
Package ‘scoup’
January 20, 2025

Version 1.0.0

Date 2024-10-23

License GPL (>= 2)

Title Simulate Codons with Darwinian Selection Modelled as an OU
Process

Description An elaborate molecular evolutionary framework that facilitates
straightforward simulation of codon genetic sequences
subjected to different degrees and/or patterns of Darwinian
selection. The model was built upon the fitness landscape
paradigm of Sewall Wright, as popularised by the
mutation-selection model of Halpern and Bruno. This
enabled realistic evolutionary process of living organisms
to be reproduced seamlessly. For example, an
Ornstein-Uhlenbeck fitness update algorithm is incorporated
herein. Consequently, otherwise complex biological processes,
such as the effect of the interplay between genetic drift
and mutation on the inference of diversifying selection, may
now be investigated with minimal effort. Frequency-dependent
and deterministic fitness landscape update techniques are
also available.

Depends R (>= 4.4), Matrix

Imports Biostrings, methods

Suggests BiocManager, BiocStyle, bookdown, htmltools, knitr, testthat
(>= 3.0.0), yaml

VignetteBuilder knitr

Config/testthat/edition 3

biocViews Alignment, Classification, ComparativeGenomics, DataImport,
Genetics, MathematicalBiology, ResearchField, Sequencing,
SequenceMatching, Software, StatisticalMethod, WorkflowStep

Contact <hassan.t.sadiq@gmail.com>

URL https://github.com/thsadiq/scoup

BugReports https://github.com/thsadiq/scoup/issues

git_url https://git.bioconductor.org/packages/scoup

git_branch RELEASE_3_20

1

https://github.com/thsadiq/scoup
https://github.com/thsadiq/scoup/issues

2 aaGamma

git_last_commit 0bd7126

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-01-19

Author Hassan Sadiq [aut, cre, cph] (<https://orcid.org/0000-0003-0192-7134>)

Maintainer Hassan Sadiq <hassan.t.sadiq@gmail.com>

Contents
aaGamma . 2
aaGauss . 4
alignsim . 5
aminoSC-class . 6
biTree . 7
codonCoeffs . 8
codonFreq . 9
codonvalues-class . 10
discrete-class . 11
discreteInput . 13
dndsCalculator . 14
fixMatrix . 15
hbInput . 16
hbParameters-class . 17
omega-class . 18
ou-class . 19
ouEvolve . 20
ouInput . 21
scoup . 22
scoup-class . 23
seqDetails . 24
seqParameters-class . 25
seqWriter . 26
subsMatrix . 27
wInput . 28

Index 30

aaGamma Obtain Gamma Distributed Amino Acid Selection Coefficients

Description

Obtain a vector of values from the Gamma distribution that may be conveniently used as amino acid
selection coefficients.

Usage

aaGamma(vNvS, nsynVar)

https://orcid.org/0000-0003-0192-7134

aaGamma 3

Arguments

vNvS Ratio of the variance of the coefficients of the non-synonymous codons relative
to the variance of the synonymous selection coefficients. Can be assigned a
value equal to zero to eliminate synonymous selection.

nsynVar A non-negative value that corresponds to the variance of the coefficients of the
non-synonymous codons. That is, the the between-amino-acid variance.

Details

Twenty random observations from a Gamma(1, 1/
√
nsynVar) distribution are sampled as the amino

acid selection coefficients. The associated variance of the synonymous coefficients (synVar) is
calculated as nsynVar/vNvS. If nsynVar < 10−12, all the amino acid coefficients will be equal to a
single random draw from a Gamma(1, 1/synVar) distribution.

Value

Returns an object of class aminoSC, a vector that at least contains the following components.

coeffs A vector of 20 numeric elements that represent the sampled amino acid coefficients. The
coefficients are ordered in terms of the 1-letter amino acid IUPAC labels. That is, (A, C, . . . ,
W, Y).

synVar Variance of the selection coefficients of the synonymous codons.

nsynVar Variance of the selection coefficients of the non-synonymous codons.

Author(s)

Hassan Sadiq

See Also

An alternative approach for generating amino acid selection coefficients from a normal distribu-
tion aaGauss. There is codonCoeffs as well, a function designed to convert amino acid to codon
selection coefficients.

Examples

test1 <- aaGamma(0.50, 1e-04)
coeffs(test1)
synVar(test1)
nsynVar(test1)

test2 <- aaGamma(1e-02, 0)
coeffs(test2)
synVar(test2)
nsynVar(test2)

4 aaGauss

aaGauss Obtain Gaussian Distributed Amino Acid Selection Coefficients

Description

Obtain a vector of values from a Normal distribution that may be conveniently used as amino acid
selection coefficients.

Usage

aaGauss(vNvS, nsynVar)

Arguments

vNvS Ratio of the variance of the selection coefficients of the non-synonymous codons
relative to the variance of the synonymous coefficients. It can be assigned a value
equal to zero to eliminate synonymous selection.

nsynVar A non-negative value that corresponds to the variance of the coefficients among
the non-synonymous codons. That is, the between-amino-acid variance.

Details

An observation is sampled from a Normal(0,nsynVar) distribution independently for each of the
20 amino acid residues. The variance of the synonymous selection coefficients (synVar) is calcu-
lated as nsynVar/vNvS. If nsynVar is less than 10−12, all the amino acid coefficients will be equal
to a single random draw from a Normal(0,synVar) distribution.

Value

Returns an object of class aminoSC, a vector that at least contains the following component.

coeffs A vector of 20 numeric elements that represent the sampled amino acid coefficients. The
coefficients are ordered in terms of the 1-letter amino acid IUPAC labels. That is, (A, C, . . . ,
W, Y).

synVar Variance of the selection coefficients of the synonymous codons.

nsynVar Variance of the selection coefficients of the non-synonymous codons.

Author(s)

Hassan Sadiq

See Also

An alternative sampling function, aaGamma is also available. The codonCoeffs function requires
the output from this function (or from aaGamma).

alignsim 5

Examples

case0 <- aaGauss(0.50, 1e-04)
nsynVar(case0)
synVar(case0)
coeffs(case0)

case1 <- aaGauss(1e-02, 0)
nsynVar(case1)
synVar(case1)
coeffs(case1)

alignsim Simulate Codon Sequence Alignment

Description

Obtain an alignment of codon sequences that have been artificially subjected to natural selection,
imposed as changes in the fitness landscape along the branches of a symmetric evolutionary tree.

Usage

alignsim(adaptIn, seqIn, ...)

Arguments

adaptIn A list of class discrete, omega or ou.

seqIn A list of class seqParameters.

