This vignette walks through an example of GenEst at the command line and was constructed using GenEst version 1.4.9 on 2023-05-25.
To obtain the most recent version of GenEst, download the most recent version build from USGS or CRAN.
For this vignette, we will be using a completely generic, mock dataset provided with the GenEst package, which contains Searcher Efficiency (SE), Carcass Persistence (CP), Search Schedule (SS), Density Weighted Proportion (DWP), and Carcass Observation (CO) Data.
data(mock)
names(mock)
#> [1] "SE" "CP" "SS" "DWP" "CO"
The central function for searcher efficiency analyses is pkm
, which, in its most basic form, conducts a singular searcher efficiency analysis (i.e., a singular set of \(p\) and \(k\) formulae and a singular size classification of carcasses). As a first example, we will ignore the size category and use intercept-only models for both \(p\) and \(k\):
<- mock$SE
data_SE <- pkm(formula_p = p ~ 1, formula_k = k ~ 1, data = data_SE) pkModel
Here, we have taken advantage of pkm
’s default behavior of selecting observation columns (see ?pkm
for details).
head(data_SE)
#> seID Visibility HabitatType Season Size Search1 Search2 Search3 Search4
#> 1 se1 L HT1 SF S 1 NA NA NA
#> 2 se2 L HT1 SF S 1 NA NA NA
#> 3 se3 L HT1 WS S 0 0 0 0
#> 4 se4 L HT1 WS S 1 NA NA NA
#> 5 se5 L HT1 WS S 0 1 NA NA
#> 6 se6 L HT1 SF S 1 NA NA NA
If we wanted to explicitly control the observations, we would use the obsCol
argument:
<- pkm(formula_p = p ~ 1, formula_k = k ~ 1, data = data_SE,
pkModel obsCol = c("Search1", "Search2", "Search3", "Search4")
)
Note that the search observations must be entered in order such that no carcasses have non-detected observations (i.e., 0
) after detected observations (i.e., 1
). Further, no carcasses can be detected more than once.
If successfully fit, a pkm
model output contains a number of elements, some printed automatically:
pkModel#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ 1
#>
#> $formula_k
#> k ~ 1
#>
#> $predictors
#> character(0)
#>
#> $AICc
#> [1] 1145
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lwr p_upr k_median k_lwr k_upr
#> 1 all 480 0.568447 0.531657 0.604497 0.599059 0.54296 0.652677
#>
#> $CL
#> [1] 0.9
and others available upon request:
names(pkModel)
#> [1] "call" "data" "data0" "formula_p" "formula_k"
#> [6] "predictors" "predictors_p" "predictors_k" "AIC" "AICc"
#> [11] "convergence" "varbeta" "cellMM_p" "cellMM_k" "nbeta_p"
#> [16] "nbeta_k" "betahat_p" "betahat_k" "cells" "ncell"
#> [21] "cell_pk" "CL" "observations" "carcCells" "loglik"
#> [26] "pOnly" "data_adj"
$cells
pkModel#> group CellNames
#> 1 all all
The plot
function has been defined for pkm
objects, such that one can simply run
plot(pkModel)
to visualize the model’s output.
