbols.prec :

symbol.prec 〈Carry on 33 〉
symbols.prec symbol.prec Υ← 〈val Υ1

nx { 0 }{ 0 }val Υ2〉
symbol.prec :

symbol Υ← 〈nx\symbolprec { val Υ1 }{ }〉
symbol int Υ← 〈nx\symbolprec { val Υ1 }{ val Υ2 }〉

54 One or more symbols to be 〈type〉’d.
〈Parser common productions 44 〉 +=
〈List of symbols 55 〉

55 〈List of symbols 55 〉 =
symbols1 :

symbol 〈Carry on 33 〉
symbols1 symbol Υ← 〈val Υ1

nx { 0 }{ 0 }val Υ2〉
This code is used in sections 22 and 54.

56
63 SPLINT GRAMMAR RULES 

56 〈Parser common productions 44 〉 +=
generic symlist :

generic symlist item 〈Carry on 33 〉
generic symlist generic symlist item Υ← 〈val Υ1

nx { 0 }{ 0 }val Υ2〉
generic symlist item : symbol | tag 〈Carry on 33 〉
tag : <tag> | <*> | <> 〈Carry on 33 〉

57 One token definition.
〈Parser bootstrap productions 52 〉 +=
symbol def :

<tag> 〈Carry on 33 〉
id | id int | id string as id | id int string as id Υ← 〈nx\onesymbol { val Υ1 }{ val Υ2 }{ val Υ3 }〉

58 One or more symbol definitions.
〈Parser bootstrap productions 52 〉 +=
symbol defs1 :

symbol def 〈Carry on 33 〉
symbol defs1 symbol def 〈Add a symbol definition 59 〉

59 〈Add a symbol definition 59 〉 =
π2(Υ2) 7→ va . the identifier /
π4(va) 7→ vb . the format pointer /
π5(va) 7→ vc . the stash pointer /
Υ← 〈val Υ1

nx { xvby }{ xvcy }val Υ2〉
This code is used in section 58.

60 The grammar section: between the two 〈%〉’s. Finally, the following few short sections define the syntax of
bison’s rules.
〈Parser grammar productions 60 〉 =
grammar :

rules or grammar declaration 〈Start with a production cluster 62 〉
grammar rules or grammar declaration 〈Attach a productions cluster 63 〉

See also sections 61, 71, and 85.

This code is used in sections 21 and 24.

61 As a bison extension, one can use the grammar declarations in the body of the grammar. What follows is
the syntax of the right hand side of a grammar rule.
〈Parser grammar productions 60 〉 +=
rules or grammar declaration :

rules 〈Add a productions cluster 64 〉
grammar declaration ; 〈Carry on 33 〉
error ; \errmessage { parsing error! }

rules : id colon named ref opt � rhses1 〈Complete a production 65 〉
rhses1 :

rhs 〈Start the right hand side 66 〉
rhses1 | 〈 Insert local formatting 67 〉

rhs 〈Add a right hand side to a production 68 〉
rhses1 ; 〈Add an optional semicolon 69 〉

62 The next few actions describe what happens when a left hand side is attached to a rule.
〈Start with a production cluster 62 〉 =
π1(Υ1) 7→ va

Υ← 〈nx\grammar { val Υ1 }{ xvay }〉
This code is used in section 60.

 GRAMMAR RULES SPLINT 63
67

63 〈Attach a productions cluster 63 〉 =
π3(Υ1) 7→ va . type of the last rule /
π2(Υ1) 7→ vc . accumulated rules /
π1(Υ2) 7→ vb . type of the new rule /
let default \positionswitchdefault

switch (xvby) ε \positionswitch . determine the position of the first token in the group /
defx next { xvay }
defx default { xvby } . reuse \default /
ifx next default

let default \separatorswitchdefaulteq

switch (xvay) ε \separatorswitcheq
else

va ← va +s vb

let default \separatorswitchdefaultneq

switch (xvay) ε \separatorswitchneq
fi
Υ← 〈nx\grammar { xvcyval \postoks xvdyval Υ2 }{ xvby }〉

This code is used in sections 36 and 60.

64 〈Add a productions cluster 64 〉 =
π2(Υ1) 7→ va . \prodheader /
π2(va) 7→ vb . \idit /
π4(vb) 7→ vc . format stream pointer /
π5(vb) 7→ vd . stash stream pointer /
π3(Υ1) 7→ vb . \rules /
Υ← 〈nx\oneproduction { xvayxvby }{ xvcy }{ xvdy }〉

This code is used in section 61.

65 〈Complete a production 65 〉 =
π4(Υ1) 7→ va . format stream pointer /
π5(Υ1) 7→ vb . stash stream pointer /
Υ← 〈nx\pcluster { nx\prodheader { val Υ1 }{ val Υ2 }

{ xvay }{ xvby } }{ val Υ4 } }

This code is used in section 61.

66 It is important to format the right hand side properly, since we would like to indicate that an action is
inlined by an indentation. The ‘format’ of the \rhs ‘structure’ includes the stash pointers and a ‘boolean’ to
indicate whether the right hand side ends with an action. Since the action can be implicit, this decision has
to be postponed until, say, a semicolon is seen. No formatting or stash pointers are added for such implicit
action.
〈Start the right hand side 66 〉 =
π`(Υ1) 7→ va xvay
π3(Υ1) 7→ vb . the format pointer /
π4(Υ1) 7→ vc . the stash pointer /
if (rhs = full)

Υ← 〈nx\rules { val Υ1 }{ xvby }{ xvcy }〉
else . it does not end with an action, fake one /

π{}(Υ1) 7→ va . rules /
defx next { xvay }
ifx next ∅

va← 〈 p. . .q〉
fi
Υ← 〈nx\rules { nx\rhs { xvaynx\rarhssep { 0 }{ 0 }

nx\actbraces { }{ }{ 0 }{ 0 }nx\bdend }{ }{ nxrhs = full } }{ xvby }{ xvcy } }
fi

This code is used in section 61.

67
73 SPLINT GRAMMAR RULES 

67 〈 Insert local formatting 67 〉 =
π{}(Υ1) 7→ {Υ0 }

Υ← 〈val Υ0
nx\midf val Υ2〉

This code is used in section 61.

68 No pointers are provided for an implicit action.
〈Add a right hand side to a production 68 〉 =
π`(Υ4) 7→ va xvay
if (rhs = full)

Υ← 〈nx\rules { val Υ3
nx\rrhssep val Υ2val Υ4 }val Υ2〉

else
π{}(Υ4) 7→ va

defx next { xvay }
ifx next ∅

va← 〈 p. . .q〉
fi
Υ← 〈nx\rules { val Υ3

nx\rrhssep val Υ2
nx\rhs { xvaynx\rarhssep { 0 }{ 0 } . streams have already been grabbed /
nx\actbraces { }{ }{ 0 }{ 0 }nx\bdend }{ }{ nxrhs = full } }val Υ2 }

fi

This code is used in section 61.

69 〈Add an optional semicolon 69 〉 =
〈Carry on 33 〉

This code is used in section 61.

70 〈Tokens and types for the grammar parser 26 〉 +=
〈empty〉 (PERCENT_EMPTY)

71 The centerpiece of the grammar is the syntax of the right hand side of a production. Various ‘precedence
hints’ must be attached to an appropriate portion of the rule, just before an action (which can be inline,
implicit or both in this case).
〈Parser grammar productions 60 〉 +=
rhs :
◦ 〈Make an empty right hand side 72 〉
rhs symbol named ref opt 〈Add a term to the right hand side 73 〉
rhs {...} named ref opt 〈Add an action to the right hand side 74 〉
rhs %?{...} 〈Add a predicate to the right hand side 75 〉
rhs 〈empty〉 〈Add 〈empty〉 to the right hand side 76 〉
rhs 〈prec〉 symbol 〈Add a precedence directive to the right hand side 77 〉
rhs 〈dprec〉 int 〈Add a 〈dprec〉 directive to the right hand side 78 〉
rhs 〈merge〉 <tag> 〈Add a 〈merge〉 directive to the right hand side 79 〉

named ref opt :
◦ 〈Create an empty named reference 80 〉
BRACKETED_ID 〈Create a named reference 81 〉

72 〈Make an empty right hand side 72 〉 =
Υ← 〈nx\rhs { }{ }{ nxrhs = not full }〉

This code is used in section 71.

73 〈Add a term to the right hand side 73 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

defx next { xvby }
ifx next ∅

 GRAMMAR RULES SPLINT 73
76

else
π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [{ xvcy }{ xvdy }]
fi
Υ← 〈nx\rhs { xvayxvby

nx\termname { val Υ2 }{ val Υ3 } }{
nx }{ nxrhs = not full } }

This code is used in section 71.

74 〈Add an action to the right hand side 74 〉 =
π{}(Υ1) 7→ va

π`(Υ1) 7→ vb xvby
if (rhs = full) . the first half ends with an action /

va ← va +sx [nx\arhssep { 0 }{ 0 }nxp. . .q] . no pointers to streams /
fi
defx next { xvay }
ifx next ∅

va← 〈 p. . .q〉
fi
π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx\rhs { xvaynx\rarhssep { xvcy }{ xvdy }

nx\actbraces { xvby }{ val Υ3 }{ xvcy }{ xvdy }nx\bdend }

{ nx\arhssep }{ nxrhs = full } }

This code is used in section 71.

75 〈Add a predicate to the right hand side 75 〉 =
π{}(Υ1) 7→ va

π`(Υ1) 7→ vb xvby
if (rhs = full) . the first half ends with an action /

va ← va +sx [nx\arhssep { 0 }{ 0 }nxp. . .q] . no pointers to streams /
fi
defx next { xvay }
ifx next ∅

va← 〈 p. . .q〉
fi
π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx\rhs { xvaynx\rarhssep { xvcy }{ xvdy }

nx\bpredicate { xvby }{ }{ xvcy }{ xvdy }nx\bdend }

{ nx\arhssep }{ nxrhs = full } }

This code is used in section 71.

76 〈Add 〈empty〉 to the right hand side 76 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

defx next { xvby }
ifx next ∅
else

π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [{ xvcy }{ xvdy }]
fi
Υ← 〈nx\rhs { xvayxvby

nxp. . .q }{ nx }{ nxrhs = not full } }

76
82 SPLINT GRAMMAR RULES 

This code is used in section 71.

77 〈Add a precedence directive to the right hand side 77 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc xvcy
if (rhs = full)

Υ← 〈nx\sprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx\rhs { xvay }{ xvby }{ nxrhs = full }〉

else
Υ← 〈nx\rhs { xvay

nx\sprecop { val Υ3 }val Υ2 }{ xvby }{ nxrhs = not full } }
fi

This code is used in section 71.

78 〈Add a 〈dprec〉 directive to the right hand side 78 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc xvcy
if (rhs = full)

Υ← 〈nx\dprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx\rhs { xvay }{ xvby }{ nxrhs = full }〉

else
Υ← 〈nx\rhs { xvay

nx\dprecop { val Υ3 }val Υ2 }{ xvby }{ nxrhs = not full } }
fi

This code is used in section 71.

79 〈Add a 〈merge〉 directive to the right hand side 79 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc xvcy
if (rhs = full)

Υ← 〈nx\mergeop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx\rhs { xvay }{ xvby }{ nxrhs = full }〉

else
Υ← 〈nx\rhs { xvay

nx\mergeop { val Υ3 }val Υ2 }{ xvby }{ nxrhs = not full } }
fi

This code is used in section 71.

80 〈Create an empty named reference 80 〉 =
Υ← 〈〉

This code is used in section 71.

81 〈Create a named reference 81 〉 =
〈Carry on 33 〉

This code is used in section 71.

82 Identifiers. Identifiers are returned as uniqstr values by the scanner. Depending on their use, we may need
to make them genuine symbols. We, on the other hand simply copy the values returned by the scanner.
〈Parser bootstrap productions 52 〉 +=
id :

 GRAMMAR RULES SPLINT 82
95

ýidentifierþ 〈Turn an identifier into a term 87 〉
char 〈Turn a character into a term 88 〉

83 〈Parser common productions 44 〉 +=
〈Definition of symbol 84 〉

84 〈Definition of symbol 84 〉 =
symbol :

id 〈Turn an identifier into a symbol 89 〉
string as id 〈Turn a string into a symbol 90 〉

This code is used in sections 22 and 83.

85 〈Parser grammar productions 60 〉 +=
id colon : ýidentifier: þ 〈Prepare the left hand side 91 〉

86 A string used as an ýidentifierþ.
〈Parser bootstrap productions 52 〉 +=
string as id : ýstringþ 〈Prepare a string for use 92 〉

87 The remainder of the action code is trivial but we reserved the placeholders for the appropriate actions in
case the parser gains some sophistication in processing low level types (or starts expecting different types
from the scanner).
〈Turn an identifier into a term 87 〉 =
〈Carry on 33 〉

This code is used in section 82.

88 〈Turn a character into a term 88 〉 =
〈Carry on 33 〉

This code is used in section 82.

89 〈Turn an identifier into a symbol 89 〉 =
〈Carry on 33 〉

This code is used in section 84.

90 〈Turn a string into a symbol 90 〉 =
〈Carry on 33 〉

This code is used in section 84.

91 〈Prepare the left hand side 91 〉 =
〈Carry on 33 〉

This code is used in section 85.

92 〈Prepare a string for use 92 〉 =
〈Carry on 33 〉

This code is used in section 86.

93 Variable and value. The ýstringþ form of variable is deprecated and is not M4-friendly. For example, M4
fails for %define "[" "value".
〈Parser prologue productions 35 〉 +=
variable : ýidentifierþ | ýstringþ 〈Carry on 33 〉
value : ◦ | ýidentifierþ | ýstringþ | {...} Υ← 〈nx\bracedvalue val Υ1〉

94 〈Parser common productions 44 〉 +=
epilogueopt : ◦ | 〈%〉 EPILOGUE

95
101 SPLINT GRAMMAR RULES 

95 C preamble for the grammar parser. In this case, there are no ‘real’ actions that our grammar performs,
only TEX output, so this section is empty.
〈Grammar parser C preamble 95 〉 =
This code is used in sections 21, 22, 23, and 24.

96 C postamble for the grammar parser. It is tricky to insert function definitions that use bison’s internal types,
as they have to be inserted in a place that is aware of the internal definitions but before said definitions are
used.
〈Grammar parser C postamble 96 〉 =
#define YYPRINT(file , type , value)yyprint (file , type , value)

static void yyprint (FILE ∗file , int type , YYSTYPEvalue)
{ }

This code is used in sections 21, 23, 24, and 97.

97 〈Bootstrap parser C postamble 97 〉 =
〈Grammar parser C postamble 96 〉
〈Bootstrap token output 98 〉

This code is used in section 22.

98 〈Bootstrap token output 98 〉 =
void bootstrap tokens (char ∗bootstrap token format){

#define register token d (name)fprintf (tables out , bootstrap token format , #name ,name , #name);
〈Bootstrap token list 99 〉

#undef register token d
}

This code is used in section 97.

99 Here is the minimal list of tokens needed to make the lexer operational just enough to extract the rest of
the token information from the grammar.
〈Bootstrap token list 99 〉 =

register token d (INT)
register token d (ID)
register token d (CHAR)
register token d (STRING)
register token d (TAG)
register token d (SEMICOLON)
register token d (PERCENT_TOKEN)
register token d (PERCENT_NTERM)
register token d (FLEX_STATE_X)
register token d (FLEX_STATE_S)

This code is used in section 98.

100 Union of types.
〈Union of grammar parser types 100 〉 =
This code is used in sections 21, 22, 23, and 24.

101 The scanner for grammar syntax

The fact that bison has a relatively straightforward grammar is due to the sophistication of its scanner.
The primary reason for this increased complexity is bison’s awareness of syntax variations in its input files.
In addition to the grammar syntax, the parser has to be able to deal with extended C syntax inside bison’s
actions.

Since the names of the scanner states reside in the common namespace with other variables, in order to
make the TEX version of the scanner aware of the numerical values of the states, a special procedure is

 THE SCANNER FOR GRAMMAR SYNTAX SPLINT 101
107

required. It is executed as part of flex’s user initialization code but the data for it has to be collected
separately. The procedure is declared in the preamble section of the scanner.

Below, we follow the same convention (of italicizing the original comments) as in the code for the parser.
〈 lo.ll 101 〉 =
〈Grammar lexer definitions 102 〉
··
〈Grammar lexer C preamble 114 〉
··
〈Grammar lexer options 115 〉

〈Grammar token regular expressions 116 〉
void define all states (void)
{

〈Collect state definitions for the grammar lexer 105 〉
}

102 It is convenient to abbreviate some commonly used subexpressions.
〈Grammar lexer definitions 102 〉 =
〈Grammar lexer states 106 〉
letter [.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]
notletter [^.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]{−}[%\{]
id {letter}({letter}|[−0−9])*
int [0−9]+

See also sections 103 and 104.

This code is used in section 101.

103 Zero or more instances of backslash-newline. Following GCC, allow white space between the backslash and
the newline.
〈Grammar lexer definitions 102 〉 +=
splice (\\[\f\t\v]*\n)*

104 An equal sign, with optional leading whitespaces. This is used in some deprecated constructs.
〈Grammar lexer definitions 102 〉 +=
eqopt ([[:space:]]*=)?

105 This is how the code for state value output is put inside the routine mentioned above. The state information
is collected by a special small scanner that is coupled with the bootstrap parser. This way, all the necessary
token information comes ‘hardwired’ in the bootstrap parser, and the small scanner itself does not use any
state manipulation and thus can get away without any state setup. It can, however, scan just enough of the
flex syntax to extract the state information from it (only the state names are needed) and output it in the
form of a header file for the ‘real’ lexer output ‘driver’ to use.
〈Collect state definitions for the grammar lexer 105 〉 =
#define register name (name) Define State (#name ,name)

#include "lo_states.h"

#undef register name

This code is used in section 101.

106 A C-like comment in directives/rules.
〈Grammar lexer states 106 〉 =
〈states-x〉f: SC YACC COMMENT

See also sections 107, 108, 109, 110, 111, 112, and 113.

This code is used in section 102.

107
116 SPLINT THE SCANNER FOR GRAMMAR SYNTAX 

107 Strings and characters in directives/rules.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC ESCAPED STRING SC ESCAPED CHARACTER

108 A identifier was just read in directives/rules. Special state to capture the sequence ‘identifier:’.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC AFTER IDENTIFIER

109 POSIX says that a tag must be both an id and a C union member, but historically almost any character is
allowed in a tag. We disallow Λ, as this simplifies our implementation. We match angle brackets in nested
pairs: several languages use them for generics/template types.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC TAG

110 Four types of user code:
prologue (code between %{ %} in the first section, before 〈%〉);
actions, printers, union, etc, (between braced in the middle section);
epilogue (everything after the second 〈%〉).
predicate (code between %?{ and } in middle section);
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC PROLOGUE SC BRACED CODE SC EPILOGUE SC PREDICATE

111 C and C++ comments in code.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC COMMENT SC LINE COMMENT

112 Strings and characters in code.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC STRING SC CHARACTER

113 Bracketed identifiers support.
〈Grammar lexer states 106 〉 +=
〈states-x〉f: SC BRACKETED ID SC RETURN BRACKETED ID

114 〈Grammar lexer C preamble 114 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section 101.

115 The code for the generated scanner is highly dependent on the options supplied. Most of the options below
are essential for the scheme adopted in this package to work.
〈Grammar lexer options 115 〉 =
〈bison-bridge〉f ?
〈noyywrap〉f ?
〈nounput〉f ?
〈noinput〉f ?
〈reentrant〉f ?
〈noyy top state〉f ?
〈debug〉f ?
〈stack〉f ?
〈outfile〉f "lo.c"

This code is used in section 101.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 116
118

116 Tokenizing with regular expressions

Here is a full collection of regular expressions employed by the scanner.
〈Grammar token regular expressions 116 〉 =
〈Scan grammar white space 117 〉
〈Scan flex directives and options 119 〉
〈Scan bison directives 118 〉
〈Do not support zero characters 131 〉
〈Scan after an identifier, check whether a colon is next 132 〉
〈Scan bracketed identifiers 137 〉
〈Scan a Yacc comment 144 〉
〈Scan a C comment 145 〉
〈 Scan a line comment 146 〉
〈Scan a bison string 147 〉
〈Scan a character literal 149 〉
〈 Scan a tag 151 〉
〈Decode escaped characters 154 〉
〈Scan user-code characters and strings 155 〉
〈Strings, comments etc. found in user code 156 〉
〈 Scan code in braces 157 〉
〈Scan prologue 160 〉
〈Scan the epilogue 162 〉
〈Add the scanned symbol to the current string 164 〉

This code is used in section 101.