... Arguments to be passed to methods such as ‘omega‘ and ‘ou‘. See modelIn and
filename in details below.

Details

This is the primary function of the package. Codon sequence alignment be simulated in terms of the
population genetics paradigm. Fitness landscape may be kept static or set to be renewed along the
branches of a balanced phylogeny based on any of the three available methods: Ornstein-Uhlenbeck,
frequency-dependent or deterministic. Other possible inputs include, modelIn: a hbParameters
object. Only applicable when adaptIn is an ou object. filename: a string that specifies the full
path of the file that will contain the simulated alignment in NEXUS format. Say it is given as
"seq.nex", a file with that name will be printed in the working directory. When set as NA (default),
no file will be saved. When set as NULL, a DNAStringSet object will be returned.

Value

A NEXUS format file is saved in the specified (or working) directory. In addition, a scoup object
that contains the following entries is returned.

seqs A matrix of integers between 1 and 61. The integers are the positions of the simulated codons
within an ordered set of nucleotide triplets. The rows are the extant sequences and the columns
are alignment sites.

dNdS A matrix of the corresponding site-wise (or codon-wise) dN/dS value for all the fitness land-
scapes utilised in the simulation.

6 aminoSC-class

aInfo A string of text that contains details of the parameter values that were used during simulation
of the codon sequence alignment.

cseq A dataframe of the simulated codon sequence alignment.

seqCOL A DNAStringSet object with colorful sequences. Only applicable when filename=NULL.

Author(s)

Hassan Sadiq

References

Sadiq, H. et al. (in progress) scoup: Simulate Codon Sequences with Darwinian Selection Incorpo-
rated as an Ornstein-Uhlenbeck Process.

Pages H, Aboyoun P, Gentleman R, DebRoy S (2024). Biostrings: Efficient manipulation of bio-
logical strings. R package version 2.72.1, https://bioconductor.org/packages/Biostrings.

See Also

Complementary functions that are useful for defining the simulation parameters needed to success-
fully utilise this function. These include, (a.) discreteInput, (b.) hbInput, (c.) ouInput, (d.)
seqDetails and (d.) wInput. See also DNAStringSet in the Biostrings package.

Examples

alignEntry <- seqDetails(c(ntaxa=8,nsite=10))

dsim <- alignsim(discreteInput(), alignEntry)
aInfo(dsim)
cseq(dsim)

wsim <- alignsim(wInput(), alignEntry, filename=NULL)
seqCOL(wsim)
dNdS(wsim)

osim <- alignsim(ouInput(), alignEntry, modelIn=hbInput())
osim

aminoSC-class Amino Acid Selection Coefficients

Description

A numerical vector of values that are associated with the amino acid selection coefficients.

Objects from the Class

Objects of this class (aminoSC) can be created by calls of the form new("aminoSC", coeffs=...,
synVar=..., nsynVar=...). The two amino acid sampling functions (that is, aaGamma and aaGauss)
that are available in the scoup package return objects of this class.

biTree 7

Slots

coeffs: numeric vector returned by the coeffs method.

synVar: numeric value returned by the synVar method.

nsynVar: numeric value returned by the nsynVar method.

Methods

coeffs signature(x = "aminoSC"): vector of twenty values that correspond to the amino acid
selection coefficients. The entries are ordered in increasing alphabetical order in terms of the
one-letter IUPAC naming structure.

nsynVar signature(x = "aminoSC"): variance of the probability distribution where the returned
amino acid selection coefficients were sampled.

show signature(object = "aminoSC"): summary of the contents of the aminoSC object includ-
ing a snippet of the sampled coefficients as well as the values of the synVar (σ2

s) and the
nsynVar (σ2

n) parameters.

synVar signature(x = "aminoSC"): variance of the uniform distribution where the synonymous
selection coefficients should be sampled.

Author(s)

Hassan Sadiq

See Also

aaGamma, aaGauss

Examples

aasc1 <- aaGamma(1e-10, 1e-04)
coeffs(aasc1)
show(aasc1)

biTree Generate a Balanced Bifurcating Evolutionary Tree

Description

Obtain an evolutionary tree that is such that all its internal nodes have exactly two offspring and all
the branches on the tree have equal length.

Usage

biTree(ntaxa, bLength, terModel=NA)

8 codonCoeffs

Arguments

ntaxa Number of extant taxa. It must be an integer (t) that may be expressed as 2^m,
where m is itself a positive integer.

bLength Branch length. All the branches of the generated tree will have the same length
that is equal to the specified value.

terModel A text that would be added as suffix to the extant taxa names. If set as NA
(default), no suffix will be added. This is useful for assigning a model to the
leaves in branch-specific analyses.

Value

tree A bifurcating tree in newick format.

Author(s)

Hassan Sadiq

Examples

biTree(16, 0.01, "{foreground}")

biTree(16, 0.01, " #1")

biTree(16, 0.01)

codonCoeffs Transform Amino Acid to Codon Selection Coefficients

Description

Convert a 20-element vector of amino acid selection coefficients to a 61-element vector of codon
selection coefficients.

Usage

codonCoeffs(s01x22, fixed=NULL)

Arguments

s01x22 A 22-element vector of class aminoSC.

fixed A vector of integers between 1 and 20 that indicates which amino acid to assign
positive coefficients to, based on the alphabetical order of the 1-letter IUPAC
notation. That is, (1=A, 2=C, 3=D, ..., 19=W, 20=Y). All the other amino acids
are assigned zero coefficients. This input is only necessary when the specified
between-amino-acid variance is less than 10^(-12). The default is NULL.

codonFreq 9

Details

Consider a vector of amino acid selection coefficients, (s_x: s_A, s_C, s_D, ..., s_W, s_Y) that are
subset of s01x22. All the synonymous codons that encode each amino acid are assigned inde-
pendently sampled values from Uniform(s_x - 3*synVar; s_x + 3*synVar) distribution, where
synVar is the synonymous variance and it is also retrieved from s01x22. For amino acids M and W,
the corresponding codon coefficient is simply set equal to s_M and s_W, respectively. The output
from the function is of the order (s_(AAA), s_(AAC), s_(AAG), ..., s_(TTC), s_(TTG), s_(TTT)),
excluding the stop codons.

Value

Returns a codonvalues object that will contain the following.

coeffs A 61-element vector of codon selection coefficients ordered alphabetically with respect to
the IUPAC nucleotide triplets nomenclature.

Author(s)

Hassan Sadiq

See Also

aaGamma and aaGauss, functions useful for generating aminoSC objects.

