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copBasic-package Basic Theoretical Copula, Empirical Copula, and Various Utility
Functions

Description

The copBasic package is oriented around bivariate copula theory and mathematical operations
closely follow the standard texts of Nelsen (2006) and Joe (2014) as well as select other references.
Another recommended text is Salvadori et al. (2007) and is cited herein, but about half of that
excellent book concerns univariate applications. The primal objective of copBasic is to provide a
basic application programming interface (API) to numerous results shown by authoritative texts on
copulas. It is intended that the package will help other copula students in self study, potential course
work, and applied circumstances.

Notes on copulas that are supported. The author has focused on pedagogical aspects of copulas,
and this package is a diary of sorts. Originally, the author did not implement many copulas in the
copBasic in order to deliberately avoid redundancy to that support such as it exists on the R CRAN.
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Though as time has progressed, other copulas have been added occasionally based on needs of the
user community, need to show some specific concept in the general theory, or test algorithms. For
example, the Clayton copula (CLcop) is a late arriving addition to the copBasic package (c.2017),
which was added to assist a specific user.
Helpful Navigation of Copulas Implemented in the copBasic Package
Some entry points to the copulas implemented are listed in the Table of Copulas:

Name Symbol Function Concept
Lower-bounds copula W(u, v) W copula
Independence copula Π(u, v) P copula
Upper-bounds copula M(u, v) M copula
Fréchet Family copula FF(u, v) FRECHETcop copula
Ali–Mikhail–Haq copula AMH(u, v) AMHcop copula
Clayton copula CL(u, v) CLcop copula
Copula of uniform circle CIRC(u, v) CIRCcop copula
Farlie–Gumbel–Morgenstern (generalized) FGM(u, v) FGMcop copula
Galambos copula GL(u, v) GLcop copula
Gumbel–Hougaard copula GH(u, v) GHcop copula
Hüsler–Reiss copula HR(u, v) HRcop copula
Joe B5 copula B5(u, v) JOcopB5 copula
Nelsen eq.4-2-12 copula N4212cop(u, v) N4212cop copula
Ordinal Sums by Copula CJ (u, v) ORDSUMcop copula
Pareto copula PA(u, v) PLcop copula
Plackett copula PL(u, v) PLcop copula
PSP copula PSP(u, v) PSP copula
Raftery copula RF(u, v) RFcop copula
Rayleigh copula RAY(u, v) RAYcop copula
g-EV copula (Gaussian extreme value) gEV(u, v) gEVcop copula
t-EV copula (t-distribution extreme value) tEV(u, v) tEVcop copula

The language and vocabulary of copulas is formidable. The author (Asquith) has often emphasized
“vocabulary” words in italics, which is used extensively and usually near the opening of function-
by-function documentation to identify vocabulary words, such as survival copula (see surCOP).
This syntax tries to mimic and accentuate the word usage in Nelsen (2006) and Joe (2014).
The italics then are used to draw connections between concepts. In conjunction with the summary
of functions in copBasic-package, the extensive cross referencing to functions and expansive key-
word indexing should be beneficial. The author had no experience with copulas prior to a chance
happening upon Nelsen (2006) in c.2008. The copBasic package is a personal tour de force in
self-guided learning. Hopefully, this package and user’s manual will be helpful to others.
A few comments on notation herein are needed. A bold math typeface is used to represent a copula
such as Π (see P) for the independence copula. The syntax R ×R ≡ R2 denotes the orthogonal
domain of two real numbers, and [0, 1]× [0, 1]≡ I×I ≡ I2 denotes the orthogonal domain on the
unit square of probabilities. Limits of integration [0, 1] or [0, 1]2 involving copulas are thus shown
as I and I2, respectively.
The random variables X and Y respectively denote the horizontal and vertical directions in R2.
Their probabilistic counterparts are uniformly distributed random variables on [0, 1], are respec-
tively denoted as U and V , and necessarily also are the respective directions in I2 (U denotes the
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horizontal, V denotes the vertical). Often realizations of these random variables are respectively x
and y for X and Y and u and v for U and V .

There is an obvious difference between nonexceedance probability F and its complement, which
is exceedance probability defined as 1− F . Both u and v herein are in nonexceedance probability.
Arguments to many functions herein are u= u and v= v and are almost exclusively nonexceedance
but there are instances for which the probability arguments are u = 1− u = u′ and v = 1− v = v′.

Helpful Navigation of the copBasic Package
Some other entry points into the package are listed in the following table:

Name Symbol Function Concept
Copula C(u, v) COP copula theory
Survival copula Ĉ(u′, v′) surCOP copula theory
Joint survival function C(u, v) surfuncCOP copula theory
Co-copula C⋆(u′, v′) coCOP copula theory
Dual of a copula C̃(u, v) duCOP copula theory
Primary copula diagonal δ(t) diagCOP copula theory
Secondary copula diagonal δ⋆(t) diagCOP copula theory
Inverse copula diagonal δ(−1)(f) diagCOPatf copula theory
Joint probability −− jointCOP copula theory
Bivariate L-moments δ

[...]
k;C bilmoms and lcomCOP bivariate moments

Bivariate L-comoments τ
[...]
k;C bilmoms and lcomCOP bivariate moments

Blomqvist Beta βC blomCOP bivariate association
Gini Gamma γC giniCOP bivariate association
Hoeffding Phi ΦC hoefCOP bivariate association
Nu-Skew νC nuskewCOP bivariate moments
Nu-Star (skew) ν⋆C nustarCOP bivariate moments
Lp distance to independence ΦC → Lp LpCOP bivariate association
Permutation-Mu µpermsym

∞C LzCOPpermsym permutation asymmetry
Kendall Tau τC tauCOP bivariate association
Kendall Measure KC(z) kmeasCOP copula theory
Kendall Function FK(z) kfuncCOP copula theory
Inverse Kendall Function F

(−1)
K (z) kfuncCOPinv copula theory

An L-moment of FK(z) λr(FK) kfuncCOPlmom L-moment theory
L-moments of FK(z) λr(FK) kfuncCOPlmoms L-moment theory
Semi-correlations (negatives) ρ−N (a) semicorCOP bivariate tail association
Semi-correlations (positives) ρ+N (a) semicorCOP bivariate tail association
Spearman Footrule ψC footCOP bivariate association
Spearman Rho ρC rhoCOP bivariate association
Schweizer–Wolff Sigma σC wolfCOP bivariate association
Density of a copula c(u, v) densityCOP copula density
Density visualization −− densityCOPplot copula density
Empirical copula Cn(u, v) EMPIRcop copula
Empirical simulation −− EMPIRsim copula simulation
Empirical simulation −− EMPIRsimv copula simulation
Empirical copulatic surface −− EMPIRgrid copulatic surface
Parametric copulatic surface −− gridCOP copulatic surface
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Parametric simulation −− simCOP or rCOP copula simulation
Parametric simulation −− simCOPmicro copula simulation
Maximum likelihood L(Θd) mleCOP copula fitting
Akaike information criterion AICC aicCOP goodness-of-fit
Bayesian information criterion BICC bicCOP goodness-of-fit
Root mean square error RMSEC rmseCOP goodness-of-fit
Another goodness-of-fit Tn statTn goodness-of-fit

Several of the functions listed above are measures of “bivariate association.” Two of the measures
(Kendall Tau, tauCOP; Spearman Rho, rhoCOP) are widely known. R provides native support for
their sample estimation of course, but each function can be used to call the cor() function in R
for parallelism to the other measures of this package. The other measures (Blomqvist Beta, Gini
Gamma, Hoeffding Phi, Schweizer–Wolff Sigma, Spearman Footrule) support sample estimation by
specially formed calls to their respective functions: blomCOP, giniCOP, hoefCOP, wolfCOP, and
footCOP. Gini Gamma (giniCOP) documentation (also joeskewCOP) shows extensive use of theo-
retical and sample computations for these and other functions.

Concerning goodness-of-fit and although not quite the same as copula properties (such as “correla-
tion”) per se as the coefficients aforementioned in the prior paragraph, three goodness-of-fit metrics
of a copula compared to the empirical copula, which are all based the mean square error (MSE),
are aicCOP, bicCOP, and rmseCOP. This triad of functions is useful for making decisions on whether
a copula is more favorable than another to a given dataset. However, because they are genetically
related by using MSE and if these are used for copula fitting by minimization, the fits will be identi-
cal. A statement of “not quite the same” is made because the previously described copula properties
are generally defined as types of deviations from other copulas (such as P). Another goodness-of-fit
statistic is statTn, which is based on magnitude summation of fitted copula difference from the
empirical copula. These four (aicCOP, bicCOP, rmseCOP, and statTn) collectively are relative sim-
ple and readily understood measures. These bulk sample statistics are useful, but generally thought
to not capture the nuances of tail behavior (semicorCOP and taildepCOP might be useful).

Bivariate skewness measures are supported in the functions joeskewCOP (nuskewCOP and nustarCOP)
and uvlmoms (uvskew). Extensive discussion and example computations of bivariate skewness are
provided in the joeskewCOP documentation. Lastly, so-called bivariate L-moments and bivariate
L-comoments of a copula are directly computable in bilmoms (though that function using Monte
Carlo integration is deprecated) and lcomCOP (direct numerical integration). The lcomCOP function
is the theoretical counterpart to the sample L-comoments provided in the lmomco package.

Bivariate random simulation methods by several functions are identified in the previous table. The
copBasic package explicitly uses only conditional simulation also known as the conditional dis-
tribution method for random variate generation following Nelsen (2006, pp. 40–41) (see also
simCOPmicro, simCOP). The numerical derivatives (derCOP and derCOP2) and their inversions
(derCOPinv and derCOPinv2) represent the foundation of the conditional simulation. There are
other methods in the literature and available in other R packages, and a comparison of some meth-
ods is made in the Examples section of the Gumbel–Hougaard copula (GHcop).

Several functions in copBasic make the distinction between V with respect to (wrt) U and U wrt
V , and a guide for the nomenclature involving wrt distinctions is listed in the following table:

Name Symbol Function Concept
Copula inversion V wrt U COPinv copula operator
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Copula inversion U wrt V COPinv2 copula operator
Copula derivative δC/δu derCOP copula operator
Copula derivative δC/δv derCOP2 copula operator
Copula derivative inversion V wrt U derCOPinv copula operator
Copula derivative inversion U wrt V derCOPinv2 copula operator
Joint curves t 7→ C(u = U, v) joint.curvesCOP copula theory
Joint curves t 7→ C(u, v = V ) joint.curvesCOP2 copula theory
Level curves t 7→ C(u = U, v) level.curvesCOP copula theory
Level curves t 7→ C(u, v = V ) level.curvesCOP2 copula theory
Level set V wrt U level.setCOP copula theory
Level set U wrt V level.setCOP2 copula theory
Median regression V wrt U med.regressCOP copula theory
Median regression U wrt V med.regressCOP2 copula theory
Quantile regression V wrt U qua.regressCOP copula theory
Quantile regression U wrt V qua.regressCOP2 copula theory
Copula section t 7→ C(t, a) sectionCOP copula theory
Copula section t 7→ C(a, t) sectionCOP copula theory

The previous two tables do not include all of the myriad of special functions to support similar oper-
ations on empirical copulas. All empirical copula operators and utilities are prepended with EMPIR
in the function name. An additional note concerning package nomenclature is that an appended
“2” to a function name indicates U wrt V (e.g. EMPIRgridderinv2 for an inversion of the partial
derivatives δC/δv across the grid of the empirical copula).

Some additional functions to compute often salient features or characteristics of copulas or bivariate
data, including functions for bivariate inference or goodness-of-fit, are listed in the following table:

Name Symbol Function Concept
Left-tail decreasing V wrt U isCOP.LTD bivariate association
Left-tail decreasing U wrt V isCOP.LTD bivariate association
Right-tail increasing V wrt U isCOP.RTI bivariate association
Right-tail increasing U wrt V isCOP.RTI bivariate association
Pseudo-polar representation (Ŝ, Ŵ ) psepolar extremal dependency
Tail concentration function qC(t) tailconCOP bivariate tail association
Tail (lower) dependency λLC taildepCOP bivariate tail association
Tail (upper) dependency λUC taildepCOP bivariate tail association
Tail (lower) order κLC tailordCOP bivariate tail association
Tail (upper) order κUC tailordCOP bivariate tail association
Neg’ly quadrant dependency NQD isCOP.PQD bivariate association
Pos’ly quadrant dependency PQD isCOP.PQD bivariate association
Permutation symmetry permsym isCOP.permsym copula symmetry
Radial symmetry radsym isCOP.radsym copula symmetry
Skewness (Joe, 2014) η(p;ψ) uvskew bivariate skewness
Kullback–Leibler Divergence KL(f | g) kullCOP bivariate inference
KL sample size nfg kullCOP bivariate inference
The Vuong Procedure −− vuongCOP bivariate inference
Spectral measure H(w) spectralmeas extremal dependency inference
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Stable tail dependence l̂(x, y) stabtaildepf extremal dependency inference
L-comoments (samp. distr.) −− lcomCOPpv experimental bivariate inference

The Table of Probabilities that follows lists important relations between various joint probability
concepts, the copula, nonexceedance probabilities u and v, and exceedance probabilities u′ and v′.
A compact summary of these probability relations has obvious usefulness. The notation [. . . , . . .] is
to read as [. . . and . . .], and the [. . . | . . .] is to be read as [. . . given . . .].

Probability and Symbol Convention
Pr[U ≤ u, V ≤ v ] = C(u, v) — The copula, COP
Pr[U > u, V > v ] = Ĉ(u′, v′) — The survival copula, surCOP
Pr[U ≤ u, V > v ] = u−C(u, v′)
Pr[U > u, V ≤ v ] = v −C(u′, v)
Pr[U ≤ u | V ≤ v ] = C(u, v)/v
Pr[V ≤ v | U ≤ u ] = C(u, v)/u
Pr[U ≤ u | V > v ] =

(
u−C(u, v)

)
/(1− v)

Pr[V ≤ v | U > u ] =
(
v −C(u, v)

)
/(1− u)

Pr[U > u | V > v ] = Ĉ(u′, v′)/u′ = C(u, v)/(1− u)

Pr[V > v | U > u ] = Ĉ(u′, v′)/v′ = C(u, v)/(1− v)
Pr[V ≤ v | U = u ] = δC(u, v)/δu — Partial derivative, derCOP
Pr[U ≤ u | V = v ] = δC(u, v)/δv — Partial derivative, derCOP2

Pr[U > u or V > v ] = C⋆(u′, v′) = 1−C(u′, v′) — The co-copula, coCOP
Pr[U ≤ u or V ≤ v ] = C̃(u, v) = u+ v −C(u, v) — The dual of a copula, duCOP

E[U | V = v ] =
∫ 1

0
(1− δC(u, v)/δv)du — Expectation of U given V, EuvCOP

E[V | U = u ] =
∫ 1

0
(1− δC(u, v)/δu)dv — Expectation of V given U, EvuCOP

The function jointCOP has considerable demonstration in its Note section of the joint and and
joint or relations shown through simulation and counting scenarios. Also there is a demonstration
in the Note section of function duCOP on application of the concepts of joint and conditions, joint
or conditions, and importantly joint mutually exclusive or conditions.

Copula Construction Methods
Permutation asymmetry can be added to a copula by breveCOP. One, two, or more copulas can
be “composited,” “combined,” or “multiplied” in interesting ways to create highly unique bivari-
ate relations and as a result, complex dependence structures can be formed. The package provides
three main functions for copula composition: composite1COP composites a single copula with two
compositing parameters, composite2COP composites two copulas with two compositing parame-
ters, and composite3COP composites two copulas with four compositing parameters. Also two
copulas can be combined through a weighted convex combination using convex2COP with a single
weighting parameter, and evenN number of copulas can be combined by weights using convexCOP.
So-called “gluing” two copula by a parameter is provided by glueCOP. Multiplication of two cop-
ulas to form a third is supported by prod2COP. All eight functions for compositing, combining, or
multipling copulas are compatible with joint probability simulation (simCOP), measures of associa-
tion (e.g. ρC), and presumably all other copula operations using copBasic features. Finally, ordinal
sums of copula are provided by ORDSUMcop and ORDSUWcop as particularly interesting methods of
combining copulas.
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No. of copulas Combining Parameters Function Concept
1 β breveCOP adding permuation asymmetry
1 α, β composite1COP copula combination
2 α, β composite2COP copula combination
2 α, β, κ, γ composite3COP copula combination
2 α, (1− α) convex2COP weighted copula combination
N ωi∈N convexCOP weighted copula combination
2 γ glueCOP gluing of coupla
2

(
C1 ∗C2

)
prod2COP copula multiplication

N CJ i for Ji∈N partitions ORDSUMcop M-ordinal sums of copulas
N CJ i for Ji∈N partitions ORDSUWcop W-ordinal sums of copulas

Useful Copula Relations by Visualization
There are a myriad of relations amongst variables computable through copulas, and these were
listed in the Table of Probabilities earlier in this documentation. There is a script located in
the inst/doc directory of the copBasic sources titled CopulaRelations_BaseFigure_inR.txt.
This script demonstrates, using the PSP copula, relations between the copula (COP), survival copula
(surCOP), joint survival function of a copula (surfuncCOP), co-copula (coCOP), and dual of a copula
function (duCOP). The script performs simulation and manual counts observations meeting various
criteria in order to compute their empirical probabilities. The script produces a base figure, which
after extending in editing software, is suitable for educational description and is provided at the end
of this documentation.

A Review of “Return Periods” using Copulas
Risk analyses of natural hazards are commonly expressed as annual return periods T in years,
which are defined for a nonexceedance probability q as T = 1/(1 − q). In bivariate analysis,
there immediately emerge two types of return periods representing Tq; coop and Tq; dual conditions
between nonexceedances of the two hazard sources (random variables) U and V . It is usual in many
applications for T to be expressed equivalently as a probability q in common for both variables.

Incidentally, the Pr[U > u | V > v ] and Pr[V > v | U > u ] probabilities also are useful for
conditional return period computations following Salvadori et al. (2007, pp. 159–160) but are not
further considered here. Also the FK(w) (Kendall Function or Kendall Measure of a copula) is the
core tool for secondary return period computations (see kfuncCOP).

Let the copula C(u, v; Θ) for nonexceedances u and v be set for some copula family (formula) by a
parameter vector Θ. The copula family and parameters define the joint coupling (loosely meant the
dependency/correlation) between hazards U and V . If “failure” occurs if either or both hazards U
and V are at probability q threshold (u = v = 1− 1/T = q) for T -year return period, then the real
return period of failure is defined using either the copula C(q, q; Θ) or the co-copula C⋆(q′, q′; Θ)
for exceedance probability q′ = 1− q is

Tq; coop =
1

1−C(q, q; Θ)
=

1

C⋆(1− q, 1− q; Θ)
and

Tq; coop ≡ 1

cooperative risk
.

Or in words, the hazard sources collaborate or cooperate to cause failure. If failure occurs, how-
ever, if and only if both hazards U and V occur simultaneously (the hazards must “dually work
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together” or be “conjunctive”), then the real return period is defined using either the dual of a
copula (function) C̃(q, q; Θ), the joint survival function C(q, q; Θ), or survival copula Ĉ(q′, q′; Θ)
as

Tq; dual =
1

1− C̃(q, q; Θ)
=

1

C(q, q; Θ)
=

1

Ĉ(q′, q′; Θ)
and

Tq; dual ≡
1

complement of dual protection
.

Numerical demonstration is informative. Salvadori et al. (2007, p. 151) show for a Gumbel–
Hougaard copula (GHcop) having Θ = 3.055 and T = 1,000 years (q = 0.999) that Tq; coop = 797.1
years and that Tq; dual = 1,341.4 years, which means that average return periods between “failures”
are

Tq; coop ≤ T ≤ Tq; dual and thus

797.1 ≤ T ≤ 1314.4 years.

With the following code, these bounding return-period values are readily computed and verified
using the prob2T() function from the lmomco package along with copBasic functions COP (generic
functional interface to a copula) and duCOP (dual of a copula):

q <- T2prob(1000)
lmomco::prob2T( COP(q,q, cop=GHcop, para=3.055)) # 797.110
lmomco::prob2T(duCOP(q,q, cop=GHcop, para=3.055)) # 1341.438

An early source (in 2005) by some of those authors cited on p. 151 of Salvadori et al. (2007;
their citation “[67]”) shows Tq; dual = 798 years—a rounding error seems to have been committed.
Finally just for reference, a Gumbel–Hougaard copula having Θ = 3.055 corresponds to an ana-
lytical Kendall Tau (see GHcop) of τ ≈ 0.673, which can be verified through numerical integration
available from tauCOP as:

tauCOP(cop=GHcop, para=3.055, brute=TRUE) # 0.6726542

Thus, a “better understanding of the statistical characteristics of [multiple hazard sources] requires
the study of their joint distribution” (Salvadori et al., 2007, p. 150).

Interaction of copBasic to Copulas in Other Packages

Originally, the copBasic package was not intended to be a port of the numerous bivariate copulas
or over re-implementation other bivariate copulas available in R though as the package passed its
10th year in 2018, the original intent changed. It is useful to point out a demonstration showing
an implementation of the Gaussian copula from the copula package, which is shown in the Note
section of med.regressCOP in a circumstance of ordinary least squares linear regression compared
to median regression of a copula as well as prediction limits of both regressions. Another demon-
stration in context of maximum pseudo-log-likelihood estimation of copula parameters is seen in the
Note section mleCOP, and also see “API to the copula package” or “package copula (comparison
to)” entries in the Index of this user manual.



12 copBasic-package

Simulated value from parameterless “PSP” copula with a sample size of 1,000
The monospace typeface indicates commands in R using copBasic syntax
The slanted typeface indicates theoretical values from the copula and

sample estimates from the data—For this example, the survival copula has 
probability Pr[U > u and  V > v] = 0.262 and the simulations have 
258 occurrences in the respectively shown hatched region.
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U ≤ u and V ≤ v

U > u and  V > v

U > u

V > v

COP(u,v)

surfuncCOP(u,v)
surCOP(1-u,1-v)

duCOP(u,v)

coCOP(1-u,1-v)

COP=0.362(theo.) and 0.351(sam.)

surCOP=0.262(theo.) and 0.258(sam.)

duCOP=0.738(theo.) and 0.742(sam.)

coCOP=0.638(theo.) and 0.649(sam.)

d
u
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(
u
,
v
)
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(
1
-
u
,
1
-
v
)

{u,v} = {0.65, 0.45}

duCOP(u,v)

surCOP =
0.262(theo.)

and
0.258(sam.)

# A demonstration in R code for the

# co-copula function for the given {u,v}

# pair for the PSP copula == 0.63777+ 

copBasic::coCOP(1-0.65,1-0.45, cop=PSP)

u

●

Author(s)

William Asquith <william.asquith@ttu.edu>
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Cherubini, U., Luciano, E., and Vecchiato, W., 2004, Copula methods in finance: Hoboken, NJ,
Wiley, 293 p.

Hernández-Maldonado, V., Díaz-Viera, M., and Erdely, A., 2012, A joint stochastic simulation
method using the Bernstein copula as a flexible tool for modeling nonlinear dependence structures
between petrophysical properties: Journal of Petroleum Science and Engineering, v. 90–91, pp.
112–123.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in nature—An
approach using copulas: Dordrecht, Netherlands, Springer, Water Science and Technology Library
56, 292 p.
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Examples

## Not run:
# Nelsen (2006, p. 75, exer. 3.15b) provides for a nice test of copBasic features.
"mcdurv" <- function(u,v, theta) {

ifelse(u > theta & u < 1-theta & v > theta & v < 1 - theta,
return(M(u,v) - theta), # Upper bounds copula with a shift
return(W(u,v))) # Lower bounds copula

}
"MCDURV" <- function(u,v, para=NULL) {

if(is.null(para)) stop("need theta")
if(para < 0 | para > 0.5) stop("theta ! in [0, 1/2]")
return(asCOP(u, v, f=mcdurv, para))

}
"afunc" <- function(t) { # a sample size = 1,000 hard wired

return(cov(simCOP(n=1000, cop=MCDURV, para=t, ploton=FALSE, points=FALSE))[1,2])
}
set.seed(6234) # setup covariance based on parameter "t" and the "root" parameter
print(uniroot(afunc, c(0, 0.5))) # "t" by simulation = 0.1023742
# Nelsen reports that if theta appox. 0.103 then covariance of U and V is zero.
# So, one will have mutually completely dependent uncorrelated uniform variables!

# Let us check some familiar measures of association:
rhoCOP( cop=MCDURV, para=0.1023742) # Spearman Rho = 0.005854481 (near zero)
tauCOP( cop=MCDURV, para=0.1023742) # Kendall Tau = 0.2648521
wolfCOP(cop=MCDURV, para=0.1023742) # S & W Sigma = 0.4690174 (less familiar)
D <- simCOP(n=1000, cop=MCDURV, para=0.1023742) # Plot mimics Nelsen (2006, fig. 3.11)
# Lastly, open research problem. L-comoments (matrices) measure high dimension of
# variable comovements (see lmomco package)---"method of L-comoments" for estimation?
lmomco::lcomoms2(simCOP(n=1000, cop=MCDURV, para=0), nmom=5) # Perfect neg. corr.
lmomco::lcomoms2(simCOP(n=1000, cop=MCDURV, para=0.1023742), nmom=5)
lmomco::lcomoms2(simCOP(n=1000, cop=MCDURV, para=0.5), nmom=5) # Perfect pos. corr.
# T2 (L-correlation), T3 (L-coskew), T4 (L-cokurtosis), and T5 matrices result. For
# Theta = 0 or 0.5 see the matrix symmetry with a sign change for L-coskew and T5 on
# the off diagonals (offdiags). See unities for T2. See near zero for offdiag terms
# in T2 near zero. But then see that T4 off diagonals are quite different from those
# for Theta 0.1024 relative to 0 or 0.5. As a result, T4 has captured a unique
# property of U vs V.
## End(Not run)

aicCOP Akaike Information Criterion between a Fitted Coupla and an Empir-
ical Copula

Description

Compute the Akaike information criterion (AIC) AICC (Chen and Guo, 2019, p. 29), which is
computed using mean square error MSEC as

MSEC =
1

n

n∑
i=1

(
Cn(ui, vi)−CΘm(ui, vi)

)2
and
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AICC = 2m+ n log(MSEC),

where Cn(ui, vi) is the empirical copula (empirical joint probability) for the ith observation,
CΘm

(ui, vi) is the fitted copula having m parameters in Θ. The Cn(ui, vi) comes from EMPIRcop.
The AICC is in effect saying that the best copula will have its joint probabilities plotting on a
1:1 line with the empirical joint probabilities, which is an AICC = −∞. From the MSEC shown
above, the root mean square error rmseCOP and Bayesian information criterion (BIC) bicCOP can be
computed. These goodness-of-fits can assist in deciding one copula favorability over another, and
another goodness-of-fit using the absolute differences between Cn(u, v) and CΘm

(u, v) is found
under statTn.

Usage

aicCOP(u, v=NULL, cop=NULL, para=NULL, m=NA, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction; If not given, then a second
column from argument u is attempted;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

m The number of parameters in the copula, which is usually determined by length
of para if m=NA, but some complex compositions of copulas are difficult to au-
thoritatively probe for total parameter lengths and mixing coefficients; and

... Additional arguments to pass to either copula (likely most commonly to the
empirical copula).

Value

The value for AICC is returned.

Author(s)

W.H. Asquith

References

Chen, Lu, and Guo, Shenglian, 2019, Copulas and its application in hydrology and water resources:
Springer Nature, Singapore, ISBN 978–981–13–0574–0.

See Also

EMPIRcop, bicCOP, rmseCOP



AMHcop 15

Examples

## Not run:
S <- simCOP(80, cop=GHcop, para=5) # Simulate some probabilities, but we
# must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
# The parent distribution is Gumbel-Hougaard extreme value copula.
# But in practical application we do not know that, but say we speculate
# that perhaps the Galambos extreme value might be the parent. Then maximum
# likelihood is used to fit the single parameter.
pGL <- mleCOP(U,V, cop=GLcop, interval=c(0,20))$par

aics <- c(aicCOP(U,V, cop=GLcop, para=pGL), aicCOP(U,V, cop=P), aicCOP(U,V, cop=PSP))
names(aics) <- c("GLcop", "P", "PSP")
print(aics) # We will see that the first AIC is the smallest as the
# Galambos has the nearest overall behavior than the P and PSP copulas.
## End(Not run)

AMHcop The Ali–Mikhail–Haq Copula

Description

The Ali–Mikhail–Haq copula (Nelsen, 2006, p. 92–93, 172) is

CΘ(u, v) = AMH(u, v) =
uv

1−Θ(1− u)(1− v)
,

where Θ ∈ [−1,+1), where the right boundary, Θ = 1, can sometimes be considered valid accord-
ing to Mächler (2014). The copula Θ → 0 becomes the independence copula (Π(u, v); P), and the
parameter Θ is readily computed from a Kendall Tau (tauCOP) by

τC =
3Θ− 2

3Θ
− 2(1−Θ)2 log(1−Θ)

3Θ2
,

and by Spearman Rho (rhoCOP), through Mächler (2014), by

ρC =

∞∑
k=1

3Θk(
k+2
2

)2 .

The support of τC is [(5 − 8 log(2))/3, 1/3] ≈ [−0.1817258, 0.3333333] and the ρC is [33 −
48 log(2), 4π2 − 39] ≈ [−0.2710647, 0.4784176], which shows that this copula has a limited range
of dependency. The infinite summation is easier to work with than Nelsen (2006, p. 172) definition
of

ρC =
12(1 + Θ)

Θ2
dilog(1−Θ)− 24(1−Θ)

Θ2
log(1−Θ)− 3(Θ + 12)

Θ
,

where the dilog(x) is the dilogarithm function defined by

dilog(x) =

∫ x

1

log(t)

1− t
dt.