117 〈Scan grammar white space 117 〉 =
<INITIAL,SC_AFTER_IDENTIFIER,SC_BRACKETED_ID,SC_RETURN_BRACKETED_ID>
{

. Comments and white space. /
"," {\yycomplain { stray ‘,’ treated as white space }\yylexnext}
[\f\n\t\v] |
"//".* {\yylexnext}

"/*" {\YYSTART \contextstate = ta \yyBEGIN { SC_YACC_COMMENT }\yylexnext}
. #line directives are not documented, and may be withdrawn or modified in future versions of bison. /

^"#line "{int}(" \"".*"\"")?"\n" {\yylexnext}
}

This code is used in section 116.

118 For directives that are also command line options, the regex must be "%..." after "[-_]"’s are removed, and
the directive must match the --long option name, with a single string argument. Otherwise, add exceptions
to ../build-aux/cross-options.pl. For most options the scanner returns a pair of pointers as the value.
〈Scan bison directives 118 〉 =
<INITIAL>
{
"%binary" {\yylexreturnptr { PERCENT_NONASSOC }}
"%code" {\yylexreturnptr { PERCENT_CODE }}
"%debug" {〈 Set 〈debug〉 flag 121 〉}
"%default−prec" {\yylexreturnptr { PERCENT_DEFAULT_PREC }}
"%define" {\yylexreturnptr { PERCENT_DEFINE }}
"%defines" {\yylexreturnptr { PERCENT_DEFINES }}
"%destructor" {\yylexreturnptr { PERCENT_DESTRUCTOR }}
"%dprec" {\yylexreturnptr { PERCENT_DPREC }}
"%empty" {\yylexreturnptr { PERCENT_EMPTY }}
"%error−verbose" {\yylexreturnptr { PERCENT_ERROR_VERBOSE }}
"%expect" {\yylexreturnptr { PERCENT_EXPECT }}
"%expect−rr" {\yylexreturnptr { PERCENT_EXPECT_RR }}
"%file−prefix" {\yylexreturnptr { PERCENT_FILE_PREFIX }}

118
118 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

"%fixed−output−files" {\yylexreturnptr { PERCENT_YACC }}
"%initial−action" {\yylexreturnptr { PERCENT_INITIAL_ACTION }}
"%glr−parser" {\yylexreturnptr { PERCENT_GLR_PARSER }}
"%language" {\yylexreturnptr { PERCENT_LANGUAGE }}
"%left" {\yylexreturnptr { PERCENT_LEFT }}
"%lex−param" {〈Return lexer parameters 122 〉}
"%locations" {〈 Set 〈locations〉 flag 123 〉}
"%merge" {\yylexreturnptr { PERCENT_MERGE }}
"%name−prefix" {\yylexreturnptr { PERCENT_NAME_PREFIX }}
"%no−default−prec" {\yylexreturnptr { PERCENT_NO_DEFAULT_PREC }}
"%no−lines" {\yylexreturnptr { PERCENT_NO_LINES }}
"%nonassoc" {\yylexreturnptr { PERCENT_NONASSOC }}
"%nondeterministic−parser" {\yylexreturnptr { PERCENT_NONDETERMINISTIC_PARSER }}
"%nterm" {\yylexreturnptr { PERCENT_NTERM }}
"%output" {\yylexreturnptr { PERCENT_OUTPUT }}
"%param" {〈Return lexer and parser parameters 124 〉}
"%parse−param" {〈Return parser parameters 125 〉}
"%prec" {\yylexreturnptr { PERCENT_PREC }}
"%precedence" {\yylexreturnptr { PERCENT_PRECEDENCE }}
"%printer" {\yylexreturnptr { PERCENT_PRINTER }}
"%pure−parser" {〈 Set 〈pure-parser〉 flag 126 〉}
"%require" {\yylexreturnptr { PERCENT_REQUIRE }}
"%right" {\yylexreturnptr { PERCENT_RIGHT }}
"%skeleton" {\yylexreturnptr { PERCENT_SKELETON }}
"%start" {\yylexreturnptr { PERCENT_START }}
"%term" {\yylexreturnptr { PERCENT_TOKEN }}
"%token" {\yylexreturnptr { PERCENT_TOKEN }}
"%token−table" {\yylexreturnptr { PERCENT_TOKEN_TABLE }}
"%type" {\yylexreturnptr { PERCENT_TYPE }}
"%union" {\yylexreturnptr { PERCENT_UNION }}
"%verbose" {\yylexreturnptr { PERCENT_VERBOSE }}
"%yacc" {\yylexreturnptr { PERCENT_YACC }}

. deprecated /
"%default"[−_]"prec" {\yypdeprecated { \% default-prec }}
"%error"[−_]"verbose" {\yypdeprecated { \% define parse.error verbose }}
"%expect"[−_]"rr" {\yypdeprecated { \% expect-rr }}
"%file−prefix"{eqopt} {\yypdeprecated { \% file-prefix }}
"%fixed"[−_]"output"[−_]"files" {\yypdeprecated { \% fixed-output-files }}
"%name"[−_]"prefix"{eqopt} {\yypdeprecated { \% name-prefix }}
"%no"[−_]"default"[−_]"prec" {\yypdeprecated { \% no-default-prec }}
"%no"[−_]"lines" {\yypdeprecated { \% no-lines }}
"%output"{eqopt} {\yypdeprecated { \% output }}
"%pure"[−_]"parser" {\yypdeprecated { \% pure-parser }}
"%token"[−_]"table" {\yypdeprecated { \% token-table }}

. Semantic predicate. /
"%?"[\f\n\t\v]*"{" {\yyBEGIN { SC_PREDICATE }\yylexnext}

"%"{id}|"%"{notletter}([[:graph:]])+ {〈Possbly complain about a bad directive 127 〉}

"=" {\yylexreturnptr { EQUAL }}
"|" {\yylexreturnptr { PIPE }}
";" {\yylexreturnptr { SEMICOLON }}

{id} {〈Prepare an identifier 128 〉}
{int} {defx next { \yylval { nx\anint { val \yytext }

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 118
120

{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { INT }}

0[xX][0−9abcdefABCDEF]+ {defx next { \yylval { nx\hexint { val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { INT }}

. Identifiers may not start with a digit. Yet, don’t silently accept 1FOO as 1 FOO. /
{int}{id} {\yycomplain { invalid identifier: val \yytext }

\yyerrterminate}

. Characters. /
"’" {\yyBEGIN { SC_ESCAPED_CHARACTER }\yylexnext}

. Strings. /
"\"" {\yyBEGIN { SC_ESCAPED_STRING }\yylexnext}

. Prologue. /
"%{" {〈Start assembling prologue code 130 〉}

. Code in between braces. Originally preceded by \STRINGGROW but it is omitted here. /
"{" {\lonesting 0R \yyBEGIN { SC_BRACED_CODE }\yylexnext}

. A type. /
"<*>" {\yylexreturnptr { TAG_ANY }}
"<>" {\yylexreturnptr { TAG_NONE }}
"<" {\lonesting = 0R \yyBEGIN { SC_TAG }\yylexnext}

"%%" {〈 Switch sections 129 〉}
"[" {let \bracketedidstr = ∅ \YYSTART

\bracketedidcontextstate = ta
\yyBEGIN { SC_BRACKETED_ID }\yylexnext}

<<EOF>> {\yyterminate % EOF in INITIAL}

[^\[%A−Za−z0−9_<>{}\"\’*;|=/, \f\n\t\v]+|. {〈Process a bad character 120 〉}
}

This code is used in section 116.

119 Some additional constructs needed to typeset simple flex declarations. This is not part of the original
bison scanner.
〈Scan flex directives and options 119 〉 =
<INITIAL>
{
"%option" {\yylexreturnptr { FLEX_OPTION }}
"%x" {\yylexreturnptr { FLEX_STATE_X }}
"%s" {\yylexreturnptr { FLEX_STATE_S }}

}

This code is used in section 116.

120 We present the ‘bad character’ code first, before going into the details of the character matching by the rest
of the lexer.
〈Process a bad character 120 〉 =

defx next { nx\csname val \yytextpure nx\endcsname }

\expandafter va\expandafter \expandafter \expandafter {next }

\expandafter ifx xvay◦
ift [bad char]

120
129 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

\yycomplain { invalid character(s): val \yytext }

fi
\yylexreturn { $undefined }

else
\expandafter \lexspecialchar \expandafter { xvay }{ val \yyfmark }{ val \yysmark }\yylexnext

fi

This code is used in section 118.

121 〈Set 〈debug〉 flag 121 〉 =
defx next { \yylval { { parse.trace }{ debug }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_FLAG }

This code is used in section 118.

122 〈Return lexer parameters 122 〉 =
defx next { \yylval { { lex-param }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_PARAM }

This code is used in section 118.

123 〈Set 〈locations〉 flag 123 〉 =
defx next { \yylval { { locations }{ }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_FLAG }

This code is used in section 118.

124 〈Return lexer and parser parameters 124 〉 =
defx next { \yylval { { both-param }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_PARAM }

This code is used in section 118.

125 〈Return parser parameters 125 〉 =
defx next { \yylval { { parse-param }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_PARAM }

This code is used in section 118.

126 〈Set 〈pure-parser〉 flag 126 〉 =
defx next { \yylval { { api.pure }{ pure-parser }{ val \yyfmark }{ val \yysmark } } }next
\yylexreturn { PERCENT_FLAG }

This code is used in section 118.

127 〈Possbly complain about a bad directive 127 〉 =
ift [bad char]

\yycomplain { invalid directive: val \yytext }

fi
\yylexnext

This code is used in section 118.

128 〈Prepare an identifier 128 〉 =
defx next { \yylval { nx\idit { val \yytextpure }{ val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
let \bracketedidstr = ∅
\yyBEGIN { SC_AFTER_IDENTIFIER }\yylexnext

This code is used in section 118.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 129
135

129 〈Switch sections 129 〉 =
add \percentpercentcount 1R

ifω \percentpercentcount = 2R

\yyBEGIN { SC_EPILOGUE }

fi
\yylexreturnptr { PERCENT_PERCENT }

This code is used in section 118.

130 〈Start assembling prologue code 130 〉 =
defx next { \postoks { { val \yyfmark }{ val \yysmark } } }next
\yyBEGIN { SC_PROLOGUE }\yylexnext

This code is used in section 118.

131 Supporting \0 complexifies our implementation for no expected added value.
〈Do not support zero characters 131 〉 =
<SC_ESCAPED_CHARACTER,SC_ESCAPED_STRING,SC_TAG>
{
\0 {\yycomplain { invalid null character }\yylexnext}

}

This code is used in section 116.

132 〈Scan after an identifier, check whether a colon is next 132 〉 =
<SC_AFTER_IDENTIFIER>
{
"[" {〈Process the bracketed part of an identifier 133 〉}
":" {〈Process a colon after an identifier 134 〉}
<<EOF>> {〈End the scan with an identifier 136 〉}
. {〈Process a character after an identifier 135 〉}

}

This code is used in section 116.

133 〈Process the bracketed part of an identifier 133 〉 =
ifx \bracketedidstr∅

\YYSTART \bracketedidcontextstate ta \yyBEGIN { SC_BRACKETED_ID }

let next = \yylexnext

else
\ROLLBACKCURRENTTOKEN

\yyBEGIN { SC_RETURN_BRACKETED_ID }

def next { \yylexreturn { ID } }

fi
next

This code is used in section 132.

134 〈Process a colon after an identifier 134 〉 =
ifx \bracketedidstr∅

\yyBEGIN { INITIAL }

else
\yyBEGIN { SC_RETURN_BRACKETED_ID }

fi
\yylexreturn { ID_COLON }

This code is used in section 132.

135 〈Process a character after an identifier 135 〉 =
\ROLLBACKCURRENTTOKEN

ifx \bracketedidstr∅
\yyBEGIN { INITIAL }

135
140 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

else
\yyBEGIN { SC_RETURN_BRACKETED_ID }

fi
\yylexreturn { ID }

This code is used in section 132.

136 〈End the scan with an identifier 136 〉 =
ifx \bracketedidstr∅

\yyBEGIN { INITIAL }

else
\yyBEGIN { SC_RETURN_BRACKETED_ID }

fi
\ROLLBACKCURRENTTOKEN

\yylexreturn { ID }

This code is used in section 132.

137 〈Scan bracketed identifiers 137 〉 =
<SC_BRACKETED_ID>
{
<<EOF>> {〈Complain about unexpected end of file inside brackets 141 〉}
{id} {〈Process bracketed identifier 138 〉}
"]" {〈Finish processing bracketed identifier 139 〉}
[^\].A−Za−z0−9_/ \f\n\t\v]+|. {〈Complain about improper identifier characters 140 〉}

}

See also section 142.

This code is used in section 116.

138 〈Process bracketed identifier 138 〉 =
ifx \bracketedidstr∅

defx \bracketedidstr { nx\idit { val \yytextpure }

{ val \yytext }{ val \yyfmark }{ val \yysmark } }

let next = \yylexnext

else
def next { \yycomplain { unexpected

identifier in bracketed name: val \yytext }\yylexnext }

fi
next

This code is used in section 137.

139 〈Finish processing bracketed identifier 139 〉 =
\yyBEGINr \bracketedidcontextstate

ifx \bracketedidstr∅
def next { \yycomplain { an identifier expected }\yylexnext }

else
ifω \bracketedidcontextstate = \yylexstate { INITIAL }◦

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
def next { \yylexreturn { BRACKETED_ID } }

else
let next = \yylexnext

fi
fi
next

This code is used in section 137.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 140
147

140 〈Complain about improper identifier characters 140 〉 =
\yycomplain { invalid character(s) in bracketed name: val \yytext }\yyerrterminate

This code is used in section 137.

141 〈Complain about unexpected end of file inside brackets 141 〉 =
\yyBEGINr \bracketedidcontextstate

\yycomplain { unexpected end of file inside brackets }\yyerrterminate

This code is used in section 137.

142 〈Scan bracketed identifiers 137 〉 +=
<SC_RETURN_BRACKETED_ID>
{
. {〈Return a bracketed identifier 143 〉}

}

143 〈Return a bracketed identifier 143 〉 =
\ROLLBACKCURRENTTOKEN

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
\yyBEGIN { INITIAL }

\yylexreturn { BRACKETED_ID }

This code is used in section 142.

144 Scanning a Yacc comment. The initial /* is already eaten.
〈Scan a Yacc comment 144 〉 =
<SC_YACC_COMMENT>
{
<<EOF>> {\yycomplain { unexpected end of file in

a comment }\yyerrterminate}
"*/" {\yyBEGINr { \contextstate }\yylexnext}
.|\n {\yylexnext}

}

This code is used in section 116.

145 Scanning a C comment. The initial /* is already eaten.
〈Scan a C comment 145 〉 =
<SC_COMMENT>
{
<<EOF>> {\yycomplain { unexpected end of file in

a comment }\yyerrterminate}
"*"{splice}"/" {\STRINGGROW \yyBEGINr \contextstate \yylexnext}

}

This code is used in section 116.

146 Scanning a line comment. The initial // is already eaten.
〈Scan a line comment 146 〉 =
<SC_LINE_COMMENT>
{
<<EOF>> {\yyBEGINr \contextstate \ROLLBACKCURRENTTOKEN

\yylexnext}
"\n" {\STRINGGROW \yyBEGINr \contextstate \yylexnext}
{splice} {\STRINGGROW \yylexnext}

}

This code is used in section 116.

147
152 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

147 Scanning a bison string, including its escapes. The initial quote is already eaten.
〈Scan a bison string 147 〉 =
<SC_ESCAPED_STRING>
{
<<EOF>> {\yycomplain { unexpected end of file in

a string }\yyerrterminate}
"\"" {〈Finish a bison string 148 〉}
"\n" {\yycomplain { unexpected end of line in

a string }\yyerrterminate}
}

This code is used in section 116.

148 〈Finish a bison string 148 〉 =
\STRINGFINISH

defx next { \yylval { nx\stringify { val \laststring }

{ val \laststringraw }{ val \yyfmark }{ val \yysmark } } }next
\yyBEGIN { INITIAL }

\yylexreturn { STRING }

This code is used in section 147.

149 Scanning a bison character literal, decoding its escapes. The initial quote is already eaten.
〈Scan a character literal 149 〉 =
<SC_ESCAPED_CHARACTER>
{
<<EOF>> {\yycomplain { unexpected end of file in

a literal }\yyerrterminate}
"’" {〈Return an escaped character 150 〉}
"\n" {\yycomplain { unexpected end of line in

a literal }\yyerrterminate}
}

This code is used in section 116.

150 〈Return an escaped character 150 〉 =
\STRINGFINISH

defx next { \yylval { nx\charit { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

\yyBEGIN { INITIAL }

\yylexreturn { CHAR }

This code is used in section 149.

151 Scanning a tag. The initial angle bracket is already eaten.
〈Scan a tag 151 〉 =
<SC_TAG>
{
">" {〈Finish a tag 152 〉}
([^<>]|−>)+ {\STRINGGROW \yylexnext}
"<" {〈Raise nesting level 153 〉}
<<EOF>> {\yycomplain { unexpected end of file in

a literal }\yyerrterminate}
}

This code is used in section 116.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 152
155

152 〈Finish a tag 152 〉 =
add \lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { nx\tagit { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

\yyBEGIN { INITIAL }

def next { \yylexreturn { TAG } }

else
\STRINGGROW let next = \yylexnext

fi
next

This code is used in section 151.

153 This is a slightly different rule from the original scanner. We do not perform yyleng computations, so it
makes sense to raise the nesting level one by one.
〈Raise nesting level 153 〉 =
\STRINGGROW

add \lonesting 1R

\yylexnext

This code is used in section 151.

154 〈Decode escaped characters 154 〉 =
<SC_ESCAPED_STRING,SC_ESCAPED_CHARACTER>
{
\\[0−7]{1,3} {\STRINGGROW \yylexnext}
\\x[0−9abcdefABCDEF]+ {\STRINGGROW \yylexnext}
\\a {\STRINGGROW \yylexnext}
\\b {\STRINGGROW \yylexnext}
\\f {\STRINGGROW \yylexnext}
\\n {\STRINGGROW \yylexnext}
\\r {\STRINGGROW \yylexnext}
\\t {\STRINGGROW \yylexnext}
\\v {\STRINGGROW \yylexnext}

. \\[\"\’?\\] would be shorter, but it confuses xgettext . /
\\("\""|"’"|"?"|"\\") {\STRINGGROW \yylexnext}

\\(u|U[0−9abcdefABCDEF]{4})[0−9abcdefABCDEF]{4} {\STRINGGROW \yylexnext}
\\(.|\n) {\yycomplain { invalid character after

\\ -escape: val \yytext }\yylexnext}
}

This code is used in section 116.

155 〈Scan user-code characters and strings 155 〉 =
<SC_CHARACTER,SC_STRING>
{
{splice}|\\{splice}[^\n\[\]] {\STRINGGROW \yylexnext}

}

<SC_CHARACTER>
{
"’" {\STRINGGROW \yyBEGINr { \contextstate }\yylexnext}
\n {\yycomplain { unexpected end of line instead of

a character }\yyerrterminate}

155
158 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

<<EOF>> {\yycomplain { unexpected end of file instead of

a character }\yyerrterminate}
}

<SC_STRING>
{
"\"" {\STRINGGROW \yyBEGINr { \contextstate }\yylexnext}
\n {\yycomplain { unexpected end of line instead of

a character }\yyerrterminate}
<<EOF>> {\yycomplain { unexpected end of file instead of

a character }\yyerrterminate}
}

This code is used in section 116.

156 〈Strings, comments etc. found in user code 156 〉 =
<SC_BRACED_CODE,SC_PROLOGUE,SC_EPILOGUE,SC_PREDICATE>
{
"’" {\STRINGGROW \YYSTART \contextstate ta

\yyBEGIN { SC_CHARACTER }\yylexnext}
"\"" {\STRINGGROW \YYSTART \contextstate ta

\yyBEGIN { SC_STRING }\yylexnext}
"/"{splice}"*" {\STRINGGROW \YYSTART \contextstate ta

\yyBEGIN { SC_COMMENT }\yylexnext}
"/"{splice}"/" {\STRINGGROW \YYSTART \contextstate ta

\yyBEGIN { SC_LINE_COMMENT }\yylexnext}
}

This code is used in section 116.

157 Scanning some code in braces (actions, predicates). The initial { is already eaten.
〈Scan code in braces 157 〉 =
<SC_BRACED_CODE,SC_PREDICATE>
{
"{"|"<"{splice}"%" {\STRINGGROW add \lonesting 1R \yylexnext}
"%"{splice}">" {\STRINGGROW add \lonesting −1R \yylexnext}

. Tokenize <<% correctly (as << %) rather than incorrectly (as < <%). /
"<"{splice}"<" {\STRINGGROW \yylexnext}
<<EOF>> {\yycomplain { unexpected end of line

inside braced code }\yyerrterminate}
}

<SC_BRACED_CODE>
{
"}" {〈Add closing brace to the braced code 158 〉}

}

<SC_PREDICATE>
{
"}" {〈Add closing brace to a predicate 159 〉}

}

This code is used in section 116.