Examples

Example 1:
aasc1 <- aaGamma(1e-10, 1e-04)
ccfs0 <- codonCoeffs(aasc1)
coeffs(ccfs0)

Example 2:
aasc2 <- aaGauss(1e-10, 1e-04)
ccfs1 <- codonCoeffs(aasc2)
coeffs(ccfs1)

Example 3:
aasc3 <- aaGauss(1e-03, 0)
ccfs2 <- codonCoeffs(aasc3, c(2,6))
coeffs(ccfs2)

codonFreq Generate Codon Frequencies From Selection Coefficients

Description

Obtain codon frequencies from specified selection coefficients in a way that accounts for the mag-
nitude of the coefficients in the real number line.

Usage

codonFreq(sc01x61)

10 codonvalues-class

Arguments

sc01x61 Vector of sense codon selection coefficients that are ordered alphabetically in
terms of the IUPAC nucleotide triplets nomenclature.

Details

This conversion to frequencies accommodates the magnitude and signs of the selection coefficients
because the frequency for the ith codon is estimated as:

πi =

log(si)

/∑61
j=1 log(sj) if sj > 0 ∀j ,

esi
/∑61

j=1 e
sj otherwise,

where si ∈ sc01x61 is the selection coefficient of the ith codon.

Value

Returns a codonvalues object that contains the following.

freqs A vector of 61 fractional values that sum to one and represent the frequencies of sense
codons that are ordered alphabetically in terms of the IUPAC nucleotide triplets nomenclature.

Author(s)

Hassan Sadiq

See Also

codonCoeffs, a function that produces codon selection coefficients that may be used as an input.

Examples

aaEG1 <- aaGamma(1e-03, 0)
csc01 <- codonCoeffs(aaEG1, 4)
cFq <- codonFreq(csc01)
freqs(cFq)

codonvalues-class Codon Frequencies and Selection Coefficients

Description

A numerical vector of values that correspond to the selection coefficients of the sense codons.

Objects from the Class

Objects of this class (codonvalues) can be created by calls of the form new("codonvalues",
cdnums=...). Two codon-related transformation functions (that is, codonCoeffs and codonFreq)
that are available in the scoup package return objects of this class.

discrete-class 11

Slots

cdnums: vector of 61 values that could correspond to the selection coefficients or the frequencies
of the sense codons depending on the method called.

Methods

coeffs signature(x = "codonvalues"): vector of 61 values that correspond to the selection coef-
ficients of the sense codons. The entries are ordered in increasing alphabetical order in terms
of the IUPAC nucleotide triplets naming structure.

freqs signature(x = "codonvalues"): vector of 61 values that correspond to the frequencies of
the sense codons. The entries are ordered in increasing alphabetical order in terms of the
IUPAC nucleotide triplets naming structure.

show signature(object = "codonvalues"): prints the first six relevant (that is, coefficients or
frequencies) codon values.

Author(s)

Hassan Sadiq

See Also

codonCoeffs, codonFreq

Examples

aasc1 <- aaGamma(1e-10, 1e-04)
ccfs0 <- codonCoeffs(aasc1)
cFq <- codonFreq(ccfs0)
coeffs(ccfs0)
freqs(cFq)

discrete-class Deterministic Simulation Model Input

Description

Creates an object suitable for use when interested in generating an alignment of genetic sequences
following the deterministic simulation technique available in the scoup package.

Objects from the Class

Objects can be created by calls of the form new("discrete", lscape=..., sampler=..., nodeIndex=...,
psize=..., t3mdl=...). Objects can also be created straightforwardly with the discreteInput
function.

12 discrete-class

Slots

lscape: numeric matrix returned by the lscape method.

sampler: numeric value that can be set as 1 or 2. It indicates the probability distribution where the
amino acid selection coefficients should be sampled.

nodeIndex: numeric input only relevant for implicit execution of the simulation algorithm. It is of
no practical utility to the end-user.

psize: numeric value returned by the effpop method.

t3mdl: character input that may be used to specify suffix for the leaves on the returned phylogeny.
It is intended to facilitate inference analyses with external software such as PAML or HyPhy.

Methods

aaSCupdate signature(parameters="discrete"): background function that is not intended
for end-use. It updates the amino acid selection coefficients intermittently during the sequence
simulation process.

alignsim signature(adaptIn="discrete", seqIn="seqParameters"): primary simulation func-
tion available in the scoup package.

effpop signature(x="discrete"): effective population size.

lscape signature(x="discrete"): numerical matrix that contains parameters of the fitness land-
scape. The first row will contain the ratio of the variance of the non-synonymous to synony-
mous selection coefficients (vNvS) and the second row will contain the variance of the non-
synonymous selection coefficients σ2

n . The number of columns will be equal to the number of
internal (bifurcating) stages. A phylogeny with 2m leaves will have m internal stages.

sampler signature(x="discrete"): probability distribution where the amino acid selection co-
efficients should be obtained.

show signature(object="discrete"): prints characteristics of the corresponding genetic se-
quence, including the population size and the number of extant taxa.

sitesim signature(parameters="discrete", nodeLength="numeric"): background function
that is not to be used by an end-user. It generates the DNA data at each site independently.

Author(s)

Hassan Sadiq

See Also

discreteInput, alignsim.

Examples

dtest <- discreteInput()
effpop(dtest)
lscape(dtest)
sampler(dtest)

discreteInput 13

discreteInput Populate Deterministic Seascape Model Parameters

Description

Create an object that has a discrete class attribute. It is particularly useful for defining one of
the possible inputs of the main simulation function alignsim, when interested in simulating codon
sequences that evolve with fitness landscapes that change at every internal node.

Usage

discreteInput(defList=list())

Arguments

defList A list that may contain up to five named entries. See Details for further infor-
mation.

Details

If fully specified, defList will be a list with five elements. The preferred list content include (a.)
p02xnodes: a 2-row matrix with rows that are properly named as “vNvS” and “nsynVar”. Entries in
the “vNvS” row should be the ratio of the variance of the non-synonymous selection coefficients to
the variance of the synonymous coefficients. Entries in the “nsynVar” row should be the variance
of the non-synonymous selection coefficients. The number of the matrix columns will be used to
determine the number of internal nodes to assume for the simulation phylogeny. Each column of the
matrix will be used to determine the parameters of the sampling distribution where the coefficient
updates will be sampled at every node. Default is a 2×4 matrix, wherein all the values in the “vNvS”
row are equal to 1 and all the entries in the “nsynVar” row are equal to 10−5. (b.) technique: a
binary integer that could be 1 for Gaussian or 2 for Gamma (default) distribution. It informs about
the probability distribution to be used for updating the coefficients. (c.) pSize: (default = 1000)
is the effective population size. (d.) nodeIndex: a nuisance input that is best left unspecified. It
is updated within the alignsim operation. (e.) leafModel: a text that may be used to suffix the
names of the terminal nodes (default = NA). Note that this function was not designed to be used in
isolation. Its purpose is to complement the alignsim simulation function.