The integral version has more nuances with approaches toward Θ = 0 and Θ = 1 than the infinite
sum version.
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Usage

AMHcop(u, v, para=NULL, rho=NULL, tau=NULL, fit=c("rho", "tau"), ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula. How-
ever, if a second parameter is present, it is treated as a logical to reverse the
copula (u+ v − 1 +AMH(1− u, 1− v; Θ));

rho Optional Spearman Rho from which the parameter will be estimated and pres-
ence of rho trumps tau;

tau Optional Kendall Tau from which the parameter will be estimated;

fit If para, rho, and tau are all NULL, the the u and v represent the sample. The
measure of association by the fit declaration will be computed and the param-
eter estimated subsequently. The fit has not other utility than to trigger which
measure of association is computed internally by the cor function in R; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned. Otherwise if tau is given, then the Θ is computed and a list
having

para The parameter Θ, and

tau Kendall Tau.

and if para=NULL and tau=NULL, then the values within u and v are used to compute Kendall Tau
and then compute the parameter, and these are returned in the aforementioned list.

Note

Mächler (2014) reports on accurate computation of τC and ρC for this copula for conditions of
Θ → 0 and in particular derives the following equation, which does not have Θ in the denominator:

ρC =

∞∑
k=1

3Θk(
k+2
2

)2 .

The copula package provides a Taylor series expansion for τC for small Θ in the copula::tauAMH().
This is demonstrated here between the implementation of τ = 0 for parameter estimation in the
copBasic package to that in the more sophisticated implementation in the copula package.

copula::tauAMH(AMHcop(tau=0)$para) # theta = -2.313076e-07

It is seen that the numerical approaches yield quite similar results for small τC, and finally, a com-
parison to the ρC is informative:
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rhoCOP(AMHcop, para=1E-9) # 3.333333e-10 (two nested integrations)
copula:::.rhoAmhCopula(1E-9) # 3.333333e-10 (cutoff based)
theta <- seq(-1,1, by=.0001)
RHOa <- sapply(theta, function(t) rhoCOP(AMHcop, para=t))
RHOb <- sapply(theta, function(t) copula:::.rhoAmhCopula(t))
plot(10^theta, RHOa-RHOb, type="l", col=2)

The plot shows that the apparent differences are less than 1 part in 100 million—The copBasic
computation is radically slower though, but rhoCOP was designed for generality of copula family.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Mächler, Martin, 2014, Spearman’s Rho for the AMH copula—A beautiful formula: copula pack-
age vignette, accessed on April 7, 2018, at https://CRAN.R-project.org/package=copula un-
der the vignette rhoAMH-dilog.pdf.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Pranesh, Kumar, 2010, Probability distributions and estimation of Ali–Mikhail–Haq copula: Ap-
plied Mathematical Sciences, v. 4, no. 14, p. 657–666.

See Also

P

Examples

## Not run:
t <- 0.9 # The Theta of the copula and we will compute Spearman Rho.
di <- integrate(function(t) log(t)/(1-t), lower=1, upper=(1-t))$value
A <- di*(1+t) - 2*log(1-t) + 2*t*log(1-t) - 3*t # Nelsen (2007, p. 172)
rho <- 12*A/t^2 - 3 # 0.4070369
rhoCOP(AMHcop, para=t) # 0.4070369
sum(sapply(1:100, function(k) 3*t^k/choose(k+2, 2)^2)) # Machler (2014)
# 0.4070369 (see Note section, very many tens of terms are needed)
## End(Not run)

## Not run:
layout(matrix(1:2, byrow=TRUE)) # Note: Kendall Tau is same on reversal.
s <- 2; set.seed(s); nsim <- 10000
UVn <- simCOP(nsim, cop=AMHcop, para=c(-0.9, "FALSE" ), col=4)
mtext("Normal definition [default]") # '2nd' parameter could be skipped
set.seed(s) # seed used to keep Rho/Tau inside attainable limits
UVr <- simCOP(nsim, cop=AMHcop, para=c(-0.9, "TRUE"), col=2)
mtext("Reversed definition")
AMHcop(UVn[,1], UVn[,2], fit="rho")$rho # -0.2581653
AMHcop(UVr[,1], UVr[,2], fit="rho")$rho # -0.2570689

https://CRAN.R-project.org/package=copula
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rhoCOP(cop=AMHcop, para=-0.9) # -0.2483124
AMHcop(UVn[,1], UVn[,2], fit="tau")$tau # -0.1731904
AMHcop(UVr[,1], UVr[,2], fit="tau")$tau # -0.1724820
tauCOP(cop=AMHcop, para=-0.9) # -0.1663313

## End(Not run)

asCOP Wrapper on a User-Level Formula to Become a Copula Function

Description

This function is intended to document and then to extend a simple API to end users to aid in imple-
mentation of other copulas for use within the copBasic package. There is no need or requirement
to use asCOP for almost all users. However, for the mathematical definition of some copulas, the
asCOP function might help considerably. This is because there is a need for special treatment of u
and v vectors of probability as each interacts with the vectorization implicit in R. The special treat-
ment is needed because many copulas are based on the operators such as min() and max(). When
numerical integration used by the integrate() function in R in some copula operators, such as
tauCOP for the Kendall Tau of a copula, special accommodation is needed related to the inherent
vectorization in R and how integrate() works.

Basically, the problem is that one can not strictly rely in all circumstances on what R does in terms
of value recycling when u and v are of unequal lengths. The source code is straightforward. Simply
put, if lengths of u and v are unity, then there is no concern, and even if the length of u (say) is unity
and v is 21, then recycling of u would often be okay. The real danger is when u and v have unequal
lengths and those lengths are each greater than unity—the R treatment can not be universally relied
upon with the various numerics herein involving optimization and nested numerical integration.

The example shows how a formula definition of a copula that is not a copula already implemented
by copBasic is set into a function deltacop and then used inside another function UsersCop that
will be the official copula that is compatible with a host of functions in copBasic. The use of asCOP
provides the length check necessary on u and v, and the argument ... provides optional parameter
support should the user’s formula require more settings.

Usage

asCOP(u, v, f=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

f A function for which the user desires to make as a copula; and

... Additional arguments to pass to the function f (such as parameters, if needed,
for the copula in the form of a list).

Value

The value(s) for the copula are returned.
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Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP

Examples

## Not run:
# Concerning Nelsen (2006, exer. 3.7, pp. 64--65)
"trianglecop" <- function(u,v, para=NULL, ...) {

# If para is set, then the triangle is rotated 90d clockwise.
if(! is.null(para) && para == 1) { t <- u; u <- v; v <- t }
if(length(u) > 1 | length(v) > 1) stop("only scalars for this function")
v2<-v/2; if(0 <= u & u <= v2 & v2 <= 1/2) { return(u )
} else if(0 <= v2 & v2 < u & u < 1-v2) { return(v2 )
} else if(1/2 <= 1-v2 & 1-v2 <= u & u <= 1 ) { return(u+v-1)
} else { stop("should not be here in logic") }

}
"UsersCop" <- function(u,v, ...) { asCOP(u,v, f=trianglecop, ...) }
n=20000; UV <- simCOP(n=n, cop=UsersCop)
# The a-d elements of the problem now follow:
# (a) Pr[V = 1 - |2*U -1|] = 1 and Cov(U,V) = 0; so that two random variables
# can be uncorrelated but each is perfectly predictable from the other
mean(UV$V - (1 - abs(2*UV$U -1))) # near zero; Nelsen says == 0
cov(UV$U, UV$V) # near zero; Nelsen says == 0

# (b) Cop(m,n) = Cop(n,m); so that two random variables can be identically
# distributed, uncorrelated, and not exchangeable
EMPIRcop(0.95,0.17, para=UV) # = A
EMPIRcop(0.17,0.95, para=UV) # = B; then A != B

# (c) Pr[V - U > 0] = 2/3; so that two random variables can be identically
# distributed, but their difference need not be symmetric about zero
tmp <- (UV$V - UV$U) > 0
length(tmp[tmp == TRUE])/n # about 2/3; Nelsen says == 2/3
# the prior two lines yield about 1/2 for independence copula P()

# (d) Pr[X + Y > 0] = 2/3; so that uniform random variables on (-1,1) can each
# be symmetric about zero, but their sum need not be.
tmp <- ((2*UV$V - 1) + (2*UV$U - 1)) > 0
length(tmp[tmp == TRUE])/n # about 2/3; Nelsen says == 2/3
## End(Not run)

## Not run:
# Concerning Nelsen (2006, exam. 3.10, p. 73)
"shufflecop" <- # assume scalar arguments for u and v
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function(u,v, para, ...) {
m <- para$mixer; subcop <- para$subcop
if(is.na(m) | m <= 0 | m >= 1) stop("m ! in [0,1]")
if(u <= m) { return( subcop(1-m+u, v, para=para$para) -

subcop(1-m, v, para=para$para))
} else { return(v - subcop(1-m, v, para=para$para) +

subcop(u-m, v, para=para$para))
}
}
"UsersCop" <- function(u,v, para=NULL) {

asCOP(u,v, f=shufflecop, para=para)
}
n <- 1000; u <- runif(n)
para <- list(mixer=runif(1), subcop=W, para=20)
v <- sapply(1:n, function(i) {

simCOPmicro(u[i], cop=UsersCop, para=para) } )
plot(data.frame(U=u, V=v), pch=17, col=rgb(1,0,1,1),

xlab="U, NONEXCEEDANCE PROBABILTY", ylab="V, NONEXCEEDANCE PROBABILITY")
mtext("Shuffle Copula Nelsen (2006, exam. 3.10, p. 73)")

# Concerning Nelsen (2006, exam. 5.14, p. 195)
"deltacop" <- function(u,v, ...) { min(c(u,v,(u^2+v^2)/2)) }
"UsersCop" <- function(u,v, ...) { asCOP(u,v, f=deltacop, ...) }
isCOP.PQD(cop=UsersCop) # TRUE + Rho=0.288 and Tau=0.333 as Nelsen says
isCOP.LTD(cop=UsersCop, wrtV=TRUE) # FALSE as Nelsen says
isCOP.RTI(cop=UsersCop, wrtV=TRUE) # FALSE as Nelsen says
## End(Not run)

bicCOP Bayesian Information Criterion between a Fitted Coupla and an Em-
pirical Copula

Description

Compute the Bayesian information criterion (BIC) BICC (Chen and Guo, 2019, p. 29), which is
computed using mean square error MSEC as

MSEC =
1

n

n∑
i=1

(
Cn(ui, vi)−CΘm(ui, vi)

)2
and

BICC = m log(n) + n log(MSEC),

where Cn(ui, vi) is the empirical copula (empirical joint probability) for the ith observation,
CΘm

(ui, vi) is the fitted copula having m parameters in Θ. The Cn(ui, vi) comes from EMPIRcop.
The BICC is in effect saying that the best copula will have its joint probabilities plotting on a 1:1
line with the empirical joint probabilities, which is an BICC = −∞. From the MSEC shown
above, the root mean square error rmseCOP and Akaike information criterion (AIC) aicCOP can
be computed. These goodness-of-fits can assist in deciding on one copula favorability over an-
other, and another goodness-of-fit using the absolute differences between Cn(u, v) and CΘm

(u, v)
is found under statTn.
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Usage

bicCOP(u, v=NULL, cop=NULL, para=NULL, m=NA, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction; If not given, then a second

column from argument u is attempted;
cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
m The number of parameters in the copula, which is usually determined by length

of para if m=NA, but some complex compositions of copulas are difficult to au-
thoritatively probe for total parameter lengths and mixing coefficients; and

... Additional arguments to pass to either copula (likely most commonly to the
empirical copula).

Value

The value for BICC is returned.

Author(s)

W.H. Asquith

References

Chen, Lu, and Guo, Shenglian, 2019, Copulas and its application in hydrology and water resources:
Springer Nature, Singapore, ISBN 978–981–13–0574–0.

See Also

EMPIRcop, aicCOP, rmseCOP

Examples

## Not run:
S <- simCOP(80, cop=GHcop, para=5) # Simulate some probabilities, but we
# must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
# The parent distribution is Gumbel-Hougaard extreme value copula.
# But in practical application we don't know that but say we speculate that
# perhaps the Galambos extreme value might be the parent. Then maximum
# likelihood is used on that copula to fit the single parameter.
pGL <- mleCOP(U,V, cop=GLcop, interval=c(0,20))$par

bics <- c(bicCOP(U,V, cop=GLcop, para=pGL), bicCOP(U,V, cop=P), bicCOP(U,V, cop=PSP))
names(bics) <- c("GLcop", "P", "PSP")
print(bics) # We will see that the first BIC is the smallest as the
# Galambos has the nearest overall behavior than the P and PSP copulas.
## End(Not run)
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bicoploc Analog to Line of Organic Correlation by Copula Diagonal

Description

HIGHLY EXPERIMENTAL AND SUBJECT TO OVERHAUL OR REMOVAL—Compute an analog
to the line of organic correlation (reduced major axis) using the diagonal of a copula.

Pr[U ≤ u, V ≤ v] = C(u, v) = f .

The primary diagonal is defined as

δC(t) = C(t, t) = f .

Two diagnostic plots can be plotted by the arguments available for this function. The plot for
(U, V ) coordinate nonexceedance probability domain along with the analyses involving the copula
diagonal inversion comes first, which is followed by that for (X,Y ) coordinate domain along with
the well-known line of organic correlation by the method of L-moments and such a “line” (could
be a curve) by copula diagonal inversion.

This much infrastructure written for flexibility in how a copula would interact for the purpose of
estimation with moment preservation. The simple u = v might be sufficient but let us have some
flexibility.

Usage

bicoploc(xp, yp=NULL, xout=NA, xpara=NULL, ypara=NULL, dtypex="nor", dtypey="nor",
ctype=c("weibull", "hazen", "bernstein", "checkerboard"), kumaraswamy=TRUE,
plotuv=TRUE, plotxy=TRUE, adduv=FALSE, addxy=FALSE, snv=FALSE, limout=TRUE,

autoleg=TRUE, xleg="topleft", yleg=NULL, rugxy=TRUE, ruglwd=0.5,
xlim=NULL, ylim=NULL, titleuv="", titlexy="", titlecex=1,
a=0, ff=pnorm(seq(-5, +5, by=0.1)), locdigits=6,
paracop=TRUE, verbose=TRUE, x=NULL, y=NULL, ...)

Arguments

xp Numeric vector giving paired data points of X . If this is a matrix or data frame,
then the first and second columns are extracted for the xp and yp internall;

yp Optional numeric vector giving paired data points of Y depending on the com-
position of x;

xout An optional set of numeric values specifying where interpolation through the
diagonal inversion is to take place;

xpara An lmomco package parameter object for the X variable, which if not provided
will trigger an method of L-moment parameter estimation for the distribution
dtypex;
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ypara An lmomco package parameter object for the Y variable, which if not provided
will trigger an method of L-moment parameter estimation for the distribution
dtypey;

dtypex The lmomco package distribution abbreviations (see lmomco::dist.list())
for the X variable. If this argument is set NULL and xpara is given with an
element of type, then that distribution type is assigned internally to dtypex;

dtypey The lmomco package distribution abbreviations (see lmomco::dist.list())
for the Y variable; If this argument is set NULL and xpara is given with an
element of type, then that distribution type is assigned internally to dtypex;

ctype Argument of the same name for the empirical copula for dispatch to EMPIRcop.
The 1/n form is disabled for bicoploc operations based on limited experiments.
The first letter of the argument’s value is extracted, converted to upper case, and
used as the plotting character in the two diagnostic plots;

kumaraswamy A logical to trigger Kumaraswamy distribution smoothing of the copula diag-
onal inversion from the empricial copula. The Kumaraswamy distribution is a
distribution having support [0, 1] with an explicit quantile function and takes the
place of a Beta distribution (see lmomco function quakur() for more details).
The smoothing by Kumaraswamy will provide a continuous real number on the
interval, which should insure no flat-lining as one rolls on to or off off the dis-
crete interval provided by the empirical copula for expected sample sizes of the
operations anticipated for the bicoploc function;

plotuv A logical to trigger plotting of the analyses in the (U, V ) coordinate nonex-
ceedance probability domain along with the analyses involving the copula diag-
onal inversion. If set true, then adduv is set false internally;

plotxy A logical to trigger plotting of the analyses in the (X,Y ) coordinate domain
along with the well-known line of organic correlation by the method of L-
moments and such a “line” (could be a curve) by copula diagonal inversion.
If set true, then addxy is set false internally;

adduv A logical when set true will not call the plot() function for (U, V ) coordinate
nonexceedance probability domain but the other graphical operations of lines
and points will be called;

addxy A logical when set true will not call the plot() function for (X,Y ) coordinate
domain but the other graphical operations of lines and points will be called;

snv A logical when set true will plot the (U, V ) coordinate nonexceedance probabil-
ity domain in units of standard normal variates;

limout A logical when set true will plot the (X,Y ) coordinate domain with horizontal
and vertical axis limits inflated to the xout and Y predictions;

autoleg A logical when set will draw a legend for the plots if the plots are requested;

xleg The value to become the argument x in the legend() call. The default setting
is based on general assumption that this bicoploc() function is to be more
commonly used in positive assocation circumstances betweenX and Y (positive
Spearman Rho);

yleg The value to become the argument y in the legend() call;
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rugxy Call rug() plotting operations on the X and Y values used in the parameter
estimation of the parametric marginal distributions using the xp and yp, unless
either or both have been overridden for the contents in x and (or) y arguments;

ruglwd The line wide passed into rug(). Because plotting of small and large sample
sizes can make it difficult in the smaller samples to see the line, it is judged
useful to explicitly have this setting as an declared argument;

xlim A numeric vector that if precisely of length 2 and no missing values therein, will
override the horizontal limits of the plotxy plot of the (X,Y ) domain. Other-
wise, the contents of xlim, if not null, are inserted into a range computation for
the limits to apply;

ylim A numeric vector that if precisely of length 2 and no missing values therein, will
override the vertical limits of the plotxy plot of the (X,Y ) domain. Otherwise,
the contents of ylim, if not null, are inserted into a range computation for the
limits to apply;

titleuv An optional title for the (U, V ) domain plot;

titlexy An optional title for the (X,Y ) domain plot;

titlecex The character expansion factor for the titles;

a Value for the plotting-position formula for lmomco::pp(), default is a=0, which
specifies Weibull plotting positions;

ff The nonexceedance joint probability of of the copula diagonal from which in-
version computes the marginal nonexceedance probability values for u = v = t
as C(t, t) = f where ff is the variable notation for the joint probability f ;

locdigits Number of digits for rounding exclusive to the loc data frame produced in the
returned list. The reasoning for this setting is that the expected application in
practical circumstances will have discipline knowledge of the rounding depth
suitable;

paracop A logical trigging the use of the parametric asymmetric copula fit by numerical
optimization to the (U, V ) domain of the data (see Details);

verbose Show messages of incremental progress with a incremental counter on the mes-
sage;

x Numeric vector of X values to be used in parameter estimation of the marginal
parametric distribution if xpara=NULL and these values are internally replaced
with xp (paired X) if not otherwise specified. This provides the ability to insert
an alternative and presumably longer vector of the entire X sample without the
restriction of individual values paired to the Y . A feature unique to providing
the x is that missing values can be and are removed on the fly prior to parameter
estimation of the marginal distribution. The x can be specific independent of y
or even at all for either. Absolutely no provision is made that x can be a matrix
or data frame holding the y;

y Numeric vector of Y values to be used in parameter estimation of the marginal
parametric distribution if ypara=NULL and these values are internally replaced
with yp (paired Y ) if not otherwise specified. This provides the ability to insert
an alternative and presumably longer vector of the entire Y sample without the
restriction of individual values paired to the X . A feature unique to providing
the y is that missing values can be and are removed on the fly prior to parameter
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estimation of the marginal distribution. The x can be specific independent of y
or even at all for either; and

... Additional arguments to pass.

Details

ON THE USE OF AN PARAMETRIC ASYMMETRIC COPULA—

Value

Lists, vectors, and data frames for the computations and predictions are returned.

organic A list containing a data frame of the predictions for xout by the conventional
LOC (locpair) (see also locsols$lmrloc), the estimates by the L-moments
of the parameters of the marginal distributions (locpara), the estimates by cop-
ula diagonal with Kumaraswamy smoothing (if requested) (bicoploc), and the
predictions based solely on the empirical copula approximation for the diagonal
(bicoploc_emp). The bicoploc and bicoploc_emp are equal to each other if
Kumaraswamy was not used. The bicoploc is intended to be the official output
from the bicoploc() function. The furthest right column is bicoploc_cop and
represents the predicting values using a parametric copula as fit to the (U, V )
domain mapped into the (X,Y ) domain as explained elsewhere in this docu-
mentation or sources;

locsols A list of solutions to the LOC based (1) (locpair) on the conventional defini-
tion on the paired data (xp and yp) with the finiteness check previously described
by lmomco::lmrloc() and (2) (locpara) the LOC solution not on the paired
data but extractable from the L-moments of the parameters for the marginal dis-
tributions. Certain permutations of available features will either have the two
L-moment solutions equal, or just the slopes equal, or differing in both inter-
cept and slope. The lmrloc list contains both L-moment and product moment
estimation of the LOC to adhere precisely to lmomco::lmrloc() output;

xpara The parameters of the marginal distribution in X either as given in xpara, as
estimated from xp, or estimated from x by the method of L-moments through
the lmomco package;

ypara The parameters of the marginal distribution in Y either as given in ypara, as
estimated from yp, or estimated from y by the method of L-moments through
the lmomco package;

faqs A named vector containing some numerical facts about the operations and prin-
cipally the requisite sample sizes involved are reported here;

faqscop A named vector containing some numerical facts about the operations involv-
ing the fitting of the parametric asymmetric copula (Plackett by default) to the
(U, V ) domain; and

diag A data frame containing information on the copula diagonal including the joint
probability column jtprob (the ff as stand in for C(t, t) = f ), the u = v = t in
column uv by the Kumaraswamy smooth (if requested), and the solely empirical
copula version in column uv_emp. If the Kumaraswamy smooth is not used, then
uv and uv_emp will be equal to each other. The furthest right column is uv_cop
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and represents the values using a parametric copula as fit to the (U, V ) domain
as explained elsewhere in this documentation or sources.

Note

The use of a copula diagonal inversion for purposes of a line of organic correlation analog within
the text-book literature and elsewhere is unknown to the developers (December 2023).

Though bicoploc has extensive logic for working through the copula diagonal, if we know the
parent distribution and we just have the marginal probabilities equal to each other (the diagonal),
then we recover the moments of Y simply with u = v:

library(lmomco)
ff <- c(0.0001, seq(0.001, 0.999, by=0.001), 0.9999)
xpara <- lmomco::vec2par(c(3, 0.6, -0.4), type="pe3")
ypara <- lmomco::vec2par(c(3, 0.4, +0.6), type="pe3")
xx <- rlmomco(100000, xpara)
yy <- approx(qlmomco(ff, xpara), qlmomco(ff, ypara), xout=xx)$y
lmr2par(yy, type="aep4")$para
# mu sigma gamma
# 2.9972742 0.3993914 0.5980866

Author(s)

W.H. Asquith

References

Kruskal, W.H., 1953, On the uniqueness of the line of organic correlation: Biometrics, vol. 9, no.
1, pp. 47–58, doi:10.2307/3001632.

See Also

diagCOPatf

Examples

# paracop set to FALSE in these examples for speed
set.seed(4); nsim <- 50
X <- rnorm(nsim, mean=3, sd=0.6)
Y <- rnorm(nsim, mean=0, sd=0.2)
zz <- bicoploc(X,Y, xout=c(2.5, 3.5, 4), dtypex="nor", dtypey="nor", paracop=FALSE)
# cor(X,Y, method="spearman") # +0.0785114 POSITIVE

set.seed(1); nsim <- 50
X <- rnorm(nsim, mean=3, sd=0.6)
Y <- rnorm(nsim, mean=0, sd=0.2)
zz <- bicoploc(X,Y, xout=c(2.5, 3.5, 4), dtypex="nor", dtypey="nor", paracop=FALSE)
# cor(X,Y, method="spearman") # -0.1351741 NEGATIVE

set.seed(1); nsim <- 50
X <- rnorm(nsim, mean=3, sd=0.6)

https://doi.org/10.2307/3001632
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Y <- 0.843*X + rnorm(nsim, mean=0, sd=0.2)
zz <- bicoploc(X,Y, xout=c(2.5, 3.5, 4), dtypex="nor", dtypey="nor", paracop=FALSE)
# cor(X,Y, method="spearman") # for nsim=1E6 RHO=0.92367

set.seed(1); nsim <- 50
X <- lmomco::rlmomco(nsim, lmomco::vec2par(c(3, 0.6, +0.5), type="pe3"))
Y <- 0.3*X^2 + lmomco::rlmomco(nsim, lmomco::vec2par(c(0, 0.4, 0), type="pe3"))
zz <- bicoploc(X,Y, xout=c(2.5, 3.5, 4.5), dtypex="nor", dtypey="nor", paracop=FALSE)
# cor(X,Y, method="spearman") # for nsim=1E6 RHO=0.92366

set.seed(1); nsim <- 50
X <- lmomco::rlmomco(nsim, lmomco::vec2par(c(3, 0.6, +0.5), type="pe3"))
Y <- 0.3*X^2 + lmomco::rlmomco(nsim, lmomco::vec2par(c(0, 0.4, 0), type="pe3"))
zz <- bicoploc(X,Y, xout=c(2.5, 3.5, 4.5), dtypex="gev", dtypey="gev", paracop=FALSE)

## Not run:
########################################################################################
# Image 800 samples in X and Y and though created as pairs, let us assume only
# 50 are actually paired for purposes of demonstration of specified parameters
# and (or) alternative x and y vectors providing the larger sample.
set.seed(1); nsim <- 800; npair <- 50
X <- lmomco::rlmomco(nsim, lmomco::vec2par(c(3, 0.6, +0.5), type="pe3"))
Y <- 0.3*X^2 + rnorm(nsim, mean=0, sd=0.3)
ix <- sample(seq_len(nsim), npair, replace=FALSE)
Xp <- X[ix]; Yp <- Y[ix]; dtypex <- "gev"; dtypey <- "gev"
xpara <- lmomco::lmr2par(X, type=dtypex); ypara <- lmomco::lmr2par(Y, type=dtypey)

# The next two bicoploc() calls produce identical results except for the density
# of data points along the axes for the rug plots. Ultimately, the same parameter
# estimates for the margins exists for both calls. The plotuv is disabled so that
# the user can tab between the two plotxy plots and see that they are the same.
zz <- bicoploc(Xp,Yp, xout=c(2.5, 3.5, 4.5), ruglwd=0.9, plotuv=FALSE,

xpara=xpara, ypara=ypara, dtypex=NULL, dtypey=NULL)
mtext("Example of specific xpara and ypara from larger sample", line=0.5)

zz <- bicoploc(Xp,Yp, xout=c(2.5, 3.5, 4.5), ruglwd=0.9, plotuv=FALSE,
xpara=xpara, ypara=ypara, dtypex=NULL, dtypey=NULL, x=X, y=Y)

mtext("Example of specific xpara and ypara from larger sample", line=0.5) #
## End(Not run)

## Not run:
########################################################################################
set.seed(1); nsim <- 50
UV <- rCOP(nsim, cop=breveCOP, para=list(cop=W, alpha=0, beta=0))
X <- qnorm(UV[,1], mean=3, sd=0.6)
Y <- qnorm(UV[,2], mean=2, sd=0.2)
zz <- bicoploc(X,Y, xout=c(1.5, 2.5, 3.5, 4), dtypex="nor", dtypey="nor")

set.seed(1); nsim <- 50
UV <- rCOP(nsim, cop=breveCOP, para=list(cop=W, alpha=0, beta=0.5))
X <- qnorm(UV[,1], mean=3, sd=0.6)
Y <- qnorm(UV[,2], mean=2, sd=0.2)
zz <- bicoploc(X,Y, xout=c(1.5, 2.5, 3.5, 4), dtypex="nor", dtypey="nor")
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set.seed(1); nsim <- 50
UV <- rCOP(nsim, cop=breveCOP, para=list(cop=M_N5p12b, para=3, alpha=0, beta=0.5))
X <- qnorm(UV[,1], mean=3, sd=0.6)^2
Y <- qnorm(UV[,2], mean=2, sd=0.2)
zz <- bicoploc(X,Y, xout=c(1.5, 2.5, 3.5, 4), ylim=c(1,2.5),

xleg="bottomleft", dtypex="aep4", dtypey="nor")

# A TRUE COUNTER EXAMPLE? Are the 1-v operations not sufficient depending on
# rotation? Is the secondary diagonal of a copula useful? Is there something wrong
# with the reflection operations as implemented at the end of November 2023?
# Should negatives be turned into positives by reversing Y within the internal logic?
# The solution current at end of November 2023 seems proper.
set.seed(1); nsim <- 500
para <- list(cop1=W, para1=4, cop2=GHcop, para2=c(30,.6, .9), alpha=0, beta=0.1)
UV <- rCOP(nsim, cop=composite2COP, para=para)
X <- -qexp(UV[,1], rate=10)+0.1 # Or the problem is a reflected exponential but the
Y <- qnorm(UV[,2], mean=2, sd=0.2) # exp version in lmomco can not handle
zz <- bicoploc(X,Y, xout=c(-0.05, 0, 0.2), dtypex="exp", dtypey="nor")
# Possibly, try another distribution.
zz <- bicoploc(X,Y, xout=c(-0.3, -0.2, 0), ylim=c(1,4), dtypex="aep4", dtypey="nor") #
## End(Not run)

## Not run:
########################################################################################
set.seed(1); nsim <- 200; npair <- 30
para <- list(cop=PLcop, para=80, alpha=0.3, beta=0.05)
UV <- rCOP(nsim, cop=composite1COP, para=para, resamv01=TRUE)
X <- lmomco::qlmomco(UV[,1], lmomco::vec2par(c(3, 0.6, +0.4), type="pe3"))
Y <- lmomco::qlmomco(UV[,2], lmomco::vec2par(c(3, 0.4, +0.0), type="pe3"))
ix <- sample(seq_len(nsim), npair, replace=FALSE)
Xp <- X[ix]; Yp <- Y[ix]; dtypex <- "pe3"; dtypey <- "pe3"
xpara <- lmomco::lmr2par(X, type=dtypex); ypara <- lmomco::lmr2par(Y, type=dtypey)
plot(10^X, 10^Y, log="xy", las=1, pch=21, lwd=0.8, col="black", bg="white",

xlab="SOME RISK PHENOMENON IN X-DIRECTION",
ylab="SOME RISK PHENOMENON IN Y-DIRECTION")

xout <- c(1.5, 2.5, 3.5, 4)
xlim <- c(1.5, 4.5); ylim <- c(1.8, 5.0)
zz <- bicoploc(Xp,Yp, xout=xout,xpara=xpara,ypara=ypara, xlim=xlim,ylim=ylim)

zz <- bicoploc(Xp,Yp, xout=xout,xpara=xpara,ypara=ypara, xlim=xlim,ylim=ylim,x=X,y=Y)
zz <- bicoploc(Xp,Yp, xout=xout,dtypex="pe3",dtypey="pe3",xlim=xlim,ylim=ylim,x=X,y=Y)

zz <- bicoploc(X, Y, xout=xout,dtypex="pe3",dtypey="pe3",xlim=xlim,ylim=ylim)#
## End(Not run)

bilmoms Bivariate L-moments and L-comoments of a Copula
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Description

Attention: This function is deprecated in favor of lcomCOP, which uses only direct numerical
integrate() on the integrals shown below. The bilmoms function is strictly based on Monte Carlo
integration.

