Package ‘ODEsensitivity’

October 12, 2022
Version 1.1.2
Title Sensitivity Analysis of Ordinary Differential Equations

Description Performs sensitivity analysis in ordinary differential equation (ode) models.
The package utilize the ode interface from 'deSolve' and connects it with the
sensitivity analysis from 'sensitivity'. Additionally we add a method to
run the sensitivity analysis on variables with class 'ODEnetwork'. A detailed
plotting function provides outputs on the calculations.

The method is described by Weber, Theers, Sur-
mann, Ligges, and Weihs (2018) <doi:10.17877/DE290R-18874>.

URL https://github.com/surmann/ODEsensitivity

BugReports https://github.com/surmann/ODEsensitivity/issues
License LGPL-3
Encoding UTF-8

Depends R (>= 3.1.1), checkmate, deSolve, ODEnetwork (>= 1.3.0),
sensitivity (>= 1.12.1)

Suggests covr, knitr, parallel, rmarkdown, testthat
RoxygenNote 6.0.1

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Frank Weber [aut],
Stefan Theers [aut],
Dirk Surmann [ctb, cre] (<https://orcid.org/0000-0003-0873-137X>)

Maintainer Dirk Surmann <surmann@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2019-01-09 09:10:04 UTC

https://doi.org/10.17877/DE290R-18874
https://github.com/surmann/ODEsensitivity
https://github.com/surmann/ODEsensitivity/issues
https://orcid.org/0000-0003-0873-137X

2 ODEmorris

R topics documented:

ODEmMOITIS o o e e e 2
ODEmorris.default 3
ODEmorris.ODEnetwork e 6
ODEsensitivity e 9
ODES0obOl e e 9
ODEsobol.default e 10
ODEsobol.ODEnetwork e 14
PlottODEmMOrTis e e 17
plot.ODEsobol 19
tACC . . e e 22

Index 24

ODEmorris Morris Screening for ODE Models
Description

ODEmorris is the generic function for performing a sensitivity analysis of ODE models using Mor-
ris’s elementary effects screening method.

Usage

ODEmorris(mod, ...)

Arguments
mod either a model function supplied in the manner as needed for ode (for ODEmorris.default)
or an object of class ODEnetwork (for ODEmorris.ODEnetwork).
further arguments passed to methods, see ODEmorris.default and ODEmorris.ODEnetwork.
Details

There are two methods for this generic function: ODEmorris.default (for general ODE models)
and ODEmorris.ODEnetwork (for objects of class ODEnetwork, see package ODEnetwork).

Author(s)
Frank Weber

See Also

ODEmorris.default, ODEmorris.ODEnetwork

ODEmorris.default 3

ODEmorris.default Morris Screening for General ODE Models

Description

ODEmorris.default is the default method of ODEmorris. It performs a sensitivity analysis for
general ODE models using the Morris screening method.

Usage

Default S3 method:
ODEmorris(mod, pars, state_init, times, binf = 0,

bsup = 1, r = 500, design = list(type = "oat"”, levels = 10, grid.jump =

1), scale = TRUE, ode_method = "lsoda”, parallel_eval = FALSE,
parallel_eval_ncores = NA, ...)
Arguments
mod [function(Time, State, Pars)]
model to examine, supplied in the manner as needed for ode (see example be-
low).
pars [character (k)]

names of the parameters to be included as input variables in Morris screening.

state_init [numeric(z)]
vector of z initial values. Must be named (with unique names).

times [numeric]
points of time at which the sensitivity analysis should be executed (vector of
arbitrary length). The first point of time must be greater than zero.

binf [character (1 or k)]
vector of lower borders of possible input parameter values. If they are all equal,
a single value can be set.

bsup [character(1 or k)]
vector of upper borders of possible input parameter values. If they are all equal,
a single value can be set.

r [integer (1 or 2)]
if of length 1, the number of repetitions of the design. If of length 2, a space-
filling optimization of the sampling design is used, see morris. However, this
space-filling optimization might lead to long runtimes, so length 1 is recom-
mended for r. Defaults to 500.

design [list]
a list specifying the design type and its parameters, cf. morris.

scale [logical(1)]
if TRUE, scaling is done for the input design of experiments after building the de-
sign and before calculating the elementary effects, cf. morris. Defaults to TRUE,
which is highly recommended if the factors have different orders of magnitude,
see morris.

4 ODEmorris.default

ode_method [character(1)]
method to be used for solving the differential equations, see ode. Defaults to
"lsoda".

parallel_eval [logical(1)]
logical indicating if the evaluation of the ODE model shall be performed paral-
lelized.

parallel_eval_ncores
[integer(1)]
number of processor cores to be used for parallelization. Only applies if parallel_eval
= TRUE. If set to NA (as per default) and parallel_eval = TRUE, 1 processor core
is used.

further arguments passed to or from other methods.

Details

Function ode from deSolve is used to solve the ODE system.

The sensitivity analysis is done for all state variables and all timepoints simultaneously using
morris from the package sensitivity.

For non-ODE models, values for r are typically between 10 and 50. However, much higher values
are recommended for ODE models (the default is r = 500).