Value

A discrete object that contains the following.

lscape Matrix containing landscape parameters.

sampler Name of the sampling distribution used for selection coefficient updates.

effpop Effective population size.

Author(s)

Hassan Sadiq

See Also

alignsim, aaGamma, aaGauss, biTree.

14 dndsCalculator

Examples

dtest <- discreteInput()
effpop(dtest)
lscape(dtest)
sampler(dtest)

dndsCalculator Estimate dN/dS Value Analytically

Description

Obtain an analytical estimate for the ratio of non-synonymous to synonymous rate (dN/dS) of codon
substitution.

Usage

dndsCalculator(pi01x61, q61x61)

Arguments

pi01x61 Vector of sense codon frequencies that are ordered alphabetically with respect
to nucleotide triplets according to IUPAC nomenclature.

q61x61 A 61×61 matrix of sense codon instantaneous substitution rates, where the rows
and the columns are ordered in terms of IUPAC-lettered nucleotide triplets.

Details

The returned dN/dS estimate is obtained from the ratio of the following expressions.

dN =

∑
j

∑
i ̸=j πi Aij IN∑

j

∑
i ̸=j πi µij IN

, dS =

∑
j

∑
i̸=j πi Aij IS∑

j

∑
i̸=j πi µij IS

,

where A and π are the input codon frequency vector (pi01x61) and the instantaneous substitution
rate matrix (q61x61), respectively. The notation µ denotes codon mutation matrix (embedded as
a function of the HKY85 nucleotide model) while IS and IN are Boolean matrices with ones at
positions occupied by synonymous and non-synonymous codons, respectively.

Value

dnds An estimate for the corresponding dN/dS

Author(s)

Hassan Sadiq

References

Spielman, S. J. and Wilke, C. O. (2015). The Relationship between dN/dS and Scaled Selection
Coefficients, Molecular Biology and Evolution 32(4): 1097-1108.

See Also

codonFreq, subsMatrix.

fixMatrix 15

Examples

aasc <- aaGauss(0.5, 1e-03)
codonsc <- codonCoeffs(aasc)
piFreq <- codonFreq(codonsc)
smat <- subsMatrix(codonsc, 1000)
dndsCalculator(piFreq, smat)

fixMatrix Construct Fixation Rate Matrix

Description

Construct a 61 × 61 matrix that contains the rate at which a mutant (column) codon gets fixed at a
position previously occupied by a resident (row) codon for all the pairwise combinations of the 61
sense codons.

Usage

fixMatrix(sc01x61, effpopsize)

Arguments

sc01x61 A vector of sense codon selection coefficients that are ordered alphabetically in
terms of the IUPAC nucleotide triplets nomenclature.

effpopsize Effective population size.

Details

If the additive fitness of a mutant codon (j) relative to a resident codon (i) is given by sij = (sj−si),
then the rate at which codon j gets fixed in a codon position occupied by codon i can be expressed
as follows.

fij =

1−e

−2sij

1−e
−2Nesij

if codons i and j differs only by one nucleotide,

0 otherwise,

where si, sj ∈ sc01x61 and Ne (effpopsize) is the effective population size. If si − sj = 0, then
fij = 1.

Value

fixMtx A 61 × 61 matrix of the fixation rates of the sense codons. The rows and columns are
ordered alphabetically in terms of the IUPAC nucleotide triplets nomenclature. That is, AAA,
AAC, AAG, . . . , TTG, TTT.

Author(s)

Hassan Sadiq

16 hbInput

References

Bershtein, S. and Serohijos, A. W. R. and Shakhnovich, E. I. (2017), Bridging the Physical Scales
in Evolutionary Biology: From Protein Sequence Space to Fitness of Organisms and Populations,
Current Opinion in Structural Biology 42: 31-40.

Halpern, A. L. and Bruno, W. J. (1998). Evolutionary Distances for Protein-Coding Sequences:
Modelling Site-Specific Residue Frequencies, Molecular Biology and Evolution 15(7): 910-917.

McCandlish, D. M. (2011), Visualizing Fitness Landscapes, Evolution 65(6): 1544-1558.

See Also

codonCoeffs, aaGamma, aaGauss.

Examples

aasc <- aaGauss(0.5, 1e-03)
codonsc <- codonCoeffs(aasc)
fixMatrix(codonsc, 1000)

hbInput Generate Halpern-Bruno Substitution Model Parameters

Description

Create a hbParameters object that contains values necessary to construct a Halpern-Bruno mutation-
selection codon substitution model.

Usage

hbInput(hbVector=0)

Arguments

hbVector A named vector that provides values of the parameters necessary to success-
fully create a codon substitution model for simulation of genetic sequences. See
Details for further information.

Details

When fully specified, hbVector will be a four-element named vector. That is, hbVector=c(Ne,
meth, vNvS, nsynVar). Ne is an integer that represents the effective population size (default =
1000). meth is a binary integer that indicates the probability distribution from where the initial
selection coefficients must be sampled. It can be 1 for a truncated Gaussian or 2 for a Gamma (de-
fault) distribution. vNvS is the ratio of the variance of the non-synonymous to synonymous selection
coefficients. Default value is 1. The user can set the variance of the non-synonymous selection coef-
ficients with nsynVar (default is 10−5). This function was not intended for independent use. Rather
as a complement to the alignsim simulation function.

hbParameters-class 17

Value

A hbParameters object that contains the following.

psize Effective population size.

vNvS Ratio of the variance of the non-synonymous to the synonymous selection coefficients.

nsVar Variance of the non-synonymous selection coefficients.

sampler Probability distribution for generating the initial selection coefficients.

Author(s)

Hassan Sadiq

See Also

Selection coefficients sampling functions, aaGamma and aaGauss as well as the primary simulation
function alignsim.

Examples

h0 <- hbInput()
vNvS(h0)
h0

h1 <- hbInput(c(Ne=100, meth=2, vNvS=1e-08, nsynVar=1e-08))
sampler(h1)

hbParameters-class Halpern-Bruno Mutation-Selection Evolutionary Model Input

Description

Creates an object of class (hbParameters) that contains the principal entries necessary to construct
a Halpern-Bruno mutation-selection evolutionary model.

Objects from the Class

Objects of this class can be created by calls of the form new("hbParameters", psize=??, vNvS=??,
sampler=??, nsynVar=??, words=??). The object is an important input of the alignsim function
when interested in simulating sequences with respect to the Ornstein-Uhlenbeck framework.