Compute the bivariate L-moments (ratios) (δ[...]k;C) of a copula C(u, v; Θ) and remap these into the
L-comoment matrix counterparts (Serfling and Xiao, 2007; Asquith, 2011) including L-correlation
(Spearman Rho), L-coskew, and L-cokurtosis. As described by Brahimi et al. (2015), the first four
bivariate L-moments δ[12]k for random variable X(1) or U with respect to (wrt) random variable
X(2) or V are defined as

δ
[12]
1;C = 2

∫ ∫
I2

C(u, v) dudv − 1

2
,

δ
[12]
2;C =

∫ ∫
I2

(12v − 6)C(u, v) dudv − 1

2
,

δ
[12]
3;C =

∫ ∫
I2

(60v2 − 60v + 12)C(u, v) dudv − 1

2
, and

δ
[12]
4;C =

∫ ∫
I2

(280v3 − 420v2 + 180v − 20)C(u, v) dudv − 1

2
,

where the bivariate L-moments are related to the L-comoment ratios by

6δ
[12]
k = τ

[12]
k+1 and 6δ

[21]
k = τ

[21]
k+1,

where in otherwords, “the third bivariate L-moment δ[12]3 is one sixth the L-cokurtosis τ [12]4 .” The
first four bivariate L-moments yield the first five L-comoments (there is no first order L-comoment
ratio). The terms and nomenclature are not easy and also the English grammar adjective “ratios” is
not always consistent in the literature. The δ[...]k;C are ratios, and the returned bilcomoms element by
this function holds matrices for the marginal means, marginal L-scales and L-coscales, and then the
ratio L-comoments.

Similarly, the δ[21]k are computed by switching u→ v in the polynomials within the above integrals
multiplied to the copula in the system of equations with u. In general, δ[12]k ̸= δ

[21]
k for k > 1 unless

in the case of permutation symmetric (isCOP.permsym) copulas. By theory, δ[12]1 = δ
[21]
1 = ρC/6

where ρC is a Spearman Rho rhoCOP.

The integral for δ[12]4;C does not appear in Brahimi et al. (2015) but this and the other forms are
verified in the Examples and discussion in Note. The four k ∈ [1, 2, 3, 4] for U wrt V and V wrt
U comprise a full spectrum of system of seven (not eight) equations. One equation is lost because
δ
[12]
1 = δ

[21]
1 .

Usage

bilmoms(cop=NULL, para=NULL, only.bilmoms=FALSE, n=1E5,
sobol=TRUE, scrambling=0, ...)
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Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

only.bilmoms A logical to trigger return of the δk and skip L-comoment computation;

n The Monte Carlo integration size. The default seems to be at least an order of
magnitude greater than needed for many applied problems;

sobol A logical trigging Sobol sequences for the Monte Carlo integration instead of
the bivariate uniform distribution (independence). The Sobol sequences are de-
pendent on the sobol() function of the randtoolbox package, and the Sobol
sequences canvas the I2 domain for smaller n values than required if statisti-
cal independence is used for the Monte Carlo integration. Note, randtoolbox at
least at version 2.0.+ has “scrambling” of Sobol sequences temporarily disabled,
and hence scrambling=0 as default for bilmoms;

scrambling The argument of the same name for randtoolbox::sobol(); and

... Additional arguments to pass to the densityCOP function.

Value

An R list of the bivariate L-moments is returned.

bilmomUV The bivariate L-moments δ[12]k of U with respect to V for k ∈ [1, 2, 3, 4];

bilmomVU The bivariate L-moments δ[21]k of V with respect to U for k ∈ [1, 2, 3, 4];

error.rho An “error” term in units of δ[12&21]
1 used to judge whether the sample size for

the Monte Carlo integration is sufficient based on a comparison to the Spearman
Rho from direct numerical integration (not Monte Carlo based) using rhoCOP
of the copula. Values for error.rho < 1E−5 seem to be sufficient to judge
whether n is large enough;

bilcomoms If not only.bilmoms, another R list holding the L-comoments (see Note)
computed by simple remapping of the δ[...]k and parallel in structure to the func-
tion lcomoms2() of the lmomco package; and

source An attribute identifying the computational source of the bivariate L-moments
and bivariate L-comoments: “bilmoms.”

Note

The mapping of the bivariate L-moments to their L-comoment matrix counterparts is simple but
nuances should be discussed and the meaning of the error.rho needs further description. The
extra effort to form L-comoment matrices (Serfling and Xiao, 2007; Asquith, 2011) is made so that
output matches the structure of the sample L-comoment matrices from the lcomoms2() function of
the lmomco package.

Concerning the triangular or tent-shaped copula of Nelsen (2006, exer. 3.7, pp. 64–65) for demon-
stration, simulate from the triangular copula a sample of size m = 20,000 and compute some
sample L-comoments using the following CPU intensive code. The function asCOP completes the
vectorization needed for non-Monte Carlo integration for rhoCOP.
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"trianglecop" <- function(u,v, para=NULL, ...) {
# If para is set, then the triangle is rotated 90d clockwise.
if(! is.null(para) && para == 1) { t <- u; u <- v; v <- t }
if(length(u) > 1 | length(v) > 1) stop("only scalars for this function")
v2<-v/2; if(0 <= u & u <= v2 & v2 <= 1/2) { return(u )
} else if(0 <= v2 & v2 < u & u < 1-v2) { return(v2 )
} else if(1/2 <= 1-v2 & 1-v2 <= u & u <= 1 ) { return(u+v-1)
} else { stop("should not be here in logic") }

}
"TriCop" <- function(u,v, ...) { asCOP(u,v, f=trianglecop, ...) }
m=20000; SampleUV <- simCOP(n=m, cop=TriCop, graphics=FALSE)
samLC <- lcomoms2(SampleUV, nmom=5)
theoLC <- bilmoms(cop=TriCop)

The Error in Rho Computation—The ρC of the copula by numerical integration is computed inter-
nally to bilmoms as

rhoC <- rhoCOP(cop=TriCop) # -1.733858e-17

and used to compute the error.rho for bilmoms (see next code snippet). The ρC is obviously zero
for this copula. Therefore, the bivariate association of TriCop is zero and thus is an example of a
perfectly dependent situation yet of zero correlation. The bivariate L-moments and L-comoments
of this copula are computed as

mean(replicate(20, bilmoms(cop=TriCop)$error.rho)) # 7.650723e-06

where the error.rho is repeated trials appears firmly <1e-5, which is near zero (ϵρ ≈ 0). The
error.rho term is defined by taking the first bivariate L-moment and numerically integrated ρC
through rhoCOP and computing the terms

ϵ[12]ρ = |δ[12]1;C − (ρC/6)|,

ϵ[21]ρ = |δ[21]1;C − (ρC/6)|, and

ϵρ =
ϵ
[12]
ρ + ϵ

[21]
ρ

2
,

where the error.rho= ϵρ, and values near zero are obviously favorable because this indicates that
the Monte Carlo integration sample size n argument is sufficiently large to effectively canvas the
I2 domain. For the situation here, the theoretical ρC = 0, but for n = n = 100, the error.rho ≈
0.006 (e.g. bilmoms(n=100, cop=TriCop)$error.rho) through a 20-unit replication, which is a
hint that 100 samples are not large enough and that should be obvious.

The reasoning behind using the error.rho between conventional numerical integration and the
Monte Carlo integration (error.rho) is that ρC is symmetrical. This choice of “convergence” as-
sessment reduces somewhat the sample size needed for Monte Carlo integration into single number
representing error.

Discussion of Theoretical L-comoments—The theoretical L-comoments in the format structure of
the sample L-comoments by the lcomoms2() function of the lmomco package are formed by the
bilmoms function, and the theoretical values are shown below in sequence with details listed by
L-comoment. Now we extract the L-comoment matrices and show the first L-comoment matrix
(the matrix of the means):
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theoLClcm <- theoLC$bilcomoms
print(theoLClcm$L1)

[,1] [,2]
[1,] 0.4999939 NA
[2,] NA 0.5000032

where the diagonal should be filled with 1/2, if the n is suitably large, because 1/2 is the mean of
the marginal uniform random variables. By definition the secondary diagonal has NAs. The values
shown above are extremely close supporting the idea that default n is large enough. The matrix of
means is otherwise uninformative.

The second L-comoment matrix (L-scales and L-coscales) is

print(theoLClcm$L2)
[,1] [,2]

[1,] 1.666677e-01 -3.466202e-06
[2,] -3.466209e-06 1.666674e-01

where the diagonal should be filled with 1/6, if the n is suitably large, because 1/6 is the univariate
L-scale of the marginal uniform random variables. These values further support that default n is
large enough. The diagonal is computed from the univariate L-moments of the margins of the Monte
Carlo-generated edges and is otherwise uninformative. The secondary diagonal is a rescaling of the
δ
[...]
1 by the univariate L-moments of the margins to form L-coscales (nonratios). The copula is

perfectly dependent but uncorrelated; so the secondary diagonal has near zeros.

The second L-comoment ratio matrix (coefficient of L-variations and L-correlations) is

print(theoLClcm$T2)
[,1] [,2]

[1,] 1.000000e+00 -2.079712e-05
[2,] -2.079712e-05 1.000000e+00

where the diagonal by definition has unities (correlation is unity for a variable on itself) but the
secondary diagonal for the L-correlations has near zeros because again the copula is uncorrelated,
and the secondary diagonal is computed from the δ[...]1 . These L-correlations are the Spearman Rho
values computed external to the algorithms within rhoCOP.

The third L-comoment ratio matrix (L-skews and L-coskews) is

print(theoLClcm$T3)
[,1] [,2]

[1,] 3.021969e-06 -2.829783e-05
[2,] -7.501135e-01 4.518901e-06

where the diagonal by definition should have nero zeros because the univariate L-skew of a uniform
variable is zero. These values further support that default n is large enough. The secondary diagonal
holds L-coskews. The copula has L-coskew of U wrt V of numerically near zero (symmetry) but
measurable asymmetry of L-coskew of V wrt U of τ [21]3 ≈ −0.75.

The fourth L-comoment ratio matrix (L-kurtosises and L-cokurtosises) is
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print(theoLClcm$T4)
[,1] [,2]

[1,] -2.623665e-06 -3.325177e-05
[2,] -2.162954e-04 -2.811630e-06

where the diagonal by definition should have nero zeros because the univariate L-kurtosis of a
uniform variable is zero—it has no peakedness. These values further support that default n is large
enough. The secondary diagonal holds L-cokurtosises and are near zero for this particular copula.

The fifth L-comoment ratio matrix (unnamed) is

print(theoLClcm$T5)
[,1] [,2]

[1,] 1.813344e-06 -1.296025e-04
[2,] 1.246436e-01 1.475012e-06

where the diagonal by definition should have nero zeros because the univariate L-kurtosis of a
uniform variable is zero—such a random variable has no asymmetry. These values further support
that default n is large enough. The secondary diagonal holds the fifth L-comoment ratios. The
copula has τ [12]5 = 0 of U wrt V of numerically near zero (symmetry) but measurable fifth-order
L-comoment asymmetry of V wrt U of τ [21]5 ≈ 0.125.

Comparison of Sample and Theoretical L-comoments—The previous section shows theoretical val-
ues computed as τ [21]3 ≈ −0.75 and τ [21]5 ≈ 0.125 for the two L-comoments substantially away
from zero. As sample L-comoments these values are samLC$T3[2,1] = τ̂

[21]
3 ≈ −0.751 and

samLC$T5[2,1] = τ̂
[21]
5 ≈ 0.123. CONCLUSION: The sample L-comoment algorithms in the

lmomco package are validated.

Author(s)

W.H. Asquith
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See Also
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Examples

## Not run:
bilmoms(cop=PSP, n=10000, para=NULL, sobol=TRUE)$bilcomoms$T3
# results: Tau3[12]=-0.132, Tau3[21]=-0.132 (Monte Carlo)
lcomCOP(cop=PSP, para=NULL, orders=3)
# results: Tau3[12]=-0.129, Tau3[21]=-0.129 (direct integration)
## End(Not run)

## Not run:
# This stopped running sometime before June 2023. IS THIS IN COP()?
para <- list(alpha=0.5, beta=0.93, para1=4.5, cop1=GLcop, cop2=PSP)
bilmoms(cop=composite2COP, n=10000, para=para, sobol=TRUE)$bilcomoms$T3
# results: Tau3[12]=0.154, Tau3[21]=-0.0691 (Monte Carlo)
lcomCOP(cop=composite2COP, para=para, orders=3)
# results: Tau3[12]=0.156, Tau3[21]=-0.0668 (direct integration)
## End(Not run)

## Not run:
UVsim <- simCOP(n=20000, cop=composite2COP, para=para, graphics=FALSE)
samLcom <- lmomco::lcomoms2(UVsim, nmom=5) # sample algorithm
# results: Tau3[12]=0.1489, Tau3[21]=-0.0679 (simulation)
## End(Not run)

blomatrixCOP A Matrix of Blomqvist-like Betas of a Copula

Description

Compute the Blomqvist-like Betas matrix β◦
C-matrix of a copula, which is defined at presumably

strategic points within I2, as (for as.blomCOPss=FALSE argument)

β◦
C =

C(u◦, v◦)

Π(1/2, 1/2)
− 1,

where the u◦ and v◦ are of two types of gridded locations in I2 space and if u◦ = 1/2 and v◦ = 1/2,
then central location of the matrix is Blomqvist Beta (blomCOP). The definition of β◦

C is such that the
matrix is entirely zero for the independence copula (Π(u, v)) (P) when C(u◦, v◦) = Π(u, v) at the
medial location u, v = 1/2. Also, the definition here might be unique to the copBasic package. The
decile version (blomatrixCOPdec) of this function uses u◦ ∈ (1, 5, 9)/10 and v◦ ∈ (1, 5, 9)/10.
Whereas, the quartile version (blomatrixCOPiqr) of this function uses u◦ ∈ (25, 50, 75)/100
and v◦ ∈ (25, 50, 75)/100. If as.blomCOPss=TRUE argument is set (default operation), then the
coordinate locations in the matrix become the β⋄

C of blomCOPss. As a rule β◦
C ̸= β⋄

C.

Usage

blomatrixCOPdec(cop=NULL, para=NULL, as.sample=FALSE, as.blomCOPss=TRUE,
ctype=c("weibull", "hazen", "1/n",

"bernstein", "checkerboard"), ...)
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blomatrixCOPiqr(cop=NULL, para=NULL, as.sample=FALSE, as.blomCOPss=TRUE,
ctype=c("weibull", "hazen", "1/n",

"bernstein", "checkerboard"), ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the β̂◦

C-matrix at which point the ctype argument will be passed to
multiple calls of EMPIRcop;

as.blomCOPss A logical to trigger blomCOPss for each of the (u, v) locations where for the
blomCOPss calls (β⋄

C(u,v)): u 7→ (u, u) 7→ u and v 7→ (v, v) 7→ v;

ctype Argument of the same as EMPIRcop; and

... Additional arguments to pass to the copula.

Value

The matrix for β◦
C is returned depending on whether the decile or quartile version has been called.

Author(s)

W.H. Asquith

See Also

blomCOP, blomCOPss

Examples

round(blomatrixCOPdec(cop=P), digits=8); round(blomatrixCOPiqr(cop=P), digits=8)
# U|V=0.10 U|V=0.50 U|V=0.90 # U|V=0.25 U|V=0.50 U|V=0.75
# U|V=0.90 0 0 0 # U|V=0.75 0 0 0
# U|V=0.50 0 0 0 # U|V=0.50 0 0 0
# U|V=0.10 0 0 0 # U|V=0.25 0 0 0

round(blomatrixCOPdec(cop=PSP, as.blomCOPss=TRUE), digits=8)
# U|V=0.10 U|V=0.50 U|V=0.90
# U|V=0.90 0.4736842 0.8181818 0.5153268
# U|V=0.50 0.8181818 0.3333333 0.6459330
# U|V=0.10 0.8901099 0.4736842 0.1708292

round(blomatrixCOPdec(cop=PSP, as.blomCOPss=FALSE), digits=8)
# U|V=0.10 U|V=0.50 U|V=0.90
# U|V=0.90 0.09890110 0.81818182 4.2631579
# U|V=0.50 0.05263158 0.33333333 0.8181818
# U|V=0.10 0.01010101 0.05263158 0.0989011

## Not run:
set.seed(1)
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td <- c(0.10, 0.50, 0.90)
UVn <- simCOP(n=5000, cop=glueCOP, col=8,

para=list(glue=0.4, cop1 =PLcop, cop2=PLcop,
para1=PLpar(rho=-0.5), para2=PLpar(rho=+0.5)))

points(td, rep(td[3], 3), cex=2, lwd=2, pch=3, col="red")
points(td, rep(td[2], 3), cex=2, lwd=2, pch=3, col="red")
points(td, rep(td[1], 3), cex=2, lwd=2, pch=3, col="red")

print(blomatrixCOPdec(as.sample=TRUE, para=UVn, ctype="weibull"))
# U|V=0.10 U|V=0.50 U|V=0.90
# U|V=0.90 -0.08222222 -0.580 -0.190
# U|V=0.50 0.30800000 0.112 0.264
# U|V=0.10 0.84000000 0.620 0.262

BMdn <- blomatrixCOPdec(cop=glueCOP,
para=list(glue=0.4, cop1=PLcop, cop2=PLcop,

para1=PLpar(rho=-0.5), para2=PLpar(rho=+0.5)))
print(round(BMdn, digits=8))
# U|V=0.10 U|V=0.50 U|V=0.90
# U|V=0.90 -0.08110464 -0.5569028 -0.2053772
# U|V=0.50 0.33449815 0.1202744 0.2424668
# U|V=0.10 0.75217766 0.6013719 0.2424668
## End(Not run)

## Not run:
set.seed(1); nsim <- 2000
para.pop <- list( cop1=GHcop, cop2=PLcop, alpha=0.359,

para1=c(4.003, 1.099), para2=0.882, beta=0.292)
UVs <- simCOP(nsim, cop=composite2COP, para=para.pop)
mtext("GIVEN THIS SAMPLE")
Rho <- rhoCOP(as.sample=TRUE, para=UVs) # Spearman Rho
BMn <- blomatrixCOPdec(as.sample=TRUE, para=UVs, ctype="weibull")

parafn <- function(k) {
c(exp(k[1])+1, exp(k[2]), exp(k[3]), pnorm(k[4]), pnorm(k[5]))

}
parafn_list <- function(k) {

k <- parafn(k)
list(cop1=GHcop, para1=c(k[1], k[2]), alpha=k[4],

cop2=PLcop, para2=k[4], beta=k[5])
}
BLOM_ofun <- function(para, statmat=NULL, parafn=NULL, rho=NA) {

para <- parafn(para)
new.para <- list(cop1=GHcop, para1=para[1:2], alpha=para[4],

cop2=PLcop, para2=para[3], beta=para[5])
bm <- blomatrixCOPdec(cop=composite2COP, para=new.para)
err <- sum((statmat - bm)^2) + (rhoCOP(cop=composite2COP, para=new.para) - rho)^2
#print(c(para, err))
return(err)

}

run1 <- function(graphics=TRUE, nsim=0) {
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par.init <- c(log(1), log(1), log(1), qnorm(0.5), qnorm(0.5))
rt <- optim(par.init, BLOM_ofun, statmat=BMn, parafn=parafn, rho=Rho)
para <- parafn(rt$par)
para.fit <- list( cop1=GHcop, cop2=PLcop, alpha=para[4],

para1=para[1:2], para2=para[3], beta=para[5])
uv <- simCOP(nsim, cop=composite2COP, para=para.fit, graphics=graphics, col=2)
rmse <- round(rmseCOP(uv[,1], uv[,2], ctype="weibull",

cop=composite2COP, para=para.fit), digits=8)
if(graphics) mtext(paste0("RMSE(run1)=", rmse))
return(list(rmse=rmse, para=para.fit))

}
system.time(RUN1 <- run1(nsim=nsim))
par.init <- c(log(RUN1$para$para1[1]), log(RUN1$para$para1[2]),

log(RUN1$para$para2), qnorm(RUN1$para$alpha), qnorm(RUN1$para$beta))

RMSE_ofun <- function(para, parafn=NULL) {
para <- parafn(para)
new.para <- list(cop1=GHcop, para1=para[1:2], alpha=para[4],

cop2=PLcop, para2=para[3], beta=para[5])
new.rmse <- rmseCOP(UVs[,1], UVs[,2], cop=composite2COP, para=new.para)
#print(c(para, new.rmse))
return(new.rmse)

}
run2 <- function(graphics=TRUE, nsim=0, par.init=NULL) {

if(is.null(par.init)) {
par.init <- c(log(1), log(1), log(1), qnorm(0.5), qnorm(0.5))

}
rt <- optim(par.init, RMSE_ofun, parafn=parafn)
para <- parafn(rt$par)
para.fit <- list( cop1=GHcop, cop2=PLcop, alpha=para[4],

para1=para[1:2], para2=para[3], beta=para[5])
uv <- simCOP(nsim, cop=composite2COP, para=para.fit, graphics=graphics, col=4)
rmse <- round(rmseCOP(uv[,1], uv[,2], ctype="weibull",

cop=composite2COP, para=para.fit), digits=8)
if(graphics) mtext(paste0("RMSE(run2)=", rmse))
return(list(rmse=rmse, para=para.fit))

}
system.time(RUN2.1 <- run2(nsim=nsim, par.init=par.init))
system.time(RUN2.2 <- run2(nsim=nsim, par.init=NULL ))

GIVN <- c(para.pop$alpha, para.pop$para1, para.pop$beta, para.pop$para2)
FIT1 <- c(RUN1$para$alpha, RUN1$para$para1, RUN1$para$beta, RUN1$para$para2)
FIT1 <- round(FIT1, digits=3)
FIT2.1 <- c(RUN2.1$para$alpha, RUN2.1$para$para1, RUN2.1$para$beta, RUN2.1$para$para2)
FIT2.1 <- round(FIT2.1, digits=3)
FIT2.2 <- c(RUN2.2$para$alpha, RUN2.2$para$para1, RUN2.2$para$beta, RUN2.2$para$para2)
FIT2.2 <- round(FIT2.2, digits=3)
nms <- c("what", "alpha", "para1_1", "para1_2", "beta", "para2")
GIVN <- c("given", GIVN); FIT2.1 <- c("by_Blom1", FIT2.1)
FIT1 <- c("by_RMSE", FIT1); FIT2.2 <- c("by_Blom2", FIT2.2)
names(GIVN) <- nms; names(FIT1) <- nms
names(FIT2.1) <- nms; names(FIT2.2) <- nms
RESL <- cbind(data.frame(GIVN), data.frame(FIT1), data.frame(FIT2.1), data.frame(FIT2.2))
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print(RESL) #
## End(Not run)

blomCOP The Blomqvist Beta of a Copula

Description

Compute the Blomqvist Beta βC of a copula (Nelsen, 2006, p. 182), which is defined at the middle
or center of I2 as

βC = 4×C

(
1

2
,
1

2

)
− 1,

where the u = v = 1/2 and thus shows that βC is based on the median joint probability. The
Blomqvist Beta is also called the medial correlation coefficient. Nelsen also reports that “although,
the Blomqvist Beta depends only on the copula only through its value at the center of I2, but that
[βC] nevertheless often provides an accurate approximation to both Spearman Rho rhoCOP and
Kendall Tau tauCOP.” Kendall Tau τC, Gini Gamma γC, and Spearman Rho ρC in relation to βC
satisfy the following inequalities (Nelsen, 2006, exer. 5.17, p. 185):

1

4
(1 + βC)

2 − 1 ≤ τC ≤ 1− 1

4
(1− βC)

2,

3

16
(1 + βC)

3 − 1 ≤ ρC ≤ 1− 3

16
(1− βC)

3, and

3

8
(1 + βC)

2 − 1 ≤ τC ≤ 1− 3

8
(1− βC)

2.

A curious aside (Joe, 2014, p. 164) about the Gaussian copula is that Blomqvist Beta is equal to
Kendall Tau (tauCOP): βC = τC (see Note in med.regressCOP for a demonstration). Finally, a
version of Blomqvist Beta defined outside the median is provided by blomCOPss.

Usage

blomCOP(cop=NULL, para=NULL, as.sample=FALSE,
ctype=c("joe", "weibull", "hazen", "1/n",

"bernstein", "checkerboard"), ...)

Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
as.sample A logical controlling whether an optional R data.frame in para is used to

compute the β̂C (see Note);
ctype Argument of the same as EMPIRcop with the exception of the "joe" specific

to the documentation here. The other choices trigger and are given over to the
empirical copula; and

... Additional arguments to pass to the copula or down to EMPIRcop if a sample
version had been requested.
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Value

The value for βC or sample β̂n is returned.

Note

The sample β̂n is most efficiently computed (Joe, 2014, p. 57) by

β̂n =
2

n

n∑
i=1

1

(
[ri1 − (1 + n)/2]× [ri2 − (1 + n)/2] ≥ 0

)
− 1,

where ri1, ri2 are the ranks of the data for i = 1, . . . n, and 1(.) is an indicator function scoring 1 if
condition is true otherwise zero. However, the Joe sample estimator is not fully consistent (or vice
versa) with the various versions of the empirical copula, Cn, (EMPIRcop) (see the last example in
Examples). Also, the nature of even and odd sample sizes controls how the median is computed
and the issue of samples lying on the median lines in U and V (Genest et al., 2013). The argument
ctype supports triggers to the Cn in lieu of the Joe sample estimator shown in this documentation.