Value

List of class ODEmorris of length length(state_init) containing in each element a matrix for
one state variable. The matrices themselves contain the Morris screening results for all timepoints
(rows: mu, mu.star and sigma for every parameter; columns: timepoints).

Note

If the evaluation of the model function takes too long, it might be helpful to try another ODE-solver
(argument ode_method). The ode_methods "vode”, "bdf"”, "bdf_d", "adams", "impAdams" and
"impAdams_d"” might be faster than the default "1soda”.

If morris throws a warning message stating "In ... keeping ... repetitions out of ...", try using a
bigger number of levels in the design argument (only possible for OAT design).

Author(s)
Stefan Theers, Frank Weber

References

J. O. Ramsay, G. Hooker, D. Campbell and J. Cao, 2007, Parameter estimation for differential
equations: a generalized smoothing approach, Journal of the Royal Statistical Society, Series B,
69, Part 5, 741-796.

See Also

morris, plot.ODEmorris

ODEmorris.default

Examples

#i##HH# Lotka-Volterra equations #it###
The model function:
LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow x Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))

D
}

The parameters to be included in the sensitivity analysis and their lower
and upper boundaries:

LVpars <- c("rIng”, "rGrow", "rMort", "asstgff"”, "K")
LVbinf <- c(0.05, 0.05, 0.05, 0.05, 1)

LVbsup <- c(1.00, 3.00, 0.95, 0.95, 20)

The initial values of the state variables:

LVinit <- c(Prey = 1, Predator = 2)

The timepoints of interest:

LVtimes <- c(0.01, seq(1, 50, by = 1))

Morris screening:

set.seed(7292)

Warning: The following code might take very long!

LVres_morris <- ODEmorris(mod = LVmod,
pars = LVpars,
state_init = LVinit,
times = LVtimes,
binf = LVbinf,
bsup = LVbsup,
r = 500,
design = list(type = "oat",
levels = 10, grid.jump = 1),
scale = TRUE,
ode_method = "lsoda”,
parallel_eval = TRUE,
parallel_eval_ncores = 2)

#i#H##H FitzHugh-Nagumo equations (Ramsay et al., 2007) #iHt##
FHNmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

dVoltage <- s * (Voltage - Voltage”3 / 3 + Current)
dCurrent <- - 1 / s *(Voltage - a + b *x Current)

return(list(c(dVoltage, dCurrent)))
D)

6 ODEmorris.ODEnetwork

}
Warning: The following code might take very long!

FHNres_morris <- ODEmorris(mod = FHNmod,
pars = c("a", "b", "s"),
state_init = c(Voltage = -1, Current
times = seq(@.1, 50, by = 5),
binf = c(0.18, 0.18, 2.8),
bsup = c(0.22, 0.22, 3.2),
r = 500,
design = list(type = "oat",
levels = 50, grid.jump = 1),
scale = TRUE,
ode_method = "adams",
parallel_eval = TRUE,
parallel_eval_ncores = 2)

1)7

ODEmorris.ODEnetwork Morris Screening for Objects of Class ODEnetwork

Description

ODEmorris.ODEnetwork performs a sensitivity analysis for objects of class ODEnetwork using the
Morris screening method. Package ODEnetwork is required for this function to work.

Usage

S3 method for class 'ODEnetwork'

ODEmorris(mod, pars, times, binf = @, bsup = 1,
r = 500, design = list(type = "oat"”, levels = 10, grid.jump = 1),
scale = TRUE, ode_method = "lsoda", parallel_eval = FALSE,

parallel_eval_ncores = NA, ...)
Arguments
mod [ODEnetwork]

list of class ODEnetwork.

pars [character (k)]
names of the parameters to be included as input variables in Morris screening.
All parameter names must be contained in names (ODEnetwork: : createParamVec (mod))
and must not be derivable from other parameters supplied (e.g. "k.2.1" can be
derived from "k.1.2", so supplying "k.1.2" suffices).

times [numeric]
points of time at which the sensitivity analysis should be executed (vector of
arbitrary length). The first point of time must be greater than zero.

ODEmorris.ODEnetwork 7

binf [character (1 or k)]
vector of lower borders of possible values for the k input parameters. If they are
all equal, a single value can be set.

bsup [character (1 or k)]
vector of upper borders of possible values for the k input parameters. If they are
all equal, a single value can be set.

r [integer(1)]
if of length 1, the number of repetitions of the design. If of length 2, a space-
filling optimization of the sampling design is used, see morris. However, this
space-filling optimization might lead to long runtimes, so length 1 is recom-
mended for r. Defaults to 500.

design [list]
a list specifying the design type and its parameters, cf. morris.

scale [logical(1)]
if TRUE, scaling is done for the input design of experiments after building the de-
sign and before calculating the elementary effects, cf. morris. Defaults to TRUE,
which is highly recommended if the factors have different orders of magnitude,
see morris.

ode_method [character(1)]
method to be used for solving the ODEs in situations where the solution has to
be determined numerically, see ode for details. Defaults to "1soda”.

parallel_eval [logical(1)]
logical indicating if the evaluation of the ODE model shall be performed paral-
lelized.

parallel_eval_ncores
[integer(1)]
number of processor cores to be used for parallelization. Only applies if parallel_eval
= TRUE. If set to NA (as per default) and parallel_eval = TRUE, 1 processor core
is used.

further arguments passed to or from other methods.