158 Unlike the original lexer, we do not return the closing brace as part of the braced code.
〈Add closing brace to the braced code 158 〉 =

add \lonesting −1R

ifω \lonesting < 0R

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 158
164

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
def next { \yylexreturn { BRACED_CODE } }

\yyBEGIN { INITIAL }

else
\STRINGGROW

let next = \yylexnext

fi
next

This code is used in section 157.

159 〈Add closing brace to a predicate 159 〉 =
add \lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
\yyBEGIN { INITIAL }

def next { \yylexreturn { BRACED_PREDICATE } }

else
\STRINGGROW

let next = \yylexnext

fi
next

This code is used in section 157.

160 Scanning some prologue: from %{ (already scanned) to %}.
〈Scan prologue 160 〉 =
<SC_PROLOGUE>
{
"%}" {〈Finish braced code 161 〉}
<<EOF>> {\yycomplain { unexpected end of file

inside prologue }\yyerrterminate}
}

This code is used in section 116.

161 〈Finish braced code 161 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }val \postoks { val \yyfmark }{ val \yysmark } } }next
\yyBEGIN { INITIAL }

\yylexreturn { PROLOGUE }

This code is used in section 160.

162 Scanning the epilogue (everything after the second 〈%〉, which has already been eaten).
〈Scan the epilogue 162 〉 =
<SC_EPILOGUE>
{
<<EOF>> {〈Handle end of file in the epilogue 163 〉}

}

This code is used in section 116.

163 〈Handle end of file in the epilogue 163 〉 =
\ROLLBACKCURRENTTOKEN

\STRINGFINISH

\yylval = \laststring

\yyBEGIN { INITIAL }

\yylexreturn { EPILOGUE }

This code is used in section 162.

164
168 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS 

164 By default, grow the string obstack with the input.
〈Add the scanned symbol to the current string 164 〉 =
<SC_COMMENT,SC_LINE_COMMENT,SC_BRACED_CODE,SC_PREDICATE,SC_PROLOGUE,SC_EPILOGUE,
SC_STRING,SC_CHARACTER,SC_ESCAPED_STRING,SC_ESCAPED_CHARACTER>. |
<SC_COMMENT,SC_LINE_COMMENT,SC_BRACED_CODE,SC_PREDICATE,
SC_PROLOGUE,SC_EPILOGUE>\n {\STRINGGROW \yylexnext}

This code is used in section 116.

165 The name parser

What follows is an example parser for the name processing. This approach (i.e. using a ‘full blown’
parser/scanner combination) is probably not the best way to implement such machinery but its main purpose
is to demonstrate a way to create a separate parser for local purposes.
〈 small_parser.yy 165 〉 =
··
〈Name parser C preamble 186 〉
··
〈Bison options 166 〉
〈union〉 〈Union of parser types 188 〉
··
〈Name parser C postamble 187 〉
··
〈Token and types declarations 167 〉

〈Parser productions 168 〉

166 〈Bison options 166 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 full name

This code is used in section 165.

167 〈Token and types declarations 167 〉 =
%[a . . . Z 0 . . . 9]∗ 〈auto〉
[a . . . Z 0 . . . 9]∗ 〈auto〉
opt 〈auto〉

na 〈auto〉
[0 . . . 9]∗ 〈auto〉
ext 〈auto〉

This code is used in section 165.

168 〈Parser productions 168 〉 =
full name :

identifier string suffixesopt 〈Compose the full name 169 〉
identi�er string :

%[a . . . Z 0 . . . 9]∗ 〈Attach option name 170 〉
[a . . . Z 0 . . . 9]∗ 〈 Start with an identifier 171 〉
< [a . . . Z 0 . . . 9]∗ > 〈 Start with a tag 172 〉
qualifier 〈Turn a qualifier into an identifier 173 〉
identifier string [a . . . Z 0 . . . 9]∗ 〈Attach an identifier 174 〉
identifier string qualifier 〈Attach qualifier to a name 175 〉
identifier string [0 . . . 9]∗ 〈Attach an integer 176 〉

su�xesopt :
◦ Υ← 〈〉
. Υ← 〈nx\dotsp nx\sfxnone 〉
. suffixes 〈Attach suffixes 177 〉
. qualified suffixes 〈Attach qualified suffixes 178 〉

su�xes :

 THE NAME PARSER SPLINT 168
175

[a . . . Z 0 . . . 9]∗ 〈 Start with a named suffix 179 〉
[0 . . . 9]∗ 〈 Start with a numeric suffix 180 〉
suffixes . 〈Add a dot separator 181 〉
suffixes [a . . . Z 0 . . . 9]∗ 〈Attach a named suffix 183 〉
suffixes [0 . . . 9]∗ 〈Attach integer suffix 182 〉
qualifier . Υ← 〈nx\sfxn val Υ1

nx\dotsp 〉
suffixes qualifier . Υ← 〈val Υ1

nx\sfxn val Υ1
nx\dotsp 〉

quali�ed su�xes :
suffixes qualifier 〈Attach a qualifier 184 〉
qualifier 〈 Start suffixes with a qualifier 185 〉

quali�er :
opt Υ← 〈val Υ1〉
na Υ← 〈val Υ1〉
ext Υ← 〈val Υ1〉

This code is used in section 165.

169 〈Compose the full name 169 〉 =
Υ← 〈val Υ1val Υ2〉 \namecharsΥ

This code is used in section 168.

170 〈Attach option name 170 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx\optstr { xvay }{ xvby }〉
This code is used in section 168.

171 〈Start with an identifier 171 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈\idstr { xvay }{ xvby }〉
This code is used in sections 168 and 173.

172 〈Start with a tag 172 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈\idstr { <xvay> }{ <xvby> }〉
This code is used in section 168.

173 〈Turn a qualifier into an identifier 173 〉 =
〈Start with an identifier 171 〉

This code is used in section 168.

174 〈Attach an identifier 174 〉 =
π2(Υ1) 7→ va

va ← va +sx []
π1(Υ2) 7→ vb

va ← va +s vb

π3(Υ1) 7→ vb

vb ← vb +sx []
π2(Υ2) 7→ vc

vb ← vb +s vc

Υ← 〈\idstr { xvay }{ xvby }〉
This code is used in sections 168, 175, and 176.

175
188 SPLINT THE NAME PARSER 

175 〈Attach qualifier to a name 175 〉 =
〈Attach an identifier 174 〉

This code is used in section 168.

176 〈Attach an integer 176 〉 =
〈Attach an identifier 174 〉

This code is used in section 168.

177 〈Attach suffixes 177 〉 =
Υ← 〈nx\dotsp val Υ2〉

This code is used in sections 168 and 178.

178 〈Attach qualified suffixes 178 〉 =
〈Attach suffixes 177 〉

This code is used in section 168.

179 〈Start with a named suffix 179 〉 =
Υ← 〈nx\sfxn val Υ1〉

This code is used in section 168.

180 〈Start with a numeric suffix 180 〉 =
Υ← 〈nx\sfxi val Υ1〉

This code is used in section 168.

181 〈Add a dot separator 181 〉 =
Υ← 〈val Υ1

nx\dotsp 〉
This code is used in section 168.

182 〈Attach integer suffix 182 〉 =
Υ← 〈val Υ1

nx\sfxi val Υ2〉
This code is used in section 168.

183 〈Attach a named suffix 183 〉 =
Υ← 〈val Υ1

nx\sfxn val Υ2〉
This code is used in section 168.

184 〈Attach a qualifier 184 〉 =
Υ← 〈val Υ1

nx\qual val Υ2〉
This code is used in section 168.

185 〈Start suffixes with a qualifier 185 〉 =
Υ← 〈nx\qual val Υ1〉

This code is used in section 168.

186 C preamble. In this case, there are no ‘real’ actions that our grammar performs, only TEX output, so this
section is empty.
〈Name parser C preamble 186 〉 =
This code is used in section 165.

187 C postamble. It is tricky to insert function definitions that use bison’s internal types, as they have to be
inserted in a place that is aware of the internal definitions but before said definitions are used.
〈Name parser C postamble 187 〉 =
#define YYPRINT(file , type , value) yyprint (file , type , value)

static void yyprint (FILE ∗file , int type , YYSTYPEvalue)
{ }

This code is used in section 165.

 THE NAME PARSER SPLINT 188
196

188 Union of types.
〈Union of parser types 188 〉 =
This code is used in section 165.

189 The name scanner

〈 small_lexer.ll 189 〉 =
〈Lexer definitions 190 〉
································
〈Lexer C preamble 193 〉
································
〈Lexer options 194 〉

〈Regular expressions 195 〉
void define all states (void)
{

〈Collect all state definitions 191 〉
}

190 〈Lexer definitions 190 〉 =
〈Lexer states 192 〉
letter [_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]
id {letter}({letter}|[−0−9])*
int [0−9]+

This code is used in section 189.

191 〈Collect all state definitions 191 〉 =
#define register name (name) Define State (#name ,name) . nothing for now /

#undef register name

This code is used in section 189.

192 Strings and characters in directives/rules.
〈Lexer states 192 〉 =
〈states-x〉f: SC ESCAPED STRING SC ESCAPED CHARACTER

This code is used in section 190.

193 〈Lexer C preamble 193 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section 189.

194 〈Lexer options 194 〉 =
〈bison-bridge〉f ?
〈noyywrap〉f ?
〈nounput〉f ?
〈noinput〉f ?
〈reentrant〉f ?
〈noyy top state〉f ?
〈debug〉f ?
〈stack〉f ?
〈outfile〉f "small lexer.c"

This code is used in section 189.

195 〈Regular expressions 195 〉 =
〈Scan white space 196 〉
〈Scan identifiers 197 〉

This code is used in section 189.

196
197 SPLINT THE NAME SCANNER 

196 White space skipping.
〈Scan white space 196 〉 =
[\f\n\t\v] {\yylexnext}

This code is used in section 195.

197 This collection of regular expressions might seem redundant, and in its present state, it certainly is. However,
if later on the typesetting style for some of the keywords would need to be adjusted, such changes would be
easy to implement, since the template is already here.
〈Scan identifiers 197 〉 =
"%binary" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%code" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%debug" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%default−prec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%define" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%defines" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%destructor" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%dprec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%empty" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%error−verbose" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%expect" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%expect−rr" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%file−prefix" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%fixed−output−files" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%initial−action" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%glr−parser" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%language" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%left" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%lex−param" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%locations" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%merge" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%name−prefix" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%no−default−prec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%no−lines" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%nonassoc" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%nondeterministic−parser" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%nterm" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%output" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%param" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%parse−param" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%prec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%precedence" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%printer" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%pure−parser" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%require" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%right" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%skeleton" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%start" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%term" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%token" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%token−table" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%type" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%union" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%verbose" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%yacc" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%default"[−_]"prec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%error"[−_]"verbose" {\yylexreturnval { PERCENT_IDENTIFIER }}

 THE NAME SCANNER SPLINT 197
200

"%expect"[−_]"rr" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%fixed"[−_]"output"[−_]"files" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%name"[−_]"prefix" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%no"[−_]"default"[−_]"prec" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%no"[−_]"lines" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%pure"[−_]"parser" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%token"[−_]"table" {\yylexreturnval { PERCENT_IDENTIFIER }}
"%"({letter}|[0−9]|[−_]|"%"|[<>])+ {\yylexreturnval { PERCENT_IDENTIFIER }}

"opt" {\yylexreturnval { OPTIONAL }}
"na" {\yylexreturnval { NO_ATTR }}
"ext" {\yylexreturnval { EXTENDED }}

[<>._] {\yylexreturnchar}

{id} {〈Prepare to process an identifier 198 〉}
{int} {\yylexreturnval { INTEGER }}

. {〈React to a bad character 199 〉}
This code is used in section 195.

198 〈Prepare to process an identifier 198 〉 =
\yylexreturnval { IDENTIFIER }

This code is used in section 197.

199 〈React to a bad character 199 〉 =
ift [bad char]

\yycomplain { invalid character(s): val \yytext }

fi
\yylexreturn { $undefined }

This code is used in section 197.

200
203 SPLINT FORCING bison AND flex TO OUTPUT TEX 

200 Forcing bison and flex to output TEX

Instead of implementing a bison (or flex) ‘plugin’ for outputting TEX parser, the code that follows produces
a separate executable that outputs all the required tables after the inclusion of an ordinary C parser produced
by bison (or a scanner produced by flex). The actions in both bison parser and flex scanner are assumed
to be merely printf () statements that output the ‘real’ TEX actions. The code below simply cycles through
all such actions to output an ‘action switch’ appropriate for use with TEX. In every other respect, the
included parser or scanner can use any features allowed in ‘real’ parsers and scanners.

201 Common routines

The ‘top’ level of the scanner and parser ‘drivers’ is very similar, and is therefore separated into a few
sections that are common to both drivers. The layout is fairly typical and follows a standard ‘initialize-
input-process-output-clean up’ scheme. The logic behind each section of the program will be explained in
detail below.

The section below is called 〈C postamble 201 〉 because the output of the tables can happen only after the
bison (or flex) generated .c file is included and all the data structures are known.

The actual ‘assembly’ of each driver has to be done separately due to some ‘singularities’ of the CWEB
system and the design of this software. All the essential routines are presented in the sections below, though.
〈C postamble 201 〉 =
〈Outer definitions 203 〉;
〈Global variables and types 211 〉
〈Auxiliary function declarations 235 〉
〈Auxiliary function definitions 236 〉
int main (int argc , char ∗∗argv)
{
〈Local variable and type declarations 207 〉
〈Establish defaults 239 〉
〈Command line processing variables 242 〉
〈Process command line options 243 〉
switch (mode) {
〈Various output modes 202 〉

default: break;
}
if (tables out) {
〈Perform output 213 〉
〈Output action switch, if any 232 〉

}
else {

fprintf (stderr , "No output, exiting\n");
exit (0);

}
〈Clean up 206 〉
return 0;

}
This code is cited in section 201.

202 Not all the code can be supplied at this stage (most of the routines here are at the ‘top’ level so the specifics
have to be ‘filled-in’ by each driver), so many of the sections above are placeholders for the code provided
by a specific driver. However, we still need to supply a trivial definition here to placate CWEAVE whenever
this portion of the code is used isolated in documentation.
〈Various output modes 202 〉 =
This code is used in section 201.

 COMMON ROUTINES SPLINT 203
206

203 Standard library declarations for memory management routines, some syntactic sugar, command line pro-
cessing, and variadic functions are all that is needed.
〈Outer definitions 203 〉 =
#include <stdlib.h>

#include <stdbool.h>

#include <stdarg.h>

#include <assert.h>

#include <string.h>

See also section 240.

This code is used in section 201.

204 This code snippet is a payment for some poor (in my view) philosophy on the part of the bison and flex
developers. There used to be an option in bison to output just the tables and the action code but it had
never worked correctly and it was simply dropped in the latest version. Instead, one can only get access to
bison’s goodies as part of a tangled mess of #define’s and error processing code. Had the tables and the
parser function itself been considered separate, well isolated sections of bison’s output, there would simply
be no reason for dirty tricks like the one below, one would be able to write custom error processing functions,
unicorns would roam the Earth and pixies would hand open sourced tablets to everyone. At a minimum, it
would have been a much cleaner, modular approach. There is also strange reluctance on the part of the gcc
team to output any intermediate code other than the results of preprocessing and assembly. I have seen an
argument that involves some sort of appeal to making the code difficult to close source but the logic of it
escaped me completely.

Ideally, there should be no such thing as a parser generator, or a compiler, for that matter: all of these are
just basic table driven rewriting routines. Tables are hard but table driven code should not be. If one had
access to the tables themselves, and some canonical examples of code driven by such tables, like yyparse ()
and yylex (), the flexibility of these tools would improve tremendously. Barring that, this is what we have
to do now.

There are several ways to gain write access to the data declared const in C, like passing its address to a
function with no prototype. All these methods have one drawback: loopholes that make them possible have
been steadily getting on the chopping block of the C standards committee. Indeed, const data should be
constant. Even if one succeeds in getting access, there is no reason to believe that the data is not allocated
in a write-only region of the memory. The cleanest way to get write access then is to eliminate const
altogether. The code should have the same semantics after that, and the trick is only marginally bad.

The last two definitions are less innocent (and, at least the second one, are prohibited by the ISO standard
(clause 6.10.8(2), see [ISO/C11])) but gcc does not seem to mind, and it gets rid of warnings about dropping
a const qualifier whenever an assert is encountered. Since the macro is not recursively expanded, this will
only work if . . .FUNCTION__ is treated as a pseudo-variable, as it is in gcc, not a macro.

#define const
#define __PRETTY_FUNCTION__ (char ∗) __PRETTY_FUNCTION__
#define __FUNCTION__ (char ∗) __FUNCTION__

205 The output file has to be known to both parts of the code, so it is declared at the very beginning of the
program. We also add some syntactic sugar for loops.

#define forever for (; ;)
〈Common code for C preamble 205 〉 =
#include <stdio.h>

FILE ∗tables out ;

206 The clean-up portion of the code can be left empty, as all it does is close the output file, which can be left
to the operating system but we take care of it ourselves to keep out code ‘clean’ 1).

1) In case the reader has not noticed yet, this is a weak attempt at humor to break the monotony of going through the lines of
CTANGLE’d code

206
211 SPLINT COMMON ROUTINES 

〈Clean up 206 〉 =
fclose (tables out);

This code is used in section 201.

207 There is a descriptor controlling the output of the program as a whole. The code below is an example of
a literate programming technique that will be used repeatedly to maintain large structures that can grow
during the course of the program design. Note that the name of each table is only mentioned once, the rest
of the code is generic.

Technically speaking, all of this can be done with C preprocessor macros of moderate complexity, taking
advantage of its expansion rules but it is not nearly as transparent as the CWEB approach.
〈Local variable and type declarations 207 〉 =

struct output d {
〈Output descriptor fields 208 〉
};
struct output d output desc ⇐ {〈Default outputs 209 〉};

See also sections 210, 221, 225, 237, and 241.

This code is used in section 201.

208 To declare each table field in the global output descriptor, all one has to do is to provide a general pattern.
〈Output descriptor fields 208 〉 =
#define register table d (name) bool output ##name :1;
〈Table names 215 〉

#undef register table d

See also sections 219 and 226.

This code is used in section 207.

209 Same for assigning default values to each field.
〈Default outputs 209 〉 =
#define register table d (name) .output ##name ⇐ 0, . do not output any tables by default /
〈Table names 215 〉

#undef register table d

See also sections 220 and 227.

This code is used in section 207.

210 Each descriptor is populated using the same approach.
〈Local variable and type declarations 207 〉 +=
#define register table d (name) struct table d name## desc ⇐ {0};
〈Table names 215 〉

#undef register table d

211 The reason to implement the table output routine as a macro is to avoid writing separate functions for tables
of different types of data (stings as well as integers). The output is controlled by each table’s descriptor
defined below. A more sophisticated approach is possible but this code is merely a ‘patch’ so we are not
after full generality 1).
#define output table (table desc , table name , stream)

if (output desc .output ##table name) {
int i, j ⇐ 0;
fprintf (stream , table desc .preamble , table desc .name);
for (i⇐ 0; i < sizeof (table name)/sizeof (table name [0])− 1; i++) {

if (table desc .formatter) {
j

+⇐ table desc .formatter (stream , i);

1) A somewhat cleaner way to achieve the same effect is to use the _Generic facility of C11.

 COMMON ROUTINES SPLINT 211
213

}
else {

if (table name [i]) {
j

+⇐ fprintf (stream , table desc .separator , table name [i]);
}
else {
j

+⇐ fprintf (stream , "%s", table desc .null);
}

}
if (j > MAX_PRETTY_LINE ∧ table desc .prettify) {

fprintf (stream , "\n");
j ⇐ 0;

}
}
if (table desc .formatter) {

table desc .formatter (stream ,−i);
}
else {

if (table name [i]) {
fprintf (stream , table desc .postamble , table name [i]);

}
else {

fprintf (stream , "%s", table desc .null postamble);
}

}
if (table desc .cleanup) {

table desc .cleanup(&table desc);
}
}

〈Global variables and types 211 〉 =
struct table d {
〈Generic table desciptor fields 212 〉
};

See also sections 216, 218, 224, and 233.

This code is used in section 201.

212 〈Generic table desciptor fields 212 〉 =
char ∗name ;
char ∗preamble ;
char ∗separator ;
char ∗postamble ;
char ∗null postamble ;
char ∗null ;
bool prettify ;

int(∗formatter)(FILE ∗, int);
void(∗cleanup)(struct table d ∗);

This code is used in section 211.

213 Tables are output first. The action output code must come last since it changes the values of the tables to
achieve its goals. Again, a different approach is possible, that saves the data first but simplicity was deemed
more important than total generality at this point.
〈Perform output 213 〉 =
〈Output all tables 214 〉

213
219 SPLINT COMMON ROUTINES 

See also section 228.