Author(s)

W.H. Asquith

References

Genest, C., Carabarín-Aguirre, A., and Harvey, F., 2013, Copula parameter estimation using
Blomqvist’s beta: Journal de la Socité Française de Statistique, v. 154, no. 1, pp. 5–24.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

blomCOPss, blomatrixCOPdec, blomatrixCOPiqr, footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP,
wolfCOP, joeskewCOP, uvlmoms

Examples

blomCOP(cop=PSP) # 1/3 precisely

## Not run:
# Nelsen (2006, exer. 5.17, p. 185) : All if(...) are TRUE
B <- blomCOP(cop=N4212cop, para=2.2); Bp1 <- 1 + B; Bm1 <- 1 - B
G <- giniCOP(cop=N4212cop, para=2.2); a <- 1/4; b <- 3/16; c <- 3/8
R <- rhoCOP(cop=N4212cop, para=2.2)
K <- tauCOP(cop=N4212cop, para=2.2, brute=TRUE) # numerical issues without brute
if( a*Bp1^2 - 1 <= K & K <= 1 - a*Bm1^2 ) print("TRUE") #
if( b*Bp1^3 - 1 <= R & R <= 1 - b*Bm1^3 ) print("TRUE") #
if( c*Bp1^2 - 1 <= G & G <= 1 - c*Bm1^2 ) print("TRUE") #
## End(Not run)

## Not run:
# A demonstration of a special feature of blomCOP for sample data.
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# Joe (2014, p. 60; table 60) has 0.749 for GHcop(tau=0.5); n*var(hatB) as n-->infinity
set.seed(1)
theta <- GHcop(tau=0.5)$para; B <- blomCOP(cop=GHcop, para=theta); n <- 1000
H <- sapply(1:1000, function(i) { # Let us test that with pretty large sample size:

blomCOP(para=rCOP(n=n, cop=GHcop, para=theta), as.sample=TRUE) })
print(n*var(B-H)) # For 1,000 sims of size n : 0.789, nearly matches Joe's result
## End(Not run)

## Not run:
# Joe (2014, p. 57) says that sqrt(n)(B-HatBeta) is Norm(0, 1 - B^2)
set.seed(1)
n <- 10000; B <- blomCOP(cop=PSP) # Beta = 1/3
H <- sapply(1:100, function(i) { message(i,"-", appendLF=FALSE)

blomCOP(para=rCOP(n=n, cop=PSP), as.sample=TRUE) })
lmomco::parnor(lmomco::lmoms(sqrt(n)*(H-B))) # mu = -0.038; sigma = 0.970
# Joe (2014) : sqrt(1-B^2) == standard deviation (sigma) : (1-(1/3)^2) approx 0.973
## End(Not run)

## Not run:
nn <- 200; set.seed(1)
UV <- simCOP(n=nn+1, cop=PSP, graphics=FALSE)
for(n in nn:(nn+1)) {

if(as.logical(n %% 2)) { # in source \ percent \ percent for latex
message("Blomquist Betas for an odd sample size n=", n)
uv <- UV

} else {
message("Blomquist Betas for an even sample size n=", n)
uv <- UV[-(nn+1), ] # remove the last and 'odd' indexed value to make even

}
message(c(" Joe2014: ", blomCOP(as.sample=TRUE, para=uv, ctype="joe" )))
message(c(" Weibull: ", blomCOP(as.sample=TRUE, para=uv, ctype="weibull" )))
message(c(" Hazen: ", blomCOP(as.sample=TRUE, para=uv, ctype="hazen" )))
message(c(" 1/n: ", blomCOP(as.sample=TRUE, para=uv, ctype="1/n" )))
message(c(" Bernstn: ", blomCOP(as.sample=TRUE, para=uv, ctype="bernstein" )))
message(c(" ChckBrd: ", blomCOP(as.sample=TRUE, para=uv, ctype="checkerboard")))

}
# Blomquist Betas for an even sample size n=200
# Joe2014: 0.32
# Weibull: 0.32
# Hazen: 0.32
# 1/n: 0.32
# Bernstn: 0.323671819423416
# ChckBrd: 0.32
# Blomquist Betas for an odd sample size n=201
# Joe2014: 0.323383084577114
# Weibull: 0.333333333333333
# Hazen: 0.333333333333333
# 1/n: 0.293532338308458
# Bernstn: 0.327747577290946
# ChckBrd: 0.313432835820896 #
## End(Not run)
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blomCOPss Blomqvist (Schmid–Schmidt) Betas of a Copula

Description

Compute the Blomqvist (Schmid–Schmidt) Betas β⋄
C (Schmid and Schmidt, 2007) defined for arbi-

trary dimension d of a copula C(u1, · · · , ud; Θ) (COP) for parameters Θ. The copula survival func-
tion is C(u1, · · · , ud; Θ) (surfuncCOP). The Beta, though the copBasic package is built around
bivariate copula only, is defined as

β⋄
C = hd(u,v)

[(
C(u) +C(v)

)
− gd(u,v)

]
,

where hd and gd are norming constants defined below. The superscript ⋄ (diamond) is chosen for
copBasic because of the alliteration to “dimension.” The bold face font for u and v shows these
arguments as vectors of length d reflecting “cutting points” on nonexceedance probabilities in each
of the dimensions. The u functions as the arguments (u, v) pair used in copula of this package
and represents the first cutting point for a Pr[U ≤ u, V ≤ v] = C(u, v), and v functions as the
arguments u, v pair for this package and represents the second cutting point for a Pr[U > u, V >
v] = 1−u−v+C(u, v) = C(u, v). This notation of vectored (bold face) and nonvectored “u” and
“v” is a little obtuse but as the properties of β⋄

C are summarized clarity for the reader is anticipated.
In short, the u will reference the coordinate pairs in the lower right quadrant and the v will reference
the coordinate pairs in the upper right quadrant.

The norming constant hd is defined as

hd(u,v) =
1(

min(u1, · · · , ud) + min(1− v1, · · · , 1− vd)− gd(u,v)
) ,

and gd is defined as

gd(u,v) =

d∏
i=1

ui +

d∏
i=1

(1− vi),

where the cutting points u and v are in a domain D : {(u,v)} ∈ [0, 1]2d given u ≤ v and u > 0
or v < 1. The reader must careful remember that these u and v are vectors of probabilities.

The norming constants provide for −1 ≤ β⋄
C ≤ +1. Using the function argument defaults for

d = 2 dimensions u = (1, 1)/2 for uu and v = (1, 1)/2 for vv, results in (1) β⋄
C = 1 if C =

M comonotonicity copula (M) (blomCOPss(cop=M) == 1), (2) β⋄
C = 0 if C = P independence

copula (P) (blomCOPss(cop=P) == 0), and (3) if C = W countermonotonicity copula (W)β⋄
C = 1

(blomCOPss(cop=W) == -1).

Schmid and Schmidt (2007) list three important cases extending the M and P examples. First,
β⋄
C(1/2,1/2) = βC(1/2, 1/2), which is Blomqvist Beta (βC(1/2, 1/2)) (blomCOP) and measures

overall dependence.

Second, β⋄
C(u,v) with u < 1/2 < v, which measures dependence in the tail regions. (Note,

the author of copBasic thinks “regions” as a plural is need in the previous sentence; Schmid and
Schmidt (2007) use the singular “region.” This is potentially important as seemingly simultaneous
tail dependency in the lower and upper perspectives would be provided. More discussion is provided
in Examples.)
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Third and presumably very important in practical applications, limp↓0 β
⋄
C(p,1) = λLβ⋄

C
for p =

u = (p, · · · , p) measures lower-tail dependence. This measure is equal to the lower-tail dependence
parameter λLC = λLβ⋄

C
without some of the computational nuances required as λLC is defined at

taildepCOP.

Schmid and Schmidt (2007) do not list how the upper-tail dependence parameter λUC could be
computed in terms of β⋄

C. The expression for study of the upper-tail dependency is λUβ⋄
C
= β⋄

C(0,p)

for p = v = (p, · · · , p) as p → 0+, and λUC = λUβ⋄
C

without some of the computational nuances
required as λUC is defined at taildepCOP. These tail dependencies are computed and compared
in the Examples and confirmation of this function being used to estimate both tail-dependency
parameters is confirmed.

Usage

blomCOPss(cop=NULL, para=NULL, uu=rep(0.5, 2), vv=rep(0.5, 2), trap.nan=TRUE,
as.sample=FALSE, ctype=c("weibull", "hazen", "1/n",

"bernstein", "checkerboard"), ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

uu The vector for u and the defaults with vv as such for same operation as blomCOP
(β⋄

C(1/2,1/2));

vv The vector for v and the defaults with uu as such for same operation as blomCOP
(β⋄

C(1/2,1/2));

trap.nan A logical to trigger 0 if (0, 0) is NaN or if (1, 1) is NaN. This feature is present
on a package-specific purpose because the PSP copula deliberately retains edge
NaN as a stress case;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the β̂⋄

C at which point the ctype argument will be passed to EMPIRcop;

ctype Argument of the same as EMPIRcop; and

... Additional arguments to pass to the copula.

Value

The β⋄
C is returned.

Note

Sample estimation of the β⋄
C is possible. The as.sample triggers internally a call to the empirical

copula (Cn) (EMPIRcop) for the ctype for the copula and its survival function form. Expansive
more details are provided by taildepCOP (section Note::DEMONSTRATION (Tail Dependence)).
A comparison of the λ̂Uβ⋄

C
and λ̂Uβ⋄

C
is made.

Author(s)

W.H. Asquith
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References

Schmid, Friedrich, and Schmidt, Rafael, 2007, Nonparametric inference on multivariate versions
of Blomqvist’s beta and related measures of tail dependence: Metrika, v. 66, pp. 323–354,
doi:10.1007/s0018400601143.

See Also

blomCOP, blomatrixCOP, taildepCOP

Examples

blomCOP( cop=PSP) # [1] 0.3333333
blomCOPss(cop=PSP) # [1] 0.3333333

## Not run:
# The calls below for blomCOPss() are technically the same for sample versions.
UV <- simCOP(1000, cop=PSP, graphics=FALSE) # HatBeta(0.1,0.9) = 0.277___
blomCOPss(para=UV, cop=EMPIRcop, uu=c(0.1,0.1), vv=c(0.90,0.90))
blomCOPss(para=UV, as.sample=TRUE, uu=c(0.1,0.1), vv=c(0.90,0.90)) #
## End(Not run)

## Not run:
set.seed(1)
para <- c(3, 6) # define parameters of two-parameter GHcop
UV <- simCOP(1000, cop=GHcop, para=para) # simulate to show general structure

# compute the tail dependencies from havling into the limits
taildepCOP(cop=GHcop, para=para, plot=TRUE)
# lower tail dependency = 0.96222
# upper tail dependency = 0.74008
# The two parameters influence how strongly the tail dependencies are.

# Schmid and Schmidt (2007, eq. 24) define the lower-tail dependency in terms of
# the Beta and p-->0 Beta(c(p,p), c(1,1)). Lets compute these and produce content
# suitable to show on the tail-dependency plot that the assertion for the lower
# dependency by Beta() is correct, which it is and then extend to the upper-tail
# dependency parameter that the authors seem to not have defined.
usr <- par()$usr[1:2] # grab horizontal edges of the plot, and set up the
uuLO <- rep(pnorm(usr[1]), 2) # the uu for the lower tail and the vv for the upper
vvUP <- rep(pnorm(usr[2]), 2) # tail and then plot both with overplotting symbols
# lower-tail estimate and see how it plots along the value from taildepCOP()
SchmidsL <- blomCOPss(cop=GHcop, para=para, uu=uuLO, vv=c(1,1))
points(usr[1], SchmidsL, col="darkgreen", cex=2, pch=1, lwd=2)
points(usr[1], SchmidsL, col="darkgreen", cex=2, pch=3, lwd=2)
points(usr[1], SchmidsL, col="darkgreen", cex=2, pch=4, lwd=2)
# upper-tail estimate and see how it plots along the value from taildepCOP()
SchmidsU <- blomCOPss(cop=GHcop, para=para, uu=c(0,0), vv=vvUP)
points(usr[2], SchmidsU, col="darkgreen", cex=2, pch=1, lwd=2)
points(usr[2], SchmidsU, col="darkgreen", cex=2, pch=3, lwd=2)
points(usr[2], SchmidsU, col="darkgreen", cex=2, pch=4, lwd=2)
# SchmidsL lower tail dependency = 0.962224
# SchmidsU upper tail dependency = 0.740079

https://doi.org/10.1007/s00184-006-0114-3
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# The author has an expectation that the SchmidsL and SchmidsU values are
# more reliable than those stemming from taildepCOP() because of the limiting
# behavior (or its implementation therein) compared to direct computation by
# blomCOPss().

# Mow for sake of curiosity, let us see how the trajectory of the Blomqvist
# (Schmid--Schmidt) Betas at arriving at the tail dependencies as p-->0|1.
# It is very informative that the trajectories of blomCOPss() and taildepCOP()
# as each hones towards the two dependency parameters are different and this
# highlights the fact that the computational underpinnings are different.
psl <- pnorm(seq(0, usr[1], by=-diff(range(c(0, usr[1]))) / 1000))
lines(qnorm(psl), sapply(psl, function(p) {

blomCOPss(cop=GHcop, para=para, uu=rep(p, 2), vv=c(1,1)) }),
col="darkgreen", lty=2, lwd=2)

psu <- pnorm(seq(0, usr[2], by= diff(range(c(0, usr[2]))) / 1000))
lines(qnorm(psu), sapply(psu, function(p) {

blomCOPss(cop=GHcop, para=para, uu=c(0,0), vv=rep(p, 2)) }),
col="darkgreen", lty=2, lwd=2) #

## End(Not run)

breveCOP Add Asymmetry to a Copula

Description

Adding permutation asymmetry (Chang and Joe, 2020, p. 1596) (isCOP.permsym) is simple for
a bivariate copula family. Let C be a copula with respective vectors of parameters ΘC, then the
permutation asymmetry is added through an asymmetry parameter β ∈ (−1,+1) by

C̆β;Θ(u, v) = v−β ·C(u, v(1+β); Θ), and

for 0 ≤ β ≤ +1 by

C̆β;Θ(u, v) = u+β ·C(u(1−β), v; Θ).

The parameter β clashes in name and symbology with a parameter used by functions composite1COP,
composite2COP, and composite3COP. As a result, support for alternative naming is provided for
compatibility.

Usage

breveCOP(u,v, para, breve=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
para A special parameter list (see Note);
breve An alternative way from para to set the β for this function; and
... Additional arguments to pass to the copula.
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Value

Value(s) for the copula are returned.

Note

The following descriptions list in detail the structure and content of the para argument where cop1
and cop and para1 and para are respectively synonymous to have some structural similarity to the
various copula constructors (compositors) of the copBasic package:

beta — The β asymmetry parameter;

breve — The β asymmetry parameter and presence of breve will not cause the non-use of beta;
this feature is present so that beta remains accessible to the compositors that use beta (see
Examples);

cop — Function of the copula C;

cop1 — Alternative naming of the function of the coupla C;

para — Vector of parameters ΘC for C; and

para1 — Alternative naming of the vector of parameters ΘC for C.

The function silently restricts the β to its interval as defined, but parameter transform might be use-
ful in some numerical optimization schemes. The following recipes might be useful for transform
from a parameter in numerical optimization to the asymmetry parameter:

# transform into space for optimization
BREVEtfunc <- function(p) { return( qnorm((p[1] + 1) / 2) ) } # [-Inf, +Inf]
# re-transform back into space for the copula
BREVErfunc <- function(p) { return(2 * pnorm(p[1]) - 1) } # [-1 , +1 ]

Author(s)

W.H. Asquith

References

Chang, B., and Joe, H., 2020, Copula diagnostics for asymmetries and conditional dependence:
Journal of Applied Statistics, v. 47, no. 9, pp. 1587–1615, doi:10.1080/02664763.2019.1685080.

See Also

COP, convex2COP, convexCOP, composite1COP, composite2COP, composite3COP, FRECHETcop,
glueCOP

Examples

para <- list(breve=0.24, cop1=FRECHETcop, para1=c(0.4, 0.56))
breveCOP(0.87, 0.35, para=para) # 0.282743

betas <- seq(-1,1, by=0.01)
bloms <- sapply(betas, function(b) {

breveCOP(0.15, 0.25, para=list(cop=GLPMcop, para=c(2, 2), beta=b))

https://doi.org/10.1080/02664763.2019.1685080
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} )
plot(betas, bloms, type="l", main="GLPMcop(u,v; 2,2) by breveCOP(beta)")

## Not run:
# Notice the argument cop and para name adjustments to show that
# translation exists inside the function to have use flexibility.
para <- list(beta=+0.44, cop1=FRECHETcop, para1=c(0.2, 0.56))
UV <- simCOP(1000, cop=breveCOP, para=para)
para <- list(beta=-0.44, cop= FRECHETcop, para= c(0.2, 0.56))
UV <- simCOP(1000, cop=breveCOP, para=para) #

## End(Not run)

## Not run:
# Testing on a comprehensive copula (Plackett)
betas <- rhos <- thetas <- brhos <- NULL
for(beta in seq(-1, 1, by=0.1 )) {
for(rho in seq(-1, 1, by=0.01)) {

theta <- PLACKETTpar(rho=rho, byrho=TRUE)
thetas <- c(thetas, theta)
para <- list( cop=PLcop, para=theta, beta=beta)
brho <- rhoCOP(cop=breveCOP, para=para)
betas <- c(betas, beta); rhos <- c(rhos, rho)
brhos <- c(brhos, brho)

}
}
df <- data.frame(beta=betas, theta=thetas, rho=rhos, brho=brhos)
plot(df$theta, df$brho, log="x", pch=16, cex=0.9, col="seagreen",

xlab="Plackett parameter", ylab="Spearman Rho")
lines(df$theta[df$beta == 0], df$brho[df$beta == 0], col="red", lwd=2)
# Red line is the Plackett in its permutation symmetric definition. #

## End(Not run)

## Not run:
# Here is an example for a test using mleCOP() to estimate a 5-parameter asymmetric
# copula model to "some data" on transition from yesterday to today data for a very
# large daily time series. The purpose of example here is to demonstrate interfacing
# to the breveCOP() for it to add asymmetry to composition of two copula.
myASYMCOP <- function(u,v, para, ...) {

subpara <- list(alpha=para$alpha, beta=para$beta, cop1=GHcop, para1=para$para1,
cop2=PLcop, para2=para$para2)

breveCOP(u,v, cop=convex2COP, para=subpara)
}
para <- list(alpha=+0.16934027, cop1=GHcop, para1=c(1.11144148, 10.32292673),

beta=-0.01923808, cop2=PLcop, para2=3721.82966727)
UV <- simCOP(30000, cop=myASYMCOP, para=para, pch=16, col=grey(0, 0.1))
abline(0,1, lwd=3, col="red") #

## End(Not run)

## Not run:
# Here is a demonstration of the permutations of the passing of the
# asymmetry parameter into the function and then by
UV <- simCOP(1E3, cop=breveCOP, para=list(cop=HRcop, para=5), breve=+0.5)
UV <- simCOP(1E3, cop=breveCOP, para=list(cop=HRcop, para=5), breve=-0.5)
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UV <- simCOP(1E3, cop=breveCOP, para=list(cop=HRcop, para=5, beta =+0.5))
UV <- simCOP(1E3, cop=breveCOP, para=list(cop=HRcop, para=5, breve=+0.5))
UV <- simCOP(1E3, cop=breveCOP, para=list(cop=HRcop, para=5, beta=-0.4, breve=+0.5))

para <- list(cop1=HRcop, para1=6, cop2=PSP, para2=NULL, alpha=1, beta=0.7)
myCOP <- function(u,v, para, ...) breveCOP(u,v, cop=composite2COP, para=para)
para$breve <- "here I am"
UV <- simCOP(1E3, cop=composite2COP, para=para, seed=1) # breve is not used
para$breve <- -0.16
UV <- simCOP(1E3, cop=myCOP, para=para, seed=1)
para$breve <- +0.16
UV <- simCOP(1E3, cop=myCOP, para=para, seed=1) #

## End(Not run)

CIRCcop Copula of Circular Uniform Distribution

Description

The Circular copula of the coordinates (x, y) of a point chosen at random on the unit circle (Nelsen,
2006, p. 56) is given by

CCIRC(u, v) = M(u, v) for |u− v| > 1/2,

CCIRC(u, v) = W(u, v) for |u+ v − 1| > 1/2, and

CCIRC(u, v) =
u+ v

2
− 1

4
otherwise .

The coordinates of the unit circle are given by

CIRC(x, y) =

(
cos

(
π(u− 1)

)
+ 1

2
,
cos

(
π(v − 1)

)
+ 1

2

)
.

Usage

CIRCcop(u, v, para=NULL, as.circ=FALSE, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para Optional parameter list argument that can contain the logical as.circ instead;

as.circ A logical, if true, to trigger the transformation u = 1 − acos(2x − 1)/π and
v = 1− acos(2y − 1)/π to convert (X,Y ) coordinates of a uniform unit circle
to the (U, V ) in nonexceedance probability; and

... Additional arguments to pass, if ever needed.
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Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Examples

CIRCcop(0.5, 0.5) # 0.25 quarterway along the diagonal upward to right
CIRCcop(0.5, 1 ) # 0.50 halfway across in horizontal direction
CIRCcop(1 , 0.5) # 0.50 halfway across in vertical direction

## Not run:
nsim <- 2000
rtheta <- runif(nsim, min=0, max=2*pi) # polar coordinate simulation
XY <- data.frame(X=cos(rtheta)/2 + 1/2, Y=sin(rtheta)/2 + 1/2)
plot(XY, lwd=0.8, col="lightgreen", xaxs="i", yaxs="i", las=1,

xlab="X OF UNIT CIRCLE OR NONEXCEEDANCE PROBABILITY U",
ylab="Y OF UNIT CIRCLE OR NONEXCEEDANCE PROBABILITY V")

UV <- simCOP(nsim, cop=CIRCcop, lwd=0.8, col="salmon3", ploton=FALSE)
theta <- 3/4*pi+0.1 # select a point on the upper left of the circle
x <- cos(theta)/2 + 1/2; y <- sin(theta)/2 + 1/2 # coordinates
H <- CIRCcop(x, y, as.circ=TRUE) # 0.218169 # Pr[X <= x & Y <= y]
points(x, y, pch=16, col="forestgreen", cex=2)
segments(0, y, x, y, lty=2, lwd=2, col="forestgreen")
segments(x, 0, x, y, lty=2, lwd=2, col="forestgreen")
Hemp1 <- sum(XY$X <= x & XY$Y <= y) / nrow(XY) # about 0.22 as expected
u <- 1-acos(2*x-1)/pi; v <- 1-acos(2*y-1)/pi
segments(0, v, u, v, lty=2, lwd=2, col="salmon3")
segments(u, 0, u, v, lty=2, lwd=2, col="salmon3")
points(u, v, pch=16, cex=2, col="salmon3")
arrows(x, y, u, v, code=2, lwd=2, angle=15) # arrow points from (X,Y) coordinate
# specified by angle theta in radians on the unit circle to the corresponding
# coordinate in (U,V) domain of uniform circular distribution copula
Hemp2 <- sum(UV$U <= u & UV$V <= v) / nrow(UV) # about 0.22 as expected
# Hemp1 and Hemp2 are about equal to each other and converge as nsim
# gets very large, but the origin of the simulations to get to each
# are different: (1) one in polar coordinates and (2) by copula.
# Now, draw the level curve for the empirical Hs and as nsim gets large the two
# lines will increasingly plot on top of each other.
lshemp1 <- level.setCOP(cop=CIRCcop, getlevel=Hemp1, lines=TRUE, col="blue", lwd=2)
lshemp2 <- level.setCOP(cop=CIRCcop, getlevel=Hemp2, lines=TRUE, col="blue", lwd=2)
txt <- paste0("level curves for Pr[X <= x & Y <= y] and\n",

"level curves for Pr[U <= u & V <= v],\n",
"which equal each other as nsim gets large")

text(0.52, 0.52, txt, srt=-46, col="blue") #
## End(Not run)
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## Not run:
# Nelsen (2007, ex. 3.2, p. 57) # Singular bivariate distribution with
# standard normal margins that is not bivariate normal.
U <- runif(500); V <- simCOPmicro(U, cop=CIRCcop)
X <- qnorm(U, mean=0, sd=1); Y <- qnorm(V, mean=0, sd=1)
plot(X,Y, main="Nelsen (2007, ex. 3.2, p. 57)", xlim=c(-4,4), ylim=c(-4,4),

lwd=0.8, col="turquoise")
rug(X, side=1, col=grey(0,0.5), tcl=0.5)
rug(Y, side=2, col=grey(0,0.5), tcl=0.5) #

## End(Not run)

## Not run:
DX <- c(5, 5, -5, -5); DY <- c(5, 5, -5, -5); D <- 6; R <- D/2
plot(DX, DY, type="n", xlim=c(-10, 10), ylim=c(-10,10), xlab="X", ylab="Y")
abline(h=DX, lwd=2, col="seagreen"); abline(v=DY, lwd=2, col="seagreen")
for(i in seq_len(length(DX))) {

for(j in seq_len(length(DY))) {
UV <- simCOP(n=30, cop=CIRCcop, pch=16, col="darkgreen", cex=0.5, graphics=FALSE)
points(UV[,1]-0.5, UV[,2]-0.5, pch=16, col="darkgreen", cex=0.5)
XY <- data.frame(X=DX[i]+sign(DX[i])*D*(cos(pi*(UV$U-1))+1)/2-sign(DX[i])*R,

Y=DY[j]+sign(DY[j])*D*(cos(pi*(UV$V-1))+1)/2-sign(DY[j])*R)
points(XY, lwd=0.8, col="darkgreen")

}
abline(h=DX[i]+R, lty=2, col="seagreen"); abline(h=DX[i]-R, lty=2, col="seagreen")
abline(v=DY[i]+R, lty=2, col="seagreen"); abline(v=DY[i]-R, lty=2, col="seagreen")

} #
## End(Not run)

## Not run:
para <- list(cop1=CIRCcop, para1=NULL, cop2=W, para2=NULL, alpha=0.8, beta=0.8)
UV <- simCOP(n=2000, col="darkgreen", cop=composite2COP, para=para)
XY <- data.frame(X=(cos(pi*(UV$U-1))+1)/2, Y=(cos(pi*(UV$V-1))+1)/2)
plot(XY, type="n", xlab=paste0("X OF CIRCULAR UNIFORM DISTRIBUTION OR\n",

"NONEXCEEDANCD PROBABILITY OF U"),
ylab=paste0("Y OF CIRCULAR UNIFORM DISTRIBUTION OR\n",

"NONEXCEEDANCD PROBABILITY OF V"))
JK <- data.frame(U=1 - acos(2*XY$X - 1)/pi, V=1 - acos(2*XY$Y - 1)/pi)
segments(x0=UV$U, y0=UV$V, x1=XY$X, y1=XY$Y, col="lightgreen", lwd=0.8)
points(XY, lwd=0.8, col="darkgreen")
points(JK, pch=16, col="darkgreen", cex=0.5)

t <- seq(0.001, 0.999, by=0.001)
t <- diagCOPatf(t, cop=composite2COP, para=para)
AB <- data.frame(X=(cos(pi*(t-1))+1)/2, Y=(cos(pi*(t-1))+1)/2)
lines(AB, lwd=4, col="seagreen") #

## End(Not run)

CLcop The Clayton Copula
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Description

The Clayton copula (Joe, 2014, p. 168) is

CΘ(u, v) = CL(u, v) = max
[
(u−Θ + v−Θ − 1; 0)

]−1/Θ
,

where Θ ∈ [−1,∞),Θ ̸= 0. The copula, as Θ → −1+ limits, to the countermonotonicity coupla
(W(u, v); W), as Θ → 0 limits to the independence copula (Π(u, v); P), and as Θ → ∞, limits to
the comonotonicity copula (M(u, v); M). The parameter Θ is readily computed from a Kendall Tau
(tauCOP) by τC = Θ/(Θ + 2).

Usage

CLcop(u, v, para=NULL, tau=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula;

tau Optional Kendall Tau; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned. Otherwise if tau is given, then the Θ is computed and a list
having

para The parameter Θ, and

tau Kendall Tau.

and if para=NULL and tau=NULL, then the values within u and v are used to compute Kendall Tau
and then compute the parameter, and these are returned in the aforementioned list.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

M, P, W

Examples

# Lower tail dependency of Theta = pi --> 2^(-1/pi) = 0.8020089 (Joe, 2014, p. 168)
taildepCOP(cop=CLcop, para=pi)$lambdaL # 0.80201
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coCOP The Co-Copula Function

Description

Compute the co-copula (function) from a copula (Nelsen, 2006, pp. 33–34), which is defined as

Pr[U > u or V > v] = C⋆(u′, v′) = 1−C(u′, v′),

where C⋆(u′, v′) is the co-copula and u′ and v′ are exceedance probabilities and are equivalent to
1− u and 1− v respectively. The co-copula is the expression for the probability that either U > u
or V > v when the arguments to C⋆(u′, v′) are exceedance probabilities, which is unlike the dual
of a copula (function) (see duCOP) that provides Pr[U ≤ u or V ≤ v].

The co-copula is a function and not in itself a copula. Some rules of copulas mean that C(u, v) +
C⋆(u′, v′) ≡ 1 or in copBasic syntax that the functions COP(u,v) + coCOP(u,v) equal unity if the
exceedance argument to coCOP is set to FALSE.

The function coCOP gives “risk” against failure if failure is defined as either hazard source U or V
occuring by themselves or if both occurred at the same time. Expressing this in terms of an annual
probability of occurrence (q), one has

q = 1− Pr[U > u or V > v] = C⋆(u′, v′) or

in R code q <- coCOP(u,v, exceedance=FALSE, ...). So, in yet other words and as a mnemonic:
A co-copula is the probabililty of exceedance if the hazard sources collaborate or cooperate to
cause failure. Also, q can be computed by q <- coCOP(1 - u, 1 - v, exceedance=TRUE, ...).

Usage

coCOP(u, v, cop=NULL, para=NULL, exceedance=TRUE, ...)

Arguments

u Exceedance probability (u′ = 1− u) in the X direction;

v Exceedance probability (v′ = 1− v) in the Y direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

exceedance A logical controlling the probability direction. Are u and v values given really
u′ and v′, respectively? If FALSE, then the complements of the two are made
internally and the nonexceedances can thus be passed; and

... Additional arguments to pass to the copula.