Details

If the object of class ODEnetwork supplied for mod doesn’t include any events, the solution of the
ODE network is determined analytically using simuNetwork. In the presence of events, simuNetwork
uses ode to solve the ODE network numerically.

The sensitivity analysis is done for all state variables and all timepoints simultaneously using
morris from the package sensitivity.

For non-ODE models, values for r are typically between 10 and 50. However, much higher values
are recommended for ODE models (the default is r = 500).

Value

List of class ODEmorris of length 2 * nrow(mod$state) containing in each element a matrix for
one state variable (all components of the 2 state variables are analyzed independently). The matrices
themselves contain the Morris screening results for all timepoints (rows: mu, mu.star and sigma
for every parameter; columns: timepoints).

8 ODEmorris.ODEnetwork

Note

In situations where the solution of the ODE model has to be determined numerically, it might
be helpful to try another ODE-solver if the evaluation of the model function takes too long, (ar-
gument ode_method). The ode_methods "vode”, "bdf", "bdf_d", "adams"”, "impAdams"” and
"impAdams_d" might be faster than the default "1soda”.

If morris throws a warning message stating "In ... keeping ... repetitions out of ...", try using a
bigger number of levels in the design argument (only possible for OAT design).

Author(s)
Frank Weber

See Also

morris, plot.ODEmorris

Examples

#it#HH# A network of 4 mechanical oscillators connected in a circle #it#it#
Definition of the network using the package "ODEnetwork”:
M_mat <- rep(2, 4)
K_mat <- diag(rep(2 * (2*%pi*0.17)"*2, 4))
K_mat[1, 2] <- K_mat[2, 3] <-
K_mat[3, 4] <- K_mat[1, 4] <- 2 * (2%pi*0.17)*2 / 10
D_mat <- diag(rep(0.05, 4))
library("ODEnetwork™)
1fonet <- ODEnetwork(masses = M_mat, dampers = D_mat, springs = K_mat)
The parameters to be included in the sensitivity analysis and their lower
and upper boundaries:
LFOpars <- c("k.1", "k.2", "k.3", "k.4",
"d.1", "d.2", "d.3", "d.4")
LFObinf <- c(rep(0@.2, 4), rep(0.01, 4))
LFObsup <- c(rep(20, 4), rep(0.1, 4))
Setting of the initial values of the state variables:
1fonet <- setState(lfonet, statel = rep(2, 4), state2 = rep(@, 4))
The timepoints of interest:
LFOtimes <- seq(25, 150, by = 2.5)
Morris screening:
set.seed(283)
Warning: The following code might take very long!

LFOres_morris <- ODEmorris(mod = lfonet,
pars = LFOpars,
times = LFOtimes,
binf = LFObinf,
bsup = LFObsup,
r = 500,
design = list(type = "oat”,
levels = 10, grid.jump = 1),
scale = TRUE,
parallel_eval = TRUE,

ODEsensitivity 9

parallel_eval_ncores = 2)

ODEsensitivity Performing Sensitivity Analysis in ODE Models

Description

ODEsensitivity provides methods to perform sensitivity analysis (SA) in ordinary differential
equation (ODE) models. Its functions are based on the implementations of Morris and Sobol” SA

in the sensitivity package (Pujol et al., 2015). However, a modified version of the sensitivity-
package is required that enables morris, sobol jansen and sobolmartinez to handle three-dimensional
arrays as model outputs. Each element of the third dimension of the output array is then used to
contain the results for one state variable of the ODE model. Each element of the second dimension

of the output array is used for one timepoint.

Details

The main functions are ODEmorris and ODEsobol, which are generic functions. They have default
methods for general ODE models (ODEmorris.default, ODEsobol.default) as well as methods
for objects of class ODEnetwork (ODEmorris.ODEnetwork,ODEsobol.ODEnetwork). For the latter
two methods, the package ODEnetwork is required.

See the sensitivity package and itsmorris, soboljansen and sobolmartinez implementations
for further information on sensitivity analysis in R.

ODEsobol Sobol’ Sensitivity Analysis for ODE Models

Description

ODEsobol is the generic function for performing a Sobol’ sensitivity analysis of ODE models.

Usage
ODEsobol(mod, ...)
Arguments
mod either a model function supplied in the manner as needed for ode (for ODEsobol . default)

or an object of class ODEnetwork (for ODEsobol.ODEnetwork).
further arguments passed to methods, see ODEsobol . default and ODEsobol.ODEnetwork.

10

Details

ODEsobol.default

There are two methods for this generic function: ODEsobol.default (for general ODE models)
and ODEsobol.ODEnetwork (for objects of class ODEnetwork, see package ODEnetwork).

Author(s)

Frank Weber

See Also

ODEsobol.default, ODEsobol.ODEnetwork

ODEsobol.default

Sobol’ Sensitivity Analysis for General ODE Models

Description

ODEsobol.default is the default method of ODEsobol. It performs the variance-based Sobol’
sensitivity analysis for general ODE models.

