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Introduction

Biological processes emerge from the interplay between different molecular factors. High-throughput tech-
nologies allow us to study this interplay across different molecular components of the cell (e.g. genome,
transcriptome, proteome, etc.) and other omics (such as phenome, metabolome, meta-genome, etc.). Here,
we present MOSS, an R package to perform omic integration dealing with the usual limitations of handling
omic data, meaning

a. High variability among samples (e.g. patients, animal litters, plots, meta-genomics samples, etc.).
b. Scarcity of relevant signal among features (e.g. SNPs, genes, proteins, micro RNA’s, taxa abundance,

etc.).
c. Large number of subjects and features.

Package description

Package MOSS performs omic integration by concatenating several omic blocks, allowing one of them to
be a multivariate numeric response Y, or a uni-variate classification response (to allow both unsupervised
and supervised omic integration). In general, omic blocks consisting of predictors are concatenated and
normalized to create an extended omic matrix X. To summarize the main sources of variability across
subjects and features, package MOSS performs a sparse singular value decomposition (sSVD).

The following codes illustrate the main capabilities of package MOSS.

Examples and syntax

The examples below were produced using the results of a very straightforward simulation of two regulatory
modules (i.e. groups of features affecting specific groups of subjects -(Li et al., 2012))) across three simulated
data blocks (see help(simulate_data) for a description of the simulation procedure). The following code
shows how to load these data and check its classes and dimensions.

# Load package MOSS.
library("MOSS")
#>
#> _____________________________________________________________________
#> |MOSS: Multi-Omic integration via Sparse Singular value decomposition.|
#> _____________________________________________________________________
#>
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#> Agustin Gonzalez-Reymundez, Alexander Grueneberg, and Ana I. Vazquez.
#>
#> Maintainer: Agustin Gonzalez-Reymundez <agugonrey@gmail.com>
#> URL: https://github.com/agugonrey/MOSS
#> BugReports: https://github.com/agugonrey/MOSS/issues
#>
#> Version 0.2.2.
#>
#> Type 'help(moss)' for package overview and examples.
#> Type 'sim.data <- simulate_data()' to generate a small simulated data set.
#>
#> To cite in published research:
#>
#> Agustin Gonzalez-Reymundez, Alexander Grueneberg, Guanqi Lu,
#> Filipe Couto Alves, Gonzalo Rincon, Ana I Vazquez.
#>
#> 'MOSS: Multi-omic integration with Sparse Value Decomposition'
#> Bioinformatics (2022).
#>
#> https://doi.org/10.1093/bioinformatics/btac179

# Simulating omic blocks.
sim_data <- simulate_data()

# Extracting simulated omic blocks.
sim_blocks <- sim_data$sim_blocks

# Extracting subjects and features labels.
lab.sub <- sim_data$labels$lab.sub
lab.feat <- sim_data$labels$lab.feat

The object sim_blocks is a list with four omic blocks, the vectors lab.sub and lab.feat indicate what
subjects and features define the regulatory modules. We will use these two vectors specifying the position
of signal subjects and features in order to show MOSS’ performance at detecting the right sets of subjects
and features. The fourth data block within sim_blocks represents a categorical variable (see examples of
its use in the context of omic integration via linear discriminant analysis; also see help(moss)). The code
below shows how the data is simulated inside simulated_data.

# Check dimensions and objects class.
lapply(sim_blocks, dim)
lapply(sim_blocks, function(x) class(x[, 1]))

# Showing how the data was generated.
set.seed(42)
O1 <- matrix(data = 0, nrow = 5e2, ncol = 1e3)
O2 <- O1
O1[1:20, 1:150] <- 1
O1 <- O1 + rnorm(5e5, mean = 0, sd = 0.5)
O2[71:90, 71:200] <- 1
O2 <- O2 + rnorm(5e5, mean = 0, sd = 0.5)