You can generate random draws of the \(p\) and \(k\) parameters for each cell grouping (in pkModel
there are no predictors, so there is one cell grouping called “all”) using the rpk
function which, like other r*
functions in R (e.g., rnorm
, runif
) takes the number of random draws (n
) as the first argument:
rpk(n = 10, pkModel)
#> $all
#> p k
#> [1,] 0.5859661 0.5919497
#> [2,] 0.5286425 0.6354485
#> [3,] 0.5806621 0.5860268
#> [4,] 0.5766899 0.5974228
#> [5,] 0.5611780 0.6217823
#> [6,] 0.5058959 0.6375205
#> [7,] 0.5930005 0.6010939
#> [8,] 0.5789586 0.5557026
#> [9,] 0.5823445 0.6089267
#> [10,] 0.5720632 0.6098596
You can complicate the \(p\) and \(k\) formulae independently
pkm(formula_p = p ~ Visibility, formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4")
)#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ Visibility
#>
#> $formula_k
#> k ~ HabitatType
#>
#> $predictors
#> [1] "Visibility" "HabitatType"
#>
#> $AICc
#> [1] 1149.67
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lwr p_upr k_median k_lwr k_upr
#> 1 H.HT1 80 0.564028 0.503246 0.622945 0.560177 0.481763 0.635699
#> 2 L.HT1 80 0.577879 0.516334 0.637098 0.560177 0.481763 0.635699
#> 3 M.HT1 80 0.563479 0.504787 0.620445 0.560177 0.481763 0.635699
#> 4 H.HT2 80 0.564028 0.503246 0.622945 0.631251 0.556647 0.700066
#> 5 L.HT2 80 0.577879 0.516334 0.637098 0.631251 0.556647 0.700066
#> 6 M.HT2 80 0.563479 0.504787 0.620445 0.631251 0.556647 0.700066
#>
#> $CL
#> [1] 0.9
And you can fix \(k\) at a nominal value between 0 and 1 (inclusive) using the kFixed
argument
pkm(formula_p = p ~ Visibility, kFixed = 0.7, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"))
#> $call
#> pkm0(formula_p = formula_p, formula_k = formula_k, data = data,
#> obsCol = obsCol, kFixed = kFixed, kInit = kInit, CL = CL,
#> quiet = quiet)
#>
#> $formula_p
#> p ~ Visibility
#>
#> $formula_k
#> fixedk
#> 0.7
#>
#> $predictors
#> [1] "Visibility"
#>
#> $AICc
#> [1] 1155.63
#>
#> $convergence
#> [1] 0
#>
#> $cell_pk
#> cell n p_median p_lwr p_upr k_median k_lwr k_upr
#> 1 H 160 0.531356 0.474326 0.587579 0.7 0.7 0.7
#> 2 L 160 0.544816 0.487026 0.601424 0.7 0.7 0.7
#> 3 M 160 0.537882 0.482043 0.592786 0.7 0.7 0.7
#>
#> $CL
#> [1] 0.9
If the arg allCombos = TRUE
is provided, pkm
fits a set of pkm
models defined as all allowable models simpler than, and including, the provided model for both formulae (where “allowable” means that any interaction terms have all component terms included in the model).
Consider the following model set analysis, where visibility and habitat type are included in the \(p\) formula but only habitat type is in the \(k\) formula. This generates a set of 10 models:
<- pkm(formula_p = p ~ Visibility*HabitatType,
pkmModSet formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"),
allCombos = TRUE
)class(pkmModSet)
#> [1] "pkmSet" "list"
names(pkmModSet)
#> [1] "p ~ Visibility * HabitatType; k ~ HabitatType"
#> [2] "p ~ Visibility + HabitatType; k ~ HabitatType"
#> [3] "p ~ HabitatType; k ~ HabitatType"
#> [4] "p ~ Visibility; k ~ HabitatType"
#> [5] "p ~ 1; k ~ HabitatType"
#> [6] "p ~ Visibility * HabitatType; k ~ 1"
#> [7] "p ~ Visibility + HabitatType; k ~ 1"
#> [8] "p ~ HabitatType; k ~ 1"
#> [9] "p ~ Visibility; k ~ 1"
#> [10] "p ~ 1; k ~ 1"
The plot
function is defined for the pkmSet
class, and by default, creates a new plot window on command for each sub-model. If we want to only plot a specific single (or subset) of models from the full set, we can utilize the specificModel
argument:
plot(pkmModSet, specificModel = "p ~ Visibility + HabitatType; k ~ 1")
The resulting model outputs can be compared in an AICc table
aicc(pkmModSet)
#> p Formula k Formula AICc ΔAICc
#> 10 p ~ 1 k ~ 1 1145.00 0.00
#> 5 p ~ 1 k ~ HabitatType 1145.70 0.70
#> 3 p ~ HabitatType k ~ HabitatType 1146.57 1.57