Usage

Default S3 method:
ODEsobol(mod, pars, state_init, times, n = 1000,

rfuncs =

"runif”, rargs = "min = @, max = 1", sobol_method = "Martinez",

ode_method = "lsoda”, parallel_eval = FALSE, parallel_eval_ncores = NA,

.2

Arguments

mod

pars

state_init

times

[function(Time, State, Pars)]
model to examine, supplied in the manner as needed for ode (see example be-
low).

[character(k)]

names of the parameters to be included as input variables in the Sobol’ sensitiv-
ity analysis.

[numeric(z)]

vector of z initial values. Must be named (with unique names).

[numeric]
points of time at which the sensitivity analysis should be executed (vector of
arbitrary length). The first point of time must be greater than zero.

[integer(1)]
number of random parameter values used to estimate the Sobol’ sensitivity in-
dices by Monte Carlo simulation. Defaults to 1000.

ODEsobol.default 11

rfuncs [character (1 or k)]
names of the functions used to generate the n random values for the k parame-
ters. Can be of length 1 or k. If of length 1, the same function is used for all
parameters. Defaults to "runif”, so a uniform distribution is assumed for all
parameters.

rargs [character (1 or k)]
arguments to be passed to the functions in rfuncs. Can be of length 1 or k.
If of length 1, the same arguments are used for all parameters. Each element
of rargs has to be a string of the form "tag1 = valuel, tag2 = value2, ...",
see example below. Default is "min = @, max = 1", so (together with the default
value of rfuncs) a uniform distribution on [0, 1] is assumed for all parameters.

sobol_method [character(1)]
either "Jansen” or "Martinez”, specifying which modification of the variance-
based Sobol” method shall be used. Defaults to "Martinez".

ode_method [character(1)]
method to be used for solving the differential equations, see ode. Defaults to
"lsoda”.

parallel_eval [logical(1)]
logical indicating if the evaluation of the ODE model shall be performed paral-
lelized.

parallel_eval_ncores
[integer(1)]
number of processor cores to be used for parallelization. Only applies if parallel_eval
= TRUE. If set to NA (as per default) and parallel_eval = TRUE, 1 processor core
is used.

further arguments passed to or from other methods.

Details

Function ode from deSolve is used to solve the ODE system.

The sensitivity analysis is done for all state variables and all timepoints simultaneously. If sobol_method
= "Jansen", soboljansen from the package sensitivity is used to estimate the Sobol’ sensitiv-

ity indices and if sobol_method = "Martinez", sobolmartinez is used (also from the package
sensitivity).

Value

List of length length(state_init) and of class ODEsobol containing in each element a list of
the Sobol’ sensitivity analysis results for the corresponding state_init-variable (i.e. first order
sensitivity indices S and total sensitivity indices T) for every point of time in the times vector. This
list has an extra attribute "sobol_method” where the value of argument sobol_method is stored
(either "Jansen” or "Martinez").

Note

If the evaluation of the model function takes too long, it might be helpful to try a different type
of ODE-solver (argument ode_method). The ode_methods "vode”, "bdf"”, "bdf_d", "adams",
"impAdams” and "impAdams_d" might be faster than the standard ode_method "1soda".

12 ODEsobol.default

If n is too low, the Monte Carlo estimation of the sensitivity indices might be very bad and even
produce first order indices < O or total indices > 1. First order indices in the interval [-0.05, 0) and
total indices in (1, 1.05] are considered as minor deviations and set to O resp. 1 without a warning.
First order indices < -0.05 or total indices > 1.05 are considered as major deviations. They remain
unchanged and a warning is thrown. Up to now, first order indices > 1 or total indices < 0 haven’t
occured yet. If this should be the case, please contact the package author.

Author(s)
Stefan Theers, Frank Weber

References

J. O. Ramsay, G. Hooker, D. Campbell and J. Cao, 2007, Parameter estimation for differential
equations: a generalized smoothing approach, Journal of the Royal Statistical Society, Series B,
69, Part 5, 741-796.

See Also

soboljansen, sobolmartinez, plot.ODEsobol

Examples

#i#### Lotka-Volterra equations ###i##
The model function:
LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))

D
3

The parameters to be included in the sensitivity analysis and their lower
and upper boundaries:

LVpars <- c("rIng”, "rGrow"”, "rMort”, "asseff"”, "K")

LVbinf <- c(0.05, 0.05, 0.05, 0.05, 1)

LVbsup <- ¢(1.00, 3.00, 0.95, 0.95, 20)

The initial values of the state variables:

LVinit <- c(Prey = 1, Predator = 2)

The timepoints of interest:

LVtimes <- c(0.01, seq(1, 50, by = 1))

set.seed(59281)

Sobol' sensitivity analysis (here only with n = 500, but n = 1000 is
recommended) :

Warning: The following code might take very long!