Slots

psize: numeric value returned by the effpop method.

vNvS: numeric value returned by the vNvS method.

sampler: numeric value that can be set as 1 or 2. It indicates the probability distribution where the
amino acid selection coefficients should be sampled.

nsynVar: numeric value returned by the nsynVar method.

words: comments about the specified Halpern-Bruno model parameters. It is a character format
string that is eventually added to the simulated sequence for reference.

18 omega-class

Methods

effpop signature(x = "hbParameters"): effective population size.

nsynVar signature(x = "hbParameters"): variance of the non-synonymous selection coeffi-
cients σ2

n .

sampler signature(x = "hbParameters"): probability distribution where the amino acid selec-
tion coefficients should be randomly retrieved.

show signature(object = "hbParameters"): prints characteristics of the defined model includ-
ing the population size, the vNvS and the σ2

n .

vNvS signature(x = "hbParameters"): ratio of the variance of the non-synonymous to synony-
mous selection coefficients.

Author(s)

Hassan Sadiq

See Also

alignsim, hbInput

Examples

h1 <- hbInput(c(Ne=100, meth=2, vNvS=1e-08, nsynVar=1e-08))
sampler(h1)
h1

omega-class Frequency-Dependent Evolutionary Model Specification

Description

Creates an object that contains the inputs that are necessary to define a frequency-dependent evolu-
tionary algorithm and subsequently simulate genetic sequence alignment based on the framework
using the alignsim function in the scoup package.

Objects from the Class

Objects of this class can be created by calls of the form new("omega", nsynVar=..., psize=...,
sampler=..., aaPlus=..., vNvS=...). The object is an important input of the alignsim func-
tion when interested in simulating sequences with respect to the frequency-dependent framework.
The wInput function in the scoup package returns this kind of object.

Slots

nsynVar: numeric value returned by the nsynVar method.

psize: numeric value returned by the effpop method.

sampler: numeric value that can be set as 1 or 2. It indicates the probability distribution where the
amino acid selection coefficients should be sampled.

aaPlus: indices of the amino acids (after the corresponding one-letter IUPAC names are arranged
in increasing alphabetical order) that should be assigned non-zero vNvS.

vNvS: numeric value returned by the vNvS method.

ou-class 19

Methods

alignsim signature(adaptIn="omega", seqIn="seqParameters"): primary simulation func-
tion availed in the scoup package.

effpop signature(x="omega"): effective population size.
lscape signature(x="omega"): IUPAC one-letter notations of the amino acids that were assigned

non-zero vNvS values.
nsynVar signature(x="omega"): variance of the non-synonymous selection coefficients σ2

n .
sampler signature(x="omega"): probability distribution where the amino acid selection coeffi-

cients should be randomly retrieved.
show signature(object="omega"): prints the vNvS and the count of amino acids that had posi-

tive vNvS values.
sitesim signature(parameters="omega", nodeLength="numeric"): background function that

is not available to end-user. It generates the DNA data at each site independently.
vNvS signature(x="omega"): ratio of the variance of the non-synonymous to synonymous se-

lection coefficients.

Author(s)

Hassan Sadiq

See Also

alignsim, wInput

Examples

w1 <- wInput(list(aaPlus=c(4,2,11), nsynVar=10))
lscape(w1)
w1

ou-class Ornstein-Uhlenbeck Stochastic Simulation Model Object

Description

Contains the inputs that are necessary to define an Ornstein-Uhlenbeck (OU) evolutionary process.

Objects from the Class

Class ou objects can be created by calls of the form new("ou", var=??, theta=??, mu=??, words=??).
This type of object is returned by the ouInput function in the scoup package. It is an important
input of the alignsim function when interested in codon sequences that evolved following the OU
framework.

Slots

var: numeric value returned by the asymVar method.
theta: numeric value returned by the reversion method.
mu: numeric value returned by the asymMean method.
words: descriptive text that contains details of the set parameter values. Useful as reference com-

ments to be included in the generated sequence alignment.

20 ouEvolve

Methods

aaSCupdate signature(parameters = "ou"): background function that is not intended for end-
use. It updates the amino acid selection coefficients intermittently during the sequence simu-
lation process.

alignsim signature(adaptIn="ou", seqIn="seqParameters"): primary simulation function avail-
able in the scoup package.

asymMean signature(x="ou"): asymptotic mean, µ, of the OU evolutionary algorithm.

asymVar signature(x="ou"): asymptotic variance, Σ2, of the OU evolutionary framework.

reversion signature(x="ou"): reversion parameter, θ, that acts as a selective pull in the OU
process.

show signature(object="ou"): prints the values of Σ2, µ and θ.

sitesim signature(parameters="ou", nodeLength="numeric"): background function that is
not to be used by an end-user. It generates the DNA data at each site independently.

Author(s)

Hassan Sadiq

See Also

alignsim, ouInput.

Examples

o1 <- ouInput(c(eVar=1e-02, Theta=10))
asymMean(o1)
asymVar(o1)

ouEvolve Simulate the Trend of an Ornstein-Uhlenbeck Process

Description

Simulate the next state of an Ornstein-Uhlenbeck (OU) process for a given value.

Usage

ouEvolve(xInit, deltaT, sysTheta, asymptoteVar, asymptoteMew)

Arguments

xInit Starting point of the OU process.

deltaT Jump size.

sysTheta Reversion rate.

asymptoteVar Asymptotic variance.

asymptoteMew Asymptotic mean.

ouInput 21

Details

The state at time k (that is, xtk) of a process that evolves according to an OU algorithm can be
expressed as an observation from a Gaussian distribution as follows.

xtk
∼ Normal

(
µ+

(
xtk−1

− µ
)
e−θ∆t;

σ2

2θ

(
1− e−2θ∆t

))
Observe that when time interval (deltaT) ∆t = tk − tk−1 approaches infinity, the asymptotic
mean (asymptoteMew) and the asymptotic variance (asymptoteVar) of the distribution are µ and
Σ2 = σ2/2θ respectively, where θ is the reversion rate.

Value

xnew A scalar that represents the updated state of the OU process.

Author(s)

Hassan Sadiq

References

Uhlenbeck, G. E. and Ornstein, L. S. (1930), On the Theory of the Brownian Motion, Physical
Review 36: 823-841.

Examples

x0 <- 0.015
xvec <- c()
xvec[1] <- x0
for(k in seq(2,100)){

xstate <- ouEvolve(x0, 0.002, 10, 0.001, 0)
xvec[k] <- xstate
x0 <- xstate

}
plot(xvec, type="l")

ouInput Populate Parameters of the Ornstein-Uhlenbeck Algorithm

Description

Create an ou object that will contain the parameters necessary to simulate a codon sequence align-
ment that evolves according to an Ornstein-Uhlenbeck (OU) process.