# Simulating a continous response blocks.
O3 <- 3 * O1 - 5 * O2 + rnorm(5e5, mean = 0, sd = 0.5)
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# Creating a vector labeling clusters of subjects.
aux <- rep("Background", 500)
aux[1:20] <- "Group 1"
aux[71:90] <- "Group 2"
all.equal(aux, lab.sub)

# Generating a classification response.
O4 <- as.matrix(aux)

# Storing all blocks within a list.
all.equal(sim_blocks, list(

"Block 1" = O1,
"Block 2" = O2,
"Block 3" = O3,
"Block 4" = O4

))

# Creating a vector labeling signal and background features.
aux <- rep("Background features", 3000)
aux[c(1:150, 1072:1200, 2001:2200)] <- "Signal features"
all.equal(aux, lab.feat)

The following code allows a nice visualization of the structure within sim_blocks, highlighting background
noise from signal, can be obtained with package ComplexHeatmap.

# Visualizing the simulated omic blocks with a heatmap.
library("ComplexHeatmap")

# Highlighting groups of subjects and features.
Sub.ann <- rowAnnotation(

`Sub labels` = lab.sub,
col = list(`Sub labels` = c("Group 1" = "#44015480", "Group 2" = "#F1605D80", "Background" = "#21908C80")),
show_annotation_name = F

)

Feat.ann <- HeatmapAnnotation(
`Feat labels` = lab.feat,
col = list(`Feat labels` = c("Background features" = "#47039FCC", "Signal features" = "#FA9E3BCC")),
show_annotation_name = F

)

# Creating heatmap.
draw(Heatmap(do.call("cbind", sim_blocks[-4]), # Excluding the categorical response.

left_annotation = Sub.ann,
top_annotation = Feat.ann,
row_title = "Subjects",
column_title = "Features",
show_heatmap_legend = F,
cluster_columns = T,
cluster_rows = T

),
annotation_legend_side = "bottom"
)
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Now, suppose you want a fast PCA to have an idea of your data structure. You can do that with MOSS
by giving a list of objects of class “matrix” or “FBM”.

library("ggplot2")
library("ggthemes")
library("viridis")
#> Loading required package: viridisLite
set.seed(43)
out <- moss(

data.blocks = sim_blocks[-4], # a list with omic blocks
method = "pca", # This is the default method.
K.X = 100, # Number of PCs require. Default is K.X = 5.
plot = TRUE

) # Allows graphical display.
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pca", K.X = 100, : Row
#> names missing for at least one omic block.
#> --------------------------------------------------------------------------------
#> | Principal Components Analysis (PCA) for 3 data blocks and 100 latent factors |
#> --------------------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Standardizing/Normalizing data blocks.
#> Getting SVD of predictors matrix
#> (dimension 500 x 3000).

The function moss returns a plot of eigenvalues, together with their first and second derivative across PC
index.

# Showing scree plot.
out$scree_plot
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As well as a plot of the first two PCs.

# Showing scatterplot of the first two PCs.
out$PC1_2_plot
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In this simple example, the data structure is clear. However, if the user wishes to map a set of more than
two PC, the option tSNE can be used. This tell MOSS to call Rtsne to map more than two PCs onto a two
dimensional display. By using tSNE = TRUE, one random realization of t-stochastic neighbor embedding
is done, with perplexity equal 50, in one thousand iterations (e.g. tSNE = list(“perp”=50, “n.samples”=1,
“n.iter”=1e3). The user can vary this by passing arguments to tSNE, as in the following code.

out <- moss(
data.blocks = sim_blocks[-4], # a list with omic blocks
method = "pca", # This is the default method.
tSNE = TRUE,
plot = TRUE

)
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pca", tSNE = TRUE, : Row
#> names missing for at least one omic block.
#> ------------------------------------------------------------------------------
#> | Principal Components Analysis (PCA) for 3 data blocks and 5 latent factors |
#> ------------------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Standardizing/Normalizing data blocks.
#> Getting SVD of predictors matrix
#> (dimension 500 x 3000).
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
out$tSNE_plot
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The user can also use the option cluster=TRUE within moss. This option allows MOSS to perform a
cluster delimitation using DBSCAN, inspired by the MEREDITH procedure. For more personalized
aesthetic and labeling, check help(tsne2clus).