This code is used in section 201.

214 One more application of ‘gather the names first then process’ technique.
〈Output all tables 214 〉 =
#define register table d (name) output table (name## desc ,name , tables out);
〈Table names 215 〉

#undef register table d

This code is used in section 213.

215 Tables will be output by each driver. Placeholder here, for CWEAVE’s piece of mind.
〈Table names 215 〉 =
This code is used in sections 208, 209, 210, 214, and 277.

216 Action output invokes a totally new level of dirty code. If tables, constants, and tokens are just data
structures, actions are actually code. We can only hope to cycle through all the actions which is enough to
use bison or flex successfully with TEX. The switch statement containing the actions is embedded in the
parser code so to get access to each action we have to coerce yyparse () to jump to each case. This is where
we need the table manipulation. This code is highly specific to the program used (since bison and flex
code have to be ‘reverse engineered’ to make the parser and scanner functions do what we want), here we
only declare the options controlling the level of detail and the type of actions output.
〈Global variables and types 211 〉 +=

static int bare actions ⇐ 0;
. (static for local variables) and int to pacify the compiler (for a constant initializer and compatible type) /

static int optimize actions ⇐ 0;

217 The first of the following options allows one to output an action switch without the actions themselves. It
is useful when one needs to output a TEX parser for a grammar file that is written in C. In this case it
will be impossible to cycle through actions (as no setup code has been executed), so the parser invocation is
omitted.

The second option splits the action switch into several macros to speed up the processing of the action
code.

The last argument of the ‘flexible’ macro below is supposed to be an extended description of each option
which can be later utilized by a usage () function.
〈Raw option list 217 〉 =

register option ("bare-actions",no argument ,&bare actions , 1, "")
register option ("optimize-actions",no argument ,&optimize actions , 1, "")

This code is used in section 244.

218 The rest of the action output code mimics that for table output, starting with the descriptor. To make the
output format more flexible, this descriptor should probably be turned into a specialized routine.
〈Global variables and types 211 〉 +=

struct action d {
char ∗preamble ;
char ∗act setup ;
char ∗act suffix ;
char ∗action1 ;
char ∗actionn ;
char ∗postamble ;

void(∗print rule)(int);
void(∗cleanup)(struct action d ∗);
};

 COMMON ROUTINES SPLINT 219
225

219 〈Output descriptor fields 208 〉 +=
bool output actions :1;

220 Nothing is output by default, including actions.
〈Default outputs 209 〉 +=
.output actions ⇐ 0,

221 〈Local variable and type declarations 207 〉 +=
struct action d action desc ⇐ {0};

222 The function below outputs the TEX code of each action when the appropriate action is ‘run’ by the action
output switch. The main concern in designing these functions is to make the code easier to look at. Further
explanation is given in the grammar file. If the parser is doing its job, this is the only place where one would
actually see these as functions (or, rather, macros).

In compliance with paragraph 6.10.8(2) 1) of the ISO C11 standard the names of these macros do not start
with an underscore, since the first letter of TeX is uppercase 2).

#define TeX_(string) fprintf (tables out , " %s%%\n", string)
〈C preamble 222 〉 =
#define TeX__(string , . . .) fprintf (tables out , " "string"%s\n", __VA_ARGS__, "%")

223 TEX tables

We begin with a few macros to facilitate the output of tables in the format that TEX can understand. There
is really no good way to represent an array in TEX so a rather weak compromise was chosen. Further
explanation of this choice is given in the TEX file that implements the TEX parser for the bison input
grammar. Some tables require name adjustments due to TEX’s reluctance to treat digits as part of a name.

#define tex table generic(table name) table name## desc .preamble ⇐ "\\newtable{%s}{%%\n";
table name## desc .separator ⇐ "%d\\or ";
table name## desc .postamble ⇐ "%d}%%\n";
table name## desc .null postamble ⇐ "0}%%\n";
table name## desc .null ⇐ "0\\or ";
table name## desc .prettify ⇐ true ;
table name## desc .formatter ⇐ Λ;
table name## desc .cleanup ⇐ Λ;
output desc .output ##table name ⇐ 1;

#define tex table (table name) tex table generic(table name);
table name## desc .name ⇐ #table name ;

224 Outputting constants. An approach paralleling the table output scheme is taken with constants. Since
constants are C macros one has to be careful to avoid the temptation of using constant names directly as
names for fields in structures. They will simply be replaced by the constants’ values. When the names
are concatenated with other tokens, however, the C preprocessor postpones the macro expansion until the
concatenation is complete (see clauses 6.10.3.1, 6.10.3.2, and 6.10.3.3 of the ISO C Standard, [ISO/C11]).
Unless the result of the concatenation is still expandable, the expansion will halt.
〈Global variables and types 211 〉 +=

struct const d {
char ∗format ;
char ∗name ;
};

1) [. . .] Any other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second un-
derscore. 2) One might wonder why one of these functions is defined as a CWEB macro while the other is put into the pream-
ble ‘by hand’. It really makes no difference, however, the reason the second macro is defined explicitly is CWEB’s lack of aware-
ness of ‘variadic’ macros which produces undesirable typesetting artefacts.

225
235 SPLINT TEX TABLES 

225 〈Local variable and type declarations 207 〉 +=
#define register const d (c name) struct const d c name## desc ;
〈Constant names 230 〉

#undef register const d

226 〈Output descriptor fields 208 〉 +=
#define register const d (c name) bool output ##c name :1;
〈Constant names 230 〉

#undef register const d

227 〈Default outputs 209 〉 +=
#define register const d (c name) .output ##c name ⇐ 0,
〈Constant names 230 〉

#undef register const d

228 〈Perform output 213 〉 +=
fprintf (tables out , "%%\n%% constant definitions\n%%\n");
〈Output constants 229 〉

229 〈Output constants 229 〉 =
{ int any constants ⇐ 0;

#define register const d (c name)
if (output desc .output ##c name) {

const out (tables out , c name## desc , c name)
any constants ⇐ 1;

}
〈Constant names 230 〉

#undef register const d
if (any constants) ; . this is merely a placeholder statement /
}

This code is used in section 228.

230 Constants are very driver specific, so to make CWEAVE happy . . .
〈Constant names 230 〉 =
This code is used in sections 225, 226, 227, and 229.

231 A macro to help with constant output.
#define const out (stream , c desc , c name) fprintf (stream , c desc .format , c desc .name , c name);

232 Action switch output routines modify the automata tables and therefore have to be output last. Since action
output is highly automaton specific, we leave this section blank here, to pacify CWEAVE in case this file is
typeset by itself.
〈Output action switch, if any 232 〉 =
This code is used in section 201.

233 Error codes

〈Global variables and types 211 〉 +=
enum err codes {
〈Error codes 234 〉 LAST_ERROR
};

234 〈Error codes 234 〉 =
NO_MEMORY, BAD_STRING, BAD_MIX_FORMAT,

See also section 298.

This code is used in section 233.

 ERROR CODES SPLINT 235
236

235 A lot more care is necessary to output the token table. A number of precautions are taken to ensure that
a maximum possible range of names can be passed safely to TEX. This involves some manipulation of
\catcode’s and control characters. The complicated part is left to TEX so the output code can be kept
simple. The helper function below is used to ‘combine’ two strings.
#define MAX_PRETTY_LINE 100
〈Auxiliary function declarations 235 〉 =

char ∗mix string (char ∗format , . . .);

This code is used in section 201.

236 〈Auxiliary function definitions 236 〉 =
char ∗mix string (char ∗format , . . .)
{

char ∗buffer ;
size t size ⇐ 0;
int length ⇐ 0;
int written ⇐ 0;
char ∗formatp ⇐ format ;
va list ap , ap save ;

va start (ap , format);
va copy (ap save , ap);
size ⇐ strnlen (format , MAX_PRETTY_LINE ∗ 5);
if (size > MAX_PRETTY_LINE ∗ 5) {

fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
while ((formatp ⇐ strstr (formatp , "%"))) {

switch (formatp [1]) {
case ’s’:

length ⇐ strnlen (va arg (ap , char ∗), MAX_PRETTY_LINE ∗ 5);
if (length > MAX_PRETTY_LINE ∗ 5) {

fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
size

+⇐ length ;

size
−⇐ 2;

formatp ++;
break;

case ’%’:
size−−;

formatp
+⇐ 2;

default: printf ("%s: cannot handle %%%c in mix string format\n", func , formatp [1]);
exit (BAD_MIX_FORMAT);

}
}
buffer ⇐ (char ∗) malloc(sizeof (char) ∗ size + 1);
if (buffer) {

written ⇐ vsnprintf (buffer , size + 1, format , ap save);
if (written < 0 ∨ written > size) {

fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
}
else {

fprintf (stderr , "%s: failed to allocate memory for the output string\n", func);
exit (NO_MEMORY);

}

236
243 SPLINT ERROR CODES 

va end (ap);
va end (ap save);
return buffer ;

}
This code is used in section 201.

237 Initial setup

Depending on the output mode (right now only TEX and ‘tokens only’ (in the bison ‘driver’) are supported)
the format of each table, action field and token has to be set up.
〈Local variable and type declarations 207 〉 +=

enum output mode {
〈Output modes 238 〉 LAST_OUT
};

238 And to calm down CWEAVE . . .

〈Output modes 238 〉 =
This code is used in section 237.

239 TEX is the main output mode.
〈Establish defaults 239 〉 =

enum output mode mode ⇐ TEX_OUT;

This code is used in section 201.

240 Command line processing

This program uses a standard way of parsing the command line, based on getopt long . At the heart of the
setup are the array below with a couple of supporting variables.
〈Outer definitions 203 〉 +=
#include <unistd.h>

#include <getopt.h>

#include <string.h>

241 〈Local variable and type declarations 207 〉 +=
const char ∗usage ⇐ "%s [options] output_file\n";

242 〈Command line processing variables 242 〉 =
int c, option index ⇐ 0;

enum higher options {
NON_OPTION ⇐ FF16, 〈Higher index options 246 〉 LAST_HIGHER_OPTION
};
static struct option long options []⇐ {
〈Long options array 244 〉
{0, 0, 0, 0}};

This code is used in section 201.

243 The main loop of the command line option processing follows. This can be used as a template for setting
up the option processing. The specific cases are added to in the course of adding new features.
〈Process command line options 243 〉 =

opterr ⇐ 0; . we do our own error reporting /

forever
{
c⇐ getopt long (argc , argv , ":"〈 Short option list 245 〉, long options ,&option index);
if (c = −1) break;
switch (c) {

 COMMAND LINE PROCESSING SPLINT 243
248

case 0: . it is a flag, the name is kept in long options [option index].name , and the value can be found in
long options [option index].val /

break;
〈Cases affecting the whole program 247 〉;
〈Cases involving specific modes 248 〉;
case ’?’:

fprintf (stderr , "Unknown option: ‘%s’, see ‘Usage’ below\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;

case ’:’:
fprintf (stderr , "Missing argument for ‘%s’\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;

default:
printf ("warning: feature ‘%c’ is not yet implemented\n", c);

}
}
if (optind > argc) {

fprintf (stderr , "No output file specified!\n");
}
else {

tables out ⇐ fopen (argv [optind ++], "w");
}
if (optind < argc) {

printf ("script files to be loaded: ");
while (optind < argc) printf ("%s ", argv [optind ++]);
putchar (’\n’);

}
This code is used in section 201.

244 〈Long options array 244 〉 =
#define register option (name , arg flag , loc , val , exp) {name , arg flag , loc , val },
〈Raw option list 217 〉

#undef register option

This code is used in section 242.

245 In addition to spelling out the full command line option name (such as --help) getopt long gives the user
a choice of using a shortcut (say, -h). As individual options are treated in drivers themselves, there are no
shortcuts to supply at this point. We leave this section (and a number of others) empty to be filled in with
the driver specific code to pacify CWEAVE.
〈Short option list 245 〉 =
This code is used in section 243.

246 Some options have one-letter ‘shortcuts’, whereas others only exist in ‘fully spelled-out’ form. To easily keep
track of the latter, a special enumerated list is declared. To add to this list, simply add to the CWEB section
below.
〈Higher index options 246 〉 =
This code is used in section 242.

247 〈Cases affecting the whole program 247 〉 =
This code is used in section 243.

248
254 SPLINT COMMAND LINE PROCESSING 

248 〈Cases involving specific modes 248 〉 =
This code is used in section 243.

249 bison specific routines

The placeholder code left blank in the common routines is filed in with the code relevant to the output of
parser tables in the following sections.

250 Tables

Here are all the parser table names. Some tables are not output but adding one to the list in the future will
be easy: it does not even have to be done here.
〈Parser table names 250 〉 =

register table d (yytranslate)
register table d (yyr1)
register table d (yyr2)
register table d (yydefact)
register table d (yydefgoto)
register table d (yypact)
register table d (yypgoto)
register table d (yytable)
register table d (yycheck)
register table d (yyprhs)
register table d (yyrhs)
register table d (yytoknum)
register table d (yystos)
register table d (yytname)

See also section 255.

251 One special table requires a little bit more preparation. This is a table that lists the depth of the stack before
an implicit terminal. It is not one of the tables that is used by bison itself but is needed if the symbolic
name processing is to be implemented (bison has access to this information ‘on the fly’).
〈Variables and types local to the parser 251 〉 =

unsigned int yyrthree [YYNRULES + 1]⇐ {0};
See also sections 258 and 291.

252 We populate this table below . . .

〈Parser defaults 252 〉 =
assert (YYNRULES + 1 = sizeof (yyprhs)/sizeof (yyprhs [0]));
{

int i, j;

for (i⇐ 1; i 6 YYNRULES; i++) {
for (j ⇐ 0; yyrhs [yyprhs [i] + j] 6= −1; j++) {

assert (yyprhs [i] + j < sizeof (yyrhs));
assert (j < yyr1 [i]);
if (〈This is an implicit term 253 〉) {
〈Find the rule that defines it and set yyrthree 254 〉

}
}
}
}

253 〈This is an implicit term 253 〉 =
(strlen (yytname [yyrhs [yyprhs [i] + j]]) > 1) ∧ (yytname [yyrhs [yyprhs [i] + j]][0] =

’Υ’) ∧ (yytname [yyrhs [yyprhs [i] + j]][1] = ’@’)

This code is used in section 252.

 TABLES SPLINT 254
257

254 〈Find the rule that defines it and set yyrthree 254 〉 =
int rule number ;

for (rule number ⇐ 1; rule number < YYNRULES; rule number ++) {
if (yyr1 [rule number] = yyrhs [yyprhs [i] + j]) {

yyrthree [rule number]⇐ j;
break;

}
}
assert (rule number < YYNRULES);

This code is used in section 252.

255 . . . and add its name to the list.
〈Parser table names 250 〉 +=

register table d (yyrthree)

256 Actions

There are several ways of making yyparse () execute all portions of the action code. The one chosen here
makes sure that none of the tables gets written past its last element. To see how it works, it might be helpful
to ‘walk through’ bison’s output to see how each change affects the generated parser.
〈Output parser semantic actions 256 〉 =

if (output desc .output actions) {
int i, j;

fprintf (tables out , "%s", action desc .preamble);
if (notbare actions) {

yypact [0]⇐ YYPACT_NINF;
yypgoto [0]⇐ −1;
yydefgoto [0]⇐ YYFINAL;

}
for (i⇐ 1; i < sizeof (yyr1)/sizeof (yyr1 [0]); i++) {

fprintf (tables out , action desc .act setup , i, yyr2 [i]− 1);
if (action desc .print rule) {

action desc .print rule (i);
}
if (yyr2 [i] > 0) {

if (action desc .action1) {
fprintf (tables out , "%s", action desc .action1);

}
}
for (j ⇐ 2; j 6 yyr2 [i]; j++) {

if (action desc .actionn) {
fprintf (tables out , action desc .actionn , j);

}
}
if (notbare actions) {

yyr1 [i]⇐ YYNTOKENS;
yydefact [0]⇐ i;
yyr2 [i]⇐ 0;
yyparse (YYPARSE_PARAMETERS);

}
fprintf (tables out , action desc .act suffix , i, yyr2 [i]− 1);

}
fprintf (tables out , "%s", action desc .postamble);
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}

257
263 SPLINT CONSTANTS 

257 Constants

〈Parser constants 257 〉 =
register const d (YYEMPTY)
register const d (YYPACT_NINF)
register const d (YYEOF)
register const d (YYLAST)
register const d (YYNTOKENS)
register const d (YYNRULES)
register const d (YYNSTATES)
register const d (YYFINAL)

This code is used in section 283.

258 Tokens

Similar techniques are employed in token output. Tokens are parser specific (the scanner only needs their
numeric values) so we need some flexibility to output them in a desired format. For special purposes (say
changing the way tokens are typeset) we can control the format tokens are output in.
〈Variables and types local to the parser 251 〉 +=

char ∗token format char ⇐ Λ;
char ∗token format affix ⇐ Λ;
char ∗token format suffix ⇐ Λ;
char ∗bootstrap token format ⇐ Λ;

259 〈Parser specific option list 259 〉 =
register option ("token-format-char", required argument , 0, TOKEN_FORMAT_CHAR, "")
register option ("token-format-affix", required argument , 0, TOKEN_FORMAT_AFFIX, "")
register option ("token-format-suffix", required argument , 0, TOKEN_FORMAT_SUFFIX, "")
register option ("bootstrap-token-format", required argument , 0, BOOTSTRAP_TOKEN_FORMAT, "")

See also sections 269, 286, and 289.

260 〈Higher index parser specific options 260 〉 =
TOKEN_FORMAT_CHAR, TOKEN_FORMAT_AFFIX, TOKEN_FORMAT_SUFFIX, BOOTSTRAP_TOKEN_FORMAT,

See also sections 270 and 285.

261 〈Handle parser output options 261 〉 =
case TOKEN_FORMAT_CHAR:

token format char ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format char , optarg);
break;

case TOKEN_FORMAT_AFFIX:
token format affix ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format affix , optarg);
break;

case TOKEN_FORMAT_SUFFIX:
token format suffix ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format suffix , optarg);
break;

case BOOTSTRAP_TOKEN_FORMAT:
bootstrap token format ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (bootstrap token format , optarg);
break;

See also sections 288 and 292.

262 〈Parser specific output descriptor fields 262 〉 =
bool output tokens :1;

 TOKENS SPLINT 263
267

263 No tokens are output by default.
〈Parser specific default outputs 263 〉 =
.output tokens ⇐ 0,

264 The only part of the code below that needs any explanation is the ‘bootstrap’ token output. In bison every
token has three attributes: its ‘macro name’ (say, STRING) that is used by the parse code internally, its
‘print name’ ("string" to continue the example) that bison uses to print the token names in its diagnostic
messages, and its numeric value (that can be assigned implicitly by bison itself or explicitly by the user).
Only the ‘print names’ are kept in the yytname array so to reuse the scanner used by bison we either have
to extract the token ‘macro names’ from the C code ourselves to pass them on to the lexer, or use a special
‘stripped down’ version of a bison grammar parser to extract the names from the parser’s bison grammar.
To do this, some token names would still need to be known to the scanner. These tokens are selected by
hand to make the ‘bootstrapping’ parser operational. The token list for the bison grammar parser can be
examined as part of the appropriate driver file.
〈Output parser tokens 264 〉 =

if (output desc .output tokens) {
int i;
int length ;
char token ;
char ∗token name ;
bool too creative ⇐ false ;

for (i⇐ 258; i < sizeof (yytranslate)/sizeof (yytranslate [0]); i++) {
token name ⇐ yytname [yytranslate [i]];
if (token name) {

fprintf (tables out , token format affix , yytranslate [i], i);
length ⇐ 0;
while ((token ⇐ ∗token name)) {

if (token format char) {
length

+⇐ fprintf (tables out , token format char , (unsigned int) token);
}
if (token < ◦40 ∨ token = ◦177) {

too creative ⇐ true ;
}
token name ++;

}
fprintf (tables out , token format suffix , too creative ? ".unprintable." : yytname [yytranslate [i]]);

}
}
}

#ifdef BISON_BOOTSTRAP_MODE

fprintf (tables out , "\\bootstrapmodetrue\n");
fprintf (tables out , "%% token values needed to bootstrap the parser\n");
bootstrap tokens (bootstrap token format);

#endif

265 The size of the token name table is useful to determine, say, how many ‘named’ tokens the parser uses.
〈Output parser constants 265 〉 =

fprintf (tables out , "\\constset{YYTRANSLATESIZE}{%d}%%\n", (int)(sizeof (yytranslate)/sizeof (yytranslate [0])));

266 Output modes

The code below can be easily extended and modified to output parser tables, actions, and constants in a
language of one’s choice. We are only interested in TEX, however, thus other modes are very rudimentary
or non-existent at this point.

267
276 SPLINT TOKEN ONLY MODE 

267 Token only mode

Token only output mode does exactly what is expected: outputs token names and values in the format of
your choosing.
〈Parser specific output modes 267 〉 =
TOKEN_ONLY_OUT,

See also sections 273 and 275.