#> 8 p ~ HabitatType k ~ 1 1146.76 1.76
#> 9 p ~ Visibility k ~ 1 1148.96 3.96
#> 4 p ~ Visibility k ~ HabitatType 1149.67 4.67
#> 2 p ~ Visibility + HabitatType k ~ HabitatType 1150.55 5.55
#> 7 p ~ Visibility + HabitatType k ~ 1 1150.73 5.73
#> 1 p ~ Visibility * HabitatType k ~ HabitatType 1153.45 8.45
#> 6 p ~ Visibility * HabitatType k ~ 1 1153.49 8.49
Often, carcasses are grouped in multiple size classes, and we are interested in analyzing a set of models separately for each size class. To do so, we use the sizeCol
arg to tell pkm
which column in data_CP
gives the carcass size class. If, in addition, allCombos = TRUE
, pkm
will fit a pkmSet
that runs for each unique size class in the column identified by the sizeCol
argument:
<- pkm(formula_p = p ~ Visibility*HabitatType,
pkmModSetSize formula_k = k ~ HabitatType, data = data_SE,
obsCol = c("Search1", "Search2", "Search3", "Search4"),
sizeCol = "Size", allCombos = TRUE)
class(pkmModSetSize)
#> [1] "pkmSetSize" "list"
The pkmSetSize
object is a list where each element corresponds to a different unique size class, and contains the associated pkmSet
object, which itself is a list of pkm
outputs:
names(pkmModSetSize)
#> [1] "L" "M" "S" "XL"
names(pkmModSetSize[[1]])
#> [1] "p ~ Visibility * HabitatType; k ~ HabitatType"
#> [2] "p ~ Visibility + HabitatType; k ~ HabitatType"
#> [3] "p ~ HabitatType; k ~ HabitatType"
#> [4] "p ~ Visibility; k ~ HabitatType"
#> [5] "p ~ 1; k ~ HabitatType"
#> [6] "p ~ Visibility * HabitatType; k ~ 1"
#> [7] "p ~ Visibility + HabitatType; k ~ 1"
#> [8] "p ~ HabitatType; k ~ 1"
#> [9] "p ~ Visibility; k ~ 1"
#> [10] "p ~ 1; k ~ 1"
The central function for carcass persistence analyses is cpm
, which, in its simplest form, conducts a singular carcass persistence analysis (i.e., a singular set of \(l\) and \(s\) formulae and a singular size classification of carcasses). Note that we use \(l\) and \(s\) to reference \(location\) and \(scale\) as the parameters for survival models, following survreg
, however we also provide an alternative parameterization (using parameters \(a\) and \(b\), referred to as “ab
” or “ppersist”). As a first example, we will ignore the size category, use intercept-only models for both \(l\) and \(s\), and use the Weibull distribution:
<- mock$CP
data_CP <- cpm(formula_l = l ~ 1, formula_s = s ~ 1, data = data_CP,
cpModel left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays", dist = "weibull"
)
If successfully fit, a cpm
model output contains a number of elements, some printed automatically:
cpModel#> $call
#> cpm0(formula_l = formula_l, formula_s = formula_s, data = data,
#> left = left, right = right, dist = dist, CL = CL, quiet = quiet)
#>
#> $formula_l
#> l ~ 1
#>
#> $formula_s
#> s ~ 1
#>
#> $distribution
#> [1] "weibull"
#>
#> $predictors
#> character(0)
#>
#> $AICc
#> [1] 2102.11
#>
#> $convergence
#> [1] 0
#>
#> $cell_ls
#> cell n l_median l_lwr l_upr s_median s_lwr s_upr
#> 1 all 480 2.671 2.592 2.749 0.966 0.901 1.037
#>
#> $cell_ab
#> cell n pda_median pda_lwr pda_upr pdb_median pdb_lwr pdb_upr
#> 1 all 480 1.035 0.964 1.11 14.454 13.356 15.627
#>
#> $CL
#> [1] 0.9
#>
#> $cell_desc
#> cell medianCP r1 r3 r7 r14 r28
#> 1 all 10.1437 0.9696732 0.9094574 0.8003887 0.6463498 0.4427757
and others available upon request:
names(cpModel)
#> [1] "call" "data" "formula_l" "formula_s" "distribution"
#> [6] "predictors" "predictors_l" "predictors_s" "AIC" "AICc"
#> [11] "convergence" "varbeta" "cellMM_l" "cellMM_s" "nbeta_l"
#> [16] "nbeta_s" "betahat_l" "betahat_s" "cells" "ncell"
#> [21] "cell_ls" "cell_ab" "CL" "observations" "carcCells"
#> [26] "loglik" "cell_desc"
$cells
cpModel#> group CellNames
#> 1 all all
The plot
function has been defined for cpm
objects, such that one can simply run
plot(cpModel)
to visualize the model’s output.