LVres_sobol <- ODEsobol(mod = LVmod,

ODEsobol.default

pars = LVpars,
state_init = LVinit,
times = LVtimes,

n = 500,

rfuncs = "runif”,

rargs = paste@("min = ", LVbinf,
, max = ", LVbsup),

n

sobol_method = "Martinez”,
ode_method = "lsoda"”,
parallel_eval = TRUE,
parallel_eval_ncores = 2)

#i##HH# FitzHugh-Nagumo equations (Ramsay et al., 2007) #it###
FHNmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

}

Warning: The following code might take very long!

D

dVoltage <- s * (Voltage - Voltage”3 / 3 + Current)
dCurrent <- - 1 / s *x(Voltage - a + b * Current)

return(list(c(dVoltage, dCurrent)))

FHNres_sobol <- ODEsobol(mod = FHNmod,

Just for demonstration purposes: The use of different distributions for
parameters (here, the distributions and their arguments are chosen

pars = C(uau’ ubn’ usn)y

state_init = c(Voltage = -1, Current = 1),

times = seq(@.1, 50, by = 5),

n = 500,
rfuncs = "runif”,

rargs = c(rep("min = 0.18, max

0.22", 2),

"min = 2.8, max = 3.2"),

sobol_method = "Martinez",

ode_method = "adams”,
parallel_eval = TRUE,
parallel_eval_ncores = 2)

completely arbitrarily):

Warning: The following code might take very long!

demo_dists <- ODEsobol(mod = FHNmod,

pars = C(na", "bu’ nsu),

state_init = c(Voltage = -1, Current = 1),

times = seq(@.1, 50, by = 5),

n = 500,

rfuncs = c("runif”, "rnorm”, "rexp"),

rargs = c¢("min = 0.18, max = 0.22",

"mean = 0.2, sd = 0.2 / 3",

"rate = 1/ 3"),
sobol_method = "Martinez”,

the

13

14 ODEsobol. ODEnetwork

ode_method = "adams”,
parallel_eval = TRUE,
parallel_eval_ncores = 2)

ODEsobol . ODEnetwork Sobol’ Sensitivity Analysis for Objects of Class ODEnetwork

Description

ODEsobol.ODEnetwork performs the variance-based Sobol’ sensitivity analysis for objects of class
ODEnetwork. Package ODEnetwork is required for this function to work.

Usage
S3 method for class 'ODEnetwork'
ODEsobol(mod, pars, times, n = 1000, rfuncs = "runif”,
rargs = "min = @, max = 1", sobol_method = "Martinez"”,
ode_method = "lsoda”, parallel_eval = FALSE, parallel_eval_ncores = NA,
L)
Arguments
mod [ODEnetwork]

list of class ODEnetwork.

pars [character (k)]
names of the parameters to be included as input variables in the Sobol’ sensitiv-
ity analysis. All parameters must be contained in names (ODEnetwork: : createParamVec(mod))
and must not be derivable from other parameters supplied (e.g. "k.2.1" can be
derived from "k.1.2", so supplying "k.1.2" suffices).

times [numeric]
points of time at which the sensitivity analysis should be executed (vector of
arbitrary length). The first point of time must be greater than zero.

n [integer(1)]
number of random parameter values used to estimate the Sobol’ sensitivity in-
dices by Monte Carlo simulation. Defaults to 1000.

rfuncs [character(1 or k)]
names of the functions used to generate the n random values for the k parame-
ters. Can be of length 1 or k. If of length 1, the same function is used for all
parameters. Defaults to "runif”, so a uniform distribution is assumed for all
parameters.

rargs [character(1 or k)]
arguments to be passed to the functions in rfuncs. Can be of length 1 or k.
If of length 1, the same arguments are used for all parameters. Each element
of rargs has to be a string of the form "tag1 = valuel, tag2 = value2, ...",

ODEsobol. ODEnetwork 15

see example below. Default is "min = @, max = 1", so (together with the default
value of rfuncs) a uniform distribution on [0, 1] is assumed for all parameters.

sobol_method [character(1)]
either "Jansen" or "Martinez", specifying which modification of the variance-
based Sobol’ method shall be used. Defaults to "Martinez".

ode_method [character(1)]
method to be used for solving the ODEs in situations where the solution has to
be determined numerically, see ode for details. Defaults to "1soda".

parallel_eval [logical(1)]
logical indicating if the evaluation of the ODE model shall be performed paral-
lelized.

parallel_eval_ncores
[integer(1)]
number of processor cores to be used for parallelization. Only applies if parallel_eval
= TRUE. If set to NA (as per default) and parallel_eval = TRUE, 1 processor core
is used.

further arguments passed to or from other methods.

Details

If the object of class ODEnetwork supplied for mod doesn’t include any events, the solution of the
ODE network is determined analytically using simuNetwork. In the presence of events, simuNetwork
uses ode to solve the ODE network numerically.

The sensitivity analysis is done for all state variables and all timepoints simultaneously. If sobol_method
= "Jansen", soboljansen from the package sensitivity is used to estimate the Sobol’ sensitiv-

ity indices and if sobol_method = "Martinez”, sobolmartinez is used (also from the package
sensitivity).