Value

The value(s) for the co-copula are returned.
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Note

The author (Asquith) finds the use of exceedance probabilities delicate in regards to Nelsen’s no-
tation. The coCOP function and surCOP have the exceedance argument to serve as a reminder that
the co-copula as defined in the literature uses exceedance probabilities as its arguments, although
the arguments as code u and v do not mimic the overline nomenclature ( · · · ) of the exceedance
(survival) probabilities.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, surCOP, duCOP

Examples

u <- 1 - runif(1); v <- 1 - runif(1) # as exceedance, in order to reinforce the
# change to exceedance instead of nonexceedance that otherwise dominates this package
message("Exceedance probabilities u' and v' are ", u, " and ", v)
coCOP(u,v,cop=PLACKETTcop, para=10) # Positive association Plackett

# computation using manual manipulation to nonexceedance probability
1 - COP(cop=PSP,(1-u),(1-v))
# computation using internal manipulation to nonexceedance probability

coCOP(cop=PSP, u, v)

# Next demonstrate COP + coCOP = unity.
"MOcop.formula" <- function(u,v, para=para, ...) { # Marshall-Olkin copula

alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
"MOcop" <- function(u,v, ...) { asCOP( u, v, f=MOcop.formula, ...) }
u <- 0.2; v <- 0.75; ab <- c(1.5, 0.3)
COP(u,v, cop=MOcop, para=ab) + coCOP(1-u,1-v, cop=MOcop, para=ab) # UNITY

composite1COP Composition of a Single Symmetric Copula with Two Compositing Pa-
rameters
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Description

The composition of a single copula (Salvadori et al., 2006, p. 266, prop. C.3) is created by the
following result related to “composition of copulas” in that reference. Suppose C(u, v) is a sym-
metric copula (see COP) with parameters Θ and C ̸= Π (for Π see P), then a family of generally
asymmetric copulas Cα,β;Θ with two compositing parameters 0 < α, β < 1, and α ̸= β, which
also includes just the copula C(u, v) as a limiting case for α = β = 0 and is given by

Cα,β(u, v) = uαvβ ·C(u1−α, v1−β).

The composite1COP function provides the means for inserting permutation asymmetry from a per-
mutation symmetric copula as described by Joe (2017, p. 124), but do so in a more general way
through the provision of two and not just one parameter. Joe’s description is supported herein if
one of the α or β is held at zero. Very loosely, the α > 0 kicks probability density down towards
the lower right corner, whereas β > 0 kicks density up towards the upper left corner. Finally, the
composite2COP function is based on a slighty more general result (see composite2COP for further
details of copula composition).

Usage

composite1COP(u, v, para, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A special parameter list (see Note); and

... Additional arguments to pass to the copula.

Value

Value(s) for the composited copula are returned.

Note

The following descriptions list in detail the structure and content of the para argument:

alpha — The α compositing parameter;

beta — The β compositing parameter;

cop1 — Function of the copula C(u, v); and

para1 — Vector of parameters ΘC for C(u, v).

For the para argument, the same nomenclature as used for composite2COP is used with obviously
cop2 and para2 dropped for composite1COP. The cop1 and para1 names remain enumerated for
composite1COP so that the para argument of the more general composite2COP function could be
used directly in composite1COP. Albeit, the second copula and its parameters would not be used.
A more complex (extended) composition in composite3COP extends this basic parameter structure.



54 composite1COP

Author(s)

W.H. Asquith

References

Joe, H., 2017, Parametric copula families for statistical models (chap. 8) in Copulas and dependence
models with applications—Contributions in honor of Roger B. Nelsen, eds. Flores, U.M., Amo
Artero, E., Durante, F., Sánchez, J.F.: Springer, Cham, Switzerland, ISBN 978–3–319–64220–9,
doi:10.1007/9783319642215.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

COP, breveCOP, composite2COP, composite3COP, convexCOP, glueCOP

Examples

## Not run:
alpha <- 0.24; beta <- 0.23; Theta1 <- NA;
# W() does not use a parameter, but show how a parameter would be set if needed.
para <- list(alpha=alpha, beta=beta, cop1=W, para1=Theta1)
t <- composite1COP(0.4, 0.6, para)
if( t != W(0.4, 0.6)) message("Not equal as expected")

# Next use this as a chance to check logic flow through the various
# "compositing" operators and their as needed dispatch to COP().
my.para <- list(cop1=GHcop, para1=exp(+1.098612) + 1,

cop2=PLcop, para2=exp(-1.203973),
alpha=0.5, beta=0.25,
kappa=0.1, gamma=0.1,
weights=c(0.95, 0.05))

# uses cop1/2, para1/2, only weights
nustarCOP(cop=convexCOP, para=my.para) # 0.8570434

# uses cop1/2, para1/2, only alpha
nustarCOP(cop=convex2COP, para=my.para) # 0.2697063

# uses cop1, para1, only alpha / beta
nustarCOP(cop=composite1COP, para=my.para) # 0.5103119

# uses cop1/2, para1/2, only alpha / beta
nustarCOP(cop=composite2COP, para=my.para) # 0.0714571

# uses cop1/2, para1/2, only alpha, beta, kappa, gamma
nustarCOP(cop=composite3COP, para=my.para) # 0.0792634
## End(Not run)

https://doi.org/10.1007/978-3-319-64221-5
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composite2COP Composition of Two Copulas with Two Compositing Parameters

Description

The composition of two copulas (Salvadori et al., 2007, p. 266, prop. C.3) provides for more
sophisticated structures of dependence between variables than many single parameter copula can
provide. Further, asymmetrical copulas are readily obtained from symmetrical copulas. Let A and
B be copulas with respective parameters ΘA and ΘB, then

Cα,β(u, v) = A(uα, vβ) ·B(u1−α, v1−β),

defines a family of copulas Cα,β;ΘA,ΘB
with two compositing parameters α, β ∈ I : [0, 1]. In

particular if α = β = 1, then C1,1 = A, and if α = β = 0, then C0,0 = B. For α ̸= β, the Cα,β is
in general asymmetric that is C(u, v) ̸= C(v, u) for some (u, v) ∈ I2. This construction technique
is named Khoudraji device within the copula package (see khoudrajiCopula therein).

It is important to stress that copulas AΘA
and BΘB

can be of different families and each copula
parameterized accordingly by the vector of parameters ΘA and ΘB . This is an interesting feature
in the context of building complex structures when pursuing asymmetric measures of dependency
such as the L-comoments. Do the copulas A and B need be symmetric? The Salvadori reference
makes no stated restriction to that effect. Symmetry of the copula C is required for the situation
that follows, however.

It is possible to simplify the construction of an asymmetric copula from a symmetric copula by the
following. Let C(u, v) be a symmetric copula, C ̸= Π (for Π see P). A family of asymmetric
copulas Cα,β with two composition parameters 0 < α, β < 1, and α ̸= β that also includes
C(u, v) as a limiting case and is given by

Cα,β(u, v) = uαvβ ·C(u1−α, v1−β).

The composite2COP function is based on the more general result given in the former rather than the
later mathematical definition to provide additional flexibility. For simpler case of composition in-
volving only one copula, composite1COP is available, and a more complex (extended) composition
is available in composite3COP.

Usage

composite2COP(u, v, para, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A special parameter list (see Note); and

... Additional arguments to pass to the copulas.
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Value

Value(s) for the composited copula is returned.

Note

The following descriptions list in detail the structure and content of the para argument:

alpha — The α compositing parameter;

beta — The β compositing parameter;

cop1 — Function of the first copula A;

cop2 — Function of the second copula B;

para1 — Vector of parameters ΘA for A; and

para2 — Vector of parameters ΘB for B.

The para argument of this function also can be passed to composite1COP; albeit, the second copula
and its parameters would not be used. A more complex (extended) composition in composite3COP
extends this basic parameter structure.

Author(s)

W.H. Asquith

References

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

COP, breveCOP, composite1COP, composite3COP, convexCOP, glueCOP

Examples

alpha <- 0.24; beta <- 0.23; Theta1 <- NA; Theta2 <- NA
# The W() and PSP() copulas do not take parameters, but example shows how the
# parameters would be set should either or both of the copulas require parameters.
para <- list(alpha=alpha, beta=beta, cop1=W, cop2=PSP, para1=Theta1, para2=Theta2)
print(composite2COP(0.4, 0.6, para)) # 0.2779868

# In this example, the N4212cop uses "3" as its parameter value.
para <- list(alpha=alpha, beta=beta, cop1=W, cop2=N4212cop, para1=Theta1, para2=3)
print(composite2COP(0.4, 0.6, para)) # 0.3387506

## Not run:
# This example does a great job of showing a composited copula with a near singularity,
# but with leakage of chance to the upper left. The example is also critical because
# it shows that gridCOP is returning a matrix in the proper orientation relative to
# the level.curvesCOP and simCOP functions. Example is cross-ref'ed from gridCOP() docs.
layout(matrix(1:2,byrow=TRUE))
para <- list(alpha=0.5, beta=0.90, cop1=M, cop2=N4212cop, para1=NA, para2=1.4)
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image(gridCOP(cop=composite2COP, para=para, delta=0.01), col=terrain.colors(30),
xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")

D <- simCOP(n=2000, cop=composite2COP, para=para, ploton=FALSE, pch=4, col=4, cex=0.75)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE, delt=0.05)
mtext("Theoretical composited copula, level curves, and simulation")

emp <- EMPIRgrid(para=D, deluv=0.05) # CPU heavy
image(emp$empcop, col=terrain.colors(30) ) # image orientation is correct!
# Depending on balance between sample size, deluv, delu, and delt, one or more:
# Error in uniroot(func, interval = c(0, 1), u = u, LHS = t, cop = cop, :
# f() values at end points not of opposite sign
# warnings might be triggered. This is particularly true because of the flat derivative
# above the near singularity in this example composited copula.
points(D$U, D$V, pch=4, col=4, cex=0.75)
level.curvesCOP(cop=EMPIRcop, para=D, ploton=FALSE, delu=0.02, delt=0.05)
mtext("Empirical copula from n=2000 simulation") #
## End(Not run)

composite3COP (Extended) Composition of Two Copulas with Four Compositing Pa-
rameters

Description

The (extended) composition of two copulas (Salvadori et al., 2006, p. 266, prop. C.4) provides for
even more sophisticated structures of dependence between variables than two-copula composition
in composite2COP. Let A and B be copulas with respective parameters ΘA and ΘB, then

Cα,β,κ,γ(u, v) = uκvγ ·A([u1−κ]α, [v1−γ ]β) ·B([u1−κ]1−α, [v1−γ ]1−β),

defines a family of copulas Cα,β,κ,γ with four compositing parameters α, β, κ, γ ∈ (0, 1).

It is important to stress that copulas AΘA
and BΘB

can be of different families and each parame-
terized accordingly by the vectors of parameters ΘA and ΘB .

Usage

composite3COP(u, v, para, ...)

Arguments

u Nonexceedance probability u in X direction;

v Nonexceedance probability v in Y direction;

para A special parameter list (see Note); and

... Additional arguments to pass to composite2COP.

Value

A value for the composited copula is returned.



58 composite3COP

Note

The following descriptions list in detail the structure and content of the para argument:

alpha — The α compositing parameter;

beta — The β compositing parameter;

kappa — The κ compositing parameter;

gamma — The γ compositing parameter;

cop1 — Function of the first copula A;

cop2 — Function of the second copula B;

para1 — Vector of parameters ΘA for A; and

para2 — Vector of parameters ΘB for B.
The first example produces two plots. These are extremely informative for many nuances
of copula theory. Whereas it is difficult in prose to describe, users are strongly encouraged
that once full understanding of connection of red and green between the easier to understand
bivariate plot and the plot showing the sections and derivatives of the sections is achieved that
much of copula theory will be mastered—get a copy of Nelsen (2006) and (or) Salvadori et
al. (2007).

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

COP, breveCOP, simCOP, composite1COP, composite2COP, convexCOP, glueCOP, simcomposite3COP

Examples

## Not run:
para <- list(cop1=PLACKETTcop, cop2=N4212cop,

para1=10^(runif(1,min=-5,max=5)), para2=runif(1,min=1,max=100),
alpha=runif(1), beta=runif(1), kappa=runif(1), gamma=runif(1))

txts <- c("Alpha=", round(para$alpha, digits=4),
"; Beta=", round(para$beta, digits=4),
"; Kappa=", round(para$kappa, digits=4),
"; Gamma=", round(para$gamma, digits=4),
"; Theta1=", round(para$para1[1], digits=5),
"; Theta2=", round(para$para2[1], digits=2))

layout(matrix(1:2, byrow=TRUE))
D <- simCOP(n=300, cop=composite3COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
mtext(paste(txts,collapse=""))
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f <- round(runif(1),digits=2)
ftxt <- c("Sectionals (thick) and derivatives (thin) at f=",f," nonexceedance prob.")
segments(f,0,f,1, col=3, lwd=2); segments(0,f,1,f, col=2, lwd=2)
t <- sectionCOP(f,cop=composite3COP,para=para, col=3, lwd=4)
t <- sectionCOP(f,cop=composite3COP,para=para, dercop=TRUE, ploton=FALSE,col=3)
t <- sectionCOP(f,cop=composite3COP,para=para, wrtV=TRUE, ploton=FALSE,col=2,lwd=4)
t <- sectionCOP(f,cop=composite3COP,para=para, wrtV=TRUE, ploton=FALSE,col=2,

dercop=TRUE)
mtext(paste(ftxt, collapse=""))#
## End(Not run)

convex2COP Convex Combination of Two Copulas

Description

The convex composition of two copulas (Joe, 2014, p. 155) provides for some simple complexity
extension between copula families. Let A and B be copulas with respective vectors of parameters
ΘA and ΘB, then the convex combination of these copulas is

C×
α (u, v) = α ·A(u, v; ΘA)− (1− α) ·B(u, v; ΘB),

where 0 ≤ α ≤ 1. The generalization of this function for N number of copulas is provided by
convexCOP.

Usage

convex2COP(u,v, para, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
para A special parameter list (see Note); and
... Additional arguments to pass to the copula.

Value

Value(s) for the convex combination copula is returned.

Note

The following descriptions list in detail the structure and content of the para argument:

alpha — The α compositing parameter;
cop1 — Function of the first copula A;
cop2 — Function of the second copula B;
para1 — Vector of parameters ΘA for A; and
para2 — Vector of parameters ΘB for B.
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Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

COP, breveCOP, convexCOP, composite1COP, composite2COP, composite3COP, FRECHETcop,
glueCOP

Examples

para <- list(alpha=0.24, cop1=FRECHETcop, para1=c(0.4, 0.56),
cop2=PSP, para2=NA)

convex2COP(0.87,0.35, para=para) # 0.3188711
## Not run:
# Suppose we have a target Kendall Tau of 1/3 and a Gumbel-Hougaard copula seems
# attractive but the GH has just too much upper tail dependency for comfort. We
# think from data analysis that an upper tail dependency that is weaker and near
# 2/10 is the better. Let us convex mix in a Plackett copula and optimize.
TargetTau <- tauCOP(cop=GHcop, para=1.5) # 1/3 (Kendall Tau)
taildepCOP( cop=GHcop, para=1.5, plot = TRUE)$lambdaU # 0.4126
TargetUpperTailDep <- 2/10

# **Serious CPU time pending for this example**
par <- c(-.10, 4.65) # Initial guess but the first parameter is in standard
# normal for optim() to keep us in the [0,1] domain when converted to probability.
# The guesses of -0.10 (standard deviation) for the convex parameter and 4.65 for
# the Plackett are based on a much longer search times as setup for this problem.
# The simplex for optim() is going to be close to the solution on startup.
"afunc" <- function(par) {

para <- list(alpha=pnorm(par[1]), cop1=GHcop, para1=1.5,
cop2=PLACKETTcop, para2=par[2])

tau <- tauCOP(cop=convex2COP, para=para)
taildep <- taildepCOP(cop=convex2COP, para=para, plot = FALSE)$lambdaU
err <- sqrt((TargetTau - tau)^2 + (TargetUpperTailDep - taildep)^2)
print(c(pnorm(par[1]), par[2], tau, taildep, err))
return(err)

}
mysolution <- optim(par, afunc, control=list(abstol=1E-4))

para <- list(alpha=.4846902, cop1=GHcop, para1=1.5,
cop2=PLACKETTcop, para2=4.711464)

UV <- simCOP(n=2500, cop=convex2COP, para=para, snv=TRUE) #
## End(Not run)
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convexCOP Convex Combination of an Arbitrary Number of Copulas

Description

The convex composition of N number of copulas (Salvadori et al., p. 132, 2007) provides for com-
plexity extension between coupla families. Let Ci be a copula with respective vector of parameters
Θi, then the convex combination of these copulas is

C×
ω (u, v) =

N∑
i=1

ωiCi(u, v; Θi),

where
∑N

i=1 ωi = 1 for N number of copulas. The weights ω are silently treated as 1/N if the
weights element is absent in the R list argument para.

Usage

convexCOP(u,v, para, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A special parameter list (see Note); and

... Additional arguments to pass to the copula.

Value

Value(s) for the convex combination copula is returned.

Note

The following descriptions list in detail the structure and content of the para argument but please
reference the Examples to see the i notation:

copi — The ith copula;

parai — Vector of parameters Θi; and

weights — Optional vector of weights whose sum will be rescaled to unity; default is 1/N for
each weight.

Author(s)

W.H. Asquith
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References

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

COP, breveCOP, convex2COP, composite1COP, composite2COP, composite3COP, glueCOP

Examples

# The copulas and parameters are named by sequence number appended to cop and para.
para1 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=.03, weights=c(.8,.2))
para2 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=.03, alpha=0.8)
H <- convexCOP( 0.6,0.4, para=para1)
G <- convex2COP(0.6,0.4, para=para2)
if( abs(H-G) <= 1e-6 ) message("They are equal.")

## Not run:
# A convex combination of three copulas. A GHcop with strong positive association and
# a Plackett with strong negative association, and independence. The weights favor the
# GHcop but a little outlier and expansive spread is superimposed on the core trend.
para <- list(cop1=GHcop, cop2=PLcop, cop3=P,

para1=8, para2=.03, para3=NA, weights=c(40,7,10))
UV <- simCOP(1000, cop=convexCOP, para=para, lwd=0.8) #
## End(Not run)

COP The Copula

Description

Compute the copula or joint distribution function through a copula as shown by Nelsen (2006, p.
18) is the joint probability

Pr[U ≤ u, V ≤ v] = C(u, v).

The copula is an expression of the joint probability that both U ≤ u and V ≤ v.

A copula is a type of dependence function that permits straightforward characterization of depen-
dence from independence. Joe (2014, p. 8) comments that “copula families are usually given as
cdfs [cumulative distribution functions.]” A radially symmetric or permutation symmetric copula
is one such that C(u, v) = C(v, u) otherwise the copula is asymmetric.

The copula inversions t = C(u=U, v) or t = C(u, v=V ) for a given t and U or V are provided
by COPinv and COPinv2, respectively. A copula exists in the domain of the unit square (I2 =
[0, 1]× [0, 1]) and is a grounded function meaning that

C(u, 0) = 0 = C(0, v) and thus C(0, 0) = 0,
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and other properties of a copula are that

C(u, 1) = u and C(1, v) = v and

C(1, 1) = 1.

Copulas can be combined with each other (convexCOP, convex2COP, composite1COP,
composite2COP, composite3COP, and glueCOP) to form more complex and sophisticated depen-
dence structures. Also copula multiplication—a special product of two copulas—yields another
copula (see prod2COP).

Perhaps the one of the more useful features of this function is that in practical applications it can be
used to take a copula formula and reflect or rotated it in fashions to attain association structures that
the native definition of the copula can not acquire. The terminal demonstration in the Examples
demonstrates this for the Raftery copula (RFcop).

Usage

COP(u, v, cop=NULL, para=NULL,
reflect=c("cop", "surv", "acute", "grave",

"1", "2", "3", "4"), ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

cop A copula function with vectorization as in asCOP;

para Vector of parameters or other data structures, if needed, to pass to the copula;

reflect The reflection of the copula form (see Note) and the default "cop" or "1" is the
usual copula definition (also see simCOPmicro). The numbered values corre-
spond, respectively, to the named values; and

... Additional arguments to pass to the copula.

Value

Value(s) for the copula are returned.

Note

REFLECTIONS OF VARIABLES (ROTATIONS OF THE COPULA)—The copula of (1−U, 1−V )

is the survival copula (Ĉ(u, v); surCOP) and is defined as

Pr[U > u, V > v ] = Ĉ(u, v) = u+ v − 1 +C(1− u, 1− v) → "surv",

whereas, following the notation of Joe (2014, p. 271), the copula of (1− U, V ) is defined as

Pr[U > u, V ≤ v ] = Ć(u, v) = v −C(1− u, v) → "acute", and

the copula of (U, 1− V ) is defined as

Pr[U ≤ u, V > v ] = C̀(u, v) = u−C(u, 1− v) → "grave".
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Here it is useful to stress the probability aspects that change with the reflections, but this section
ends with the reflections themselves being graphically highlighted. The Examples stress simple
variations on the probability aspects.

To clarify the seemingly clunky nomenclature—Joe (2014) does not provide “names” for Ć(u, v)

or C̀(u, v)—the following guidance is informative:
(1) "surv" or Ĉ(u, v) is a reflection of U and V on the horizontal and vertical axes, respectively,
(2) "acute" or Ć(u, v) is a reflection of U on the horizontal axis, and
(3) "grave" or C̀(u, v) is a reflection of V on the verical axis.

The names "acute" and "grave" match those used in the Rd-format math typesetting instructions.
Users are directed to the documentation of simCOPmicro for further discussion because the COP
function is expected to be an early entry point for new users interested in the copBasic API.

For the copBasic package and in order to keep some logic brief and code accessible for teaching and
applied circumstances, reflections of copulas using analogs to the reflect argument are only na-
tively supported in the COP and simCOPmicro functions. The interfaces of copBasic should already
be flexible enough for users to adapt and (or) specially name reflections of copulas for deployment.
A caveat is that some individual copula implementations might have some self-supporting infras-
tructure. The reflection can also be set within the para argument when it is a list (see Examples).

An example is warranted. Although the Gumbel–Hougaard copula (GHcop) can be reflected by COP
and simCOPmicro and testing is made in the Note section of simCOPmicro, it is suggested that a
user generally requiring say a horizontal reflection ru (or vertical reflection rv) of the Gumbel–
Hougaard copula write a function named perhaps ruGHcop (or rvGHcop).

Such functions, consistent with the mathematics at the beginning of this Note, can be used through-
out functions of copBasic using the cop arguments. The author (Asquith) eschews implementing
what is perceived as too much flexibility and overhead for the package to support the three reflection
permutations universally across all copula functions of the package. This being said, COP can take
an R list for the para argument for rotation/reflection:

set.seed(14)
UV3 <- simCOP(20, cop=COP, pch=16, col=3,

para=list(cop=GLcop, para=pi+1, reflect="3"))
set.seed(14)
UV2 <- simCOP(20, cop=COP, pch=16, col=4, ploton=FALSE,

para=list(cop=GLcop, para=pi+1, reflect="2"))
arrows(x0=UV3[,1], y0=UV3[,2], x=UV2[,1], y=UV2[,2])

and this type of interface is similar to composite1COP as the following rotation and then asymmetric
construction shows:

UV <- simCOP(1000, cop=composite1COP,
para=list(cop1=COP,

para1=c(cop=GHcop, para=pi+1, reflect="4"),
alpha=0.1, beta=0.3))

Author(s)

W.H. Asquith
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References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

coCOP, duCOP, surCOP, surfuncCOP

Examples

u <- runif(1); v <- runif(1)
COP(cop=W,u,v); COP(cop=P,u,v); COP(cop=M,u,v); COP(cop=PSP,u,v)

FF <- 0.75 # 75th percentile, nonexceedance
GG <- 0.20 # 25th percentile, nonexceedance
bF <- 1 - FF; bG <- 1 - GG # exceedance
# What is the probability that both X and Y are less than
# 75th and 20th percentiles, respectively?
COP(cop=P, FF, GG) # 0.15
# What is the probability that both X and Y are greater than
# 75th and 20th percentiles, respectively?
surCOP(cop=P, bF, bG) # 0.20
# What is the probability that either X or Y are less than
# the 75th and 20th percentiles, respectively?
duCOP(cop=P, FF, GG) # 0.8
# What is the probability that either X or Y are greater than
# the 75th and 20th percentiles, respectively?
coCOP(cop=P, bF, bG) # 0.85

# Repeat for the PSP copula:
# What is the probability that both X and Y are less than
# 75th and 20th percentiles, respectively?
COP(cop=PSP, FF, GG) # 0.1875
# What is the probability that both X and Y are greater than
# 75th and 20th percentiles, respectively?
surCOP(cop=PSP, bF, bG) # 0.2375
# What is the probability that either X or Y are less than
# the 75th and 20th percentiles, respectively?
duCOP(cop=PSP, FF, GG) # 0.7625
# What is the probability that either X or Y are greater than
# the 75th and 20th percentiles, respectively?
coCOP(cop=PSP, bF, bG) # 0.8125
# Both of these summations equal unity

COP(cop=PSP, FF, GG) + coCOP(cop=PSP, bF, bG) # 1
surCOP(cop=PSP, bF, bG) + duCOP(cop=PSP, FF, GG) # 1

FF <- 0.99 # 99th percentile, nonexceedance
GG <- 0.50 # 50th percentile, nonexceedance
bF <- 1 - FF # nonexceedance
bG <- 1 - GG # nonexceedance
# What is the probability that both X and Y are less than
# 99th and 50th percentiles, respectively?
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COP(cop=P, FF, GG) # 0.495
# What is the probability that both X and Y are greater than
# 99th and 50th percentiles, respectively?
surCOP(cop=P, bF, bG) # 0.005
# What is the probability that either X or Y are less than
# the 99th and 50th percentiles, respectively?
duCOP(cop=P, FF, GG) # 0.995
# What is the probability that either X or Y are greater than
# the 99th and 50th percentiles, respectively?
coCOP(cop=P, bF, bG) # 0.505

## Not run:
# MAJOR EXAMPLE FOR QUICKLY MODIFYING INHERENT ASSOCIATION STRUCTURES
p <- 0.5 # Reasonable strong positive association for the Raftery copula
"RFcop1" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="1")
"RFcop2" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="2")
"RFcop3" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="3")
"RFcop4" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="4")

d <- 0.01 # Just to speed up the density plots a bit
densityCOPplot(RFcop1, para=p, contour.col=1, deluv=d) # the Raftery in the literature
densityCOPplot(RFcop2, para=p, contour.col=1, deluv=d, ploton=FALSE)
densityCOPplot(RFcop3, para=p, contour.col=1, deluv=d, ploton=FALSE)
densityCOPplot(RFcop4, para=p, contour.col=1, deluv=d, ploton=FALSE)
# Now some text into the converging tail to show the reflection used.
text(-2,-2, "reflect=1", col=2); text(+2,+2, "reflect=2", col=2)
text(+2,-2, "reflect=3", col=2); text(-2,+2, "reflect=4", col=2)

# To show how the reflection can be alternatively specified and avoid in this case
# making four Raftery functions, pass by a list para argument. Also, demonstrate
# that cop1 --> cop and para1 --> para are the same in use of the function. This
# provides some nomenclature parallel to the other compositing functions.
densityCOPplot(COP, para=list(reflect=1, cop1=RFcop, para=p ), deluv=d,

contour.col=1, drawlabels=FALSE)
densityCOPplot(COP, para=list(reflect=2, cop= RFcop, para1=p), deluv=d,

contour.col=2, drawlabels=FALSE, ploton=FALSE)
densityCOPplot(COP, para=list(reflect=3, cop1=RFcop, para1=p), deluv=d,

contour.col=3, drawlabels=FALSE, ploton=FALSE)
densityCOPplot(COP, para=list(reflect=4, cop= RFcop, para=p ), deluv=d,

contour.col=4, drawlabels=FALSE, ploton=FALSE) #
## End(Not run)

## Not run:
# Similar example to previous, but COP() can handle the reflection within a
# parameter list ,and the reflect, being numeric here, is converted to
# character internally.
T12 <- CLcop(tau=0.67)$para # Kendall Tau of 0.67
T12 <- list(cop=CLcop, para=T12, reflect=2) # reflected to upper tail dependency
UV <- simCOP(n=1000, cop=COP, para=T12) #
## End(Not run)
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copBasic.fitpara A Single or Multi-Parameter Optimization Engine (Beta Version)

Description

An example of a general implementation of a parameter optimization scheme using core features
of the copBasic package. Because of the general complexity of the objectives for this function,
the interface shown here is considered an “beta version” and nomenclature is subject to possibly
sweeping changes in the future.

Usage

copBasic.fitpara.beta(uv=NULL, popstat=NULL, statf=NULL, cop=NULL,
paradim=1, interval=NULL, par.init=NULL, ...)

Arguments

uv An R two column matrix or data.frame of a sample of nonexceedance proba-
bilities u and v;

popstat The population statistic(s) that will be used if uv is NULL;

statf A function responsible at the minimum for computation of the theoretical val-
ues of the population statistic(s) that the optimization will revolve around; This
function, if supporting an as.sample interface (e.g. hoefCOP) and if uv has been
provided, will be dispatched to compute the population statistic(s);

cop A copula function that is passed along to statf though of course the statf
function can decide whether to use this argument or not;

paradim The dimension of the parameters. In reality, the default triggers uni-dimensional
root solving using the uniroot() function in R or otherwise the optim() func-
tion in R is used for multi-dimensional minimization with subtle changes in
setup (see source code). Alternative logic could be have been used but it is felt
that this is the most logical for future adaptations;

interval The interval argument by the same name for the uniroot() function;

par.init The initial parameter vector for the optim() function; and

... Additional arguments to pass.