You can generate random draws of the \(l\) and \(s\) (or \(a\) and \(b\)) parameters for each cell grouping (in cpModel
there are no predictors, so there is one cell grouping called “all”) using the rcp
function which, like other r*
functions in R (e.g., rnorm
) takes the number of random draws (n
) as the first argument:
rcp(n = 10, cpModel)
#> $all
#> l s
#> [1,] 2.605807 0.9524050
#> [2,] 2.731300 1.0522391
#> [3,] 2.583829 0.9534787
#> [4,] 2.697390 0.9562375
#> [5,] 2.679071 0.9132457
#> [6,] 2.666410 1.0126625
#> [7,] 2.683364 0.9087832
#> [8,] 2.677219 1.0124895
#> [9,] 2.671529 0.9368396
#> [10,] 2.726348 1.0242312
rcp(n = 10, cpModel, type = "ppersist")
#> $all
#> pda pdb
#> [1,] 1.0508922 13.95937
#> [2,] 1.0907950 14.44605
#> [3,] 0.9577956 14.13634
#> [4,] 1.0126630 14.32982
#> [5,] 1.1016299 13.65905
#> [6,] 1.0243504 13.92060
#> [7,] 1.0010245 13.70431
#> [8,] 1.0394060 14.03502
#> [9,] 1.0586389 13.40739
#> [10,] 1.1368451 16.97880
You can complicate the \(l\) and \(s\) formulae independently
cpm(formula_l = l ~ Visibility * GroundCover, formula_s = s ~ 1, data = data_CP,
left = "LastPresentDecimalDays", right = "FirstAbsentDecimalDays",
dist = "weibull"
)#> $call
#> cpm0(formula_l = formula_l, formula_s = formula_s, data = data,
#> left = left, right = right, dist = dist, CL = CL, quiet = quiet)
#>
#> $formula_l
#> l ~ Visibility * GroundCover
#>
#> $formula_s
#> s ~ 1
#>
#> $distribution
#> [1] "weibull"
#>
#> $predictors
#> [1] "Visibility" "GroundCover"
#>
#> $AICc
#> [1] 2109.36
#>
#> $convergence
#> [1] 0
#>
#> $cell_ls
#> cell n l_median l_lwr l_upr s_median s_lwr s_upr
#> 1 H.A 80 2.647 2.457 2.836 0.964 0.898 1.034
#> 2 L.A 80 2.618 2.427 2.809 0.964 0.898 1.034
#> 3 M.A 80 2.536 2.350 2.722 0.964 0.898 1.034
#> 4 H.B 80 2.789 2.597 2.981 0.964 0.898 1.034
#> 5 L.B 80 2.710 2.521 2.900 0.964 0.898 1.034
#> 6 M.B 80 2.716 2.527 2.905 0.964 0.898 1.034
#>
#> $cell_ab
#> cell n pda_median pda_lwr pda_upr pdb_median pdb_lwr pdb_upr
#> 1 H.A 80 1.037 0.967 1.114 14.112 11.670 17.047
#> 2 L.A 80 1.037 0.967 1.114 13.708 11.325 16.593
#> 3 M.A 80 1.037 0.967 1.114 12.629 10.486 15.211
#> 4 H.B 80 1.037 0.967 1.114 16.265 13.423 19.708
#> 5 L.B 80 1.037 0.967 1.114 15.029 12.441 18.174
#> 6 M.B 80 1.037 0.967 1.114 15.120 12.516 18.265
#>
#> $CL
#> [1] 0.9
#>
#> $cell_desc
#> cell medianCP r1 r3 r7 r14 r28
#> 1 H.A 9.910449 0.9691191 0.9076888 0.7965531 0.6402617 0.4355206
#> 2 L.A 9.626732 0.9681953 0.9050529 0.7912752 0.6323916 0.4266794
#> 3 M.A 8.868981 0.9654396 0.8972323 0.7757825 0.6096922 0.4019134
#> 4 H.B 11.422439 0.9732702 0.9196215 0.8208024 0.6773283 0.4789728
#> 5 L.B 10.554432 0.9710322 0.9131703 0.8076196 0.6569919 0.4547593
#> 6 M.B 10.618339 0.9712095 0.9136797 0.8086542 0.6585719 0.4566077
Given that the exponential only has one parameter (\(l\), location), a model for scale (formula_s
) is not required:
<- cpm(formula_l = l ~ Visibility * GroundCover, data = data_CP,
cpModExp left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays", dist = "exponential"
)
If the arg allCombos = TRUE
is provided, cpm
fits a set of cpm
models defined as all allowable models simpler than, and including, the provided model formulae (where “allowable” means that any interaction terms have all component terms included in the model).