Usage

ouInput(ouVector=0)

Arguments

ouVector A vector that contains carefully named elements. Each element represents a
parameter in an OU model. See Details for more information.

22 scoup

Details

In its full form, ouVector is a three-element vector. Its contents each represents part of the param-
eters required to implement an OU process. The vector contents include, eMean, eVar and Theta.
Input eMean is the asymptotic mean (µ) and zero is its default value. eVar denotes the asymptotic
variance (Σ2). It has a 0.01 default value. Theta (default = 0.01) represents the reversion rate (θ).
This function was aimed as a complement to alignsim, not for use in isolation.

Value

An ou object that contains the following.

asymMean Asymptotic mean of the OU process.
asymVar Asymptotic variance of the OU process.
reversion Reversion rate of the OU process.

Author(s)

Hassan Sadiq

References

Uhlenbeck, G. E. and Ornstein, L. S. (1930), On the Theory of the Brownian Motion, Physical
Review 36: 823-841.

See Also

The Ornstein-Uhlenbeck state generating function ouEvolve and the alignsim simulation function.

Examples

o0 <- ouInput()
reversion(o0)
o0

o1 <- ouInput(c(eVar=1e-02, Theta=10))
asymMean(o1)
asymVar(o1)

scoup Simulate Codons with Darwinian Selection Added as an OU Process

Description

The primary objective of this package is to facilitate more rigorous understanding of phylogenetic
inferences of natural selection from codon sequences. Concepts from the Halpern-Bruno mutation-
selection model and the Ornstein-Uhlenbeck stochastic process were creatively fused such that
the end-product is a novelty with respect to computational genetic simulation. Users are able to
seamlessly adjust the model parameters to mimic complex evolutionary procedures that may have
been otherwise infeasible. For example, it is possible to explicitly interrogate the concepts of static
and changing fitness landscapes with regards to Darwinian natural selection in the context of DNA
sequences. The ratio of the variance in selection coefficients, vN/vS, is presented as a new measure
of the net selection effect acting on genetic sequences. This package could be very useful for
generating more appropriate test data sets for validation of likelihood-based (ω) codon models of
evolution.

scoup-class 23

Details

Three simulation algorithms are available. (a.) The Ornstein-Uhlenbeck simulation technique.
This technique was built around the stochastic Brownian motion evolutionary paradigm. Explicit
parameters exist to control the extent of drift, mutation and selection that are acting on the biological
system. (b.) The frequency-dependent approach where every substitution event that corresponds to
a shift in the fitness landscape. (c.) The deterministic method where the model parameters may be
fixed for each internal node of the phylogeny.

Author(s)

Hassan Sadiq

References

Halpern, A. L. and Bruno, W. J. (1998). Evolutionary Distances for Protein-Coding Sequences:
Modelling Site-Specific Residue Frequencies, Molecular Biology and Evolution 15(7): 910-917.

Sadiq, H. et al. (in progress) scoup: Simulate Codon Sequences with Darwinian Selection Incorpo-
rated as an Ornstein-Uhlenbeck Process.

Uhlenbeck, G. E. and Ornstein, L. S. (1930), On the Theory of the Brownian Motion, Physical
Review 36: 823-841.

scoup-class Output from the scoup::alignsim Genetic Sequence Simulator

Description

Stores the results from a successful implementation of any of the simulation algorithms available in
the scoup package.

Objects from the Class

Objects can be created by calls of the form new("scoup", seqs=..., DNDS=..., aInfo=...,
cseq=..., seqCOL=...).

Slots

seqs: numerical matrix returned by the seqs method.

DNDS: numerical matrix returned by the dNdS method.

aInfo: character phrase returned by the aInfo method.

cseq: data frame returned by the cseq method.

seqCOL: DNAStringSet object returned by the seqCOL method.

Methods

aInfo signature(x="scoup"): details of the parameters used to execute the simulation process.
This includes, the branch length of all the nodes of the balanced phylogeny, the name of the
probability distribution where the amino acid selection coefficients were sampled as well as the
(vNvS & non-synonymous selection) parameter set used at each internal node ("generation")
stage.

24 seqDetails

cseq signature(x="scoup"): data frame that contains the simulated genetic sequence.
dNdS signature(x="scoup"): analytical estimates of the magnitude of the imposed selection

effect. It is calculated node-wise as the ratio of the non-synonymous to synonymous substitu-
tions.

seqCOL signature(x="scoup"): a DNAStringSet version of the simulated genetic sequence
alignment.

seqs signature(x="scoup"): expression of the simulated sequence as a matrix of integers, where
each entry corresponds to the position of the associated codon in an an alphabetically increas-
ing ordered set of the DNA triplets of the 61 sense codons.

show signature(object="scoup"): sentence that contains the number of codon sites and the
number of extant taxa that make up the simulated genetic sequence alignment.

Author(s)

Hassan Sadiq

See Also

Simulation function alignsim.

Examples

alignEntry <- seqDetails(c(ntaxa=8,nsite=10))
dsim <- alignsim(discreteInput(), alignEntry)
aInfo(dsim)
cseq(dsim)

seqDetails Populate Sequence Alignment Information

Description

Create a seqParameters object that contains features of the sequence that needs to be simulated.

Usage

seqDetails(seqVector=0)

Arguments

seqVector A named vector that provides characteristics of the intended sequence align-
ment. See Details for further information.

Details

If fully specified, seqVector should be a four-element named vector. That is, seqVector = c(ntaxa,
nsite, blength, terModel). ntaxa should be of the form 2m, where m is an integer. It corre-
sponds to the number of extant taxa, default is 64. nsite, also an integer (default = 250), is the
number of codon sites. blength is the length of each branch on the balanced symmetric tree that
will be used for the simulation (default = 0.10). terModel is a text that will be added as a suffix to
the leaf names on the phylogeny (default = NA). It is meant to facilitate assignment of models to the
terminal nodes for branch-wise selection analyses. The purpose of this function is to complement
alignsim.

seqParameters-class 25

Value

A seqParameters object that contains the following.

sites Number of alignment sites.

taxa Number of extant taxa.

nodes Number of internal (bifurcating) stages on the evolutionary tree. A tree with 2m leaves will
have m internal stages.

branchL Length of the branches on the phylogeny.

phylogeny Evolutionary tree in newick format.

details Text that describes the evolutionary tree.