out <- moss(
data.blocks = sim_blocks[-4],
method = "pca",
tSNE = list("perp" = 50, "n.samples" = 1, "n.iter" = 1e3),
cluster = TRUE,
plot = TRUE

)
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pca", tSNE = list(perp =
#> 50, : Row names missing for at least one omic block.
#> ------------------------------------------------------------------------------
#> | Principal Components Analysis (PCA) for 3 data blocks and 5 latent factors |
#> ------------------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Standardizing/Normalizing data blocks.
#> Getting SVD of predictors matrix
#> (dimension 500 x 3000).
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
#> Getting clusters via DBSCAN.
#> Evaluating association between
#> PCs and detected clusters.
out$clus_plot
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If information of pre-defined and biologically relevant groups is available (e.g. histologic sub-types of cancer),
the user can 1) use it to label points and visually evaluate the overlap between data-driven clusters and
previous information and 2) use it to determine which PCs are significantly associated with each group.

out <- moss(
data.blocks = sim_blocks[-4], # a list with omic blocks
method = "pca", # This is the default method.
tSNE = list("perp" = 50, "n.samples" = 1, "n.iter" = 1e3),
cluster = TRUE, # Delimiting cluster via DBSCAN.
clus.lab = lab.sub,
plot = TRUE

)
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pca", tSNE = list(perp =
#> 50, : Row names missing for at least one omic block.
#> ------------------------------------------------------------------------------
#> | Principal Components Analysis (PCA) for 3 data blocks and 5 latent factors |
#> ------------------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Standardizing/Normalizing data blocks.
#> Getting SVD of predictors matrix
#> (dimension 500 x 3000).
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
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#> Getting clusters via DBSCAN.
#> Evaluating association between PCs selected
#> and pre-established labels.
#> Evaluating association between
#> PCs and detected clusters.
out$clus_plot
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The Kruskal-Wallis statistics (KW ) is used to determine how much each PC is associated with each pre-
defined group (the input for the clus.lab argument). Higher values of the KW statistics will representing
stronger associations.

out$subLabels_vs_PCs
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Now, suppose that the user is interested in detecting what groups of subjects and features form regulatory
modules. In this example, we tune the degree of sparsity for both subjects and features, using an elastic net
parameter alpha. equal to one, for subjects (i.e. a LASSO penalty), and 0.5 for features.

set.seed(43)
out <- moss(

data.blocks = sim_blocks[-4], # Feed moss a list with omic blocks
method = "pca", # This is the default method.
K.X = 5, # Number of PC (Defaults to 5).
nu.v = seq(1, 200, by = 10),
nu.u = seq(1, 100, by = 2), # Same, but for subjects.
alpha.v = 0.5, # This is the EN parameter for features.
alpha.u = 1,
tSNE = TRUE, # This tells moss to project the 5 PC onto 2-D via tSNE.
cluster = TRUE,
clus.lab = lab.sub,
plot = TRUE

)
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pca", K.X = 5, nu.v =
#> seq(1, : Row names missing for at least one omic block.
#> ------------------------------------------------------------------------------
#> | Principal Components Analysis (PCA) for 3 data blocks and 5 latent factors |
#> ------------------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Standardizing/Normalizing data blocks.
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#> Elastic net shrinking & selection in RIGHT Eigenvectors.
#> LASSO in LEFT Eigenvectors.
#> Getting SVD of predictors matrix
#> (dimension 500 x 3000).
#> Imposing sparsity constraints.
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
#> Getting clusters via DBSCAN.
#> Evaluating overlap between groups of selected subjects
#> and pre-established labels.
#> Evaluating overlap between groups of
#> selected subjects and detected clusters.