268 〈Handle parser related output modes 268 〉 =
case TOKEN_ONLY_OUT:
〈Prepare token only output environment 272 〉
break;

See also sections 274 and 276.

269 〈Parser specific option list 259 〉 +=
register option ("token-only-mode",no argument , 0, TOKEN_ONLY_MODE, "")

270 〈Higher index parser specific options 260 〉 +=
TOKEN_ONLY_MODE,

271 〈Configure parser output modes 271 〉 =
case TOKEN_ONLY_MODE:

mode ⇐ TOKEN_ONLY_OUT;
break;

272 〈Prepare token only output environment 272 〉 =
if (nottoken format char) {

token format char ⇐ "{%u}";
}
if (nottoken format affix) {

token format affix ⇐ "%% token: %d, token value: %d\n\\prettytoken@{";
}
if (nottoken format suffix) {

token format suffix ⇐ "}%% %s\n";
}
output desc .output tokens ⇐ 1;

This code is used in section 268.

273 Generic output

Generic output is not programmed yet.
〈Parser specific output modes 267 〉 +=
GENERIC_OUT,

274 〈Handle parser related output modes 268 〉 +=
case GENERIC_OUT:

printf ("This mode is not supported yet\n");
exit (0);
break;

275 TEX output

The TEX mode is the main reason for this software.
〈Parser specific output modes 267 〉 +=
TEX_OUT,

 TEX OUTPUT SPLINT 276
279

276 〈Handle parser related output modes 268 〉 +=
case TEX_OUT:
〈Set up TEX table output for parser tables 277 〉
〈Prepare TEX format for semantic action output 281 〉
〈Prepare TEX format for parser constants 283 〉
〈Prepare TEX format for parser tokens 284 〉
break;

277 TEX tables. We begin with a few macros to facilitate the output of tables in the format that TEX can
understand. There is really no good way to represent an array in TEX so a rather weak compromise was
chosen. Further explanation of this choice is given in the TEX file that implements the TEX parser for the
bison input grammar. Some tables require name adjustments due to TEX’s reluctance to treat digits as part
of a name.
〈Set up TEX table output for parser tables 277 〉 =
#define register table d (name)tex table (name);
〈Table names 215 〉

#undef register table d
yyr1 desc .name ⇐ "yyrone";
yyr2 desc .name ⇐ "yyrtwo";

See also section 280.

This code is used in section 276.

278 The memory allocated for the yytname table is released at the end.
〈Helper functions declarations for for parser output 278 〉 =

void yytname cleanup(struct table d ∗table);
int yytname formatter tex (FILE ∗stream , int index);
int yytname formatter (FILE ∗stream , int index);

279 There are a number of helper functions to output complicated names in TEX. The safest way seems to be
to output a name as a sequence of its ASCII codes to accommodate names like $end safely. TEX’s ^^. . .
convention is supported as well.
〈Helper functions for parser output 279 〉 =

void yytname cleanup(struct table d ∗table)
{

free (table⇁separator);
free (table⇁null);

}
int yytname formatter tex (FILE ∗stream , int index)
{

char ∗token name ⇐ yytname [index];
unsigned char token ;
int length ⇐ 0;

fprintf (stream , "\\addname ");
while ((token ⇐ ∗token name)) {

if (token < ◦40 ∨ token = ◦177) { . unprintable characters /
fprintf (stream , "^^%c", token < ◦100 ? (unsigned char)(token + ◦100) : (unsigned char)(token − 100));

length
+⇐ 3;

}
else {

fprintf (stream , "%c", token);
length ++;

}
token name ++;

}
fprintf (stream , "\n");

279
281 SPLINT TEX OUTPUT 

return length ;
}
int yytname formatter (FILE ∗stream , int index)
{

char ∗token name ;
unsigned char token ;
int length ⇐ 0;
bool too creative ⇐ false ; . to indicate if the name is too dangerous to print /

fprintf (stream , "\\addname");
if (index > 0) { . this is not the last name /

token name ⇐ yytname [index];
if (token name = Λ) {

token name ⇐ "$impossible";
}
while ((token ⇐ ∗token name)) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token);

if (token < ◦40 ∨ token = ◦177) {
too creative ⇐ true ;

}
token name ++;

}
fprintf (stream , "%% %s\n", too creative ? ".unprintable." : yytname [index]);

}
else { . this is the last name /

token name ⇐ yytname [−index];
if (token name = Λ) {

token name ⇐ "$impossible";
}
while ((token ⇐ ∗token name)) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token);

token name ++;
if (token < ◦40 ∨ token = ◦177) {

too creative ⇐ true ;
}

}
fprintf (stream , "%% %s\n\\end\n%%\n",

too creative ? ".unprintable." : (yytname [−index] ? yytname [−index] : "end of array"));
}
return length ;

}
See also section 282.

280 〈Set up TEX table output for parser tables 277 〉 +=
yytname desc .preamble ⇐ "%%\n\\newtable{yytname}{}\\tempca0\\relax%% a robust way to\

 add the yytname array\n";
yytname desc .separator ⇐ Λ;
yytname desc .postamble ⇐ Λ;
yytname desc .null ⇐ Λ;
yytname desc .null postamble ⇐ Λ;
yytname desc .prettify ⇐ false ;
yytname desc .formatter ⇐ yytname formatter ;
yytname desc .cleanup ⇐ Λ;
output desc .output yytname ⇐ 1;

 TEX OUTPUT SPLINT 281
283

281 〈Prepare TEX format for semantic action output 281 〉 =
if (optimize actions) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

" \\csname dobisonaction\\number #1\\parsernamespace\\endcsname\n"

"}\\stashswitch{yybigswitch}%%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname dobisonaction%d\\parsernamespa\

ce\\endcsname{%%\n%%";
action desc .act suffix ⇐ "}%% end of rule %d\n";
action desc .action1 ⇐ Λ;
action desc .actionn ⇐ Λ;
action desc .postamble ⇐ "\n\\catcode‘\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

" \\ifcase#1\\relax\n";
action desc .act setup ⇐ " \\or %% (rule %d) ";
action desc .act suffix ⇐ "";
action desc .action1 ⇐ Λ;
action desc .actionn ⇐ Λ;
action desc .postamble ⇐ " \\else\n \\fi\n}\\stashswitch{yybigswitch}%%\n\\catcode‘\

\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 276.

282 Grammar rules are listed in a readable form alongside the action code to make it possible to quickly find an
appropriate action.
〈Helper functions for parser output 279 〉 +=

void print rule (int n)
{

int i;

fprintf (tables out , "%s%s: ", (n < 10 ∧ notoptimize actions ? " " : ""), yytname [yyr1 [n]]);
i⇐ yyprhs [n];
if (yyrhs [i] < 0) {

fprintf (tables out , "<empty>");
}
else {

while (yyrhs [i] > 0) {
fprintf (tables out , "%s ", yytname [yyrhs [i]]);
i++;

}
}
fprintf (tables out , "\n");

}

283
289 SPLINT TEX OUTPUT 

283 TEX constant output is another place where the techniques described above are applied. As before, the
macro handles the repetitive work of initialization, declaration, etc in each place where the corresponding
constant is mentioned. The one exception is YYPACT_NINF, which has to be handled separately because the
underscore in its name makes it difficult to use it as a command sequence name.
〈Prepare TEX format for parser constants 283 〉 =
#define register const d (c name) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

c name## desc .name ⇐ #c name ;
output desc .output ##c name ⇐ 1;
〈Parser constants 257 〉

#undef register const d
YYPACT_NINF_desc .name ⇐ "YYPACTNINF";

This code is used in section 276.

284 Token definitions round off the TEX output mode.
〈Prepare TEX format for parser tokens 284 〉 =

token format char ⇐ Λ; . do not output individual characters /
if (nottoken format affix) {

token format affix ⇐ "\\tokenset{%d}{%d}";
}
if (nottoken format suffix) {

token format suffix ⇐ "%% %s\n";
}
if (notbootstrap token format) {

bootstrap token format ⇐ "\\expandafter\\def\\csname token\\parsernamespace %s\\endcs\
name{%d}%% %s\n";

} . output desc .output tokens ⇐ 1; is no longer necessary as it is done entirely in TEX /

This code is used in section 276.

285 Command line options

We start with the most obvious option, the one begging for help.
〈Higher index parser specific options 260 〉 +=
LONG_HELP,

286 〈Parser specific option list 259 〉 +=
register option ("help",no argument , 0, LONG_HELP, "")

287 〈Shortcuts for command line options affecting parser output 287 〉 =
"h"

See also section 290.

288 〈Handle parser output options 261 〉 +=
case ’h’: . short help /

fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n"" and constants for a TeX parser\n",
argv [0]);

exit (0);
break; . should not be needed /

 COMMAND LINE OPTIONS SPLINT 289
295

289 〈Parser specific option list 259 〉 +=
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-parse", required argument , 0, ’p’, "") . run the parser /
register option ("parse-file", required argument , 0, ’i’, "") . input for the parser /

290 The string below is a list of short options.
〈Shortcuts for command line options affecting parser output 287 〉 +=
"z:m:f:t:"

291 A few options can be immediately discussed.
〈Variables and types local to the parser 251 〉 +=

char ∗table separator ⇐ "%s ";

292 〈Handle parser output options 261 〉 +=
case ’m’: . output mode /

switch (optarg [0]) {
case ’T’: case ’t’:

mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (table separator , optarg);
break;

293 flex specific routines

The output of the scanner automaton consists of similar steps to the parser output. The major difference is
actions and constants.

294 Tables

As in the case of a parser we start with all the table names.
〈Scanner table names 294 〉 =

register table d (yy accept)
register table d (yy ec)
register table d (yy meta)
register table d (yy base)
register table d (yy def)
register table d (yy nxt)
register table d (yy chk)

295
297 SPLINT ACTIONS 

295 Actions

The scanner function, yylex (), has been reverse engineered to execute all portions of the action code. The
method chosen here makes sure that none of the tables gets written past its last element.
〈Variables and types local to the scanner driver 295 〉 =

int max yybase entry ⇐ 0;
int max yyaccept entry ⇐ 0;
int max yynxt entry ⇐ 0;
int max yy ec entry ⇐ 0;

See also sections 299 and 319.

296 The ‘exotic’ scanner constants treated below are the constants used to control the scanner code itself.
Unfortunately they are not given any names which can be used by the ‘driver’ to output them in a simple
way.
〈Compute exotic scanner constants 296 〉 =
{

int i;

for (i⇐ 0; i < sizeof (yy base)/sizeof (yy base [0]); i++) {
if (yy base [i] > max yybase entry) {

max yybase entry ⇐ yy base [i];
}
}
for (i⇐ 0; i < sizeof (yy nxt)/sizeof (yy nxt [0]); i++) {

if (yy nxt [i] > max yynxt entry) {
max yynxt entry ⇐ yy nxt [i];

}
}
for (i⇐ 0; i < sizeof (yy accept)/sizeof (yy accept [0]); i++) {

if (yy accept [i] > max yyaccept entry) {
max yyaccept entry ⇐ yy accept [i];

}
}
for (i⇐ 0; i < sizeof (yy ec)/sizeof (yy ec [0]); i++) {

if (yy ec [i] > max yy ec entry) {
max yy ec entry ⇐ yy ec [i];

}
}
}

297 〈Output scanner actions 297 〉 =
if (output desc .output actions) {

int i, j;

yyscan t fake scanner ;
fprintf (tables out , "%s", action desc .preamble);
if (notbare actions) {

if (yylex init (&fake scanner)) {
printf ("Cannot initialize the scanner\n");

}
yy ec [0]⇐ 0;
yy base [1]⇐ max yybase entry ;
yy chk [max yybase entry]⇐ 1;
yy nxt [max yybase entry]⇐ 1;

}
for (i⇐ 1; i 6 max yyaccept entry ; i++) {

fprintf (tables out , action desc .act setup , i);
if (i = YY_END_OF_BUFFER) {

 ACTIONS SPLINT 297
300

fprintf (tables out , " %% YY_END_OF_BUFFER\n%s\n", " \\yylexeofaction");
}
else {

fprintf (tables out , "\n");
if (notbare actions) {

((struct yyguts t ∗) fake scanner)⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
yylex (Λ, fake scanner);

}
}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , " %% end of file states:\n%s\n",

" %#define YY_STATE_EOF(state) (YY_END_OF_BUFFER + state + 1)");
if (max eof state = 0) { . in case the user has not declared any states /

max eof state ⇐ YY_STATE_EOF(INITIAL);
}
for (; i 6 max eof state ; i++) {

fprintf (tables out , action desc .act setup , i);
if (notbare actions) {

fprintf (tables out , "\n");
((struct yyguts t ∗) fake scanner)⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
yylex (Λ, fake scanner);

}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , "%s", action desc .postamble);
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}
〈Compute magic constants 300 〉
〈Output states 302 〉;
fprintf (tables out , "\\constset{YYECMAGIC}{%d}%%\n", yy ec magic);
fprintf (tables out , "\\constset{YYMAXEOFSTATE}{%d}%%\n",max eof state);

298 〈Error codes 234 〉 +=
BAD_SCANNER,

299 〈Variables and types local to the scanner driver 295 〉 +=
int yy ec magic ;

300 The ‘magic’ constants are similar to the ‘exotic’ ones mentioned above except the methods used to compute
them rely on reverse engineering the scanner function. Since this changes the scanner tables it has to be
done after the ‘driver’ has finished going through all the actions.
〈Compute magic constants 300 〉 =
{

int i, j;
char fake yytext [YY_MORE_ADJ + 1];

yyscan t yyscanner ;

struct yyguts t ∗yyg ;

if (yylex init (&yyscanner)) {
printf ("Cannot initialize the scanner\n");
exit (BAD_SCANNER);

}

300
302 SPLINT ACTIONS 

yyg ⇐ (struct yyguts t ∗) yyscanner ;
yyg⇁yy start ⇐ 0;
yy set bol (0);
yyg⇁yytext ptr ⇐ fake yytext ;
yyg⇁yy c buf p ⇐ yyg⇁yytext ptr + 1 + YY_MORE_ADJ;
fake yytext [YY_MORE_ADJ]⇐ 0; . ∗yy cp ⇐ 0; /
yy accept [0]⇐ 0;
yy base [0]⇐ 0;
for (i⇐ 0; i < sizeof (yy chk)/sizeof (yy chk [0]); i++) {

yy chk [i]⇐ 0;
}
for (i⇐ 0; i < sizeof (yy nxt)/sizeof (yy nxt [0]); i++) {

yy nxt [i]⇐ i;
}
yy ec magic ⇐ yy get previous state (yyscanner);

}
This code is used in section 297.

301 State names

There is no easy way to output the symbolic names for states, so this has to be done by hand while actions
are output. The state names are accumulated in a list structure and are printed out after action output is
complete.

Note that parsing the scanner file would not help (even though the extended lexer and scanner can recognize
the %x option). All it can do is output the state names but not their numerical values, since the state names
are macros and their values are only known to the flex generated scanner.

#define Define State (st name , st num) do {
struct lexer state d ∗this state ;
this state ⇐ malloc(sizeof (struct lexer state d));
this state⇁name ⇐ st name ;
this state⇁value ⇐ st num ;
this state⇁next ⇐ Λ;
if (last state) {

last state⇁next ⇐ this state ;
last state ⇐ this state ;

}
else {

last state ⇐ state list ⇐ this state ;
}
if (YY_STATE_EOF(st num) > max eof state) {

max eof state ⇐ YY_STATE_EOF(st num);
}
} while (0);

〈Scanner variables and types for C preamble 301 〉 =
int max eof state ⇐ 0;
struct lexer state d {

char ∗name ;
int value ;
struct lexer state d ∗next ;
};
struct lexer state d ∗state list ⇐ Λ;
struct lexer state d ∗last state ⇐ Λ;

 STATE NAMES SPLINT 302
309

302 〈Output states 302 〉 =
{

struct lexer state d ∗current state ;
struct lexer state d ∗next state ;

current state ⇐ next state ⇐ state list ;
if (current state) {

fprintf (tables out , "\\def\\setflexstates{%%\n"" \\stateset{INITIAL}{%d}%%\n", INITIAL);
while (current state) {

fprintf (tables out , " \\stateset{%s}{%d}%%\n", current state⇁name , current state⇁value);
current state ⇐ current state⇁next ;
free (next state);
next state ⇐ current state ; . the name field is not deallocated because it is not allocated on the heap /

}
fprintf (tables out , "}%%\n%%\n");

}
}

This code is used in section 297.

303 Constants

〈Scanner constants 303 〉 =
register const d (YY_END_OF_BUFFER_CHAR)
register const d (YY_NUM_RULES)
register const d (YY_END_OF_BUFFER)

This code is used in section 311.

304 Output modes

The output modes are the same as in the case of the parser with minor changes.

305 Generic output

Generic output is not programmed yet.
〈Scanner specific output modes 305 〉 =
GENERIC_OUT,

See also section 307.

306 〈Handle scanner output modes 306 〉 =
case GENERIC_OUT:

printf ("This mode is not supported yet\n");
exit (0);
break;

See also section 308.

307 TEX mode

The TEX mode is the main focus of this software.
〈Scanner specific output modes 305 〉 +=
TEX_OUT,

308 〈Handle scanner output modes 306 〉 +=
case TEX_OUT:
〈Set up TEX format for scanner tables 309 〉
〈Set up TEX format for scanner actions 310 〉
〈Prepare TEX format for scanner constants 311 〉
break;

309
311 SPLINT TEX MODE 

309 〈Set up TEX format for scanner tables 309 〉 =
tex table generic(yy accept);
yy accept desc .name ⇐ "yyaccept";
tex table generic(yy ec);
yy ec desc .name ⇐ "yyec";
tex table generic(yy meta);
yy meta desc .name ⇐ "yymeta";
tex table generic(yy base);
yy base desc .name ⇐ "yybase";
tex table generic(yy def);
yy def desc .name ⇐ "yydef";
tex table generic(yy nxt);
yy nxt desc .name ⇐ "yynxt";
tex table generic(yy chk);
yy chk desc .name ⇐ "yychk";

This code is used in section 308.

310 〈Set up TEX format for scanner actions 310 〉 =
if (optimize actions) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n"

" \\let\\yylextail\\yylexcontinue\n"

" \\csname doflexaction\\number #1\\parsernamespace\\endcsname\n"

" \\yylextail\n"

"}\\stashswitch{yydoactionswitch}%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname doflexaction%d\\parsernamespac\

e\\endcsname{%%\n"" \\YYRULESETUP";
action desc .act suffix ⇐ "}%% end of rule %d\n";
action desc .action1 ⇐ Λ;
action desc .actionn ⇐ Λ;
action desc .postamble ⇐ "\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n \\let\\yylextail\\yylexcontinue\n"

" \\ifcase#1\\relax\n";
action desc .act setup ⇐ " \\or\n"" \\YYRULESETUP %% (rule %d) ";
action desc .act suffix ⇐ " %% end of rule %d\n";
action desc .action1 ⇐ Λ;
action desc .actionn ⇐ Λ;
action desc .postamble ⇐ " \\else\n \\fi\n \\yylextail\n}\\stashswitch{yydoactions\

witch}%\n\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 308.

311 TEX constant output is another place where the techniques described above are applied. A few names have
to be handled separately, because of the underscores in their names.
〈Prepare TEX format for scanner constants 311 〉 =
#define register const d (c name) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

 TEX MODE SPLINT 311
318

c name## desc .name ⇐ #c name ;
output desc .output ##c name ⇐ 1;
〈Scanner constants 303 〉

#undef register const d
YY_END_OF_BUFFER_CHAR_desc .name ⇐ "YYENDOFBUFFERCHAR";
YY_NUM_RULES_desc .name ⇐ "YYNUMRULES";
YY_END_OF_BUFFER_desc .name ⇐ "YYENDOFBUFFER";

This code is used in section 308.

312 〈Output exotic scanner constants 312 〉 =
fprintf (tables out , "\\constset{YYMAXREALCHAR}{%ld}%%\n", sizeof (yy accept)/(sizeof (yy accept [0]))− 1);
fprintf (tables out , "\\constset{YYBASEMAXENTRY}{%d}%%\n",max yybase entry);
fprintf (tables out , "\\constset{YYNXTMAXENTRY}{%d}%%\n",max yynxt entry);
fprintf (tables out , "\\constset{YYMAXRULENO}{%d}%%\n",max yyaccept entry);
fprintf (tables out , "\\constset{YYECMAXENTRY}{%d}%%\n",max yy ec entry);

313 Command line options

We start with the most obvious option, the one begging for help.
〈Higher index scanner specific options 313 〉 =
LONG_HELP,

314 〈Scanner specific option list 314 〉 =
register option ("help",no argument , 0, LONG_HELP, "")

See also section 317.

315 〈Shortcuts for command line options affecting scanner output 315 〉 =
"h"

See also section 318.