Value

A vector of the values for the parameter variable is returned

Note

One-Parameter Optimization—A demonstration of one-dimensional parameter optimimization us-
ing the Gini Gamma (giniCOP), which is a measure of bivariate association. There is no native
support for Gini Gamma (and most of the other measures of association) in regards to being a pa-
rameter estimator at the copula function interface level in copBasic. (A converse example is one
provided internally by the GHcop copula.)
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set.seed(24); n <- 230 # sample size to draw from Galambos copula but a
# different copula was chosen for the fitting.
sampleUV <- simCOP(n=n, cop=GLcop, para=1.5) # a random sample
para <- copBasic.fitpara.beta(uv=sampleUV, statf=giniCOP,

interval=c(.1,200), cop=HRcop) # 1.959521

Three-Parameter Optimization—A demonstration of multi-dimensional parameter optimimization
using the Gini Gamma (giniCOP), Nu-Skew (nuskewCOP), and Nu-Star (nustarCOP). This is sub-
stantially more complicated to implement. The Hüsler–Reiss copula (HRcop) is chosen both as part
of the sample simulation for the study as well as the copula as part of the modeling. Using com-
position by the composite1COP, first establish a parent three parameter copula and simulate from
it to create a bivariate sample in sampleUV that will be used for demonstration. A standard normal
variate graphic of the simulation is generated by simCOP as well—later, additional results will be
superimposed.

n <- 610; set.seed(1999) # Seed value will be used again (see below)
pop.para <- list(cop1=HRcop, para1=4, alpha=0.14, beta=0.35)
sampleUV <- simCOP(n=n, cop=composite1COP, para=pop.para, col=3, snv=TRUE)

A custom objective function objfunc to serve as the statf for the copBasic.fitpara.beta call.
The objective function has the as.sample interface (e.g. giniCOP) implemented for sample estima-
tion. The most subtle feature of function presumably is the use of the pnorm() function in R for the
α and β parameters to keep each parameter in the range α, β ∈ (0, 1). Another subtly, which affects
the choice of other copulas from HRcop, is how the parameter range of Θ (the para[1] variable)
is controlled—here the parameter remains untransformed but the lower domain edge is truncated
by the return of infinity (return(Inf)). The getstat argument is only for short circuiting the
objective so that objfunc can be used to compute the three statistics after the optimal parameters
are found.

"objfunc" <- function(para, stat=NA, as.sample=FALSE, getstat=FALSE, ...) {
if(as.sample) {

return(c( giniCOP(para=para, as.sample=TRUE),
nuskewCOP(para=para, as.sample=TRUE),
nustarCOP(para=para, as.sample=TRUE)))

}
para[1] <- ifelse(para[1] < 0, return(Inf), para[1]) # edge check
para[2:3] <- pnorm(para[2:3]) # detransform
para <- list(cop1=HRcop, para1=para[1], alpha=para[2], beta=para[3])
hp <- c( giniCOP(composite1COP, para),

nuskewCOP(composite1COP, para),
nustarCOP(composite1COP, para))

if(getstat) return(hp) # short circuit to get the statistics out
dv <- stat; dv[dv == 0] <- 1 # changing dv "adapts" the error to
return(sqrt(sum(((stat-hp)/dv)^2))) # trap division by zero

}

The parameter estimation proceeds in the following code. The sample statistics (or target.stats)
are computed and subsequently passed to the optimization using the popstat argument. Notice
also the use of the qnorm() function in R to transform the initial guess α = β = 1/2 into a domain
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more easily handled by the optimizer (optim() function in R). The transformed optimal parameters
are computed, and then the values of the three statistics for the fit are computed. Lastly, a copBasic
parameter object fit.para is created, which can be used for later comparisons.

txt <- c("GiniGamma", "NuSkew", "NuStar")
target.stats <- objfunc(sampleUV, as.sample=TRUE); names(target.stats) <- txt
raw.fit.para <- copBasic.fitpara.beta(popstat=target.stats, statf=objfunc,

par.init=c(1, qnorm(0.5), qnorm(0.5)), cop=composite1COP, paradim=3)
fit.stats <- objfunc(raw.fit.para, getstat=TRUE); names(fit.stats) <- txt
fit.para <- list(cop1=HRcop, para1=raw.fit.para[1],

alpha=pnorm(raw.fit.para[2]), beta=pnorm(raw.fit.para[3]))

The optimization is completed. It is informative to see what the simulation of the fitted copula looks
like. Note: this particular example suffers from identifiability problems between the parameters—
meaning that local minima exist or that satisfactory solutions using different parameters than used
to generate the random sample can occur. The same seed is used so that one-to-one comparison of
points can visually be made with the simCOP function call.

set.seed(1999) # This value will be used again (see below)
sampleUV <- simCOP(n=n, cop=composite1COP, para=fit.para,

ploton=FALSE, pch=16, cex=0.5, col=2, snv=TRUE) # red dots

The visual comparison is qualitative. The tabular comparison of the sample statistics to those of
the fitted model shows that perhaps an acceptable local minima has been attained in terms of “fit”
but the subsequent comparison of the parameters of the population used to generate the sample
and those of the fitted model seemingly depart substantially in the α → 0 parameter of the copula
composition. The tail dependency parameters are similar, but further goodness-of-fit check is not
made.

# GiniGamma NuSkew NuStar
print(target.stats) # 0.5219027 -0.1940361 0.6108319
print(fit.stats) # 0.5182858 -0.1938848 0.6159566

# Parameter Alpha Beta
print(ls.str(pop.para)) # 4.00 0.14 0.350 # given
print(ls.str(fit.para)) # 11.2 0.187 0.427 # one solution

# Tail Dependency Parameters
taildepCOP(cop=composite1COP, para=pop.para) # lower=0 : upper=0.5838
taildepCOP(cop=composite1COP, para=fit.para) # lower=0 : upper=0.5714(est.)

The demonstration ends with the comparison of the two asymmetrical density contours.

densityCOPplot(cop=composite1COP, para=pop.para, contour.col=3)
densityCOPplot(cop=composite1COP, para=fit.para, contour.col=2,

ploton=FALSE)

Author(s)

W.H. Asquith
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Examples

# See the Note section

COPinv The Inverse of a Copula for V with respect to U

Description

Compute the inverse of a copula for V with respect to U given t or

t = C(u=U, v) → C(−1)(u=U, t) = v,

and solving for v. Nelsen (2006, p. 12) does not so name this function as an “inverse.” The COPinv
function is internally used by level.curvesCOP and level.curvesCOP2. A common misapplica-
tion that will puzzle the user (including the developer after long breaks from package use) is that
the following call and error message are often seen, if silent=FALSE:

COPinv(0.2, 0.25, cop=PSP)
# Error in uniroot(func, interval = c(lo, 1), u = u, LHS = t, cop = cop, :
# f() values at end points not of opposite sign
# [1] NA

This is a harmless error in the sense that COPinv is functioning properly. One can not invert a copula
for u < t and for u = t the v = 1 because of fundamental copula properties.

Usage

COPinv(cop=NULL, u, t, para=NULL, silent=TRUE, ...)

Arguments

cop A copula function;

u Nonexceedance probability u in the X direction;

t Nonexceedance probability level t;

para Vector of parameters or other data structures, if needed, to pass to the copula;

silent The argument of the same name given over to try() wrapping the uniroot()
operation; and

... Additional arguments to pass.

Value

Value(s) for v are returned.

Author(s)

W.H. Asquith
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References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, COPinv2, level.curvesCOP, level.curvesCOP2

Examples

COPinv(cop=N4212cop, para=2, u=0.5, t=0.2)

COPinv2 The Inverse of a Copula for U with respect to V

Description

Compute the inverse of a copula for U with respect to V given t or

t = C(u, v=V ) → C(−1)(v=V, t) = u,

and solving for u. Nelsen (2006, p. 12) does not so name this function as an “inverse.” The COPinv2
function is internally used by level.curvesCOP2. A common misapplication that will puzzle the
user (including the developer after long breaks from package use) is that the following call and error
message are often seen, if silent=FALSE:

COPinv2(0.2, 0.25, cop=PSP)
# Error in uniroot(func, interval = c(lo, 1), u = u, LHS = t, cop = cop, :
# f() values at end points not of opposite sign
# [1] NA

This is a harmless error in the sense that COPinv2 is functioning properly. One can not invert a
copula for v < t and for v = t the u = 1 because of fundamental copula properties.

Usage

COPinv2(cop=NULL, v, t, para=NULL, silent=TRUE, ...)

Arguments

cop A copula function;

v Nonexceedance probability v in the Y direction;

t Nonexceedance probability in t;

para Vector of parameters or other data structures, if needed, to pass to the copula;

silent The argument of the same name given over to try() wrapping the uniroot()
operation; and

... Additional arguments to pass to the copula.
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Value

Value(s) for u are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, COPinv, level.curvesCOP, level.curvesCOP2

Examples

# See those for COPinv as they are the same by analogy.

densityCOP Density of a Copula

Description

Numerically estimate the copula density for a sequence of u and v probabilities for which each
sequence has equal steps that are equal to ∆(uv). The density c(u, v) of a copula C(u, v) is numer-
ically estimated by

c(u, v) =
[
C(u2, v2)−C(u2, v1)−C(u1, v2) +C(u1, v1)

]
/
[
∆(uv)×∆(uv)

]
,

where c(u, v) ≥ 0 (see Nelsen, 2006, p. 10; densityCOPplot). The joint density can be defined by
the coupla density for continuous variables and is the ratio of the joint density funcion f(x, y) for
random variables X and Y to the product of the marginal densities (fx(x) and fy(y)):

c
(
Fx(x), Fy(y)

)
=

f(x, y)

fx(x)fy(y)
,

where Fx(x) and Fy(y) are the respective cumulative distribution functions of X and Y , and lastly
u = Fx(x) and v = Fy(y).

Usage

densityCOP(u,v, cop=NULL, para=NULL, deluv=.Machine$double.eps^0.25,
truncate.at.zero=TRUE, the.zero=0, sumlogs=FALSE, ...)
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Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

deluv The change in the sequences {u, v} 7→ δ, . . . , 1− δ; δ = ∆(uv) probabilities;

truncate.at.zero

A density must be c(u, v) ≥ 0, but because this computation is based on a
rectangular approximation and not analytical, there exists a possibility that very
small rectangles could result in numerical values in R that are less than zero.
This usually can be blamed on rounding. This logical if TRUE truncates com-
puted densities to zero, and the default assumes that the user is providing a
proper copula. A FALSE value is used by the function isfuncCOP;

the.zero The value for “the zero” where a small number might be useful for pseudo-
maximum likelihood estimation using sumlogs;

sumlogs Return the
∑

log c(u, v; Θ) where Θ are the parameters in para and this feature
is provided for mleCOP; and

... Additional arguments to pass to the copula function.

Value

Value(s) for c(u, v) are returned.

Note

The copBasic package does not currently have copula densities as analytical solutions implemented.
This is because initial design decisions were entirely on cumulative distribution function (CDF)
representations of the copula.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

simCOP, densityCOPplot, kullCOP, mleCOP
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Examples

## Not run:
# Joe (2014, p. 164) shows the closed form copula density for the Plackett.
"dPLACKETTcop" <- function(u,v,para) {

uv <- u*v; upv <- u + v; eta <- para - 1
A <- para*(1+eta*(upv - 2*uv)); B <- ((1+eta*upv)^2 - 4*para*eta*uv)^(3/2)
return(A/B)

}
dPLACKETTcop(0.32, 0.74, para=1.3) # 0.9557124
densityCOP( 0.32, 0.74, cop=PLcop, para=1.3) # 0.9557153
## End(Not run)

## Not run:
# Joe (2014, p. 165) shows the corner densities of the Plackett as Theta.
# copBasic uses numerical density estimation and not analytical formula.
eps <- .Machine$double.eps
densityCOP(0,0, cop=PLcop, para=4) # 3.997073 (default eps^0.25)
densityCOP(1,1, cop=PLcop, para=4) # 3.997073 (default eps^0.25)
densityCOP(1,1, cop=PLcop, para=4, deluv=eps) # 0 (silent failure)
densityCOP(1,1, cop=PLcop, para=4, deluv=eps^0.5) # 4.5
densityCOP(1,1, cop=PLcop, para=4, deluv=eps^0.4) # 4.002069
densityCOP(1,1, cop=PLcop, para=4, deluv=eps^0.3) # 3.999513
# So, we see that the small slicing does have an effect, the default of 0.25 is
# intented for general application by being away enough from machine limits.
## End(Not run)

## Not run:
# Joe (2014, p. 170) shows the closed form copula density for "Bivariate Joe/B5" copula
"dJOEB5cop" <- function(u, v, para) {

up <- (1-u)^para; vp <- (1-v)^para; eta <- para - 1
A <- (up + vp - up*vp); B <- (1-u)^eta * (1-v)^eta; C <- (eta + A)
return(A^(-2 + 1/para) * B * C)

}
densityCOP(0.32, 0.74, cop=JOcopB5, para=1.3) # 0.9410653
dJOEB5cop( 0.32, 0.74, para=1.3) # 0.9410973
## End(Not run)

densityCOPplot Contour Density Plot of a Copula

Description

Generate a contour density plot after the advocation of Joe (2014, pp. 9–15). Such graphics are
plots of scaled copula densities (c⋆(u, v), bivariate herein) that are copula densities scaled to the
standard normal distribution ∼ N(0,1) margins. Joe (2014) repeatedly emphasizes such plots in
contrast to the uniform distribution ∼ U(0,1) margins. Nelsen (2006) does not discuss such scaling
but seemingly Nelsen’s objectives for his book were somewhat different.

The density of copula C(u, v) is numerically estimated by

c(u, v) =
[
C(u2, v2)−C(u2, v1)−C(u1, v2) +C(u1, v1)

]
/
[
∆(uv)×∆(uv)

]
,
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where c(u, v) ≥ 0 (see Nelsen, 2006, p. 10; densityCOP). Given a numerically estimated quantity
c⋆(u, v) = c(u, v) × ϕ(Φ(−1)(u)) × ϕ(Φ(−1)(v)) for copula density c(u, v), a grid of the c⋆(u, v)
values can be contoured by the contour() function in R. The density function of the N(0,1) is ϕ(z)
for standard normal variate z and the quantile function of the N(0,1) is Φ(−1)(t) for nonexceedance
probability t.

A grid (matrix) of c(u, v) or c⋆(u, v) is defined for sequence of u and v probabilities for which
each sequence has equal steps that are equal to ∆(uv). This function has as focus on plotting of the
contour lines of c⋆(u, v) but the R matrix of either c(u, v) or c⋆(u, v) can be requested on return.
For either matrix, the colnames() and rownames() (the R functions) are set equal to the sequence
of u and v, respectively. Neither the column or row names are set to the standard normal variates
for the matrix of c⋆(u, v), the names remain in terms of nonexceedance probability.

For plotting and other uses of normal scores of data, Joe (2014, p. 245) advocates that one should
use the plotting position formula ui = (i − 1/2)/n (Hazen plotting position) for normal scores
zi = Φ−1(ui) in preference to i/(n+ 1) (Weibull plotting position) because n−1

∑n
i=1 z

2
i is closer

to unity. Other examples of Joe’s advocation for the Hazen plotting positions are available (Joe,
2014, pp. 9, 17, 245, 247–248).

Usage

densityCOPplot(cop=NULL, para=NULL, deluv=0.002,
getmatrix=c("none", "cdenzz", "cden"), n=0,
ploton=TRUE, snv=TRUE, origins=TRUE,
contour.col=1, contour.lwd=1.5, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

deluv The change in the sequences {u, v} 7→ δ, . . . , 1− δ; δ = ∆(uv) probabilities;

getmatrix A trigger on whether the density matrix is to be returned. The option cdenzz re-
turns the density scaled by the two standard normal densities (c⋆(u, v)), whereas
the option cden returns simply the copula density (c(u, v));

ploton A logical to toggle on the plot;

snv A logical to toggle standard normal variates for the axes;

origins A logical to plot the origin lines, if and only if snv is true;

contour.col The color of the contour lines, which corresponds to the col argument of the
contour function in R;

contour.lwd The width of the contour lines, which corresponds to the lwd argument of the
contour function in R;

n An optional sample size for which simulation of this many values from the cop-
ula will be made by simCOP and drawn; and

... Additional arguments to pass to the copula function and to the contour function
in R (e.g. to turn off labeling of contours add drawlabels=FALSE).



76 densityCOPplot

Value

This is a high-level function used for its side effects; an R matrix can be triggered, however, as a
returned value.

Note

Joe (2014, p. 244) says “if [density] plots show multimodality, then multivariate techniques of
mixture models, cluster analysis[,] and nonparametric functional data analysis might be more ap-
propriate” than relatively straightforward parametric copula models.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

simCOP, densityCOP

Examples

## Not run:
# Joe (2014, p. 5) names rMTCJ = reflected Mardia-Takahasi-Cook-Johnson copula
"rMTCJ" <- function(u, v, para, ...) {

u + v - 1 + ((1-u)^(-para) + (1-v)^(-para) - 1)^(-1/para)
} # Survival Copula ("reflected" in Joe's terms)
densityCOPplot(cop=rMTCJ, para=1.0760, n=9000, snv=TRUE)
# The density plot matches that shown by Joe (2014, p. 11, fig. 1.2, lower left plot)
# for a Spearman Rho equaling 0.5. Let us compute then Rho:
rhoCOP(cop=rMTCJ, para=1.076075) # 0.4999958

# Now let us get really wild with a composition with TWO modes!
# This example also proves that the grid orientation is consistent with respect
# to the orientation of the simulations.
para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96,

cop1=GHcop, cop2=PLACKETTcop, para1=5.5, para2=0.07)
densityCOPplot(cop=composite2COP, para=para, n=9000)

# Now, let us hack back to a contour density plot with U(0,1) and not N(0,1) margins
# just so show that capability exists, but emphasis of densityCOPplot is clearly
# on Joe's advocation, because it does not have a default trigger to use U(0,1) margins.
set.seed(12)
H <- densityCOPplot(cop=PLACKETTcop, para=41.25, getmatrix="cdenzz", n=1000, snv=FALSE)
set.seed(12)
UV <- simCOP(cop=PLACKETTcop, para=41.25, n=1000, col=8, snv=FALSE)
U <- as.numeric(colnames(H)); V <- as.numeric(rownames(H))
contour(x=U, y=V, z=t(H), lwd=1.5, cex=2, add=TRUE, col=2) #
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## End(Not run)

## Not run:
set.seed(12)
UV <- rCOP(400, cop=PSP, pch=16, col=8, n=400)
CL <- mleCOP(UV, cop=CLcop, interval=c(1 , 20))
JO <- mleCOP(UV, cop=JOcopB5, interval=c(0.1, 20))
PL <- mleCOP(UV, cop=PLcop, interval=c(0.1, 20))

AICs <- c(CL$AIC, JO$AIC, PL$AIC)
names(AICs) <- c("Clayton", "Joe(B5)", "Plackett")
print(round(AICs, digits=2))
# Clayton Joe(B5) Plackett
# -156.77 -36.91 -118.38
# So, we conclude Clayton must be the best fit of the three.

plot(qnorm(UV[,1]), qnorm(UV[,2]), pch=16, col=8, cex=0.5,
xlab="Standard normal variate of U", xlim=c(-3,3),
ylab="Standard normal variate of V", ylim=c(-3,3))

densityCOPplot(cop=PSP, contour.col=grey(0.5), lty=2,
contour.lwd=3.5, ploton=FALSE, snv=TRUE)

densityCOPplot(cop=CLcop, para=CL$para,
contour.col=2, ploton=FALSE, snv=TRUE)

densityCOPplot(cop=JOcopB5, para=JO$para,
contour.col=3, ploton=FALSE, snv=TRUE)

densityCOPplot(cop=PLcop, para=PL$para,
contour.col=4, ploton=FALSE, snv=TRUE) #

## End(Not run)

derCOP Numerical Derivative of a Copula for V with respect to U

Description

Compute the numerical partial derivative of a copula, which is a conditional distribution function,
according to Nelsen (2006, pp. 13, 40–41) with respect to u:

0 ≤ δ

δu
C(u, v) ≤ 1,

or

Pr[V ≤ v | U = u] = C2|1(v | u) = lim
∆u→0

C(u+∆u, v)−C(u, v)

∆u
,

which is to read as the probability that V ≤ v given that U = u and corresponds to the
derdir="left" mode of the function. For derdir="right", we have

Pr[V ≤ v | U = u] = lim
∆u→0

C(u, v)−C(u−∆u, v)

∆u
,
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and for derdir="center" (the usual method of computing a derivative), the following results

Pr[V ≤ v | U = u] = lim
∆u→0

C(u+∆u, v)−C(u−∆u, v)

2∆u
.

The “with respect to V ” versions are available under derCOP2.

Copula derivatives (δC/δu or say δC/δv derCOP2) are non-decreasing functions meaning that if
v1 ≤ v2, then C(u, v2)−C(u, v1) is a non-decreasing function in u, thus

δ
(
C(u, v2)−C(u, v1)

)
δu

is non-negative, which means

δC(u, v2)

δu
≥ δC(u, v1)

δu
for v2 ≥ v1.

Usage

derCOP(cop=NULL, u, v, delu=.Machine$double.eps^0.50,
derdir=c("left", "right", "center"), ...)

Arguments

cop A copula function;
u Nonexceedance probability u in the X direction. If the length of u is unity, then

the length of v can be arbitrarily long. If the length of u is not unity, then the
length of v should be the same, and if not, then only the first value in v is silently
used;

v Nonexceedance probability v in the Y direction (see previous comment on u);
delu The ∆u interval for the derivative;
derdir The direction of the derivative as described above. Default is left but internally

any setting can be temporarily suspended to avoid improper computations (see
source code); and

... Additional arguments to pass such as the parameters often described in para
arguments of other copula functions. (The lack of para=NULL for derCOP and
derCOP2 was either design oversight or design foresight but regardless it is too
late to enforce package consistency in this matter.)

Value

Value(s) for the partial derivative are returned.

Note

A known caveat of the current implementation of the copula derivative is that there is a chance that
the ∆u will span a singularity or discontinuous (or nearly so) portion of a copula should it have a
property of singularity (or nearly so). The delu is chosen small so the chance is mitigated to be a
small change and certainly appear to work throughout the examples herein. It is not decided whether
a derivative from the positive side (dir="left"), when failing should switch over to a computation
from the negative side (dir="right"). The distinction is important for the computation of the
inverse of the derivative derCOPinv because the solution finder needs a sign reversal to work.
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Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

derCOPinv, derCOP2

Examples

derCOP(cop=W, 0.4, 0.6); derCOP(cop=P, 0.4, 0.6); derCOP(cop=M, 0.4, 0.6)

lft <- derCOP(cop=PSP, 0.4, 0.6, derdir="left" )
rgt <- derCOP(cop=PSP, 0.4, 0.6, derdir="right" )
cnt <- derCOP(cop=PSP, 0.4, 0.6, derdir="center")
cat(c(lft,rgt,cnt,"\n"))
#stopifnot(all.equal(lft,rgt), all.equal(lft,cnt))

# Let us contrive a singularity through this NOT A COPULA in the function "afunc".
"afunc" <- function(u,v, ...) return(ifelse(u <= 0.5, sqrt(u^2+v^2), P(u,v,...)))
lft <- derCOP(cop=afunc, 0.5, 0.67, derdir="left" )
rgt <- derCOP(cop=afunc, 0.5, 0.67, derdir="right" )
cnt <- derCOP(cop=afunc, 0.5, 0.67, derdir="center")
cat(c(lft,rgt,cnt,"\n")) # The "right" version is correct.

derCOP2 Numerical Derivative of a Copula for U with respect to V

Description

Compute the numerical partial derivative of a copula, which is a conditional distribution function,
according to Nelsen (2006, pp. 13, 40–41) with respect to v:

0 ≤ δ

δv
C(u, v) ≤ 1,

or

Pr[U ≤ u | V = v] = C1|2(u | v) = lim
∆v→0

C(u, v +∆v)−C(u, v)

∆v
,

which is to read as the probability that U ≤ u given that V = v and corresponds to the
derdir="left" mode of the function. For derdir="right", the following results

Pr[U ≤ u | V = v] = lim
∆v→0

C(u, v)−C(u, v −∆v)

∆v
,
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and for derdir="center" (the usual method of computing a derivative), the following results

Pr[U ≤ u | V = v] = lim
∆v→0

C(u, v +∆v)−C(u, v −∆v)

2∆v
.

The “with respect to U” versions are under derCOP.

Copula derivatives (δC/δv or say δC/δu derCOP) are non-decreasing functions meaning that if
u1 ≤ u2, then C(u2, v)−C(u1, v) is a non-decreasing function in v, thus

δ
(
C(u2, v)−C(u1, v)

)
δv

is non-negative, which means

δC(u2, v)

δv
≥ δC(u1, v)

δv
for u2 ≥ u1.

Usage

derCOP2(cop=NULL, u, v, delv=.Machine$double.eps^0.50,
derdir=c("left", "right", "center"), ...)

Arguments

cop A copula function;
u Nonexceedance probability u in the X direction. If the length of u is unity, then

the length of v can be arbitrarily long. If the length of u is not unity, then the
length of v should be the same and if not only the first value in v will be silently
used;

v Nonexceedance probability v in the Y direction (see previous comment on u);
delv The ∆v interval for the derivative;
derdir The direction of the derivative as described above. Default is left but internally

any setting can be temporarily suspended to avoid improper computations (see
source code); and

... Additional arguments to pass such as the parameters often described in para
arguments of other copula functions. (The lack of para=NULL for derCOP and
derCOP2 was either design oversight or design foresight but regardless it is too
late to enforce package consistency in this matter.)

Value

Value(s) for the partial derivative are returned.

Note

A known caveat of the current implementation of the copula derivative is that there is a chance that
the ∆v will span a singularity or discontinuous (or nearly so) portion of a copula should it have a
property of singularity (or nearly so). The delv is chosen small so the chance is mitigated to be a
small change and certainly seems to work throughout the examples herein. It is not decided whether
a derivative from the positive side (dir="left"), when failing should switch over to a computation
from the negative side (dir="right"). The distinction is important for the computation of the
inverse of the derivative derCOPinv2 because the solution finder needs a sign reversal to work.
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Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

derCOPinv2, derCOP

Examples

derCOP2(cop=W, 0.4, 0.6); derCOP2(cop=P, 0.4, 0.6); derCOP2(cop=M, 0.4, 0.6)

lft <- derCOP2(cop=P, 0.4, 0.6, derdir="left" )
rgt <- derCOP2(cop=P, 0.4, 0.6, derdir="right" )
cnt <- derCOP2(cop=P, 0.4, 0.6, derdir="center")
cat(c(lft, rgt, cnt,"\n"))
# stopifnot(all.equal(lft, rgt), all.equal(lft, cnt))

# Let us contrive a singularity though this NOT A COPULA in the function "afunc".
"afunc" <- function(u,v, ...) return(ifelse(u <= 0.5, sqrt(u^2+v^2), P(u,v,...)))
lft <- derCOP2(cop=afunc, 0.67, 0.5, derdir="left" )
rgt <- derCOP2(cop=afunc, 0.67, 0.5, derdir="right" )
cnt <- derCOP2(cop=afunc, 0.67, 0.5, derdir="center")
cat(c(lft,rgt,cnt,"\n")) # For this example, all are correct (see derCOP examples)

derCOPinv Numerical Derivative Inverse of a Copula for V with respect to U

Description

Compute the inverse of a numerical partial derivative for V with respect to U of a copula, which is
a conditional quantile function for nonexceedance probability t, or

t = cu(v) = C
(−1)
2|1 (v | u) = δC(u, v)

δu
,

and solving for v. Nelsen (2006, pp. 13, 40–41) shows that this inverse is quite important for random
variable generation using the conditional distribution method. This function is not vectorized and
will not be so.

Usage

derCOPinv(cop=NULL, u, t, trace=FALSE,
delu=.Machine$double.eps^0.50, para=NULL, ...)
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Arguments

cop A copula function;

u A single nonexceedance probability u in the X direction;

t A single nonexceedance probability level t;

trace A logical controlling a message on whether the signs on the uniroot are the
same—this is helpful in exploring the numerical derivative limits of a given
implementation of a copula.

delu The ∆u interval for the derivative;

para Vector of parameters or other data structures, if needed, to pass to cop; and

... Additional arguments to pass to the copula.

Value

Value(s) for the derivative inverse are returned.

Note

AN EDUCATIONAL OPPORTUNITY—The Farlie-Gumbel-Morgenstern copula FGM(u, v)
(FGMcop) (Joe, 2014, p. 213) is

FGM(u, v; Θ) = uv[1 + Θ(1− u)(1− v)],

where −1 ≤ Θ ≤ 1 has analytical solutions to the conditional cumulative distribution function
(CDF) C2|1(v | u) as

C2|1(v | u) = v[1 + Θ(1− v)(1− 2u)],

and the inverse of the conditional CDF as

C2|1(v | u) =
[1 + Θ(1− 2u)]−

√
[1 + Θ(1− 2u)]2 − 4t(1− 2u)

2Θ(1− 2u)
.

These three functions for the copula can be defined in R by

"FGMcop" <- function(u,v, para=NULL, ...) u*v*(1 + para*(1-u)*(1-v) )
"joeFGMder" <- function(u,v, para=NULL, ...) v*(1 + para*(1-v)*(1-2*u))
"joeFGMderinv" <- function(u,t, para=NULL, ...) {

K <- (1-2*u)
((1 + para*K) - sqrt((1 + para*K)^2 - 4*t*K))/(2*para*K)

}

The C
(−1)
2|1 (v | u) is critical for simulation by the conditional simulation method. Although exclu-

sively for simulation, copBasic uses inversion of the numerical derivative, the FGM copula has
three representations of supposedly the same analytical algorithm for simulation in the literature
(Durante, 2007; Johnson, 1987; Nelsen, 2006). An opportunity for comparison is thus available.