The following shows the plot with the marginal variation in PEV across degrees of sparsity at the subjects
and features levels, respectively. The numbers in the peaks of first and second-reciprocal derivatives show
the point of rapid and/or accelerated changes. The minimum between the global maximum in the trajectory
of first and second derivative, respectively, is automatically chosen as ‘optimal’. Although it was tempting
to include an automatic selection of both PCs and degrees of sparsity using the heuristic discussed above,
we leave to the user the decision of how many PC to include in the model. We discuss benefits, limitation,
and alternatives of this approach at the end of this document.

out$tun_dgSpar_plot
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We now can use the solutions MOSS for the selected dg for subjects and/or features and and plot them
against elements of lab.sub and lab.feat to evaluate how good MOSS does to identify relevant biological
signals (see help(moss)).
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library("gridExtra")

# Did we select the correct 'signal subjects'?
d <- data.frame(

Features = rep(1:500, 5),
Loadings = as.vector(out$sparse$u),
Features_groups = rep(lab.sub, 5),
PC = paste0("PC ", rep(1:5, each = 500))

)

# Storing subjects' results.
q.s <- ggplot(d, aes(

x = Features, y = Loadings, col = Features_groups,
pch = Features_groups

)) +
facet_grid(~PC, scales = "free_y") +
scale_color_manual(values = c("#21908C80", "#44015480", "#F1605D80")) +
scale_x_continuous("Degree of sparsity for subjects (x100)", breaks = seq(0, 500, 100), labels = seq(0, 5, 1)) +
scale_y_continuous("Left eigenvectors") +
geom_point() +
theme_minimal() +
labs(

col = "Subjects\ngroups",
pch = "Subjects\ngroups"

)

# Did we select the correct 'signal features'?
d <- data.frame(

Features = rep(1:3e3, 5),
Loadings = as.vector(out$sparse$v),
Features_groups = rep(lab.feat, 5),
PC = paste0("PC ", rep(1:5, each = 3e3))

)

# Storing features' results.
q.f <- ggplot(d, aes(

x = Features, y = Loadings, col = Features_groups,
pch = Features_groups

)) +
facet_grid(~PC, scales = "free_y") +
scale_color_manual(values = c("#47039FCC", "#FA9E3BCC")) +
scale_x_continuous("Degrees of sparsity for features (x1000)", breaks = seq(0, 3e3, 1e3), labels = seq(0, 3, 1)) +
scale_y_continuous("Right eigenvectors (Loadings)") +
geom_point() +
theme_minimal() +
labs(

col = "Features\ngroups",
pch = "Features\ngroups"

)

# Putting plots together.
grid.arrange(q.s, q.f)
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The above results offer a good example of how the performance of the selection task can be closely tied to how
many and what PCs are used to identify regulatory modules. In this simple example, the scree plot suggests
that the two first PCs are ones explaining most of the data variability. If we are interested in finding the
regulatory modules that define clusters of subjects, we would like first to identify what left-singular vectors
are associated with these clusters. Then, determine what features have a relevant impact on their variation,
by taking those with non-zero values along the matching right-singular vectors. Whenever sparsity is imposed
at the subjects level and clus.lab is different than NULL, a Chi square statistic of the overlap between selected
subjects and pre-defined labels is used instead of KW. Independently of having specified labels of subjects,
whenever cluster != FALSE, the associations between clusters and PCs are stored in:

# What axes of variation are associated with clusters of subjects?
out$clusters_vs_PCs
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When one of the omic blocks is a multivariate response, MOSS can perform partial least squares. This
specified by method = pls. The next codes shows how to run a PLS taking the third omic blocs as response.

set.seed(43)
out <- moss(

data.blocks = sim_blocks[-4],
method = "pls",
K.X = 50, # Number of latent dimension to approx. X.
K.Y = 5, # Number of PC (Defaults to 5).
nu.v = seq(1, 200, by = 10),
nu.u = seq(1, 100, by = 2),
alpha.v = 0.5,
alpha.u = 1,
tSNE = TRUE,
cluster = TRUE,
clus.lab = lab.sub,
plot = TRUE,
resp.block = 3