In addition, cpm
with allCombos
can include any subset of the four base distributions (exponential, weibull, lognormal, loglogistic) and crosses them with the predictor models.
Consider the following model set analysis, where Visibility
and Season
are included in the \(l\) formula but only Visibility
is in the \(s\) formula, and only the exponential and lognormal distributions are included. This generates a set of 15 models:
<- cpm(formula_l = l ~ Visibility * Season,
cpmModSet formula_s = s ~ Visibility, data = data_CP,
left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays",
dist = c("exponential", "lognormal"), allCombos = TRUE
)class(cpmModSet)
#> [1] "cpmSet" "list"
names(cpmModSet)
#> [1] "dist: exponential; l ~ Visibility * Season; NULL"
#> [2] "dist: exponential; l ~ Visibility + Season; NULL"
#> [3] "dist: exponential; l ~ Season; NULL"
#> [4] "dist: exponential; l ~ Visibility; NULL"
#> [5] "dist: exponential; l ~ 1; NULL"
#> [6] "dist: lognormal; l ~ Visibility * Season; s ~ Visibility"
#> [7] "dist: lognormal; l ~ Visibility + Season; s ~ Visibility"
#> [8] "dist: lognormal; l ~ Season; s ~ Visibility"
#> [9] "dist: lognormal; l ~ Visibility; s ~ Visibility"
#> [10] "dist: lognormal; l ~ 1; s ~ Visibility"
#> [11] "dist: lognormal; l ~ Visibility * Season; s ~ 1"
#> [12] "dist: lognormal; l ~ Visibility + Season; s ~ 1"
#> [13] "dist: lognormal; l ~ Season; s ~ 1"
#> [14] "dist: lognormal; l ~ Visibility; s ~ 1"
#> [15] "dist: lognormal; l ~ 1; s ~ 1"
The resulting model outputs can be compared in an AICc table
aicc(cpmModSet)
#> Distribution Location Formula Scale Formula AICc ΔAICc
#> 5 exponential l ~ 1 NULL 2100.72 0.00
#> 3 exponential l ~ Season NULL 2101.08 0.36
#> 4 exponential l ~ Visibility NULL 2104.16 3.44
#> 2 exponential l ~ Visibility + Season NULL 2104.48 3.76
#> 1 exponential l ~ Visibility * Season NULL 2108.17 7.45
#> 15 lognormal l ~ 1 s ~ 1 2159.24 58.52
#> 13 lognormal l ~ Season s ~ 1 2160.78 60.06
#> 10 lognormal l ~ 1 s ~ Visibility 2162.15 61.43
#> 14 lognormal l ~ Visibility s ~ 1 2163.19 62.47
#> 8 lognormal l ~ Season s ~ Visibility 2163.67 62.95
#> 12 lognormal l ~ Visibility + Season s ~ 1 2164.74 64.02
#> 9 lognormal l ~ Visibility s ~ Visibility 2166.13 65.41
#> 11 lognormal l ~ Visibility * Season s ~ 1 2166.91 66.19
#> 7 lognormal l ~ Visibility + Season s ~ Visibility 2167.66 66.94
#> 6 lognormal l ~ Visibility * Season s ~ Visibility 2169.79 69.07
The plot
function is defined for the cpmSet
class, and by default, creates a new plot window on command for each sub-model. If we want to only plot a specific single (or subset) of models from the full set, we can utilize the specificModel
argument:
plot(cpmModSet,
specificModel = "dist: lognormal; l ~ Visibility * Season; s ~ Visibility"
)
Often, carcasses are grouped in multiple size classes, and we are interested in analyzing a set of models separately for each size class. To do so, we furnish cpm
with sizeCol
, which is the name of the column in data_CP
that gives the size classes of the carcasses. If, in addition, allCombos = TRUE
, then cpm
returns a cpmSet
for each unique size class in the column identified by the sizeCol
argument:
<- cpm(formula_l = l ~ Visibility * Season,
cpmModSetSize formula_s = s ~ Visibility, data = data_CP,
left = "LastPresentDecimalDays",
right = "FirstAbsentDecimalDays",
dist = c("exponential", "lognormal"),
sizeCol = "Size", allCombos = TRUE)
class(cpmModSetSize)
#> [1] "cpmSetSize" "list"
The cpmSetSize
object is a list where each element corresponds to a different unique size class, and contains the associated cpmSet
o bject, which itself is a list of cpm
outputs:
names(cpmModSetSize)