316 〈Handle scanner output options 316 〉 =
case ’h’: . short help /

fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n"" and constants for a TeX parser\n",
argv [0]);

exit (0);
break; . should not be needed /

See also section 320.

317 〈Scanner specific option list 314 〉 +=
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-parse", required argument , 0, ’p’, "") . run the parser /
register option ("parse-file", required argument , 0, ’i’, "") . input for the parser /

318
321 SPLINT COMMAND LINE OPTIONS 

318 The string below is a list of short options.
〈Shortcuts for command line options affecting scanner output 315 〉 +=
"b::z:m:f:t:"

319 A few options can be immediately discussed.
〈Variables and types local to the scanner driver 295 〉 +=

int debug level ⇐ 0;
char ∗table separator ⇐ "%s ";

320 〈Handle scanner output options 316 〉 +=
case ’b’: . debug (level) /

debug level ⇐ optarg ? atoi (optarg) : 1;
break;

case ’m’: . output mode /
switch (optarg [0]) {
case ’T’: case ’t’:

mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (table separator , optarg);
break;

 PHILOSOPHY SPLINT 321
323

321 Philosophy

This section should, perhaps, be more appropriately called rant but philosophy sounds more academic. The
design of any software involves numerous choices, and SPLinT is no exception. Some of these choices are
explained in the appropriate places in the package files. This section collects a few ‘big picture’ choices that
did not fit elsewhere.

322 Why GPL

The choice of license for this project goes beyond merely showing the source. TEX, by its very nature is an
open source language, so it is not a matter of hiding anything from the user or a potential developer. The C

code is a different matter but the source is not that complicated. Reducing the licensing issue to the ability
of someone else to see the source code is a great oversimplification. Without getting into too many details
of so-called ‘open source licenses’ (other than GPL) and arguing with their advocates, let me simply express
my lack of understanding at the arguments that purport that BSD-style licenses introduce more freedom by
allowing a software vendor to incorporate the BSD-licensed software into their products. What benefit does
one derive from such ‘extension’ of software freedom? Perhaps the hope that the ‘open source’ (for the lack
of a better term) will prompt the vendor to follow the accepted free (or any other, for that matter!) software
standards and make its software more interoperable with the free alternatives? A well-known software giant’s
embrace, extend, extinguish philosophy shows how näıve and misplaced such hopes are.

I am not going to argue for the benefits of free software at length, either (such benefits seem self-evident
to me, although the readers should feel free to disagree). Let me just point out that software companies
enjoy quite a few freedoms that we, as software consumers elect to afford them. Among such freedoms are
the ability to renege on any promises made to potential users and withdraw any guarantees that such users
might enjoy. Free software, of course, does not provide any guarantees, either but ‘you get what you paid
for’. As a result of such ‘release of any responsibility’, the claims of increased reliability or better support for
the commercial software sound a bit hollow. Another well spread tactic is user brainwashing and changing
the culture (usually for the worse) in order to promote new ‘user-friendly’ features of commercial software.
Instead of taking advantage of computers as cognitive machines we have come to view them as advanced
media players that we interact with through artificial, unnatural interfaces. Meaningless terminology (‘UX’
for ‘user experience’? What in the world is ‘user experience’?) proliferates, and programmers are happy to
deceive themselves with their newly discovered business prowess.

One would hope that the somewhat higher standards of the ‘real’ manufacturers might percolate to the
software world, however, the reality is very different. Not only has life-cycle ‘engineering’ got to the point
where manufacturers can predict the life spans of their products precisely, embedded software in those
products has become an enabling technology that makes this ‘life design’ much easier.

In effect, by embedding software in their products, hardware manufacturers not only piggy-back on
software’s perceived complexity, and argue that such complex systems cannot be made reliable, they have an
added incentive to uphold this image. The software weighs nothing, memory is cheap, consumers are easy
to deceive, thus ‘software is expensive’ and ‘reliable software is prohibitively so’. Designing reliable software
is quite possible, though, just look at programmable thermostats, simple cellphones and other ‘invisible’
gadgets we enjoy. The ‘software ideology’ with its ‘IP’ lingo is spreading like a virus even through the world
of real things. We now expect products to break and are too quick to forgive sloppy engineering that goes
into everyday things. We are also getting used to the idea that it is the manufacturers that get to dictate
the terms of use for ‘their’ products and that we are merely borrowing ‘their’ stuff.

The GPL was conceived as an antidote to this scourge. This document is a remarkable piece of ‘legal
engineering’: a self-propagating license with a clearly outlined set of goals. While by itself it does not
guarantee reliability or quality, it does inhibit the spread of the ‘IP’ (which is sometimes sarcastically,
though quite perceptively, ‘deabbreviated’ as Imaginary Property) disease through software.

The industry has adapted, of course. So called (non GPL) ‘open source licenses’, that are supposed to
be an improvement on GPL, are a sort of ‘immune reaction’ to the free software movement. Convince and
confuse enough apathetic users and the protections granted by GPL are no longer visible.

323
326 SPLINT WHY NOT C++ OR OOP IN GENERAL 

323 Why not C++ or OOP in general

The choice of the language was mainly driven by æsthetic motives: C++ has a bloated and confusing
standard, partially supported by various compilers. It seems that there is no agreement on what C++ really
is or how to use some of its constructs. This is all in contrast to C with its well defined and concise body of
specifications and rather well established stylistics. The existence of ‘obfuscated C’ is not good evidence of
deficiency and C++ is definitely not immune to this malady.

Object oriented design has certainly taken on an aura of a religious dictate, universally adhered to and
forcefully promoted by its followers. Unfortunately, the definition of what constitutes an ‘object-oriented’
approach is rather vague. A few abstract concepts are commonly tossed about to give the illusion of a
well developed abstraction (such as ‘polymorphism’, ‘encapsulation’, and so on) but definitions vary in both
length and contents, depending on the source.

On a syntactic level, some features of object-oriented languages are undoubtedly very practical (such as a
this pointer in C++), however, many of those features can be effectively emulated with some clever uses of
an appropriate preprocessor (there are a few exceptions, of course, this being one of them). The rest of the
‘object-oriented philosophy’ is just that: a design philosophy. Before that we had structured programming,
now there are patterns, extreme, agile, reactive, etc. They might all find their uses, however, there are
always numerous exceptions (sometimes even global variables and goto’s have their place, as well).

A pedantic reader might point out a few object-oriented features even in the TEX portion of the package
and then accuse the author of being ‘inconsistent’. I am always interested in possible improvements in style
but I am unlikely to consider any changes based solely on the adherence to any particular design fad.

In short, OOP was not shunned simply because a ‘non-OOP’ language was chosen, instead, whatever
approach or style was deemed most effective was used. The author’s judgment was not always perfect,
of course, and given a good reason, changes can be made, including the choice of the language. ‘Make it
object-oriented’ is neither a good reason nor a clearly defined one, however.

324 Why not ∗TEX

Simple. I never use it and have no idea of how packages, classes, etc., are designed. I have heard it
has impressive mechanisms for dealing with various problems commonly encountered in TEX. Sadly, my
knowledge of ∗TEX machinery is almost nonexistent. This may change but right now I have tried to make
the macros as generic as possible, hopefully making ∗TEX adaptation easy.

The following quote from [Ho] makes me feel particularly uneasy about the current state of development
of various TEX variants: “Finally, to many current programmers WEB source simply feels over-documented
and even more important is that the general impression is that of a finished book: sometimes it seems like
WEB actively discourages development. This is a subjective point, but nevertheless a quite important one.”

Discouraging development seems like a good thing to me. Otherwise we are one step away from encouraging
writing poor software with inadequate tools merely ‘to encourage development’.

The feeling of a WEB source being over-documented is most certainly subjective, and, I am sure, not shared
by all ‘current programmers’. The advantage of using WEB-like tools, however, is that it gives the programmer
the ability to place the vital information where it does not distract the reader (‘developer’, ‘maintainer’, call
it whatever you like) from the logical flow of the code.

Some of the complaints in [Ho] are definitely justified, although it seems that a better approach would be
to write an improved tool similar to WEB, rather than give up all the flexibility such a tool provides.

325 Why CWEB

CWEB is not as polished as TEX but it works and has a number of impressive features. It is, regrettably,
a ‘niche’ tool and a few existing extensions of CWEB and software based on similar ideas do not enjoy the
popularity they deserve. Literate philosophy has been largely neglected even though it seems to have a more
logical foundation than OOP. Under these circumstances, CWEB seemed to be the best available option.

 WHY NOT GITHUB, BITBUCKET, ETC SPLINT 326
328

326 Why not GitHub, Bitbucket, etc

Git is an incredible tool and is used extensively in the development of SPLinT. The distribution archive is
a Git repository. The use of centralized services such as GitHub, however, seems redundant. The standard
cycle, ‘clone-modify-create pull request’ works the same even when ‘clone’ is replaced by ‘download’. Thus,
no functionality is lost. This might change if the popularity of the package unexpectedly increases.

On the other hand, GitHub and its cousins are commercial entities, whose availability in the future is not
guaranteed (nothing is certain, of course, no matter what distribution method is chosen). Keeping SPLinT
as an archive of a Git repository seems like an efficient way of being ready for an unexpected change.

327 Bibliography

This list of references is not meant to be exhaustive or complete. These are merely the papers and the books
mentioned in the body of the program above. Naturally, this project has been influenced by many outside
ideas but it would be impossible to list them all due to time and (human) memory limitations.

∗ ∗ ∗
[Ah] Alfred V. Aho et al., Compilers: Principles, Techniques, and Tools, Pearson Education, 2006.
[Bi] Charles Donnelly and Richard Stallman, Bison, The Yacc-compatible Parser Generator, The Free

Software Foundation, 2013. http://www.gnu.org/software/bison/

[DEK1] Donald E. Knuth, The TEXbook, Addison-Wesley Reading, Massachusetts, 1984.
[DEK2] Donald E. Knuth The future of TEX and METAFONT, TUGboat 11 (4), p. 489, 1990.

[Do] Jean-luc Doumont, Pascal pretty-printing: an example of “preprocessing with TEX”, TUGboat 15 (3),
1994—Proceedings of the 1994 TUG Annual Meeting

[Er] Sebastian Thore Erdweg and Klaus Ostermann, Featherweight TEX and Parser Correctness, Proceedings
of the Third International Conference on Software Language Engineering, pp. 397–416, Springer-Verlag
Berlin, Heidelberg 2011.

[Fi] Jonathan Fine, The \CASE and \FIND macros, TUGboat 14 (1), pp. 35–39, 1993.
[Go] Pedro Palao Gostanza, Fast scanners and self-parsing in TEX, TUGboat 21 (3), 2000—Proceedings of

the 2000 Annual Meeting.
[Gr] Andrew Marc Greene, BASIX—an interpreter written in TEX, TUGboat 11 (3), 1990—Proceedings of

the 1990 TUG Annual Meeting.
[Ha] Hans Hagen, LuaTEX: Halfway to version 1, TUGboat 30 (2), pp. 183–186, 2009.

http://tug.org/TUGboat/tb30-2/tb95hagen-luatex.pdf.
[Ho] Taco Hoekwater, LuaTEX says goodbye to Pascal, TUGboat 30 (3), pp. 136–140, 2009—EuroTEX 2009

Proceedings.
[Ie] R. Ierusalimschy et al., Lua 5.1 Reference Manual, Lua.org, August 2006.

http://www.lua.org/manual/5.1/.
[ISO/C11] ISO/IEC 9899—Programming languages—C (C11), December 2011, draft available at

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

[Jo] Derek M. Jones, The New C Standard: An Economic and Cultural Commentary, available at
http://www.knosof.co.uk/cbook/cbook.html.

[La] The l3regex package: regular expressions in TEX, The LATEX3 Project.
[Pa] Vern Paxson et al., Lexical Analysis With Flex, for Flex 2.5.37, July 2012.

http://flex.sourceforge.net/manual/.
[Wo] Marcin Woliński, Pretprin—a LATEX2ε package for pretty-printing texts in formal languages, TUGboat

19 (3), 1998—Proceedings of the 1998 TUG Annual Meeting.

http://www.gnu.org/software/bison/
http://tug.org/TUGboat/tb30-2/tb95hagen-luatex.pdf
http://www.lua.org/manual/5.1/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.knosof.co.uk/cbook/cbook.html
http://flex.sourceforge.net/manual/

328
328 SPLINT INDEX 

328 Index. This section is, perhaps, the most valuable product of CWEB’s labors. It lists references to definitions
(set in italic) as well as uses for each C identifier used in the source. Special facilities have been added
to extend indexing to bison grammar terms and TEX control sequences encountered in bison actions.
Definitions of tokens (via 〈token〉, 〈nterm〉 and 〈type〉 directives) are underlined. The bison and TEX
entries are put in distinct sections of the index in order to keep the separation between the C entries and the
rest. It may be worth noting that the definition of the symbol is listed under both its ‘macro name’ (such as
CHAR, typeset as char in the case of the grammar below), as well as its ‘string’ name if present (to continue
the previous example, "char" is synonymous with char after a declaration such as ‘〈token〉 char "char"’),
while the use of the term lists whichever token form was referenced at the point of use (both forms are
accessible when the entry is typeset for the index and a macro can be written to mention the other form
as well). The quotes indicate that the ‘string’ form of the token’s name was used. A section set in italic
references the point where the corresponding term appeared on the left hand side of a production.

A production:
left hand side :

term1 term2 term3 \do \somethingΥ1

inside the TEX part of a CWEB section will generate several index entries, as well, including the entries for
any material inside the action, mimicking CWEB’s behavior for the inline C (|. . .|). Such entries (except for
the references to C code inside actions) are labeled with ◦, to provide a reminder of their origin.

This parser collection, as well as the indexing facilities therein have been designed to showcase the broadest
range of options available to the user and thus it does not always exhibit the most sane choices one could
make (for example, using a full blown parser for term names is poor design but it was picked to demonstrate
multiple parsers in one program). The same applies to the way the index is constructed (it would be easy to
agree to only use the ‘string’ name of the token if it is available, thus avoiding referencing the same token in
two different parts of the index).

TEX control sequences are listed following the index of all bison entries. The two indices are separated
by a dinkus (∗ ∗ ∗). Since it is nearly impossible to determine at what point a TEX macro is defined (and
most of them are defined outside of the CWEB sources), only their uses are listed (to be more precise, every
appearance of a macro is assumed to be its use). In a few cases, a ‘graphic’ representation for a control
sequence is also listed (for example, π1 represents \getfirst). The index entries are ordered alphabetically
using control sequence names.

Υ: 2, 3.
Υ1 : 2, 3.

func : 236.
__FUNCTION__: 204.
__PRETTY_FUNCTION__: 204.
__VA_ARGS__: 222.
desc : 210, 214, 223, 225, 229, 283, 311.
register const d : 225, 226, 227, 229,

257, 283, 303, 311.
register name : 105, 191.
register option : 217, 244, 259, 269, 286,

289, 314, 317.
register table d : 208, 209, 210, 214,

250, 255, 277, 294.
register token d : 98, 99.

act setup : 218, 256, 281, 297, 310.
act suffix : 218, 256, 281, 297, 310.
action d: 218, 221.
action desc : 221, 256, 281, 297, 310.
actionn : 218, 256, 281, 310.
action1 : 218, 256, 281, 310.
all : 7.
any constants : 229.
ap : 236.
ap save : 236.
arg flag : 244.
argc : 201, 243.
argv : 201, 243, 288, 316.

assert : 204, 252, 254.
atoi : 320.
BAD_MIX_FORMAT: 234, 236.
BAD_SCANNER: 298, 300.
BAD_STRING: 234, 236.
bare actions : 216, 217, 256, 297.
BISON_BOOTSTRAP_MODE: 22, 264.
bootstrap token format : 98, 258, 261,

264, 284.
BOOTSTRAP_TOKEN_FORMAT: 259, 260, 261.
bootstrap tokens : 98, 264.
buffer : 236.
but : 7.
c: 242.
c desc : 231.
c name : 225, 226, 227, 229, 231, 283,

311.
CHAR: 99.
cleanup : 211, 212, 218, 223, 256, 280,

281, 297, 310.
const: 204.
const d: 224, 225.
const out : 229, 231.
current state : 302.
debug level : 319, 320.
define all states : 101, 189.
Define State : 105, 191, 301.
err codes: 233.

exit : 201, 236, 243, 274, 288, 300, 306,
316.

exp : 244.
fake scanner : 297.
fake yytext : 300.
false : 264, 279, 280.
fclose : 206.
file : 96, 187.
FLEX_STATE_S: 99.
FLEX_STATE_X: 99.
fopen : 243.
forever: 205, 243.
format : 224, 231, 235, 236, 283, 311.
formatp : 236.
formatter : 211, 212, 223, 280.
fprintf : 98, 201, 211, 222, 228, 231, 236,

243, 256, 264, 265, 279, 282, 288, 297,
302, 312, 316.

free : 279, 302.
FUNCTION__: 204.
GENERIC_OUT: 273, 274, 292, 305, 306,

320.
getopt long : 240, 243, 245.
higher options: 242.
i: 211, 252, 256, 264, 282, 296, 297,

300.
ID: 99.
index : 278, 279.

 INDEX SPLINT 328
328

INITIAL: 297, 302.
INT: 99.
it : 7.
j: 211, 252, 256, 297, 300.
LAST_ERROR: 233.
LAST_HIGHER_OPTION: 242.
LAST_OUT: 237.
last state : 301.
length : 236, 264, 279.
lexer state d: 301, 302.
loc : 244.
LONG_HELP: 285, 286, 288, 313, 314, 316.
long options : 242, 243.
main : 201.
malloc : 236, 261, 292, 301, 320.
max eof state : 297, 301.
MAX_NAME_LENGTH: 289, 317.
MAX_PRETTY_LINE: 211, 235, 236.
max yy ec entry : 295, 296, 312.
max yyaccept entry : 295, 296, 297, 312.
max yybase entry : 295, 296, 297, 312.
max yynxt entry : 295, 296, 312.
mix string : 235, 236.
mode : 201, 239, 271, 292, 320.
n: 282.
name : 98, 105, 191, 208, 209, 210, 211,

212, 214, 223, 224, 231, 243, 244, 277,
283, 301, 302, 309, 311.

next : 301, 302.
next state : 302.
no argument : 217, 269, 286, 314.
NO_MEMORY: 234, 236.
NON_OPTION: 242.
null : 211, 212, 223, 279, 280.
null postamble : 211, 212, 223, 280.
of : 7.
optarg : 261, 292, 320.
opterr : 243.
optimize actions : 216, 217, 281, 282,

310.
optind : 243.
option : 242.
option index : 242, 243.
optional argument : 289, 317.
output : 208, 209, 211, 223, 226, 227,

229, 283, 311.
output actions : 219, 220, 256, 281, 297,

310.
output d: 207.
output desc : 207, 211, 223, 229, 256,

264, 272, 280, 281, 283, 284, 297, 310,
311.

output mode: 237, 239.
output table : 211, 214.
output tokens : 262, 263, 264, 272, 284.
output yytname : 280.
PERCENT_NTERM: 99.
PERCENT_TOKEN: 99.
postamble : 211, 212, 218, 223, 256, 280,

281, 297, 310.
preamble : 211, 212, 218, 223, 256, 280,

281, 297, 310.
prettify : 211, 212, 223, 280.
print rule : 218, 256, 281, 282, 310.
printf : 200, 236, 243, 274, 297, 300, 306.
putchar : 243.
required argument : 259, 289, 317.
rule number : 254.
SEMICOLON: 99.

separator : 211, 212, 223, 279, 280.
size : 236.
st name : 301.
st num : 301.
state list : 301, 302.
stderr : 201, 236, 243, 288, 316.
strcpy : 261, 292, 320.
stream : 211, 231, 278, 279.
string : 222.
STRING: 99.
strlen : 253, 261, 292, 320.
strnlen : 236.
strstr : 236.
table : 278, 279.
table d: 210, 211, 212, 278, 279.
table desc : 211.
table name : 211, 223.
table separator : 291, 292, 319, 320.
tables out : 98, 201, 205, 206, 214, 222,

228, 229, 243, 256, 264, 265, 282, 297,
302, 312.

TAG: 99.
TeX__: 222.
TEX_OUT: 239, 275, 276, 292, 307, 308,

320.
tex table : 223, 277.
tex table generic : 223, 309.
this state : 301.
token : 264, 279.
token format affix : 258, 261, 264, 272,

284.
TOKEN_FORMAT_AFFIX: 259, 260, 261.
token format char : 258, 261, 264, 272,

284.
TOKEN_FORMAT_CHAR: 259, 260, 261.
TOKEN_FORMAT_SUFFIX: 259, 260, 261.
token format suffix : 258, 261, 264, 272,

284.
token name : 264, 279.
TOKEN_ONLY_MODE: 269, 270, 271.
TOKEN_ONLY_OUT: 267, 268, 271.
too creative : 264, 279.
true : 223, 264, 279.
type : 96, 187.
uniqstr : 82.
usage : 217, 241, 243.
va arg : 236.
va copy : 236.
va end : 236.
va start : 236.
val : 243, 244.
value : 96, 187, 301, 302.
vsnprintf : 236.
written : 236.
xgettext : 154.
yy accept : 294, 296, 297, 300, 309, 312.
yy accept desc : 309.
yy base : 294, 296, 297, 300, 309.
yy base desc : 309.
yy c buf p : 300.
yy chk : 294, 297, 300, 309.
yy chk desc : 309.
yy cp : 300.
yy def : 294, 309.
yy def desc : 309.
yy ec : 294, 296, 297, 309.
yy ec desc : 309.
yy ec magic : 297, 299, 300.
YY_END_OF_BUFFER: 297, 303.