) # Using the third block as a multivariate response.
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pls", K.X = 50, : Row
#> names missing for at least one omic block.
#> ----------------------------------------------------------------------
#> | Partial Least Squares (PLS) for 3 data blocks and 5 latent factors |
#> ----------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
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#> Block 3 used as response.
#> Standardizing/Normalizing data blocks.
#> Elastic net shrinking & selection in RIGHT Eigenvectors.
#> LASSO in LEFT Eigenvectors.
#> Getting SVD of predictors matrix
#> (dimension 500 x 2000).
#> Creating matrix 'R' (dimension 50 x 1000).
#> Creating matrix 'L' (dimension 2000 x 50).
#> Getting 'L*R' (dimensions 2000 x 1000).
#> Getting SVD of LR.
#> Getting subjects projections for response block.
#> Imposing sparsity constraints.
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
#> Getting clusters via DBSCAN.
#> Evaluating overlap between groups of selected subjects
#> and pre-established labels.
#> Evaluating overlap between groups of
#> selected subjects and detected clusters.
out$clus_plot
#> Warning: stat_contour(): Zero contours were generated
#> Warning in min(x): no non-missing arguments to min; returning Inf
#> Warning in max(x): no non-missing arguments to max; returning -Inf
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In all the above examples we used conventional R matrices to define omic blocks. MOSS allows the user
to handle larger data sets by means of File-backed Big Matrices (FBM). If for example, omic blocks are
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stored in FBM, or if argument use.fbm=TRUE, MOSS uses package bigstatsr to calculate the first SVD
and perform the matrix multiplications needed to impose sparsity. The following code allows MOSS to turn
matrices into FBMs internally.

set.seed(43)
out <- moss(

data.blocks = sim_blocks[-4],
method = "pls",
K.X = 50,
K.Y = 5,
nu.v = seq(1, 200, by = 10),
nu.u = seq(1, 100, by = 2),
alpha.v = 0.5,
alpha.u = 1,
tSNE = TRUE, # This tells moss to project the 5 PC onto 2-D via tSNE.
clus = TRUE,
clus.lab = lab.sub,
plot = TRUE,
resp.block = 3,
use.fbm = TRUE

)
#> Warning in moss(data.blocks = sim_blocks[-4], method = "pls", K.X = 50, : Row
#> names missing for at least one omic block.
#> Turning omic blocks into FBM objects.
#> ----------------------------------------------------------------------
#> | Partial Least Squares (PLS) for 3 data blocks and 5 latent factors |
#> ----------------------------------------------------------------------
#> Checking for missing values
#> Imputing if necessary.
#> Block 3 used as response.
#> Standardizing/Normalizing data blocks.
#> Elastic net shrinking & selection in RIGHT Eigenvectors.
#> LASSO in LEFT Eigenvectors.
#> Creating an extended data matrix.
#> Predictor block 1 of 2
#> Predictor block 2 of 2
#> Getting SVD of predictors matrix
#> (dimension 500 x 2000).
#> Creating matrix 'R' (dimension 50 x 1000).
#> Creating matrix 'L' (dimension 2000 x 50).
#> Getting 'L*R' (dimensions 2000 x 1000).
#> Getting SVD of LR.
#> Getting subjects projections for response block.
#> Imposing sparsity constraints.
#> Calculating a tSNE map
#> Embedding 5 axes onto two dimensions.
#> Getting clusters via DBSCAN.
#> Evaluating overlap between groups of selected subjects
#> and pre-established labels.
#> Evaluating overlap between groups of
#> selected subjects and detected clusters.
out$clus_plot
#> Warning: stat_contour(): Zero contours were generated
#> Warning in min(x): no non-missing arguments to min; returning Inf
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#> Warning in max(x): no non-missing arguments to max; returning -Inf
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