#> [1] "L" "M" "S" "XL"
names(cpmModSetSize[[1]])
#> [1] "dist: exponential; l ~ Visibility * Season; NULL"
#> [2] "dist: exponential; l ~ Visibility + Season; NULL"
#> [3] "dist: exponential; l ~ Season; NULL"
#> [4] "dist: exponential; l ~ Visibility; NULL"
#> [5] "dist: exponential; l ~ 1; NULL"
#> [6] "dist: lognormal; l ~ Visibility * Season; s ~ Visibility"
#> [7] "dist: lognormal; l ~ Visibility + Season; s ~ Visibility"
#> [8] "dist: lognormal; l ~ Season; s ~ Visibility"
#> [9] "dist: lognormal; l ~ Visibility; s ~ Visibility"
#> [10] "dist: lognormal; l ~ 1; s ~ Visibility"
#> [11] "dist: lognormal; l ~ Visibility * Season; s ~ 1"
#> [12] "dist: lognormal; l ~ Visibility + Season; s ~ 1"
#> [13] "dist: lognormal; l ~ Season; s ~ 1"
#> [14] "dist: lognormal; l ~ Visibility; s ~ 1"
#> [15] "dist: lognormal; l ~ 1; s ~ 1"
class(cpmModSetSize[[1]])
#> [1] "cpmSet" "list"
For the purposes of mortality estimation, we calculate carcass-specific detection probabilities (see below), which may be difficult to generalize, given the specific history of each observed carcass. Thus, we also provide a simple means to calculate generic detection probabilities that are cell-specific, rather than carcass-specific.
For any estimation of detection probability (\(\hat{g}\)), we need to have singular SE and CP models to use for each of the size classes. Here, we use the best-fit of the models for each size class:
<- c("S" = "p ~ 1; k ~ 1", "L" = "p ~ 1; k ~ 1",
pkMods "M" = "p ~ 1; k ~ 1", "XL" = "p ~ 1; k ~ HabitatType"
)<- c("S" = "dist: exponential; l ~ Season; NULL",
cpMods "L" = "dist: exponential; l ~ 1; NULL",
"M" = "dist: exponential; l ~ 1; NULL",
"XL" = "dist: exponential; l ~ 1; NULL"
)
The estgGenericSize
function produces n
random draws of generic (i.e., cell-specific, not carcass-sepecific) detection probabilities for each of the possible carcass cell combinations across the selected SE and CP models across the size classes. estgGeneric
is a single-size-class version of function and estgGenericSize
actually loops over estgGeneric
. The generic \(\hat{g}\) is estimated according to a particular search schedule. When we pass averageSS
a full data_SS
table like we have here, it will assume that columns filled exclusively with 0s and 1s represent search schedules for units and will create the average search schedule across the units.
<- mock$SS
data_SS <- averageSS(data_SS)
avgSS
<- estgGenericSize(nsim = 1000, days = avgSS,
gsGeneric modelSetSize_SE = pkmModSetSize,
modelSetSize_CP = cpmModSetSize,
modelSizeSelections_SE = pkMods,
modelSizeSelections_CP = cpMods
)
The output from estgGeneric
can be simply summarized
summary(gsGeneric)
#> $L
#> Group 5% 25% 50% 75% 95%
#> 1 all 0.381 0.409 0.431 0.454 0.485
#>
#> $M
#> Group 5% 25% 50% 75% 95%
#> 1 all 0.353 0.384 0.404 0.426 0.456
#>
#> $S
#> Season 5% 25% 50% 75% 95%
#> 1 SF 0.359 0.399 0.424 0.451 0.489
#> 2 WS 0.299 0.333 0.357 0.383 0.419
#>
#> $XL
#> HabitatType 5% 25% 50% 75% 95%
#> 1 HT1 0.317 0.347 0.369 0.392 0.423
#> 2 HT2 0.333 0.361 0.384 0.406 0.437
or plotted.
plot(gsGeneric)
When estimating mortality, detection probability is determined for individual carcasses based on the dates when they are observed, size class values, associated covariates, the searcher efficiency and carcass persistence models, and the search schedule. The carcass-specific detection probabilities (as opposed to the generic/cell-specific detection probabilities above) are therefore calculated before estimating the total mortality. Although it is possible to estimate these detection probabilities separately, they are best interpreted in the context of a full mortality estimation.