YY_END_OF_BUFFER_CHAR: 303.
YY_END_OF_BUFFER_CHAR_desc : 311.
YY_END_OF_BUFFER_desc : 311.
yy get previous state : 300.
yy hold char : 297.
yy meta : 294, 309.
yy meta desc : 309.
YY_MORE_ADJ: 300.
YY_NUM_RULES: 303.
YY_NUM_RULES_desc : 311.
yy nxt : 294, 296, 297, 300, 309.
yy nxt desc : 309.
yy set bol : 300.
yy start : 300.
YY_STATE_EOF: 297, 301.
yycheck : 250.
yydefact : 250, 256.
yydefgoto : 250, 256.
YYEMPTY: 257.
YYEOF: 257.
YYFINAL: 256, 257.
yyg : 300.
yyguts t : 297, 300.
YYLAST: 257.
yyleng : 153.
yylex : 204, 295, 297.
yylex init : 297, 300.
YYNRULES: 251, 252, 254, 257.
YYNSTATES: 257.
YYNTOKENS: 256, 257.
yypact : 250, 256.
YYPACT_NINF: 256, 257.
YYPACT_NINF_desc : 283.
yyparse : 14, 15, 204, 216, 256.
YYPARSE_PARAMETERS: 256.
yypgoto : 250, 256.
yyprhs : 250, 252, 253, 254, 282.
YYPRINT: 96, 187.
yyprint : 96, 187.
yyrhs : 250, 252, 253, 254, 282.
yyrthree : 251, 254, 255.
yyr1 : 250, 252, 254, 256, 282.
yyr1 desc : 277.
yyr2 : 250, 256.
yyr2 desc : 277.
yyscan t : 297, 300.
yyscanner : 300.
yystos : 250.
YYSTYPE: 96, 187.
yytable : 250.
yytext ptr : 300.
yytname : 22, 26, 32, 250, 253, 264, 278,

279, 282.
yytname cleanup : 278, 279.
yytname desc : 280.
yytname formatter : 278, 279, 280.
yytname formatter tex : 278, 279.
yytoknum : 250.
yytranslate : 250, 264, 265.

BISON AND TEX INDEX

"〈%〉": 27, 29, 34, 94.
"〈?〉": 27, 37.
"%{...%}": 27, 37.
"%?{...}": 27, 71.
"〈code〉": 27, 44.
"〈default-prec〉": 27, 44.
"〈define〉": 27, 37.
"〈defines〉": 27, 37.

328
328 SPLINT INDEX 

"〈destructor〉": 26, 44.
"〈dprec〉": 26, 71.
"〈empty〉": 70, 71.
"〈error-verbose〉": 27, 37.
"〈expect〉": 27, 37.
"〈expect-rr〉": 27, 37.
"〈file-prefix〉": 27, 37.
"〈glr-parser〉": 27, 37.
"〈initial-action〉": 27, 37.
"〈language〉": 27, 37.
"〈left〉": 26, 47.
"〈merge〉": 26, 71.
"〈name-prefix〉": 27, 37.
"〈no-default-prec〉": 27, 44.
"〈no-lines〉": 27, 37.
"〈nonassoc〉": 26, 47.
"〈non...ic-parser〉": 27, 37.
"〈nterm〉": 26, 52.
"〈output〉": 27, 37.
"〈param〉": 27, 37.
"〈prec〉": 26, 71.
"〈precedence〉": 26, 47.
"〈printer〉": 26, 44.
"〈require〉": 27, 37.
"〈right〉": 26, 47.
"〈skeleton〉": 27, 37.
"〈start〉": 27, 44.
"〈token〉": 26, 52.
"〈token-table〉": 27, 37.
"〈type〉": 26, 47.
"〈union〉": 46, 47.
"〈verbose〉": 27, 37.
"〈yacc〉": 27, 37.
"<*>": 27, 56.
"<>": 27, 56.
"<tag>": 27.
"[identifier]": 27.
"{...}": 27, 37, 44, 47, 71, 93.
"=": 27, 40.
"|": 27, 61.
";": 27, 32, 37, 61.
all: 10.
BRACED_CODE: 27.
BRACED_PREDICATE: 27.
BRACKETED_ID: 27, 71.
but: 10.
char: 27, 82.
"char": 27.
code props type: 44, 44.
EPILOGUE: 27, 34, 94.
EQUAL: 27.
ext: 167, 168.
◦ (empty rhs): 32, 35, 47, 71, 93, 94,

168.
"end of file": 26.
"epilogue": 27.
epilogueopt: 29, 31, 34, 94.
error: 61.
〈option〉f : 28, 40.
〈state-s〉f : 28, 40.
〈state-x〉f : 28, 40.
flex declaration: 32, 39, 40.
flex option: 40, 40.
flex option list: 40, 40.
flex state: 40, 40.
full name: 168.
GRAM_EOF: 26.
generic symlist: 44, 56, 56.
generic symlist item: 56, 56.

grammar: 29, 31, 60, 60.
grammar declaration: 37, 44, 47, 61.
grammar declarations: 32, 32.
ýidentifierþ: 27, 40, 44, 47, 82, 93.
ýidentifier: þ: 27, 85.
[a . . . Z 0 . . . 9]∗: 167, 168.
int: 27, 37, 53, 57, 71.
[0 . . . 9]∗: 167, 168.
id: 57, 82, 84.
id colon: 61, 85.
"identifier": 27.
identifier string: 168, 168.
"identifier:": 27.
in: 9.
� (inline action): 37, 52, 61.
input: 29, 31, 32, 34.
"integer": 27.
it: 10.
left hand side: 328◦.
line: 9.
more: 2, 9.
na: 167, 168.
named ref opt: 61, 71, 71.
next term: 5, 8.
non terminal: 2.
not: 10.
opt: 167, 168.
of: 10.
other term: 2.
PERCENT_CODE: 27.
PERCENT_DEFAULT_PREC: 27.
PERCENT_DEFINE: 27.
PERCENT_DEFINES: 27.
PERCENT_DESTRUCTOR: 26.
PERCENT_DPREC: 26.
PERCENT_EMPTY: 70.
PERCENT_ERROR_VERBOSE: 27.
PERCENT_EXPECT: 27.
PERCENT_EXPECT_RR: 27.
PERCENT_FILE_PREFIX: 27.
PERCENT_FLAG: 27.
PERCENT_GLR_PARSER: 27.
%[a . . . Z 0 . . . 9]∗: 167, 168.
PERCENT_INITIAL_ACTION: 27.
PERCENT_LANGUAGE: 27.
PERCENT_LEFT: 26.
PERCENT_MERGE: 26.
PERCENT_NAME_PREFIX: 27.
PERCENT_NO_DEFAULT_PREC: 27.
PERCENT_NO_LINES: 27.
PERCENT_NONASSOC: 26.
PER...NON...IC_PARSER: 27.
PERCENT_NTERM: 26.
PERCENT_OUTPUT: 27.
PERCENT_PARAM: 27.
PERCENT_PERCENT: 27.
PERCENT_PREC: 26.
PERCENT_PRECEDENCE: 26.
PERCENT_PRINTER: 26.
PERCENT_REQUIRE: 27.
PERCENT_RIGHT: 26.
PERCENT_SKELETON: 27.
PERCENT_START: 27.
PERCENT_TOKEN: 26.
PERCENT_TOKEN_TABLE: 27.
PERCENT_TYPE: 26.
PERCENT_UNION: 46.
PERCENT_VERBOSE: 27.
PERCENT_YACC: 27.

PIPE: 27.
PROLOGUE: 27.
params: 37, 37.
precedence declaration: 44, 47.
precedence declarator: 47, 47.
prologue declaration: 35, 37, 39.
prologue declarations: 29, 34, 35, 35.
qualified suffixes: 168, 168.
qualifier: 168, 168.
rhs: 61, 71, 71.
rhses1: 61, 61.
rules: 61, 61.
rules or grammar declaration: 60, 61.
SEMICOLON: 27.
ýstringþ: 26, 37, 86, 93.
;opt: 32, 32.
still: 2.
"string": 26.
string as id: 57, 84, 86.
stuff: 5, 8, 9.
suffixes: 168, 168.
suffixesopt: 168, 168.
symbol: 40, 44, 53, 55, 56, 71, 84.
symbol declaration: 32, 44, 47, 52.
symbol def: 57, 58.
symbol defs1: 52, 58, 58.
symbol.prec: 53, 53.
symbols1: 40, 47, 55, 55.
symbols.prec: 47, 53, 53.
<tag>: 27, 47, 56, 57, 71.
TAG_ANY: 27.
TAG_NONE: 27.
TOKEN (example): 22.
tag: 56, 56.
tagopt: 47, 47.
term1: 2, 328◦.
term2: 2, 328◦.
term3: 2, 328◦.
terms: 2.
this: 9.
"token" (example): 22.
union name: 47, 47.
value: 37, 93.
variable: 37, 93.

∗ ∗ ∗
\% : 118.
\\ : 154.
1R (\@ne): 129, 153, 157.
\actbraces : 66, 68, 74.
add (\advance): 129, 152, 153, 157,
158, 159.

\anint : 118.
A← A+sx B (\appendr): 73, 74, 75,

76, 174.
\arhssep : 74, 75.
\bdend : 66, 68, 74, 75.
\bpredicate : 75.
\bracedvalue : 93.
\braceit : 37.
\bracketedidcontextstate : 118, 133,

139, 141.
\bracketedidstr : 118, 128, 133, 134,

135, 136, 138, 139, 143.
\charit : 150.
\codeassoc : 44, 48.
\codepropstype : 45.
A← A+s B (\concat): 63, 174.
\contextstate : 117, 144, 145, 146, 155,

 INDEX SPLINT 328
328

156.
\csname : 120.
def (\def): 133, 138, 139, 152, 158,

159.
\default : 63.
\do : 328◦.
\dotsp : 168, 177, 181.
\dprecop : 78.
defx (\edef): 63, 66, 68, 73, 74, 75, 76,

118, 120, 121, 122, 123, 124, 125, 126,
128, 130, 138, 148, 150, 152, 158, 159,
161.

\else : 63, 66, 68, 73, 76, 77, 78, 79,
120, 133, 134, 135, 136, 138, 139, 152,
158, 159.

∅ (\empty): 35, 37, 66, 68, 73, 74, 75,
76, 118, 128, 133, 134, 135, 136, 138,
139, 143.

p. . .q (\emptyterm): 66, 68, 74, 75, 76.
\endcsname : 120.
\errmessage : 61.
\expandafter : 120, 139, 143.
\fi : 63, 66, 68, 73, 74, 75, 76, 77, 78,

79, 120, 127, 129, 133, 134, 135, 136,
138, 139, 152, 158, 159, 199.

\flexoptiondecls : 41.
\flexoptionpair : 40.
\flexsstatedecls : 40.
\flexxstatedecls : 40.
π5 (\getfifth): 43, 59, 64, 65, 73, 76.
π1 (\getfirst): 42, 45, 62, 63, 74, 75,

170, 171, 172, 174.
π4 (\getfourth): 43, 50, 59, 64, 65, 66,

73, 76.
π2 (\getsecond): 30, 31, 34, 42, 43, 45,

50, 59, 63, 64, 74, 75, 170, 171, 172,
174.

π3 (\getthird): 42, 45, 50, 63, 64, 66,
74, 75, 174.

\grammar : 35, 62, 63.
\hexint : 118.
 (\hspace): 43, 53, 55, 56, 59, 73, 76.
\idit : 128, 138.
\idstr : 171, 172, 174.
ifω (\ifnum): 129, 139, 152, 158, 159.
if (rhs = full) (\ifrhsfull): 66, 68, 74,

75, 77, 78, 79.
ift [bad char] (\iftracebadchars): 120,

127, 199.
ifx (\ifx): 63, 66, 68, 73, 74, 75, 76,

120, 133, 134, 135, 136, 138, 139.
ε (\in): 63.
\initaction : 37.
•(·) (\inmath): 20.
\laststring : 148, 150, 152, 158, 159,

161, 163.
\laststringraw : 148, 150, 152.
\let : 63, 118, 128, 133, 138, 139, 143,

152, 158, 159.
\lexspecialchar : 120.
\lonesting : 118, 152, 153, 157, 158,

159.
−1R (\m@ne): 152, 157, 158, 159.
\mergeop : 79.
\midf : 67.
\namechars : 169.
\next : 63, 66, 68, 73, 74, 75, 76, 118,

120, 121, 122, 123, 124, 125, 126, 128,
130, 133, 138, 139, 148, 150, 152, 158,

159, 161.
nox (\noexpand): 20.
\ntermdecls : 52.
nx (\nx): 35, 37, 38, 40, 41, 43, 44, 45,

47, 48, 49, 50, 52, 53, 55, 56, 57, 59,
62, 63, 64, 65, 66, 67, 68, 72, 73, 74,
75, 76, 77, 78, 79, 93, 118, 120, 128,
138, 148, 150, 152, 168, 170, 177, 179,
180, 181, 182, 183, 184, 185.

\oneparametricoption : 38.
\oneproduction : 64.
\onesymbol : 57.
\optionflag : 37, 44.
\optstr : 170.
\paramdef : 37.
\pcluster : 65.
\percentpercentcount : 129.
\positionswitch : 63.
\positionswitchdefault : 63.
\postoks : 63, 130, 161.
\precdecls : 50.
\preckind : 47.
\prodheader : 65.
\prologuecode : 37.
\qual : 184, 185.
\ROLLBACKCURRENTTOKEN : 133, 135, 136,

143, 146, 163.
\rarhssep : 66, 68, 74, 75.
◦ (\relax): 120, 139.
\rhs : 66, 68, 72, 73, 74, 75, 76, 77, 78,

79.
π` (\rhsbool): 66, 68, 74, 75, 77, 78,

79.
π↔ (\rhscnct): 73, 76, 77, 78, 79.
π{} (\rhscont): 66, 67, 68, 73, 74, 75,

76, 77, 78, 79.
rhs = not full (\rhsfullfalse): 72, 73,

76, 77, 78, 79.
rhs = full (\rhsfulltrue): 66, 68, 74,

75, 77, 78, 79.
\rrhssep : 68.
\rules : 66, 68.
\STRINGFINISH : 148, 150, 152, 158, 159,

161, 163.
\STRINGFREE : 150, 152.
\STRINGGROW : 145, 146, 151, 152, 153,

154, 155, 156, 157, 158, 159, 164.
\separatorswitchdefaulteq : 63.
\separatorswitchdefaultneq : 63.
\separatorswitcheq : 63.
\separatorswitchneq : 63.
\sfxi : 180, 182.
\sfxn : 168, 179, 183.
\sfxnone : 168.
\something : 328◦.
\space : 174.
\sprecop : 77.
\stringify : 148.
\supplybdirective : 77, 78, 79.
switch (\switchon): 63.
\symbolprec : 53.
Ω (\table): 30, 31, 32, 34.
\tagit : 152.
ta (\tempca): 117, 118, 133, 156.
\termname : 73.
val · or x·y (\the): 30, 32, 33, 37, 38,

40, 41, 42, 43, 44, 45, 47, 48, 49, 50,
52, 53, 55, 56, 57, 59, 62, 63, 64, 65,
66, 67, 68, 73, 74, 75, 76, 77, 78, 79,

93, 118, 120, 121, 122, 123, 124, 125,
126, 127, 128, 130, 138, 140, 148, 150,
152, 154, 158, 159, 161, 168, 169, 170,
171, 172, 174, 177, 179, 180, 181, 182,
183, 184, 185, 199.

\to : 30, 31, 34, 42, 43, 45, 50, 59, 62,
63, 64, 65, 66, 67, 68, 73, 74, 75, 76,
77, 78, 79, 170, 171, 172, 174.

\tokendecls : 52.
va (\toksa): 30, 37, 38, 42, 43, 44, 45,

50, 59, 62, 63, 64, 65, 66, 68, 73, 74,
75, 76, 77, 78, 79, 120, 170, 171, 172,
174.

vb (\toksb): 42, 43, 45, 50, 59, 63, 64,
65, 66, 73, 74, 75, 76, 77, 78, 79, 170,
171, 172, 174.

vc (\toksc): 42, 43, 45, 50, 59, 63, 64,
66, 73, 74, 75, 76, 77, 78, 79, 174.

vd (\toksd): 45, 63, 64, 73, 74, 75, 76.
ve (\tokse): 45.
vf (\toksf): 45.
2R (\tw@): 129.
\typedecls : 49.
\vardef : 37.
\YYSTART : 117, 118, 133, 156.
Υ? (\yy): 20, 30, 31, 32, 33, 34, 35, 37,

38, 40, 41, 42, 43, 44, 45, 47, 48, 49,
50, 52, 53, 55, 56, 57, 59, 62, 63, 64,
65, 66, 67, 68, 72, 73, 74, 75, 76, 77,
78, 79, 80, 93, 168, 169, 170, 171, 172,
174, 177, 179, 180, 181, 182, 183, 184,
185, 328◦.

\yyBEGIN : 117, 118, 128, 129, 130, 133,
134, 135, 136, 143, 148, 150, 152, 156,
158, 159, 161, 163.

\yyBEGINr : 139, 141, 144, 145, 146,
155.

\yycomplain : 117, 118, 120, 127, 131,
138, 139, 140, 141, 144, 145, 147, 149,
151, 154, 155, 157, 160, 199.

\yyerrterminate : 118, 140, 141, 144,
145, 147, 149, 151, 155, 157, 160.

\yyfmark : 118, 120, 121, 122, 123, 124,
125, 126, 128, 130, 138, 148, 150, 152,
158, 159, 161.

\yylexnext : 117, 118, 120, 127, 128,
130, 131, 133, 138, 139, 144, 145, 146,
151, 152, 153, 154, 155, 156, 157, 158,
159, 164, 196.

\yylexreturn : 118, 120, 121, 122, 123,
124, 125, 126, 133, 134, 135, 136, 139,
143, 148, 150, 152, 158, 159, 161, 163,
199.

\yylexreturnchar : 197.
\yylexreturnptr : 118, 119, 129.
\yylexreturnval : 197, 198.
\yylexstate : 139.
\yylval : 118, 121, 122, 123, 124, 125,

126, 128, 139, 143, 148, 150, 152, 158,
159, 161, 163.

\yypdeprecated : 118.
\yysmark : 118, 120, 121, 122, 123, 124,

125, 126, 128, 130, 138, 148, 150, 152,
158, 159, 161.

\yyterminate : 118.
\yytext : 118, 120, 127, 128, 138, 140,

154, 199.
\yytextpure : 120, 128, 138.
Υ (\yyval): 77, 78, 79, 169.

328 SPLINT NAMES OF THE SECTIONS 

0R (\z@): 118, 152, 158, 159.

A LIST OF ALL SECTIONS

〈A production 6, 9 〉 Cited in section 6. Used in sections 5 and 8.

〈A silly example 2, 3, 5, 8 〉 Used in section 11.

〈Add 〈empty〉 to the right hand side 76 〉 Used in section 71.

〈Add a flex option 43 〉 Used in section 40.

〈Add a 〈dprec〉 directive to the right hand side 78 〉 Used in section 71.

〈Add a 〈merge〉 directive to the right hand side 79 〉 Used in section 71.

〈Add a dot separator 181 〉 Used in section 168.

〈Add a precedence directive to the right hand side 77 〉 Used in section 71.

〈Add a predicate to the right hand side 75 〉 Used in section 71.

〈Add a productions cluster 64 〉 Used in section 61.

〈Add a right hand side to a production 68 〉 Used in section 61.

〈Add a symbol definition 59 〉 Used in section 58.

〈Add a term to the right hand side 73 〉 Used in section 71.

〈Add an action to the right hand side 74 〉 Used in section 71.

〈Add an optional semicolon 69 〉 Used in section 61.

〈Add closing brace to a predicate 159 〉 Used in section 157.

〈Add closing brace to the braced code 158 〉 Used in section 157.

〈Add the scanned symbol to the current string 164 〉 Used in section 116.

〈Assign a code fragment to symbols 45 〉 Used in section 44.

〈Attach a named suffix 183 〉 Used in section 168.

〈Attach a productions cluster 63 〉 Used in sections 36 and 60.