Author(s)

Hassan Sadiq

See Also

The codon sequence simulator alignsim and biTree, the balanced evolutionary tree generator.

Examples

t0 <- seqDetails()
sites(t0)

t1 <- seqDetails(c(ntaxa=16, nsite=10, blength=0.20, terModel=" #1"))
details(t1)

seqParameters-class Simulated Codon Sequence Structure

Description

A S4 object that contains information about the structure (that is, size, length, etc) of the simulated
genetic sequence.

Objects from the Class

This is the object class of the output from the seqDetails function. It is a core input of the
alignsim function. Objects can be created by calls of the form new("seqParameters", sites=??,
taxa=??, nodes=??, branchL=??, phylogeny=??, details=??).

Slots

sites: numeric value returned by the sites method.

taxa: numeric value returned by the taxa method.

nodes: numeric value returned by the nodes method.

branchL: numeric value returned by the branchL method.

phylogeny: character returned by the phylogeny method.

details: character returned by the details method.

26 seqWriter

Methods

alignsim signature(adaptIn="discrete", seqIn="seqParameters"): an option of the pri-
mary simulation function in the scoup package. This setting activates the deterministic frame-
work.

alignsim signature(adaptIn="omega", seqIn="seqParameters"): an option of the primary
simulation function in the scoup package. This setting activates the frequency-dependent
framework.

alignsim signature(adaptIn="ou", seqIn="seqParameters"): an option of the primary sim-
ulation function in the scoup package. This setting activates the Ornstein-Uhlenbeck frame-
work.

branchL signature(xo="seqParameters"): branch length. Only balanced evolutionary trees
are permitted. Therefore, all tree nodes have the same length.

details signature(xo="seqParameters"): note that contain the important parameter settings that
generated the corresponding data. It is added as comments to the saved output.

nodes signature(xo="seqParameters"): number of internal (bifurcating) stages of the balanced
phylogeny. An evolutionary tree with 2m extant taxa will have m nodes.

phylogeny signature(xo="seqParameters"): newick string of the phylogeny utilised for the
codon sequence simulation.

show signature(object="seqParameters"): summary descriptive details about the correspond-
ing sequence alignment.

sites signature(xo="seqParameters"): number of codon sites that make up the sequence.

taxa signature(xo="seqParameters"): number of leaves on the phylogeny.

Author(s)

Hassan Sadiq

See Also

Codon sequence simulator alignsim and the sequence preparatory function seqDetails.

Examples

t0 <- seqDetails()
sites(t0)

seqWriter Write Numeric Codon Alignment to a NEXUS File

Description

Save numeric codon alignment matrix to a file in NEXUS format. It is particularly useful when data
with site partitions is required.

Usage

seqWriter(alignmentMatrix, treeInfo=NA, addText="", fileTag=NULL)

subsMatrix 27

Arguments

alignmentMatrix

A numerical matrix of codon sequence alignment that is similar to the seqs
matrix from the output of alignsim. The rows of the matrix should each corre-
spond to an extant taxa and the columns should be the alignments sites. The en-
tries of the matrix should be integers between 1 and 61 and they will be decoded
in terms of the ordered IUPAC sense codon triplets. That is, 1=AAA, 2=AAC,
3=AAG, 4=AAT, 5=ACA, . . . , 57=TGT, 58=TTA, 59=TTC, 60=TTG, TTT.

treeInfo Phylogeny to be printed with the sequence. If unspecified (default = NA) a bal-
anced phylogeny with branch length = 0.10 and number of extant taxa set as the
number of rows of the input alignmentMatrix will be used.

addText A string of comments to be printed with the alignment (default = "").

fileTag Full path to where the output file should be printed. It should be a string
(default = NULL). If not provided, the NEXUS file returned will be saved as
cranrSeqs.nex in a temporary directory.

Value

NULL A NEXUS file with codon alignment printed therein will be saved in a temporary (or speci-
fied) directory.

Author(s)

Hassan Sadiq

See Also

Simulation function alignsim.

Examples

sqAlign <- alignsim(ouInput(), seqDetails(), hbInput(), NA)
seqWriter(seqs(sqAlign))

subsMatrix Build Mutation-Selection Codon Substitution Matrix

Description

Construct an instantaneous codon substitution matrix based on the mutation-selection framework.

Usage

subsMatrix(sc01x61, effpopsize)

Arguments

sc01x61 Vector of selection coefficients associated with the 61 sense codons, ordered
alphabetically according to the nucleotide triplets and the IUPAC naming struc-
ture.

effpopsize Effective population size.

28 wInput

Details

Given an arbitrary scaling constant (k), codon fixation rates (fij) and mutation rates (mij), the
instantaneous rate by which codon i is substituted by another codon j may be expressed as follows.

qij =

{
k × mij × fij if i and j differs by only one nucleotide,

0 if i and j differs by more than one nucleotide,

and qii = −
∑

j qij . The HKY85 nucleotide mutation matrix was embedded into the alignsim
function (with transition to transversion rate, κ = 4, average rate, µ = 1 and equal equilibrium
frequencies).

Value

mainMatrix Instantaneous codon substitution matrix such that the rows and the columns are ar-
ranged with respect to the IUPAC naming structure of nucleotide triplets in alphabetical order.

Author(s)

Hassan Sadiq

References

Halpern, A. L. and Bruno, W. J. (1998). Evolutionary Distances for Protein-Coding Sequences:
Modelling Site-Specific Residue Frequencies, Molecular Biology and Evolution 15(7): 910-917.

Hasegawa, M., Kishino, H. and Yano, T. (1985). Dating of the Human-Ape Splitting by a Molecular
Clock of Mitochondria DNA, Journal of Molecular Evolution 22: 160-174.

See Also

Selection coefficients conversion function codonCoeffs and fixation matrix generating function
fixMatrix.

Examples

aacoeffs <- aaGauss(1e-03, 0)
codonsc <- codonCoeffs(aacoeffs)
subsMatrix(codonsc, 1000)

wInput Populate Frequency-Dependent Simulation Model Parameters

Description

Create an omega object. The utility is for defining the parameters that are necessary for simulating
codon sequences that mimic the evolutionary process described by the frequency-dependent models.

Usage

wInput(wList=list())

wInput 29

Arguments

wList A list that may contain up to five named entries. See Details for further infor-
mation.