The estM
function is the general wrapper function for estimating M
, whether for a single size class or multiple size classes. Prior to estimation, we need to reduce the model-set-size complexed to just a single chosen model per size class, corresponding to the pkMods
and cpMods
vectors given above. To reduce the model set complexity, we can use the trimSetSize
function:
<- trimSetSize(pkmModSetSize, pkMods)
pkmModSize <- trimSetSize(cpmModSetSize, cpMods) cpmModSize
In addition to the models and search schedule data, estM
requires density-weighted proportion (DWP) and carcass observation (CO) data. If more than one size class is represented in the data, a required input is also the column names associated with the DWP value for each size class (argument DWPCol
in estM
):
<- mock$CO
data_CO <- mock$DWP
data_DWP head(data_DWP)
#> Unit S M L XL
#> 1 Unit1 0.70 0.70 0.60 0.60
#> 2 Unit2 0.70 0.70 0.60 0.60
#> 3 Unit3 0.56 0.56 0.48 0.48
#> 4 Unit4 0.56 0.56 0.48 0.48
#> 5 Unit5 0.70 0.70 0.60 0.60
<- names(pkmModSize)
DWPcolnames
<- estM(data_CO = data_CO, data_SS = data_SS, data_DWP = data_DWP,
eM frac = 1, model_SE = pkmModSize, model_CP = cpmModSize,
unitCol = "Unit", COdate = "DateFound",
SSdate = "DateSearched", sizeCol = "Size", nsim = 1000)
estM
returns an object that contains the random draws of pkm
and cpm
parameters (named pk
and ab
, respectively) and the estimated carcass-level detection parameters (g
), arrival intervals (Aj
), and associated total mortality (Mhat
) values for each simulation. These Mhat
values should be considered in combination, and can be summarized and plotted simply:
summary(eM)
#> median 5% 95%
#> 1799.61 1640.27 1992.19
plot(eM)
It is possible to split the resulting mortality estimation into components that are denoted according to covariates in either the search schedule or carcass observation data sets.
First, a temporal split:
<- calcSplits(M = eM, split_SS = "Construction",
M_season split_CO = NULL, data_SS = data_SS, data_CO = data_CO
)summary(M_season)
#> X 5% 25% 50% 75% 95%
#> Before 161.4177 587.5406 635.8216 668.5202 709.3488 773.2055
#> After 264.5823 1006.0829 1075.6652 1133.5035 1184.7573 1266.1454
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Construction"
#> attr(,"type")
#> [1] "SS"
#> attr(,"times")
#> [1] 0 127 349
#> attr(,"class")
#> [1] "splitSummary"
plot(M_season)
Next, a carcass split:
<- calcSplits(M = eM, split_SS = NULL,
M_class split_CO = "Split", data_SS = data_SS, data_CO = data_CO
)summary(M_class)
#> X 5% 25% 50% 75% 95%
#> C1 196 728.3490 783.7962 823.1507 866.7523 939.2328
#> C2 230 861.2501 933.0555 976.5439 1023.1335 1109.5561
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Split"
#> attr(,"type")
#> [1] "CO"
#> attr(,"class")
#> [1] "splitSummary"
plot(M_class)
And finally, if two splits are included, the mortality estimation is expanded fully factorially:
<- calcSplits(M = eM, split_SS = "Construction",
M_SbyC split_CO = "Split", data_SS = data_SS, data_CO = data_CO
)summary(M_SbyC)
#> $C1
#> X 5% 25% 50% 75% 95%
#> Before 80.19664 276.9710 306.6411 330.9697 354.7113 397.0564
#> After 115.80336 419.1385 459.5814 495.0472 524.2927 568.9108
#>
#> $C2
#> X 5% 25% 50% 75% 95%
#> Before 81.22107 279.6636 314.4793 339.1652 365.8375 408.9377
#> After 148.77893 553.2627 599.5130 637.7397 674.3206 730.7033
#>
#> attr(,"CL")
#> [1] 0.9
#> attr(,"vars")
#> [1] "Construction" "Split"
#> attr(,"type")
#> [1] "SS" "CO"
#> attr(,"times")
#> [1] 0 127 349
#> attr(,"class")
#> [1] "splitSummary"
plot(M_SbyC)