Value

List of length 2 * nrow(mod$state) and of class ODEsobol containing in each element a list of
the Sobol’ sensitivity analysis results for the corresponding state variable (i.e. first order sensitivity
indices S and total sensitivity indices T) for every point of time in the times vector. This list has
an extra attribute "sobol_method” where the value of argument sobol_method is stored (either
"Jansen" or "Martinez").

Note

In situations where the solution of the ODE model has to be determined numerically, it might
be helpful to try a different type of ODE-solver (argument ode_method) if the simulation of the
model takes too long. The ode_methods "vode”, "bdf", "bdf_d"”, "adams”, "impAdams"” and
"impAdams_d" might be faster than the standard ode_method "1soda”.

If n is too low, the Monte Carlo estimation of the sensitivity indices might be very bad and even
produce first order indices < O or total indices > 1. First order indices in the interval [-0.05, 0) and
total indices in (1, 1.05] are considered as minor deviations and set to O resp. 1 without a warning.
First order indices < -0.05 or total indices > 1.05 are considered as major deviations. They remain
unchanged and a warning is thrown. Up to now, first order indices > 1 or total indices < 0 haven’t
occured yet. If this should be the case, please contact the package author.

16 ODEsobol. ODEnetwork

Author(s)

Frank Weber

See Also

soboljansen, sobolmartinez, plot.ODEsobol

Examples

A network of 4 mechanical oscillators connected in a circle #i####
Definition of the network using the package "ODEnetwork”:
M_mat <- rep(2, 4)
K_mat <- diag(rep(2 * (2xpi*@.17)"2, 4))
K_mat[1, 2] <- K_mat[2, 3] <-
K_mat[3, 4] <- K_mat[1, 4] <- 2 % (2xpix@.17)*2 / 10
D_mat <- diag(rep(0@.05, 4))
library("ODEnetwork")
1fonet <- ODEnetwork(masses = M_mat, dampers = D_mat, springs = K_mat)
The parameters to be included in the sensitivity analysis and their lower
and upper boundaries:
LFOpars <- c("k.1", "k.2", "k.3", "k.4",
"d.1", "d.2", "d.3", "d.4")
LFObinf <- c(rep(0.2, 4), rep(0.01, 4))
LFObsup <- c(rep(20, 4), rep(0.1, 4))
Setting of the initial values of the state variables:
1fonet <- setState(lfonet, statel = rep(2, 4), state2 = rep(0, 4))
The timepoints of interest:
LFOtimes <- seq(25, 150, by = 2.5)
Sobol' sensitivity analysis (here only with n = 500, but n = 1000 is
recommended) :
set.seed(1739)
Warning: The following code might take very long! There are warnings

non

occurring which might be due to "n" being too low.

suppressWarnings(
LFOres_sobol <- ODEsobol(mod = lfonet,
pars = LFOpars,
times = LFOtimes,

n = 500,
rfuncs = "runif”,
rargs = paste@("min = ", LFObinf,
", max = ", LFObsup),
sobol_method = "Martinez”,

parallel_eval = TRUE,
parallel_eval_ncores = 2)

plot. ODEmorris

17

plot.ODEmorris

Plot of the Results of Morris Screening for Objects of Class ODEmorris

Description

plot.ODEmorris plots the results of Morris screening for objects of class ODEmorris.

Usage

S3 method for class 'ODEmorris'

plot(x, pars_plot = NULL, state_plot = names(x)[1],
kind = "sep"”, colors_pars = NULL, main_title = NULL,
legendPos = "outside”, type = "1", ...)

Arguments

X

pars_plot
state_plot
kind

colors_pars

main_title

legendPos

type

[ODEmorris]
output of ODEmorris (of class ODEmorris).

[character(k)]
names of the k parameters to be plotted. If NULL (the default), all parameters are
plotted.

[character(1)]
name of the state variable to be plotted. Defaults to the name of the first state
variable.

[character(1)]
kind of the plot, choose between "sep” and "trajec” (see details).

[character(>=k)]
vector of the colors to be used for the k different parameters. Must be at least of
length k (only the first k elements will be used, though). If NULL (the default),
rainbow(k) is used.

[character(1)]
title for the plot. If kind = "sep”, this is the overall title for the two separate
plots. If NULL (the default), a standard title is generated.

[character(1)]

keyword for the legend position, either one of those specified in legend or
"outside"” (the default), which means the legend is placed under the plot (use-
ful, if there are many parameters in the model).

[character(1)]
plot type’ i.e. ”p”7 ”1”, llb”, ”C", "o”, ”s”’ ”h" OI' ”n”. Defaults tO HlH.

additional arguments passed to plot.default.

18 plot. ODEmorris

Details

Morris sensitivity indices are plotted for one state variable (chosen by argument state_plot) and
the parameters named in pars_plot. If no parameters are named in pars_plot, the sensitivity
indices for all parameters are plotted. There are two kinds of plots:

* kind = "sep": separate plots of the Morris sensitivity indices p* and o against time

e kind = "trajec": plot of u* against o

Value

TRUE (invisible; for testing purposes).

Note

Not all plotting arguments can be passed by . . ., for example x1ab and ylab are fixed.