The three analytical algorithms for nonexceedance probability t given u by mathematics and code,
following Durante (2007, p. 245), are

A = Θ(1− 2u)− 1,



derCOPinv 83

B =
√
A2 − 4t(A+ 1), and

v = 2t/(B −A),

and in R, this “Durante algorithm” is

"durFGMderinv" <- function(u,t, para=NULL, ...) { # Durante (2007, p. 245)
A <- para*(1-2*u) - 1; B <- sqrt(A^2 - 4*t*(A+1)); return(2*t/(B - A))

}

and, letting K = (2u− 1), following Johnson (1987, p. 185)

A = KΘ− 1

B =
√
1− 2KΘ+ (KΘ)2 + 4tKΘ

v = 2t/(B −A)

and in R, this “Johnson algorithm” is

"jonFGMderinv" <- function(u,t, para=NULL, ...) { # Johnson (1987, p. 185)
K <- (2*u - 1)
A <- K*para - 1; B <- sqrt(1 - 2*K*para + (K*para)^2 + 4*t*K*para)
2*t/(B - A)

}

and finally following Nelsen (2006, p. 87)

A = 1 + θ(1− 2u),

B =
√
A2 − 4t(A− 1), and

v = 2t/(B +A),

and in R, this “Nelsen algorithm” is

"nelFGMderinv" <- function(u,t, para=NULL, ...) { # Nelsen (2006, p. 87)
A <- 1 + para*(1-2*u); B <- sqrt(A^2 - 4*t*(A-1)); return(2*t/(B + A))

}

With appropriate code now available, two comparisons can be made in the following sections.

CONDITIONAL DISTRIBUTION FUNCTION—A comparison of the analytical FGM(u, v) deriva-
tive shows that Joe’s equation is congruent with the numerical derivative of copBasic:

joeFGMder(0.8, 0.44, para=0.78) # 0.3246848 (Joe, 2014)
derCOP( 0.8, 0.44, para=0.78, cop=FGMcop) # 0.3246848 (copBasic )

and the result will be used in the computations that follow.

A comparison for t = 0.3246848 of the analytical inverse and the numerical optimization of the
numerical derivative of copBasic is

joeFGMderinv(0.8, 0.3246848, para=0.78) # 0.5327603
derCOPinv( 0.8, 0.3246848, para=0.78, cop=FGMcop) # 0.4399934 --> 0.44
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where obviously, the two results are not in agreement—so something is amiss. Because many
examples in this documentation clearly demonstrate numerical reliability, a tentative conclusion is
that Joe’s listed equation must be in error. Let us check this hypothesis against the three other
sources:

durFGMderinv(0.8, 0.3246848, para=0.78) # 0.2074546 (Durante, 2007)
jonFGMderinv(0.8, 0.3246848, para=0.78) # 0.44 (Johnson, 1987)
nelFGMderinv(0.8, 0.3246848, para=0.78) # 0.44 (Nelsen, 2006)

The result from Durante (2007) is different from both Joe (2014) and from copBasic. However,
the Johnson (1987) and Nelsen (2006) versions are equivalent and congruent to copBasic with
the distinctly different numerical methods of derCOPinv. These incongruent results demonstrate
that care is needed when navigating the copula literature and the usefulness of the copBasic-style
implementation of copula theory. In words, these computations show that the t ≈ 32nd percentile
of the FGM copula given that the 80th percentile in U is about the 44th percentile of V .

Author(s)

W.H. Asquith

References

Durante, F., 2007, Families of copulas, Appendix C, in Salvadori, G., De Michele, C., Kottegoda,
N.T., and Rosso, R., 2007, Extremes in Nature—An approach using copulas: Springer, 289 p.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Johnson, M.E., 1987, Multivariate statistical simulation: New York, John Wiley, 230 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Zhang, L., and Singh, V.P., 2019, Copulas and their applications in water resources engineering:
Cambridge University Press, ISBN 978–1–108–47425–2.

See Also

derCOP

Examples

u <- runif(1); t <- runif(1)
derCOPinv(u,t, cop=W) # perfect negative dependence
derCOPinv(u,t, cop=P) # independence
derCOPinv(u,t, cop=M) # perfect positive dependence
derCOPinv(u,t, cop=PSP) # a parameterless copula example
## Not run:
# Simulate 500 values from product (independent) copula
plot(NA,NA, type="n", xlim=c(0,1), ylim=c(0,1), xlab="U", ylab="V")
for(i in 1:500) {

u <- runif(1); t <- runif(1)
points(u, derCOPinv(cop=P, u, t), cex=0.5, pch=16) # black dots

}
# Now simulate 500 from the Nelsen 4.2.12 copula.
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for(i in 1:500) {
u <- runif(1); t <- runif(1)
points(u,derCOPinv(cop=N4212cop,para=9.3,u,t), cex=2, pch=16, col=2) # red dots

} #
## End(Not run)

## Not run:
# Zhang and Singh (2019) exam. 3.23, p. 105
# show the application of the derivative inversion C2|1
# for u=0.6036 and t=0.6036 ---> v = 0.4719
derCOPinv( cop=CLcop, 0.6036, 0.4028, para=0.5) # 0.4719 for C2|1
derCOPinv2(cop=CLcop, 0.6036, 0.4028, para=0.5) # 0.4719 for C1|2
# and C2|1 and C1|2 are equal because the copula has permutation symmetry
isCOP.permsym(cop=CLcop, para=0.5) # TRUE
## End(Not run)

derCOPinv2 Numerical Derivative Inverse of a Copula for U with respect to V

Description

Compute the inverse of a numerical partial derivative for U with respect to V of a copula, which is
a conditional quantile function for nonexceedance probability t, or

t = cv(u) = C
(−1)
1|2 (u | v) = δC(u, v)

δv
,

and solving for u. Nelsen (2006, pp. 13, 40–41) shows that this inverse is quite important for ran-
dom variable generation using the conditional distribution method. This function is not vectorized
and will not be so.

Usage

derCOPinv2(cop=NULL, v, t, trace=FALSE,
delv=.Machine$double.eps^0.50, para=NULL, ...)

Arguments

cop A copula function;

v A single nonexceedance probability v in the Y direction;

t A single nonexceedance probability level t;

trace A logical controlling a message on whether the signs on the uniroot are the
same—this is helpful in exploring the numerical derivative limits of a given
implementation of a copula.

delv The ∆v interval for the derivative;

para Vector of parameters or other data structure, if needed, to pass to cop; and

... Additional arguments to pass to the copula.
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Value

Value(s) for the derivative inverse are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

derCOP2

Examples

u <- runif(1); t <- runif(1)
derCOPinv2(u,t, cop=W) # perfect negative dependence
derCOPinv2(u,t, cop=P) # independence
derCOPinv2(u,t, cop=M) # perfect positive dependence
derCOPinv2(u,t, cop=PSP) # a parameterless copula example
## Not run:
# Simulate 500 values from product (independent) copula
plot(NA,NA, type="n", xlim=c(0,1), ylim=c(0,1), xlab="U", ylab="V")
for(i in 1:500) {

v <- runif(1); t <- runif(1)
points(derCOPinv2(cop=P, v, t),v, cex=0.5, pch=16) # black dots

}
# Simulate 500 of a Frechet Family copula and note crossing singularities.
for(i in 1:500) {

v <- runif(1); t <- runif(1)
u <- derCOPinv2(v, t, cop=FRECHETcop, para=list(alpha=0.7, beta=0.169))
points(u,v, cex=2, pch=16, col=2) # red dots

} #
## End(Not run)

diagCOP The Diagonals of a Copula

Description

Compute the primary diagonal or alternatively the secondary diagonal (Nelsen, 2006, pp. 12 and
16) of copula C(u, v). The primary diagonal is defined as

δC(t) = C(t, t),

and the secondary diagonal is defined as

δ⋆C(t) = C(t, 1− t).
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Plotting is provided by this function because the diagonals are such important visual attributes of
a copula. This function computes whole diagonals. If individual values are desired, then users are
asked to use function calls along the diagonal such as COP(0.25,0.25, cop=P) for the primary
diagonal and COP(0.25,1-0.25, cop=P) for the secondary diagonal, where for both examples the
independence copula (uv = Π; P) was chosen for purposes of clarification.

The δC(t) is related to order statistics of the multivariate sample (here bivariate) (Durante and
Sempi, 2015, p. 68). The probability for the maxima is Pr[max(u, v) ≤ t] = C(t, t) = δC(t) and
the probability for the minima is Pr[min(u, v) ≤ t] = 2t− δC(t).

Usage

diagCOP(cop=NULL, para=NULL, secondary=FALSE,
ploton=TRUE, lines=TRUE, delt=0.005, ...)

Arguments

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

secondary A logical to toggle the secondary diagonal;

ploton A logical to toggle on the plot;

lines Draw the lines of diagonal to the current device;

delt The increment of the diagonal curve to plot, defaults to 0.5-percent intervals,
which should be small enough to resolve fine curvature for many copulas in
practice; and

... Additional arguments to pass to the plot() and lines() functions in R.

Value

An R list of the t values, δC(t, t) (primary) or δ⋆C(t, 1− t) (secondary diagonal), along with a tag
as to which diagonal is returned.

Author(s)

W.H. Asquith

References

Durante, F., and Sempi, C., 2015, Principles of copula theory: Boca Raton, CRC Press, 315 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

diagCOPatf, COP, sectionCOP
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Examples

## Not run:
# The primary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop=W, lwd=2)
D <- diagCOP(cop=P, lty=2, ploton=FALSE)
D <- diagCOP(cop=M, col=2, ploton=FALSE)
D <- diagCOP(cop=PSP, col=3, ploton=FALSE)
mtext("PRIMARY DIAGONAL OF SIMPLE COPULAS") # four primary diagonals
## End(Not run)

## Not run:
# The secondary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop=W, lwd=2, secondary=TRUE)
D <- diagCOP(cop=P, lty=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop=M, col=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop=PSP, col=3, secondary=TRUE, ploton=FALSE)
mtext("SECONDARY DIAGONAL OF SIMPLE COPULAS") # four secondary diagonals
## End(Not run)

diagCOPatf Numerical Rooting the Diagonal of a Copula

Description

Compute a numerical root along the primary diagonal (Nelsen, 2006, pp. 12 and 16) of copula
C(u, v) = F = C(t, t) having joint probability F . The diagonals treat the nonexceedance proba-
bilities u and v as equals (u = v = t). The primary diagonal is defined for a joint nonexceedance
probability t as

F = C(t, t) → t = δ
(−1)
C (f),

where the function solves for t. Examples using the concept behind diagCOPatf are available
under duCOP and jointCOP, thus the diagCOPatf function can be also called by either jointCOP
and joint.curvesCOP. Internally, the function uses limits of the root finder that are not equal to
the anticipated interval [0, 1], but equal to “small” (see description for argument interval). The
function does trap for f = 0 by returning zero and f = 1 by returning unity.

Usage

diagCOPatf(f, cop=NULL, para=NULL, interval=NULL, silent=TRUE, verbose=FALSE,
tol=.Machine$double.eps/10, ...)

diagCOPinv(f, cop=NULL, para=NULL, interval=NULL, silent=TRUE, verbose=FALSE,
tol=.Machine$double.eps/10, ...)
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Arguments

f Joint probability values as a nonexceedance probability F for which to compute
the root t;

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

interval An optional interval for the root search. The default is interval=c(lo, 1-lo)
for lo=.Machine$double.eps because of difficulties for an interval on [0, 1];

silent The argument of the same name given over to try() wrapping the uniroot()
operation;

verbose If TRUE then the whole output of the numerical root is returned using only the
first value provided by argument f;

tol The tolerance to pass to uniroot. The default here is much smaller than the
default of the uniroot() function in R because of possibility that diagCOPatf
would be used at extremely large nonexceedance probabilities; and

... Additional arguments to pass.

Value

An R list of the root by the uniroot() function in R is returned if verbose is TRUE, otherwise
the roots (diagonal inverses) for t are returned, and if an individual inverse operation fails, then a
NA is returned instead.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

diagCOP, jointCOP, joint.curvesCOP

Examples

diagCOPatf(0.67, cop=PSP) # 0.8023879
diagCOPatf(0.99, cop=M) # 0.99 (now see the example below)

## Not run:
# Several functions from the lmomco package are needed.
# Suppose we have two phenomena with these log10 L-moments:
lmrA <- lmomco::vec2lmom(c(3.97, 0.485, -0.1178, 0.06857))
lmrB <- lmomco::vec2lmom(c(3.77, 0.475, -0.1377, 0.08280))
# Suppose we think that the Gumbel-Hougaard copula is appropriate with a Tau=0.45
Tau <- 0.45 # Kendall Tau between A and B.
# Suppose that the F=0.99 for either A and B provides a common risk level when they
# are considered in isolation. But what if A and B are rivers that join and joint
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# FF=0.99 at their union is of interest?
FF <- 0.99
parA <- lmomco::lmom2par(lmrA, type="kap")
parB <- lmomco::lmom2par(lmrB, type="kap")
EventA <- lmomco::qlmomco(FF, parA)
EventB <- lmomco::qlmomco(FF, parB)
ApB <- 10^(EventA) + 10^(EventB) # Purely an additive conceptualization
# The FF=0.99 event is assumed to occur simultaneously on both streams, which is
# equivalent to saying that the correlation between the two is absolute 1-to-1.

# Now consider including the association as measured by Kendall Tau:
Fjoint <- diagCOPatf(FF, cop=GHcop, para=GHcop(tau=Tau)$para)
EventAj <- lmomco::qlmomco(Fjoint, parA)
EventBj <- lmomco::qlmomco(Fjoint, parB)
AcB <- 10^(EventAj) + 10^(EventBj) # Joint probability 0.99 at the union

# Now consider the association if the rivers are INDEPENDENT:
Fjoint <- diagCOPatf(FF, cop=GHcop, para=GHcop(tau=0)$para)
EventAj <- lmomco::qlmomco(Fjoint, parA)
EventBj <- lmomco::qlmomco(Fjoint, parB)
AiB <- 10^(EventAj) + 10^(EventBj) # Joint probability 0.99 at the union

# ApB = 312,000 # The perfectly simultaneous addition makes too little.
# AcB = 323,000 # The copula preserves at least the known association.
# AiB = 330,000 # The independence conceptualization makes too much.
## End(Not run)

duCOP The Dual of a Copula Function

Description

Compute the dual of a copula (function) from a copula (Nelsen, 2006, pp. 33–34), which is defined
as

Pr[U ≤ v or V ≤ v] = C̃(u, v) = u+ v −C(u, v),

where C̃(u, v) is the dual of a copula and u and v are nonexceedance probabilities. The dual of a
copula is the expression for the probability that either U ≤ u or V ≤ v, which is unlike the co-
copula (function) (see coCOP) that provides Pr[U > u or V > v]. The dual of a copula is a function
and not in itself a copula. The dual of the survival copula (surCOP) is the co-copula (function)
(coCOP). Some rules of copulas mean that

Ĉ(u′, v′) + C̃(u, v) = 1,

where Ĉ(u′, v′) is the survival copula in terms of exceedance probabilities u′ and v′ or in copBasic
code that the functions surCOP + duCOP equal unity.
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The function duCOP gives “protection” against simultaneous (concurrent or dual) risk by failure
if and only if failure is caused (defined) by both hazard sources U and V being by themselves
responsible for failure. Expressing this in terms of an annual probability of occurrence (q), one has

q = 1− Pr[U ≤ v or V ≤ v] = 1− C̃(u, v) or

in R code q <- 1 - duCOP(u,v). So, as a mnemonic: A dual of a copula is the probabililty of
nonexceedance if the hazard sources must dual (concur, link, pair, twin, twain) between each other
to cause failure. An informative graphic is shown within copBasic-package.

Usage

duCOP(u, v, cop=NULL, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula; and
... Additional arguments to pass (such as parameters, if needed, for the copula in

the form of a list.

Value

Value(s) for the dual of a copula are returned.

Note

There can be confusion in the interpretation and implemenation of the or condition of joint prob-
ability provided by C̃(u, v). Two types of or’s seemingly exist depending on one’s concept of the
meaning of “or.” To start, there is the “either or both” conceptualization (joint or) that encompasses
either “event” (say a loss) of importance for random variables U and V as well as the joint and
conditions where both variables simultaneously are generating an event of importance.

Let us continue by performing a massive simulation for the PSP(u, v) copula (PSP) and set an
either event standard on the margins as 10 percent for an arbitrary starting point. The PSP has
positive association with lower tail dependency, and the example here considers the left tail as the
risk tail.

Event <- 0.1; nn <- 100000; set.seed(9238)
UV <- simCOP(n=nn, cop=PSP, graphics=FALSE) # 1E5 realizations

Next, let us step through counting and then make theoretical comparisons using copula theory. The
joint and condition as nonexceedances is

ANDs <- length(UV$U[UV$U <= Event & UV$V <= Event]) / nn
ANDt <- COP(Event, Event, cop=PSP)
message( "Joint AND by simulation = ", round(ANDs, digits=5),

"\n Joint AND by theory = ", round(ANDt, digits=5))
# ANDs = 0.05348 and ANDt = 0.05263 (numerical congruence)
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where it is obvious that the simulations and theory estimate about the same joint and condition.
Now, the joint or condition as nonexceedances is

ORs <- length(UV$U[UV$U <= Event | UV$V <= Event]) / nn
ORt <- duCOP(Event, Event, cop=PSP)
message( "Joint OR by simulation = ", round(ORs, digits=5),

"\n Joint OR by theory = ", round(ORt, digits=5))
# ORs = 0.14779 and ORt = 0.14737 (numerical congruence)

where it is obvious that the simulations and theory estimate about the same joint or condition.
Finally, the joint mutually exclusive or condition as nonexceedances is

eORs <- length((UV$U[(UV$U <= Event | UV$V <= Event) &
! (UV$U <= Event & UV$V <= Event)])) / nn

eORt <- ORt - ANDt # theoretical computation
message( "Joint exclusive OR by simulation = ", round(eORs, digits=5),

"\n Joint exclusive OR by theory = ", round(eORt, digits=5))
# eORs = 0.09431 and eORt = 0.09474 (numerical congruence)

where it is obvious that the simulations and theory estimate about the same joint mutually exclusive
or condition, and where it is shown that the prior two theoretical joint probabilities can be subtracted
from each to yield the mutually exclusive or condition.

Let us then play out a scenario in which it is judged that of the events causing damage that the si-
multaneous occurrance is worse but that engineering against about 5 percent of events not occurring
at the same time represents the most funding available. Using numerical methods, it is possible to
combine C̃ and C and assume equal marginal risk in U and V as the following list shows:

"designf" <- function(t) { # a one-off function just for this example
duCOP(t, t, cop=PSP) - COP(t, t, cop=PSP) - 5/100 # 5 percent

}
dThres <- uniroot(designf, c(.Machine$double.eps,0.5))$root

where the uniroot function performs the optimization and the .Machine$double.eps value is
used because the PSP is NaN for zero probability. (It is unity for unity marginal probabilities.)

The design threshold on the margins then is dThres ≈ 0.05135. In other words, the designThres
is the marginal probability that results in about 5 percent of events not occurring at the same time.
Then considering the simulated sample and counting the nonexceedances by code one achieves:

Damage <- length( UV$U[ UV$U <= dThres | UV$V <= dThres ])
SimDamage <- length( UV$U[ UV$U <= dThres & UV$V <= dThres ])
NonSimDamage <- length((UV$U[(UV$U <= dThres | UV$V <= dThres) &

! (UV$U <= dThres & UV$V <= dThres)]) )
message( " Damaging Events (sim.) = ", Damage,

"\n Simultaneous damaging events (sim.) = ", SimDamage,
"\n Nonsimultaneous damaging events (sim.) = ", NonSimDamage)

but also the theoretical expectations are readily computed using copula theory:
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tDamage <- as.integer(duCOP(dThres, dThres, cop=PSP) * nn)
tSimDamage <- as.integer( COP(dThres, dThres, cop=PSP) * nn)
tNonSimDamage <- tDamage - tSimDamage
message( " Damaging Events (theory) = ", tDamage,

"\n Simultaneous damaging events (theory) = ", tSimDamage,
"\n Nonsimultaneous damaging events (theory) = ", tNonSimDamage)

The counts from the former listing are 7,670; 2,669; and 5,001, whereas the respective counts from
the later listing are 7,635; 2,635; and 5,000. Numerical congruency in the counts thus exists.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, coCOP, surCOP, jointCOP, joint.curvesCOP

Examples

u <- runif(1); t <- runif(1)
duCOP(cop=W,u,t) # joint or probability for perfect negative dependence
duCOP(cop=P,u,t) # joint or probability for perfect independence
duCOP(cop=M,u,t) # joint or probability for perfect positive dependence
duCOP(cop=PSP,u,t) # joint or probability for some positive dependence

# Next demonstrate COP + duCOP = unity.
"MOcop.formula" <- function(u,v, para=para, ...) {

alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
"MOcop" <- function(u,v, ...) { asCOP(u,v, f=MOcop.formula, ...) }

u <- 0.2; v <- 0.75; ab <- c(1.5, 0.3)
surCOP(1-u,1-v, cop=MOcop, para=ab) + duCOP(u,v, cop=MOcop, para=ab) # UNITY

# See extended code listings and discussion in the Note section

EMPIRcop The Bivariate Empirical Copula
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Description

The bivariate empirical copula (Nelsen, 2006, p. 219) for a bivariate sample of length n is defined
for random variables X and Y as

Cn

(
i

n
,
j

n

)
=

number of pairs (x, y) with x ≤ x(i) and y ≤ y(j)

n
,

where x(i) and y(i), 1 ≤ i, j ≤ n or expressed as
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1

n

n∑
i=1

1

(
Ri

n
≤ ui,

Si

n
≤ vi

)
,

where Ri and Si are ranks of the data for U and V , and 1(.) is an indicator function that score 1 if
condition is true otherwise scoring zero. Using more generic notation, the empirical copula can be
defined by

Cn(u, v) =
1

n

n∑
i=1

1
(
uobsi ≤ ui, v

obs
i ≤ vi

)
,

where uobs and vobs are thus some type of nonparametric nonexceedance probabilities based on
counts of the underlying data expressed in probabilities.

Hazen Empirical Copula—The “Hazen form” of the empirical copula is

CH
n (u, v) =

1

n

n∑
i=1

1

(
Ri − 0.5

n
≤ ui,

Si − 0.5

n
≤ vi

)
,

which can be triggered by ctype="hazen". This form is named for this package because of direct
similarity of the Hazen plotting position to the above definition. Joe (2014, pp. 247–248) uses the
Hazen form. Joe continues by saying “[the] adjustment of the uniform score [(R − 0.5)/n]] could
be done in an alternative form, but there is [asymptotic] equivalence[, and that] CH

n puts mass of
n−1 at the tuples ([ri1−0.5]/n, . . . , [rid−0.5]/n) for i = 1, . . . , n.” A footnote by Joe (2014) says
that “the conversion [R/(n+1)] is commonly used for the empirical copula.” This later form is the
“Weibull form” described next. Joe’s preference for the Hazen form is so that the sum of squared
normal scores is closer to unity for large n than such a sum would be attained using the Weibull
form.

Weibull Empirical Copula—The “Weibull form” of the empirical copula is

CW
n (u, v) =

1

n

n∑
i=1

1

(
Ri

n+ 1
≤ ui,

Si

n+ 1
≤ vi

)
,

which can be triggered by ctype="weibull". This form is named for this package because of
direct similarity of the Weibull plotting position to the definition, and this form is the default (see
argument description).

Bernstein Empirical Copula—The empirical copula can be extended nonparametrically as the Bern-
stein empirical copula (Hernández-Maldonado, Díaz-Viera, and Erdely, 2012) and is formulated as

CB
n(u, v; η) =

n∑
i=1

n∑
j=1

Cn

(
i

n
,
j

n

)
× η(i, j;u, v),
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where the individual Bernstein weights η(i, j) for the kth paired value of the u and v vectors are

η(i, j;u, v) =

(
n

i

)
ui(1− u)n−i ×

(
n

j

)
uj(1− u)n−j .

The Bernstein extension, albeit conceptually pure in its shuffling by binomial coefficients and left-
and right-tail weightings, is quite CPU intensive as inspection of the equations above indicates a
nest of four for() loops in R. (The native R code of copBasic uses the sapply() function in R
liberally for substantial but not a blazing fast speed increase.) The Bernstein extension results in a
smoother surface of the empirical copula and can be triggered by ctype="bernstein".

Checkerboard Empirical Copula—A simple smoothing to the empirical copula is the checkerboard
empirical copula (Segers et al., 2017) that has been adapted from the copula package. It is numer-
ically intensive like the Bernstein and possibly of limited usefulness for large sample sizes. The
checkerboard extension can be triggered by ctype="checkerboard" and is formulated as

C♯
n(U) =

1

n+ o

n∑
i=1

d∏
i=1

min[max[nUj −R
(n)
i,j + 1, 0], 1],

where U is a d = 2 column matrix of u and v, R is a rank function, and o is an offset term on [0, 1].

The empirical copula frequency can be defined (Nelson, 2006, p. 219) as

cn(u, v) = Cn
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)
−Cn
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,
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)
−Cn

(
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n
,
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)
+Cn

(
i− i

n
,
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n

)
.

Usage

EMPIRcop(u, v, para=NULL,
ctype=c("weibull", "hazen", "1/n", "bernstein", "checkerboard"),

bernprogress=FALSE, checkerboard.offset=0, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
para A vector (single element) of parameters—the U-statistics of the data (see Ex-

amples). Alternatively, para can be a list holding a para as would be done
if it were a vector, but arguments bernstein and bernprogress can be option-
ally included—this feature is provided so that the Bernstein refinement can be
controlled within the context of other functions calling EMPIRcop such as by
level.curvesCOP;

ctype An alternative means for trigging the definition of Cn, CH
n (default), CW

n , CB
n ,

or C♯
n. This argument of the same name is also used by blomCOP;

bernprogress The Bernstein copula extension is CPU intensive(!), so a splash counter is pushed
to the console via the message() function in R so as to not discourage the user;

checkerboard.offset

A scaling of the ratio sum(....)/(n+offset) for the checkerboard empirical
copula; and

... Additional arguments to pass.
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Value

Value(s) for the copula are returned.

Note

Not all theoretical measures of copula dependence (both measures of association and measures of
asymmetry), which use numerical integration by the integrate() function in R, can be used for
all empirical copulas because of “divergent” integral errors; however, examples using Hoeffding
Phi (ΦC; hoefCOP) and shown under Examples. Other measures of copula dependence include
blomCOP, footCOP, giniCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, and uvlmoms. Each of these
measures fortunately has a built-in sample estimator.

It is important to distinquish between a sample estimator and the estimation of the measure using
the empirical copula itself via the EMPIRcop function. The sample estimators (triggered by the
as.sample arguments for the measures) are reasonably fast and numerically preferred over using
the empirical copula. Further, the generally slow numerical integrations for the theoretical defini-
tions of these copula measures might have difficulties. Limited testing, however, suggests preva-
lence of numerical integration not erroring using the Bernstein extension of the empirical copula,
which must be a by-product of the enhanced and sufficient smoothness for the R default numerical
integration to succeed. Many of the measures have brute option for a brute-force numerical inte-
gration on a regular grid across the empirical copula—these are slow but should not trigger errors.
As a general rule, users should still use the sample estimators instead.

Author(s)

W.H. Asquith

References

Hernández-Maldonado, V., Díaz-Viera, M., and Erdely, A., 2012, A joint stochastic simulation
method using the Bernstein copula as a flexible tool for modeling nonlinear dependence structures
between petrophysical properties: Journal of Petroleum Science and Engineering, v. 90–91, pp.
112–123.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

Segers, J., Sibuya, M., and Tsukahara, H., 2017, The empirical beta copula: Journal of Multivariate
Analysis, v. 155, pp. 35–51.

See Also

diagCOP, level.curvesCOP, simCOP

Examples

## Not run:
set.seed(62)
EMPIRcop(0.321,0.78, para=simCOP(n=90, cop=N4212cop,

para=2.32, graphics=FALSE)) # [1] 0.3222222
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N4212cop(0.321,0.78, para=2.32) # [1] 0.3201281
## End(Not run)

## Not run:
set.seed(62) # See note below about another seed to try.
psp <- simCOP(n=34, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls. Although the Weibull
# plotting positions are chosen, internally EMPIRcop uses ranks, but the model
# here is to imagine one having a sample in native units of the random variables
# and then casting them into probabilities for other purposes.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics

# The next four values should be very close if n above were say 1000, but the
# ctype="bernstein"" should not be used if n >> 34 because of inherently long runtime.
PSP(0.4,0.6) # 0.3157895 (compare to listed values below)

# Two seeds are shown so that the user can see that depending on the distribution
# of the values given by para that different coincidences of which method is
# equivalent to another exist.
# For set.seed(62) --- "hazen" == "weibull" by coincidence
# "hazen" --> 0.3529412
# "weibull" --> 0.3529412
# "1/n" --> 0.3235294
# "bernstein" --> 0.3228916
# For set.seed(85) --- "1/n" == "hazen" by coincidence
# "hazen" --> 0.3529412
# "weibull" --> 0.3823529
# "1/n" --> 0.3529412
# "bernstein" --> 0.3440387

# For set.seed(62) --- not all measures of association can be used for all
# empirical copulas because of 'divergent' integral errors, but this is an example
# for Hoeffding Phi. These computations are CPU intensive, esp. Bernstein.
hoefCOP(as.sample=TRUE, para=uv) # (sample estimator is fast) # 0.4987755
hoefCOP(cop=EMPIRcop, para=uv, ctype="hazen") # 0.5035348
hoefCOP(cop=EMPIRcop, para=uv, ctype="weibull") # 0.4977145
hoefCOP(cop=EMPIRcop, para=uv, ctype="1/n") # 0.4003646
hoefCOP(cop=EMPIRcop, para=uv, ctype="bernstein") # 0.4563724
hoefCOP(cop=EMPIRcop, para=uv, ctype="checkerboard") # 0.4952427
## End(Not run)

# All other example suites shown below are dependent on the pseudo-data in the
# variable uv. It is suggested to not run with a sample size much larger than the
# above n=34 if the Bernstein comparison is intended (wanted) simply because of
# lengthy(!) run times, but the n=34 does provide a solid demonstration how the
# level curves for berstein weights are quite smooth.