Details

In its full form, wList will contain five named elements. The elements include (a.) pSize: an
integer that represents the effective population size (default = 1000). (b.) vNvS: a numerical value
that corresponds to the ratio of the variance of the non-synonymous to the synonymous selection
coefficients (default = 1). (c.) aaPlus: its default is a vector of integers between 1 and 20, inclusive.
It gives the indices, if the one-letter IUPAC amino acid notations were ordered alphabetically, of
the residues that should be assigned non-zero coefficient variances. (d.) technique: it informs of
the preferred probability distribution where the selection coefficients should be sampled. It could
be set as 1 for Gaussian or 2 for Gamma (default) distribution. (e.) nsynVar: variance of the
non-synonymous selection coefficients. This is a complementary function to alignsim.

Value

An omega object that contains the following.

nsynVar Variance of the non-synonymous selection coefficients.

technique Probability density function for sampling the amino acid selection coefficients.

aaPlus Indices of the amino acids to be assigned non-zero coefficient variance values.

vNvS Ratio of the variance of the non-synonymous to the synonymous selection coefficients.

psize Effective population size.

Author(s)

Hassan Sadiq

References

Goldman, N. and Yang, Z. (1994), A Codon-Based Model of Nucleotide Substitution for Protein-
Coding DNA Sequences, Molecular Biology and Evolution 11(5): 725-736.

Muse, S. V. and Gaut, B. S. (1994), A A Likelihood Approach for Comparing Synonymous and
Nonsynonymous Nucleotide Substitution Rates, with Application to the Chloroplast Genome, Molec-
ular Biology and Evolution 11(5): 715-724.

See Also

Sequence simulation function alignsim as well as selection coefficient conversion functions aaGamma
and aaGauss.

Examples

w0 <- wInput()
vNvS(w0)
w0

w1 <- wInput(list(aaPlus=c(4,2,11), nsynVar=10))
lscape(w1)
w1

Index

∗ classes
aminoSC-class, 6
codonvalues-class, 10
discrete-class, 11
hbParameters-class, 17
omega-class, 18
ou-class, 19
scoup-class, 23
seqParameters-class, 25

aaGamma, 2, 4, 6, 7, 9, 13, 16, 17, 29
aaGauss, 3, 4, 6, 7, 9, 13, 16, 17, 29
aaSCupdate (alignsim), 5
aaSCupdate,discrete-method

(discrete-class), 11
aaSCupdate,ou-method (ou-class), 19
aInfo (scoup-class), 23
aInfo,scoup-method (scoup-class), 23
alignsim, 5, 12, 13, 17–20, 22, 24–27, 29
alignsim,discrete,seqParameters-method

(discrete-class), 11
alignsim,omega,seqParameters-method

(omega-class), 18
alignsim,ou,seqParameters-method

(ou-class), 19
aminoSC-class, 6
asymMean (ou-class), 19
asymMean,ou-method (ou-class), 19
asymVar (ou-class), 19
asymVar,ou-method (ou-class), 19

biTree, 7, 13, 25
branchL (seqParameters-class), 25
branchL,seqParameters-method

(seqParameters-class), 25

codonCoeffs, 3, 4, 8, 10, 11, 16, 28
codonFreq, 9, 10, 11, 14
codonvalues-class, 10
coeffs (aminoSC-class), 6
coeffs,aminoSC-method (aminoSC-class), 6
coeffs,codonvalues-method

(codonvalues-class), 10
cseq (scoup-class), 23

cseq,scoup-method (scoup-class), 23

details (seqParameters-class), 25
details,seqParameters-method

(seqParameters-class), 25
discrete-class, 11
discreteInput, 6, 11, 12, 13
dNdS (scoup-class), 23
dNdS,scoup-method (scoup-class), 23
dndsCalculator, 14

effpop (alignsim), 5
effpop,discrete-method

(discrete-class), 11
effpop,hbParameters-method

(hbParameters-class), 17
effpop,omega-method (omega-class), 18

fixMatrix, 15, 28
freqs (codonvalues-class), 10
freqs,codonvalues-method

(codonvalues-class), 10

hbInput, 6, 16, 18
hbParameters-class, 17

lscape (alignsim), 5
lscape,discrete-method

(discrete-class), 11
lscape,omega-method (omega-class), 18

nodes (seqParameters-class), 25
nodes,seqParameters-method

(seqParameters-class), 25
nsynVar (alignsim), 5
nsynVar,aminoSC-method (aminoSC-class),

6
nsynVar,hbParameters-method

(hbParameters-class), 17
nsynVar,omega-method (omega-class), 18

omega-class, 18
ou-class, 19
ouEvolve, 20, 22
ouInput, 6, 19, 20, 21

30

INDEX 31

phylogeny (seqParameters-class), 25
phylogeny,seqParameters-method

(seqParameters-class), 25

reversion (ou-class), 19
reversion,ou-method (ou-class), 19

sampler (alignsim), 5
sampler,discrete-method

(discrete-class), 11
sampler,hbParameters-method

(hbParameters-class), 17
sampler,omega-method (omega-class), 18
scoup, 6, 10–12, 18–20, 22, 23, 26
scoup-class, 23
scoup-package (scoup), 22
seqCOL (scoup-class), 23
seqCOL,scoup-method (scoup-class), 23
seqDetails, 6, 24, 25, 26
seqParameters-class, 25
seqs (scoup-class), 23
seqs,scoup-method (scoup-class), 23
seqWriter, 26
show,aminoSC-method (aminoSC-class), 6
show,codonvalues-method

(codonvalues-class), 10
show,discrete-method (discrete-class),

11
show,hbParameters-method

(hbParameters-class), 17
show,omega-method (omega-class), 18
show,ou-method (ou-class), 19
show,scoup-method (scoup-class), 23
show,seqParameters-method

(seqParameters-class), 25
sites (seqParameters-class), 25
sites,seqParameters-method

(seqParameters-class), 25
sitesim (alignsim), 5
sitesim,discrete,numeric-method

(discrete-class), 11
sitesim,omega,numeric-method

(omega-class), 18
sitesim,ou,numeric-method (ou-class), 19
subsMatrix, 14, 27
synVar (aminoSC-class), 6
synVar,aminoSC-method (aminoSC-class), 6

taxa (seqParameters-class), 25
taxa,seqParameters-method

(seqParameters-class), 25
tree (biTree), 7

vNvS (alignsim), 5

vNvS,hbParameters-method
(hbParameters-class), 17

vNvS,omega-method (omega-class), 18

wInput, 6, 18, 19, 28

	aaGamma
	aaGauss
	alignsim
	aminoSC-class
	biTree
	codonCoeffs
	codonFreq
	codonvalues-class
	discrete-class
	discreteInput
	dndsCalculator
	fixMatrix
	hbInput
	hbParameters-class
	omega-class
	ou-class
	ouEvolve
	ouInput
	scoup
	scoup-class
	seqDetails
	seqParameters-class
	seqWriter
	subsMatrix
	wInput
	Index