Author(s)
Stefan Theers, Frank Weber

See Also

ODEmorris, morris

Examples

###HH# Lotka-Volterra equations #it###
LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
b))

3
LVpars <- c("rIng", "rGrow", "rMort", "asseff"”, "K")
LVbinf <- c(0.05, .05, 0.05, .05, 1)
LVbsup <- c(1.00, 3.00, 0.95, .95, 20)
LVinit <- c(Prey = 1, Predator = 2)
LVtimes <- c(0.01, seq(1, 50, by = 1))
set.seed(7292)
Warning: The following code might take very long!

LVres_morris <- ODEmorris(mod = LVmod,
pars = LVpars,
state_init = LVinit,
times = LVtimes,

plot. ODEsobol 19

binf = LVbinf,
bsup = LVbsup,
r = 500,
design = list(type = "oat”,
levels = 10, grid.jump = 1),

scale = TRUE,
ode_method = "lsoda”,
parallel_eval = TRUE,
parallel_eval_ncores = 2)
my_cols <- c("firebrick”, "orange2", "dodgerblue",
"forestgreen”, "black")
plot(LVres_morris, kind = "sep”, colors_pars = my_cols)
plot(LVres_morris, pars_plot = c("rGrow”, "rMort"), state_plot = "Predator”,
kind = "trajec", colors_pars = my_cols[2:3])

A network of 4 mechanical oscillators connected in a circle #i####
M_mat <- rep(2, 4)
K_mat <- diag(rep(2 * (2*pix@.17)*2, 4))
K_mat[1, 2] <- K_mat[2, 3] <-
K_mat[3, 4] <- K_mat[1, 4] <- 2 x (2*xpi*0.17)*2 / 10
D_mat <- diag(rep(0.05, 4))
library("ODEnetwork")
1fonet <- ODEnetwork(masses = M_mat, dampers = D_mat, springs = K_mat)
LFOpars <- c("k.1", "k.2", "k.3", "k.4",
"d.1", "d.2", "d.3", "d.4")
LFObinf <- c(rep(0.2, 4), rep(0.01, 4))
LFObsup <- c(rep(20, 4), rep(0.1, 4))
1fonet <- setState(lfonet, statel = rep(2, 4), state2 = rep(0, 4))
LFOtimes <- seq(25, 150, by = 2.5)
set.seed(283)
Warning: The following code might take very long!

LFOres_morris <- ODEmorris(mod = lfonet,
pars = LFOpars,
times = LFOtimes,
binf = LFObinf,
bsup = LFObsup,
r = 500,
design = list(type = "oat",
levels = 10, grid.jump = 1),
scale = TRUE,
parallel_eval = TRUE,
parallel_eval_ncores = 2)
plot(LFOres_morris, pars_plot = paste@("k.”, 1:4), state_plot = "x.2",
kind = "sep”, colors_pars = my_cols)

plot.ODEsobol Plot of the Results of Sobol’ Sensitivity Analysis for Objects of Class
ODEsobol

20 plot. ODEsobol

Description

plot.0ODEsobol plots the results of Sobol” SA for objects of class ODEsobol.

Usage

S3 method for class 'ODEsobol'
plot(x, pars_plot = NULL, state_plot = names(x)[1],
colors_pars = NULL, main_title = NULL, legendPos = "outside”,

type = "1", ...)
Arguments

X [ODEsobol]
output of ODEsobol (of class ODEsobol).

pars_plot [character (k)]
names of the k parameters to be plotted. If NULL (the default), all parameters are
plotted.

state_plot [character(1)]
name of the state variable to be plotted. Defaults to the name of the first state
variable.

colors_pars [character(>=k)]

vector of the colors to be used for the k different parameters. Must be at least of
length k (only the first k elements will be used, though). If NULL (the default),
rainbow(k) is used.

main_title [character(1)]
common title for the two graphics. Default is NULL, which means an automatic
title is generated.

legendPos [character(1)]
keyword for the legend position, either one of those specified in legend or
"outside"” (the default), which means the legend is placed under the plot (use-
ful, if there are many parameters in the model).

type [character(1)]
plOt type’ i'e. Ilpll’ Illll’ Ilb”, llcll, lloll’ Ilsll’ Ilhll OI' llnll. Defaults tO lllH'
additional arguments passed to plot.default.
Details

First order and total Sobol’ sensitivity indices are plotted for one state variable (chosen by argument
state_plot) and the parameters named in pars_plot against time. If no parameters are named in
pars_plot, the sensitivity indices for all parameters are plotted.

Value

TRUE (invisible; for testing purposes).

Note

Not all arguments of plot.default can be passed by .. ., for example x1ab and ylab are fixed.

plot.ODEsobol

Author(s)
Stefan Theers, Frank Weber

See Also

ODEsobol, soboljansen,sobolmartinez

Examples

#i##HH# Lotka-Volterra equations #it###
LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
b))

3
LVpars <- c("rIng"”, "rGrow", "rMort”, "asstgff”, "K")
LVbinf <- c(0.05, 0.05, 0.05, 0.05, 1)
LVbsup <- c(1.00, 3.00, 0.95, 0.95, 20)
LVinit <- c(Prey = 1, Predator = 2)
LVtimes <- c(0.01, seq(1, 50, by = 1))
set.seed(59281)
Warning: The following code might take very long!