〈Attach a prologue declaration 36 〉 Used in section 35.

〈Attach a qualifier 184 〉 Used in section 168.

〈Attach an identifier 174 〉 Used in sections 168, 175, and 176.

〈Attach an integer 176 〉 Used in section 168.

〈Attach integer suffix 182 〉 Used in section 168.

〈Attach option name 170 〉 Used in section 168.

〈Attach qualified suffixes 178 〉 Used in section 168.

〈Attach qualifier to a name 175 〉 Used in section 168.

〈Attach suffixes 177 〉 Used in sections 168 and 178.

〈Auxiliary function declarations 235 〉 Used in section 201.

〈Auxiliary function definitions 236 〉 Used in section 201.

〈Bison options 166 〉 Used in section 165.

〈Bootstrap parser C postamble 97 〉 Used in section 22.

〈Bootstrap token list 99 〉 Used in section 98.

〈Bootstrap token output 98 〉 Used in section 97.

〈Carry on 33 〉 Used in sections 32, 37, 39, 40, 44, 47, 53, 55, 56, 57, 58, 61, 69, 81, 87, 88, 89, 90, 91, 92, and 93.

〈Cases affecting the whole program 247 〉 Used in section 243.

〈Cases involving specific modes 248 〉 Used in section 243.

〈Clean up 206 〉 Used in section 201.

〈Collect all state definitions 191 〉 Used in section 189.

〈Collect state definitions for the grammar lexer 105 〉 Used in section 101.

〈Command line processing variables 242 〉 Used in section 201.

〈Common code for C preamble 205 〉
〈Complain about improper identifier characters 140 〉 Used in section 137.

〈Complain about unexpected end of file inside brackets 141 〉 Used in section 137.

〈Complete a production 65 〉 Used in section 61.

〈Compose the full name 169 〉 Used in section 168.

〈Compute exotic scanner constants 296 〉

 NAMES OF THE SECTIONS SPLINT 328

〈Compute magic constants 300 〉 Used in section 297.

〈Configure parser output modes 271 〉
〈Constant names 230 〉 Used in sections 225, 226, 227, and 229.

〈Create a named reference 81 〉 Used in section 71.

〈Create an empty named reference 80 〉 Used in section 71.

〈Decode escaped characters 154 〉 Used in section 116.

〈Default outputs 209, 220, 227 〉 Used in section 207.

〈Define flex option list 41 〉 Used in section 40.

〈Define flex states 42 〉 Used in section 40.

〈Define symbol precedences 50 〉 Used in section 47.

〈Define symbol types 49 〉 Used in section 47.

〈Definition of symbol 84 〉 Used in sections 22 and 83.

〈Do not support zero characters 131 〉 Used in section 116.

〈End the scan with an identifier 136 〉 Used in section 132.

〈Error codes 234, 298 〉 Used in section 233.

〈Establish defaults 239 〉 Used in section 201.

〈Fake start symbol for bootstrap grammar 32 〉 Used in section 22.

〈Fake start symbol for prologue grammar 34 〉 Used in section 23.

〈Fake start symbol for rules only grammar 31 〉 Used in section 21.

〈Find the rule that defines it and set yyrthree 254 〉 Used in section 252.

〈Finish a bison string 148 〉 Used in section 147.

〈Finish a tag 152 〉 Used in section 151.

〈Finish braced code 161 〉 Used in section 160.

〈Finish processing bracketed identifier 139 〉 Used in section 137.

〈Finish the input setup 30 〉 Used in section 29.

〈Generic table desciptor fields 212 〉 Used in section 211.

〈Global Declarations 27 〉 Used in section 26.

〈Global variables and types 211, 216, 218, 224, 233 〉 Used in section 201.

〈Grammar lexer C preamble 114 〉 Used in section 101.

〈Grammar lexer definitions 102, 103, 104 〉 Used in section 101.

〈Grammar lexer options 115 〉 Used in section 101.

〈Grammar lexer states 106, 107, 108, 109, 110, 111, 112, 113 〉 Used in section 102.

〈Grammar parser C postamble 96 〉 Used in sections 21, 23, 24, and 97.

〈Grammar parser C preamble 95 〉 Used in sections 21, 22, 23, and 24.

〈Grammar parser bison options 25 〉 Used in sections 21, 22, 23, and 24.

〈Grammar token regular expressions 116 〉 Used in section 101.

〈Handle end of file in the epilogue 163 〉 Used in section 162.

〈Handle parser output options 261, 288, 292 〉
〈Handle parser related output modes 268, 274, 276 〉
〈Handle scanner output modes 306, 308 〉
〈Handle scanner output options 316, 320 〉
〈Helper functions declarations for for parser output 278 〉
〈Helper functions for parser output 279, 282 〉
〈Higher index options 246 〉 Used in section 242.

〈Higher index parser specific options 260, 270, 285 〉
〈Higher index scanner specific options 313 〉
〈 Insert local formatting 67 〉 Used in section 61.

〈Lexer C preamble 193 〉 Used in section 189.

〈Lexer definitions 190 〉 Used in section 189.

〈Lexer options 194 〉 Used in section 189.

〈Lexer states 192 〉 Used in section 190.

〈List of symbols 55 〉 Used in sections 22 and 54.

328 SPLINT NAMES OF THE SECTIONS 

〈Local variable and type declarations 207, 210, 221, 225, 237, 241 〉 Used in section 201.

〈Long options array 244 〉 Used in section 242.

〈Make an empty right hand side 72 〉 Used in section 71.

〈Name parser C postamble 187 〉 Used in section 165.

〈Name parser C preamble 186 〉 Used in section 165.

〈Outer definitions 203, 240 〉 Used in section 201.

〈Output action switch, if any 232 〉 Used in section 201.

〈Output all tables 214 〉 Used in section 213.

〈Output constants 229 〉 Used in section 228.

〈Output descriptor fields 208, 219, 226 〉 Used in section 207.

〈Output exotic scanner constants 312 〉
〈Output modes 238 〉 Used in section 237.

〈Output parser constants 265 〉
〈Output parser semantic actions 256 〉
〈Output parser tokens 264 〉
〈Output scanner actions 297 〉
〈Output states 302 〉 Used in section 297.

〈Parser bootstrap productions 52, 57, 58, 82, 86 〉 Used in sections 22 and 51.

〈Parser common productions 44, 47, 51, 53, 54, 56, 83, 94 〉 Used in sections 21, 23, and 24.

〈Parser constants 257 〉 Used in section 283.

〈Parser defaults 252 〉
〈Parser full productions 29 〉 Used in section 24.

〈Parser grammar productions 60, 61, 71, 85 〉 Used in sections 21 and 24.

〈Parser productions 168 〉 Used in section 165.

〈Parser prologue productions 35, 37, 39, 93 〉 Used in sections 23 and 24.

〈Parser specific default outputs 263 〉
〈Parser specific option list 259, 269, 286, 289 〉
〈Parser specific output descriptor fields 262 〉
〈Parser specific output modes 267, 273, 275 〉
〈Parser table names 250, 255 〉
〈Perform output 213, 228 〉 Used in section 201.

〈Possbly complain about a bad directive 127 〉 Used in section 118.

〈Prepare TEX format for parser constants 283 〉 Used in section 276.

〈Prepare TEX format for parser tokens 284 〉 Used in section 276.

〈Prepare TEX format for scanner constants 311 〉 Used in section 308.

〈Prepare TEX format for semantic action output 281 〉 Used in section 276.

〈Prepare a string for use 92 〉 Used in section 86.

〈Prepare an identifier 128 〉 Used in section 118.

〈Prepare one parametric option 38 〉 Used in sections 37 and 44.

〈Prepare the left hand side 91 〉 Used in section 85.

〈Prepare to process an identifier 198 〉 Used in section 197.

〈Prepare token only output environment 272 〉 Used in section 268.

〈Prepare union definition 48 〉 Used in section 47.

〈Process a bad character 120 〉 Used in section 118.

〈Process a character after an identifier 135 〉 Used in section 132.

〈Process a colon after an identifier 134 〉 Used in section 132.

〈Process bracketed identifier 138 〉 Used in section 137.

〈Process command line options 243 〉 Used in section 201.

〈Process the bracketed part of an identifier 133 〉 Used in section 132.

〈Raise nesting level 153 〉 Used in section 151.

〈Raw option list 217 〉 Used in section 244.

〈React to a bad character 199 〉 Used in section 197.

 NAMES OF THE SECTIONS SPLINT 328

〈Regular expressions 195 〉 Used in section 189.

〈Rest of line 7, 10 〉 Cited in section 6. Used in sections 5 and 8.

〈Return a bracketed identifier 143 〉 Used in section 142.

〈Return an escaped character 150 〉 Used in section 149.

〈Return lexer and parser parameters 124 〉 Used in section 118.

〈Return lexer parameters 122 〉 Used in section 118.

〈Return parser parameters 125 〉 Used in section 118.

〈Scan bison directives 118 〉 Used in section 116.

〈Scan flex directives and options 119 〉 Used in section 116.

〈Scan a Yacc comment 144 〉 Used in section 116.

〈Scan a C comment 145 〉 Used in section 116.

〈Scan a bison string 147 〉 Used in section 116.

〈Scan a character literal 149 〉 Used in section 116.

〈Scan a line comment 146 〉 Used in section 116.

〈Scan a tag 151 〉 Used in section 116.

〈Scan after an identifier, check whether a colon is next 132 〉 Used in section 116.

〈Scan bracketed identifiers 137, 142 〉 Used in section 116.

〈Scan code in braces 157 〉 Used in section 116.

〈Scan grammar white space 117 〉 Used in section 116.

〈Scan identifiers 197 〉 Used in section 195.

〈Scan prologue 160 〉 Used in section 116.

〈Scan the epilogue 162 〉 Used in section 116.

〈Scan user-code characters and strings 155 〉 Used in section 116.

〈Scan white space 196 〉 Used in section 195.

〈Scanner constants 303 〉 Used in section 311.

〈Scanner specific option list 314, 317 〉
〈Scanner specific output modes 305, 307 〉
〈Scanner table names 294 〉
〈Scanner variables and types for C preamble 301 〉
〈Set 〈debug〉 flag 121 〉 Used in section 118.

〈Set 〈locations〉 flag 123 〉 Used in section 118.

〈Set 〈pure-parser〉 flag 126 〉 Used in section 118.

〈Set up TEX format for scanner actions 310 〉 Used in section 308.

〈Set up TEX format for scanner tables 309 〉 Used in section 308.

〈Set up TEX table output for parser tables 277, 280 〉 Used in section 276.

〈Short option list 245 〉 Used in section 243.

〈Shortcuts for command line options affecting parser output 287, 290 〉
〈Shortcuts for command line options affecting scanner output 315, 318 〉
〈Start assembling prologue code 130 〉 Used in section 118.

〈Start suffixes with a qualifier 185 〉 Used in section 168.

〈Start the right hand side 66 〉 Used in section 61.

〈Start with a named suffix 179 〉 Used in section 168.

〈Start with a numeric suffix 180 〉 Used in section 168.

〈Start with a production cluster 62 〉 Used in section 60.

〈Start with a tag 172 〉 Used in section 168.

〈Start with an identifier 171 〉 Used in sections 168 and 173.

〈Strings, comments etc. found in user code 156 〉 Used in section 116.

〈Switch sections 129 〉 Used in section 118.

〈Table names 215 〉 Used in sections 208, 209, 210, 214, and 277.

〈This is an implicit term 253 〉 Used in section 252.

〈Token and types declarations 167 〉 Used in section 165.

〈Tokens and types for the grammar parser 26, 28, 46, 70 〉 Used in sections 21, 22, 23, and 24.

328 SPLINT NAMES OF THE SECTIONS 

〈Turn a character into a term 88 〉 Used in section 82.

〈Turn a qualifier into an identifier 173 〉 Used in section 168.

〈Turn a string into a symbol 90 〉 Used in section 84.

〈Turn an identifier into a symbol 89 〉 Used in section 84.

〈Turn an identifier into a term 87 〉 Used in section 82.

〈Union of grammar parser types 100 〉 Used in sections 21, 22, 23, and 24.

〈Union of parser types 188 〉 Used in section 165.

〈Variables and types local to the parser 251, 258, 291 〉
〈Variables and types local to the scanner driver 295, 299, 319 〉
〈Various output modes 202 〉 Used in section 201.

〈C postamble 201 〉 Cited in section 201.

〈C preamble 222 〉
〈 flex options parser productions 40 〉 Used in sections 22 and 39.

〈 bb.yy 22 〉
〈 bd.yy 23 〉
〈 bf.yy 24 〉
〈 bg.yy 21 〉
〈 lo.ll 101 〉
〈 sill.y 11 〉
〈 small_lexer.ll 189 〉
〈 small_parser.yy 165 〉

CONTENTS (SPLINT)

Section Page
Introduction . 1 2

Using the bison parser . 2 2
On debugging . 12 4
Terminology . 13 5

Languages, scanners, parsers, and TEX . 14 6
Arrays, stacks and the parser . 15 6
TEX into tokens . 16 8
Lexing in TEX . 17 9
Inside semantic actions: switch statements and ‘functions’ in TEX . 18 12
‘Optimization’ . 19 14
TEX with a different slant or do you C an escape? . 20 14
The bison parser(s) . 21 15

Grammar rules . 26 17
The scanner for grammar syntax . 101 29

Tokenizing with regular expressions . 116 32
The name parser . 165 43
The name scanner . 189 46

Forcing bison and flex to output TEX . 200 49
Common routines . 201 49

TEX tables . 223 54
Error codes . 233 55
Initial setup . 237 57
Command line processing . 240 57

bison specific routines . 249 59
Tables . 250 59
Actions . 256 60
Constants . 257 61
Tokens . 258 61
Output modes . 266 62

Token only mode . 267 63
Generic output . 273 63
TEX output . 275 63

Command line options . 285 67
flex specific routines . 293 68

Tables . 294 68
Actions . 295 69
State names . 301 71
Constants . 303 72
Output modes . 304 72

Generic output . 305 72
TEX mode . 307 72

Command line options . 313 74
Philosophy . 321 76

Why GPL . 322 76
Why not C++ or OOP in general . 323 77
Why not ∗TEX . 324 77
Why CWEB . 325 77
Why not GitHub, Bitbucket, etc . 326 78
Bibliography . 327 78

Index . 328 79

	Introduction
	Using the parser
	On debugging
	Terminology
	Languages, scanners, parsers, and TeX
	Arrays, stacks and the parser
	TeX into tokens
	Lexing in TeX
	Inside semantic actions: switch statements and `functions' in TeX
	`Optimization'
	TeX with a different slant or do you C an escape?
	The parser(s)
	Grammar rules

	The scanner for grammar syntax
	Tokenizing with regular expressions

	The name parser
	The name scanner
	Forcing and to output TeX
	Common routines
	TeX tables
	Error codes
	Initial setup
	Command line processing

	 specific routines
	Tables
	Actions
	Constants
	Tokens
	Output modes
	Token only mode
	Generic output
	TeX output

	Command line options

	 specific routines
	Tables
	Actions
	State names
	Constants
	Output modes
	Generic output
	TeX mode

	Command line options

	Philosophy
	Why GPL
	Why not C++ or OOP in general
	Why not *TeX
	Why
	Why not GitHub, Bitbucket, etc
	Bibliography
	Index
	Names of the sections
	A production
	A silly example
	Add %empty to the right hand side
	Add a option
	Add a %dprec directive to the right hand side
	Add a %merge directive to the right hand side
	Add a dot separator
	Add a precedence directive to the right hand side
	Add a predicate to the right hand side
	Add a productions cluster
	Add a right hand side to a production
	Add a symbol definition
	Add a term to the right hand side
	Add an action to the right hand side
	Add an optional semicolon
	Add closing brace to a predicate
	Add closing brace to the braced code
	Add the scanned symbol to the current string
	Assign a code fragment to symbols
	Attach a named suffix
	Attach a productions cluster
	Attach a prologue declaration
	Attach a qualifier
	Attach an identifier
	Attach an integer
	Attach integer suffix
	Attach option name
	Attach qualified suffixes
	Attach qualifier to a name
	Attach suffixes
	Auxiliary function declarations
	Auxiliary function definitions
	Bison options
	Bootstrap parser C postamble
	Bootstrap token list
	Bootstrap token output
	Carry on
	Cases affecting the whole program
	Cases involving specific modes
	Clean up
	Collect all state definitions
	Collect state definitions for the grammar lexer
	Command line processing variables
	Common code for C preamble
	Complain about improper identifier characters
	Complain about unexpected end of file inside brackets
	Complete a production
	Compose the full name
	Compute exotic scanner constants
	Compute magic constants
	Configure parser output modes
	Constant names
	Create a named reference
	Create an empty named reference
	Decode escaped characters
	Default outputs
	Define option list
	Define states
	Define symbol precedences
	Define symbol types
	Definition of symbol
	Do not support zero characters
	End the scan with an identifier
	Error codes
	Establish defaults
	Fake start symbol for bootstrap grammar
	Fake start symbol for prologue grammar
	Fake start symbol for rules only grammar
	Find the rule that defines it and set yyrthree
	Finish a string
	Finish a tag
	Finish braced code
	Finish processing bracketed identifier
	Finish the input setup
	Generic table desciptor fields
	Global Declarations
	Global variables and types
	Grammar lexer C preamble
	Grammar lexer definitions
	Grammar lexer options
	Grammar lexer states
	Grammar parser C postamble
	Grammar parser C preamble
	Grammar parser options
	Grammar token regular expressions
	Handle end of file in the epilogue
	Handle parser output options
	Handle parser related output modes
	Handle scanner output modes
	Handle scanner output options
	Helper functions declarations for for parser output
	Helper functions for parser output
	Higher index options
	Higher index parser specific options
	Higher index scanner specific options
	Insert local formatting
	Lexer C preamble
	Lexer definitions
	Lexer options
	Lexer states
	List of symbols
	Local variable and type declarations
	Long options array
	Make an empty right hand side
	Name parser C postamble
	Name parser C preamble
	Outer definitions
	Output action switch, if any
	Output all tables
	Output constants
	Output descriptor fields
	Output exotic scanner constants
	Output modes
	Output parser constants
	Output parser semantic actions
	Output parser tokens
	Output scanner actions
	Output states
	Parser bootstrap productions
	Parser common productions
	Parser constants
	Parser defaults
	Parser full productions
	Parser grammar productions
	Parser productions
	Parser prologue productions
	Parser specific default outputs
	Parser specific option list
	Parser specific output descriptor fields
	Parser specific output modes
	Parser table names
	Perform output
	Possbly complain about a bad directive
	Prepare TeX format for parser constants
	Prepare TeX format for parser tokens
	Prepare TeX format for scanner constants
	Prepare TeX format for semantic action output
	Prepare a string for use
	Prepare an identifier
	Prepare one parametric option
	Prepare the left hand side
	Prepare to process an identifier
	Prepare token only output environment
	Prepare union definition
	Process a bad character
	Process a character after an identifier
	Process a colon after an identifier
	Process bracketed identifier
	Process command line options
	Process the bracketed part of an identifier
	Raise nesting level
	Raw option list
	React to a bad character
	Regular expressions
	Rest of line
	Return a bracketed identifier
	Return an escaped character
	Return lexer and parser parameters
	Return lexer parameters
	Return parser parameters
	Scan directives
	Scan directives and options
	Scan a Yacc comment
	Scan a C comment
	Scan a string
	Scan a character literal
	Scan a line comment
	Scan a tag
	Scan after an identifier, check whether a colon is next
	Scan bracketed identifiers
	Scan code in braces
	Scan grammar white space
	Scan identifiers
	Scan prologue
	Scan the epilogue
	Scan user-code characters and strings
	Scan white space
	Scanner constants
	Scanner specific option list
	Scanner specific output modes
	Scanner table names
	Scanner variables and types for C preamble
	Set %debug flag
	Set %locations flag
	Set %pure-parser flag
	Set up TeX format for scanner actions
	Set up TeX format for scanner tables
	Set up TeX table output for parser tables
	Short option list
	Shortcuts for command line options affecting parser output
	Shortcuts for command line options affecting scanner output
	Start assembling prologue code
	Start suffixes with a qualifier
	Start the right hand side
	Start with a named suffix
	Start with a numeric suffix
	Start with a production cluster
	Start with a tag
	Start with an identifier
	Strings, comments etc. found in user code
	Switch sections
	Table names
	This is an implicit term
	Token and types declarations
	Tokens and types for the grammar parser
	Turn a character into a term
	Turn a qualifier into an identifier
	Turn a string into a symbol
	Turn an identifier into a symbol
	Turn an identifier into a term
	Union of grammar parser types
	Union of parser types
	Variables and types local to the parser
	Variables and types local to the scanner driver
	Various output modes
	C postamble
	C preamble
	 options parser productions
	bb.yy
	bd.yy
	bf.yy
	bg.yy
	lo.ll
	sill.y
	small_lexer.ll
	small_parser.yy