LVres_sobol <- ODEsobol(mod = LVmod,
pars = LVpars,
state_init = LVinit,
times = LVtimes,

n = 500,
rfuncs = "runif”,
rargs = paste@("min = ", LVbinf,

", max = ", LVbsup),
sobol_method = "Martinez"”,
ode_method = "lsoda"”,

parallel_eval = TRUE,
parallel_eval_ncores = 2)
my_cols <- c("firebrick”, "orange2"”, "dodgerblue”,
"forestgreen”, "black")
plot(LVres_sobol, colors_pars = my_cols)
plot(LVres_sobol, pars_plot = c("rGrow”, "rMort"), state_plot = "Predator”,
colors_pars = my_cols[2:3])

#i##Ht#t A network of 4 mechanical oscillators connected in a circle #it#i#i#
M_mat <- rep(2, 4)
K_mat <- diag(rep(2 * (2*%pi*0.17)*2, 4))

21

22 tdcc

K_mat[1, 2] <- K_mat[2, 3] <-
K_mat[3, 4] <- K_mat[1, 4] <- 2 * (2*pix0.17)*2 / 10
D_mat <- diag(rep(@.05, 4))
library("ODEnetwork™)
1fonet <- ODEnetwork(masses = M_mat, dampers = D_mat, springs = K_mat)
LFOpars <- c("k.1", "k.2", "k.3", "k.4",
"d.1", "d.2", "d.3", "d.4")
LFObinf <- c(rep(0.2, 4), rep(0.01, 4))
LFObsup <- c(rep(20, 4), rep(0.1, 4))
1fonet <- setState(lfonet, statel = rep(2, 4), state2 = rep(Q, 4))
LFOtimes <- seq(25, 150, by = 2.5)
set.seed(1739)
Warning: The following code might take very long!

suppressWarnings(
LFOres_sobol <- ODEsobol(mod = lfonet,
pars = LFOpars,
times = LFOtimes,

n = 500,
rfuncs = "runif”,
rargs = paste@("min = ", LFObinf,
", max = ", LFObsup),
sobol_method = "Martinez”,

parallel_eval = TRUE,
parallel_eval_ncores = 2)

)
plot(LFOres_sobol, pars_plot = paste@("k."”, 1:4), state_plot = "x.2",
colors_pars = my_cols)

tdcc A Measure of Top-Down Correlation

Description

With the use of Savage scores, the Top-Down Correlation Coefficient TDCC compares b rankings.

Usage

tdcc(ranks, pearson = FALSE, plot = FALSE)

Arguments
ranks [matrix(nrow=b, ncol =k)]
(bxk)-matrix of the ranks of the k variables for each of the b sensitivity analyses,
ties are neglected, must be integers.
pearson [logical(1)]

Should the ordinary Pearson coefficient with Savage scores be computed (b =
2)? Default is FALSE.

tdcc 23

plot [logical(1)]
Should scatter plots showing rankings and Savage scores be created (b = 2)?
Default is FALSE.

Details

NOTE: As the implementation of the coefficient of concordance is still defective, please use the
Pearson coefficient!

Value
A named vector with components:

¢ kendall: Coefficient of concordance.

* pearson: Pearson coefficient (only if pearson = TRUE).

Author(s)

Stefan Theers

References

R. L. Iman and W. J. Conover, A Measure of Top-Down Correlation, Technometrics, Vol. 29, No. 3
(Aug., 1987), pp. 351-357.

Examples

b=2 sensitivity analysis techniques A and B that rate the influence of
k=20 variables/ input parameters (example taken from Iman and Conover, 1987):
ranking <- rbind(A = 1:20,
B =¢(1,3,2,4,16,10,19,12,18,17,
20,5,14,7,8,11,6,15,9,13))
tdcc(ranking, pearson = TRUE, plot = TRUE)

Index

deSolve, 4, 11
legend, 17, 20
morris, 3, 4,7-9, 18

ode, 2-4,7,9-11,15
ODEmorris, 2, 3,9, 17, 18
ODEmorris.default, 2, 3, 9
ODEmorris.ODEnetwork, 2, 6, 9
ODEsensitivity, 9
ODEsensitivity-package
(ODEsensitivity), 9
ODEsobol, 9,9, 10, 20, 21
ODEsobol .default, 9, 10, 10
ODEsobol.ODEnetwork, 9, 10, 14

plot.default, 17, 20
plot.ODEmorris, 4, 8, 17
plot.0ODEsobol, 12, 16, 19

sensitivity, 4,9, 11
simuNetwork, 7, 15
soboljansen, 9,11, 12, 15, 16, 21
sobolmartinez, 9,11, 12,15, 16, 21

tdcc, 22

24

	ODEmorris
	ODEmorris.default
	ODEmorris.ODEnetwork
	ODEsensitivity
	ODEsobol
	ODEsobol.default
	ODEsobol.ODEnetwork
	plot.ODEmorris
	plot.ODEsobol
	tdcc
	Index