## Not run:
# Now let us construct as many as three sets of level curves to the sample
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# resided in the uv sample from above using the PSP copula.
level.curvesCOP(cop=PSP); # TRUE, parametric, fast, BLACK CURVES

# Empirical copulas can consume lots of CPU.
# RED CURVES, if n is too small, uniroot() errors might be triggered and likely
# will be using the sample size of 34 shown above.
level.curvesCOP(cop=EMPIRcop, para=uv, delu=0.03, col=2, ploton=FALSE)

# GREEN CURVES (large CPU committment)
# Bernstein progress is uninformative because level.curvesCOP() has taken over control.
bpara <- list(para=uv, ctype="bernstein", bernprogress=FALSE)
level.curvesCOP(cop=EMPIRcop, para=bpara, delu=0.03, col=3, ploton=FALSE)
# The delu is increased for faster execution but more important,
# notice the greater smoothness of the Bernstein refinement.
## End(Not run)

## Not run:
# Experimental from R Graphics by Murrell (2005, p.112)
"trans3d" <- # blackslashes seem needed for the package
function(x,y,z, pmat) { # for user manual building but bad syntax

tmat <- cbind(x,y,z,1) %*% pmat # because remember the percent sign is a
return(tmat[,1:2] / tmat[,4]) # a comment character in LaTeX.

}

the.grid <- EMPIRgrid(para=uv, ctype="checkerboard")
the.diag <- diagCOP(cop=EMPIRcop, para=uv, ploton=FALSE, lines=FALSE)

the.persp <- persp(the.grid$empcop, theta=-25, phi=20,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")

the.trace <- trans3d(the.diag$t, the.diag$t, the.diag$diagcop, the.persp)
lines(the.trace, lwd=2, col=2) # The diagonal of the copula

# The following could have been used as an alternative to call persp()
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=-25, phi=20,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
lines(the.trace, lwd=2, col=2) # The diagonal of the copula #
## End(Not run)

EMPIRcopdf Data Frame Representation of the Bivariate Empirical Copula

Description

Generate an R data.frame representation of the bivariate empirical copula (Salvadori et al., 2007,
p. 140) using the coordinates as preserved in the raw data in the parameter object of the bivariate
empirical copula.

Usage

EMPIRcopdf(para=NULL, ...)
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Arguments

para A vector (single element) of parameters—the U-statistics of the data (see exam-
ple) to pass to EMPIRcop; and

... Additional arguments to pass to EMPIRcop.

Value

An R data.frame of u, v, and Cn(u, v) values of the bivariate empirical copula is returned.

Author(s)

W.H. Asquith

References

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

EMPIRcop

Examples

## Not run:
psp <- simCOP(n=39, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # our U-statistics

empcop <- EMPIRcopdf(para=uv)
plot(empcop$u, empcop$v, cex=1.75*empcop$empcop, pch=16,

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
# Dot size increases with joint probability (height of the copulatic surface).
points(empcop$u, empcop$v, col=2) # red circles
## End(Not run)

EMPIRgrid Grid of the Bivariate Empirical Copula

Description

Generate a gridded representation of the bivariate empirical copula (see EMPIRcop, Salvadori et al.,
2007, p. 140). This function has the primary intention of supporting 3-D renderings or 2-D images
of the copulatic surface, but many empirical copula functions in copBasic rely on the grid of the
empirical copula—unlike the functions that support parametric copulas.
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Usage

EMPIRgrid(para=NULL, deluv=0.05, verbose=FALSE, ...)

Arguments

para A vector (single element) of parameters—the U-statistics of the data (see exam-
ple);

deluv A delta value of the both the u and v axes (grid edges) for empirical copula
estimation by the EMPIRcop function;

verbose A logical controlling whether the progress during grid building is to be shown;
and

... Additional arguments to pass to EMPIRcop.

Value

An R list of the gridded values of u, v, and Cn(u, v) values of the bivariate empirical copula is
returned. (Well only Cn(u, v) is in the form of a grid as an R matrix.) The deluv used to generated
the grid also is returned.

Note

The extensive suite of examples is included here because the various ways that algorithms involving
empirical copulas can be tested. The figures also provide excellent tools for education on copulas.

Author(s)

W.H. Asquith

References

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

EMPIRcop, EMPIRcopdf

Examples

## Not run:
# EXAMPLE 1:
psp <- simCOP(n=490, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # our U-statistics
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# The follow function is used to make 3-D --> 2-D transformation
# From R Graphics by Murrell (2005, p.112)
"trans3d" <- # blackslashes seem needed for the package
function(x,y,z, pmat) { # for user manual building but bad syntax

tmat <- cbind(x,y,z,1) %*% pmat # because remember the percent sign is a
return(tmat[,1:2] / tmat[,4]) # a comment character in LaTeX.

}

the.grid <- EMPIRgrid(para=uv)
cop.diag <- diagCOP(cop=EMPIRcop, para=uv, ploton=FALSE, lines=FALSE)
empcop <- EMPIRcopdf(para=uv) # data.frame of all points

# EXAMPLE 1: PLOT NUMBER 1
the.persp <- persp(the.grid$empcop, theta=-25, phi=20,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")

# EXAMPLE 1: PLOT NUMBER 2 (see change in interaction with variable 'the.grid')
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=-25, phi=20,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")

the.diag <- trans3d(cop.diag$t, cop.diag$t, cop.diag$diagcop, the.persp)
lines(the.diag, lwd=4, col=3, lty=2)

points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)

# the sqrt() is needed to darken or enhance the colors

S <- sectionCOP(cop=PSP, 0.2, ploton=FALSE, lines=FALSE)
thelines <- trans3d(rep(0.2, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=6)
S <- sectionCOP(cop=PSP, 0.2, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(rep(0.2, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=6, lty=2)

S <- sectionCOP(cop=PSP, 0.85, ploton=FALSE, lines=FALSE, wrtV=TRUE)
thelines <- trans3d(S$t, rep(0.85, length(S$t)), S$seccop, the.persp)
lines(thelines, lwd=2, col=2)
S <- sectionCOP(cop=PSP, 0.85, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(S$t, rep(0.85, length(S$t)), S$seccop, the.persp)
lines(thelines, lwd=2, col=2, lty=2)

empder <- EMPIRgridder(empgrid=the.grid)
thelines <- trans3d(rep(0.2, length(the.grid$v)), the.grid$v, empder[3,], the.persp)
lines(thelines, lwd=4, col=6) #
## End(Not run)

## Not run:
# EXAMPLE 2:
# An asymmetric example to demonstrate that the grid is populated with the
# correct orientation---meaning U is the horizontal and V is the vertical.
"MOcop" <- function(u,v, para=NULL) { # Marshall-Olkin copula

alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
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# EXAMPLE 2: PLOT NUMBER 1 # See the asymmetry
uv <- simCOP(1000, cop=MOcop, para=c(0.4,0.9)) # The parameters cause asymmetry.
mtext("Simulation from a defined Marshall-Olkin Copula")
the.grid <- EMPIRgrid(para=uv, deluv=0.025)

# EXAMPLE 2: PLOT NUMBER 2
# The second plot by image() will show a "hook" of sorts along the singularity.
image(the.grid$empcop, col=terrain.colors(40)) # Second plot is made
mtext("Image of gridded Empirical Copula")

# EXAMPLE 2: PLOT NUMBER 3
empcop <- EMPIRcopdf(para=uv) # data.frame of all points
# The third plot is the 3-D version overlain with the data points.
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=240, phi=40,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),

col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)
mtext("3-D representation of gridded empirical copula with data points")

# EXAMPLE 2: PLOT NUMBER 4
# The fourth plot shows a simulation and the quasi-emergence of the singularity
# that of course the empirical perspective "knows" nothing about. Do not use
# the Kumaraswamy smoothing because in this case the singularity because
# too smoothed out relative to the raw empirical, but of course the sample size
# is large enough to see such things. (Try kumaraswamy=TRUE)
empsim <- EMPIRsim(n=1000, empgrid = the.grid, kumaraswamy=FALSE)
mtext("Simulations from the Empirical Copula") #
## End(Not run)

## Not run:
# EXAMPLE 3:
psp <- simCOP(n=4900, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # our U-statistics

# EXAMPLE 3: # PLOT NUMBER 1
deluv <- 0.0125 # going to cause long run time with large n
# The small deluv is used to explore solution quality at U=0 and 1.
the.grid <- EMPIRgrid(para=uv, deluv=deluv)
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=-25, phi=20,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")

S <- sectionCOP(cop=PSP, 1, ploton=FALSE, lines=FALSE)
thelines <- trans3d(rep(1, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2)

S <- sectionCOP(cop=PSP, 0, ploton=FALSE, lines=FALSE)
thelines <- trans3d(rep(0, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2)
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S <- sectionCOP(cop=PSP, 1, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(rep(1, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2, lty=2)

S <- sectionCOP(cop=PSP, 2*deluv, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(rep(2*deluv, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2, lty=2)

empder <- EMPIRgridder(empgrid=the.grid)
thelines <- trans3d(rep(2*deluv,length(the.grid$v)),the.grid$v,empder[3,],the.persp)
lines(thelines, lwd=4, col=5, lty=2)

pdf("conditional_distributions.pdf")
ix <- 1:length(attributes(empder)$rownames)
for(i in ix) {

u <- as.numeric(attributes(empder)$rownames[i])
S <- sectionCOP(cop=PSP, u, ploton=FALSE, lines=FALSE, dercop=TRUE)
# The red line is the true.
plot(S$t, S$seccop, lwd=2, col=2, lty=2, type="l", xlim=c(0,1), ylim=c(0,1),

xlab="V, NONEXCEEDANCE PROBABILITY", ylab="V, VALUE")
lines(the.grid$v, empder[i,], lwd=4, col=5, lty=2) # empirical
mtext(paste("Conditioned on U=",u," nonexceedance probability"))

}
dev.off() #
## End(Not run)

EMPIRgridder Derivatives of the Grid of the Bivariate Empirical Copula for V with
respect to U

Description

Generate derivatives of V with respect to U of a gridded representation of the bivariate empirical
copula (see EMPIRcop). This function is the empirical analog to derCOP.

Usage

EMPIRgridder(empgrid=NULL, ...)

Arguments

empgrid The grid from EMPIRgrid; and

... Additional arguments to pass.

Value

The gridded values of the derivatives of the bivariate empirical copula.
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Author(s)

W.H. Asquith

See Also

EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder2

Examples

## Not run:
para <- list(alpha=0.15, beta=0.65, cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.005, para2=1000)
uv <- simCOP(n=1000, cop=composite2COP, para=para)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

"trans3d" <- # blackslashes seem needed for the package
function(x,y,z, pmat) { # for user manual building but bad syntax

tmat <- cbind(x,y,z,1) %*% pmat # because remember the percent sign is a
return(tmat[,1:2] / tmat[,4]) # a comment character in LaTeX.

}

the.grid <- EMPIRgrid(para=uv, deluv=0.1)
the.diag <- diagCOP(cop=EMPIRcop, para=uv, ploton=FALSE, lines=FALSE)
empcop <- EMPIRcopdf(para=uv) # data.frame of all points

the.persp <- persp(the.grid$empcop, theta=-25, phi=20,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")

points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16, cex=0.75)

# Now extract the copula sections
some.lines <- trans3d(rep(0.2, length(the.grid$v)),

the.grid$v, the.grid$empcop[3,], the.persp)
lines(some.lines, lwd=2, col=2)
some.lines <- trans3d(the.grid$u, rep(0.6, length(the.grid$u)),

the.grid$empcop[,7], the.persp)
lines(some.lines, lwd=2, col=3)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), the.grid$v,

the.grid$empcop[8,], the.persp)
lines(some.lines, lwd=2, col=6)

# Now compute some derivatives or conditional cumulative
# distribution functions
empder <- EMPIRgridder(empgrid=the.grid)
some.lines <- trans3d(rep(0.2, length(the.grid$v)), the.grid$v, empder[3,], the.persp)
lines(some.lines, lwd=4, col=2)

empder <- EMPIRgridder2(empgrid=the.grid)
some.lines <- trans3d(the.grid$u, rep(0.6, length(the.grid$u)), empder[,7], the.persp)
lines(some.lines, lwd=4, col=3)
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empder <- EMPIRgridder(empgrid=the.grid)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), the.grid$v, empder[8,], the.persp)
lines(some.lines, lwd=4, col=6)

# Demonstrate conditional quantile function extraction for
# the 70th percentile of U and see how it plots on top of
# the thick purple line
empinv <- EMPIRgridderinv(empgrid=the.grid)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), empinv[8,],

attributes(empinv)$colnames, the.persp)
lines(some.lines, lwd=4, col=5, lty=2)#
## End(Not run)

EMPIRgridder2 Derivatives of the Grid of the Bivariate Empirical Copula for U with
respect to V

Description

Generate derivatives of U with respect to V of a gridded representation of the bivariate empirical
copula (see EMPIRcop). This function is the empirical analog to derCOP2.

Usage

EMPIRgridder2(empgrid=NULL, ...)

Arguments

empgrid The grid from EMPIRgrid; and

... Additional arguments to pass.

Value

The gridded values of the derivatives of the bivariate empirical copula.

Author(s)

W.H. Asquith

See Also

EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder

Examples

# See examples under EMPIRgridder
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EMPIRgridderinv Derivative Inverses of the Grid of the Bivariate Empirical Copula for
V with respect to U

Description

Generate a gridded representation of the inverse of the derivatives of the bivariate empirical copula
of V with respect to U . This function is the empirical analog to derCOPinv.

Usage

EMPIRgridderinv(empgrid=NULL, kumaraswamy=FALSE, dergrid=NULL, ...)

Arguments

empgrid The grid from EMPIRgrid;

kumaraswamy A logical to trigger Kumaraswamy smoothing of the conditional quantile func-
tion;

dergrid The results of EMPIRgridder and if left NULL then that function is called inter-
nally. There is some fragility at times in the quality of the numerical derivative
and the author has provided this argument so that the derivative can be computed
externally and then fed to this inversion function; and

... Additional arguments to pass.

Value

The gridded values of the inverse of the derivative of V with respect U .

Author(s)

W.H. Asquith

See Also

EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder2

Examples

## Not run:
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=.1) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
uv.inv2 <- EMPIRgridderinv2(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),
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xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=PSP), col=2)
lines(qua.regressCOP(f=0.2, cop=PSP), col=2)
lines(qua.regressCOP(f=0.7, cop=PSP), col=2)
lines(qua.regressCOP(f=0.1, cop=PSP), col=2)
lines(qua.regressCOP(f=0.9, cop=PSP), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.2, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.7, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.1, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.9, cop=PSP), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run:
# Now try a much more complex shape
para <- list(alpha=0.15, beta=0.65, cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.005, para2=1000)
uv <- simCOP(n=30000, cop=composite2COP, para=para)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
uv.inv2 <- EMPIRgridderinv2(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.2, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.7, cop=composite2COP, para=para), col=2)
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lines(qua.regressCOP(f=0.1, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=composite2COP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)

EMPIRgridderinv2 Derivative Inverses of the Grid of the Bivariate Empirical Copula for
U with respect to V

Description

Generate a gridded representation of the inverse of the derivatives of the bivariate empirical copula
of U with respect to V . This function is the empirical analog to derCOPinv2.

Usage

EMPIRgridderinv2(empgrid=NULL, kumaraswamy=FALSE, dergrid=NULL, ...)

Arguments

empgrid The grid from EMPIRgrid;

kumaraswamy A logical to trigger Kumaraswamy smoothing of the conditional quantile func-
tion;
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dergrid The results of EMPIRgridder2 and if left NULL then that function is called inter-
nally. There is some fragility at times in the quality of the numerical derivative
and the author has provided this argument so that the derivative can be computed
externally and then fed to this inversion function; and

... Additional arguments to pass.

Value

The gridded values of the inverse of the derivative of U with respect to V .

Author(s)

W.H. Asquith

See Also

EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder2, EMPIRgridderinv, EMPIRgridderinv2

Examples

# See examples under EMPIRgridderinv

EMPIRmed.regress Median Regression of the Grid of the Bivariate Empirical Copula for
V with respect to U

Description

Perform median regression from the gridded inversion of the bivariate empirical copula of V with
respect to U .

Usage

EMPIRmed.regress(...)

Arguments

... Arguments to pass to EMPIRqua.regress.

Value

The gridded values of the median regression of V with respect to U .

Author(s)

W.H. Asquith
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See Also

EMPIRgridderinv, EMPIRqua.regress, EMPIRmed.regress2, EMPIRmed.regress2

Examples

# See examples under EMPIRqua.regress

EMPIRmed.regress2 Median Regression of the Grid of the Bivariate Empirical Copula for
U with respect to V

Description

Perform median regression from the gridded inversion of the bivariate empirical copula of U with
respect to V .

Usage

EMPIRmed.regress2(...)

Arguments

... Arguments to pass to EMPIRqua.regress2.

Value

The gridded values of the median regression of U with respect to V .

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv2, EMPIRqua.regress, EMPIRmed.regress, EMPIRmed.regress2

Examples

# See examples under EMPIRqua.regress
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EMPIRqua.regress Quantile Regression of the Grid of the Bivariate Empirical Copula for
V with respect to U

Description

Perform quantile regression from the gridded inversion of the bivariate empirical copula of V with
respect to U .

Usage

EMPIRqua.regress(f=0.5, u=seq(0.01,0.99, by=0.01), empinv=NULL,
lowess=FALSE, f.lowess=1/5, ...)

Arguments

f The nonexceedance probability F to perform regression at and defaults to me-
dian regression F = 1/2;

u A vector of u nonexceedance probabilities;

empinv The grid from EMPIRgridderinv;

lowess Perform lowess smooth on the quantile regression using the smooth factor of
f.lowess;

f.lowess Smooth factor of almost the same argument name fed to the lowess() function
in R; and

... Additional arguments to pass.

Value

The gridded values of the quantile regression of V with respect to U .

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv, EMPIRqua.regress2, EMPIRmed.regress, EMPIRmed.regress2

Examples

## Not run: # EXAMPLE 1
theta <- 25
uv <- simCOP(n=1000, cop=PLACKETTcop, para=theta, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)
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uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCOP(f=0.2, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCOP(f=0.7, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCOP(f=0.1, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCOP(f=0.9, cop=PLACKETTcop, para=theta), lwd=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

library(quantreg) # Quantile Regression by quantreg
U <- seq(0.01, 0.99, by=0.01)
rqlm <- rq(V~U, data=uv, tau=0.1)
rq.1 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.2)
rq.2 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.5)
rq.5 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.7)
rq.7 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.9)
rq.9 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U

lines(U, rq.1, col=4, lwd=2, lty=4)
lines(U, rq.2, col=4, lwd=2, lty=2)
lines(U, rq.5, col=4, lwd=4)
lines(U, rq.7, col=4, lwd=2, lty=2)
lines(U, rq.9, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run: # EXAMPLE 2
# Start again with the PSP copula
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=PSP), lwd=2)
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lines(qua.regressCOP(f=0.2, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.7, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.1, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.9, cop=PSP), lwd=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

library(quantreg) # Quantile Regression by quantreg
U <- seq(0.01, 0.99, by=0.01)
rqlm <- rq(V~U, data=uv, tau=0.1)
rq.1 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.2)
rq.2 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.5)
rq.5 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.7)
rq.7 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rqlm <- rq(V~U, data=uv, tau=0.9)
rq.9 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U

lines(U, rq.1, col=4, lwd=2, lty=4)
lines(U, rq.2, col=4, lwd=2, lty=2)
lines(U, rq.5, col=4, lwd=4)
lines(U, rq.7, col=4, lwd=2, lty=2)
lines(U, rq.9, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run: # EXAMPLE 3
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.1) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
uv.inv2 <- EMPIRgridderinv2(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=PSP), col=2)
lines(qua.regressCOP(f=0.2, cop=PSP), col=2)
lines(qua.regressCOP(f=0.7, cop=PSP), col=2)
lines(qua.regressCOP(f=0.1, cop=PSP), col=2)
lines(qua.regressCOP(f=0.9, cop=PSP), col=2)
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med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.2, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.7, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.1, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.9, cop=PSP), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run: # EXAMPLE 4
# Now try a much more complex shape
# lowess smoothing on quantile regression is possible,
# see next example
para <- list(alpha=0.15, beta=0.65,

cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.005, para2=1000)
uv <- simCOP(n=20000, cop=composite2COP, para=para)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.025) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
uv.inv2 <- EMPIRgridderinv2(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILTIY")
lines(qua.regressCOP(f=0.5, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.2, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.7, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.1, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
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qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=composite2COP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run: # EXAMPLE 5
plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.2, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.7, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.1, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=composite2COP, para=para), col=4)
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med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2, lowess=TRUE)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2, lowess=TRUE)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2, lowess=TRUE)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2, lowess=TRUE)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2, lowess=TRUE)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)

## Not run: # EXAMPLE 6 (changing the smoothing on the lowess)
plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILTIY")
lines(qua.regressCOP(f=0.5, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.2, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.7, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.1, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=composite2COP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
## End(Not run)
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EMPIRqua.regress2 Quantile Regression of the Grid of the Bivariate Empirical Copula for
U with respect to V

Description

Generate quantile regression from the gridded inversion of the bivariate empirical copula of U with
respect to V .

Usage

EMPIRqua.regress2(f=0.5, v=seq(0.01,0.99, by=0.01), empinv=NULL,
lowess=FALSE, f.lowess=1/5, ...)

Arguments

f The nonexceedance probability F to perform regression at and defaults to me-
dian regression F = 1/2;

v A vector of v nonexceedance probabilities;

empinv The grid from EMPIRgridderinv;

lowess Perform lowess smooth on the quantile regression using the smooth factor of
f=f.lowess;

f.lowess Smooth factor of almost the same argument name fed to the lowess() function
in R;

... Additional arguments to pass.

Value

The gridded values of the quantile regression of U with respect to V .

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv2, EMPIRqua.regress, EMPIRmed.regress, EMPIRmed.regress2

Examples

# See examples under EMPIRqua.regress
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EMPIRsim Simulate a Bivariate Empirical Copula

Description

EXPERIMENTAL—Perform a simulation on a bivariate empirical copula to produce the random
variates U and V and return an R data.frame of them. The method is more broadly known as con-
ditional simulation method. This function is an empirical parallel to simCOP that is used for para-
metric copulas. If circumstances require conditional simulation of V |U , then function EMPIRsimv,
which produces a vector of V from a fixed u, should be used.

For the usual situation in which an individual u during the simulation loops is not a value aligned on
the grid, then the bounding conditional quantile functions are solved for each of the n simulations
and the following interpolation is made by

v =
v1/w1 + v2/w2

1/w1 + 1/w2
,

which states that that the weighted mean is computed. The values v1 and v2 are ordinates of the
conditional quantile function for the respective grid lines to the left and right of the u value. The
values w1 = u− uleftgrid and w2 = urightgrid − u.

Usage

EMPIRsim(n=100, empgrid=NULL, kumaraswamy=FALSE, na.rm=TRUE, keept=FALSE,
graphics=TRUE, ploton=TRUE, points=TRUE, snv=FALSE,
infsnv.rm=TRUE, trapinfsnv=.Machine$double.eps, ...)

Arguments

n A sample size, default is 100;

empgrid Gridded empirical copula from EMPIRgrid;

kumaraswamy A logical to trigger Kumaraswamy distribution smoothing of the conditional
quantile function that is passed to EMPIRgridderinv. The Kumaraswamy dis-
tribution is a distribution having support [0, 1] with an explicit quantile function
and takes the place of a Beta distribution (see lmomco function quakur() for
more details);

na.rm A logical to toggle the removal of NA entries on the returned data.frame;

keept Keep the t uniform random variable for the simulation as the last column in the
returned data.frame;

graphics A logical that will disable graphics by setting ploton and points to FALSE and
overriding whatever their settings were;

ploton A logical to toggle on the plot;

points A logical to actually draw the simulations by the points() function in R;
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snv A logical to convert the {u, v} to standard normal scores (variates) both for the
optional graphics and the returned data.frame. Joe (2014) advocates exten-
sively for use of normal scores, which is in contrast to Nelsen (2006) who does
not;

infsnv.rm A logical that will quietly strip out any occurrences of u = {0, 1} or v = {0, 1}
from the simulations because these are infinity in magnitude when converted to
standard normal variates is to occur. Thus, this logical only impacts logic flow
when snv is TRUE. The infsnv.rm is mutually exclusive from trapinfsnv;

trapinfsnv If TRUE and presumably small, the numerical value of this argument (η) is used
to replace u = {0, 1} and v = {0, 1} with u(0) = v(0) = η or u(1) = v(1) =
1 − η as appropriate when conversion to standard normal variates is to occur.
The setting of trapinfsnv only is used if snv is TRUE and infsnv.rm is FALSE;
and

... Additional arguments to pass to the points() function in R.

Value

An R data.frame of the simulated values is returned.

Author(s)

W.H. Asquith

See Also

EMPIRgrid, EMPIRgridderinv, EMPIRsimv

Examples

# See other examples under EMPIRsimv

## Not run:
pdf("EMPIRsim_experiment.pdf")

nsim <- 5000
para <- list(alpha=0.15, beta=0.65,

cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.005, para2=1000)
set.seed(1)
uv <- simCOP(n=nsim, cop=composite2COP, para=para, snv=TRUE,

pch=16, col=rgb(0,0,0,.2))
mtext("A highly complex simulated bivariate relation")
# set.seed(1) # try not resetting the seed
uv.grid <- EMPIRgrid(para=uv, deluv=0.025)

uv2 <- EMPIRsim(n=nsim, empgrid=uv.grid, kumaraswamy=FALSE, snv=TRUE,
col=rgb(1,0,0,0.1), pch=16)

mtext("Resimulation without Kumaraswamy smoothing")

uv3 <- EMPIRsim(n=nsim, empgrid=uv.grid, kumaraswamy=TRUE, snv=TRUE,
col=rgb(1,0,0,0.1),pch=16)

mtext("Resimulation but using the Kumaraswamy Distribution for smoothing")
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dev.off()#
## End(Not run)

EMPIRsimv Simulate a Bivariate Empirical Copula For a Fixed Value of U

Description

EXPERIMENTAL—Perform a simulation on a bivariate empirical copula to extract the random
variates V from a given and fixed value for u = constant. The purpose of this function is to return
a simple vector of the V simulations. This behavior is similar to simCOPmicro but differs from
the general 2-D simulation implemented in the other functions: EMPIRsim and simCOP—these two
functions generate R data.frames of simulated random variates U and V and optional graphics as
well.

For the usual situation in which u is not a value aligned on the grid, then the bounding conditional
quantile functions are solved for each of the n simulations and the following interpolation is made
by

v =
v1/w1 + v2/w2

1/w1 + 1/w2
,

which states that that the weighted mean is computed. The values v1 and v2 are ordinates of the
conditional quantile function for the respective grid lines to the left and right of the u value. The
values w1 = u− uleftgrid and w2 = urightgrid − u.

Usage

EMPIRsimv(u, n=1, empgrid=NULL, kumaraswamy=FALSE, ...)

Arguments

u The fixed probability u on which to perform conditional simulation for a sample
of size n;

n A sample size, default is 1;

empgrid Gridded empirical copula from EMPIRgrid;

kumaraswamy A logical to trigger Kumaraswamy distribution smoothing of the conditional
quantile function that is passed to EMPIRgridderinv. The Kumaraswamy dis-
tribution is a distribution having support [0, 1] with an explicit quantile function
and takes the place of a Beta distribution (see lmomco function quakur() for
more details); and

... Additional arguments to pass.

Value

A vector of simulated V values is returned.

Author(s)

W.H. Asquith
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See Also

EMPIRgrid, EMPIRsim

Examples

## Not run:
nsim <- 3000
para <- list(alpha=0.15, beta=0.65,

cop1=PLACKETTcop, cop2=PLACKETTcop, para1=.005, para2=1000)
set.seed(10)
uv <- simCOP(n=nsim, cop=composite2COP, para=para, pch=16, col=rgb(0,0,0,0.2))
uv.grid <- EMPIRgrid(para=uv, deluv=.1)
set.seed(1)
V1 <- EMPIRsimv(u=0.6, n=nsim, empgrid=uv.grid)
set.seed(1)
V2 <- EMPIRsimv(u=0.6, n=nsim, empgrid=uv.grid, kumaraswamy=TRUE)
plot(V1,V2)
abline(0,1)

invgrid1 <- EMPIRgridderinv(empgrid=uv.grid)
invgrid2 <- EMPIRgridderinv(empgrid=uv.grid, kumaraswamy=TRUE)
att <- attributes(invgrid2); kur <- att$kumaraswamy
# Now draw random variates from the Kumaraswamy distribution using
# rlmomco() and vec2par() provided by the lmomco package.
set.seed(1)
kurpar <- lmomco::vec2par(c(kur$Alpha[7], kur$Beta[7]), type="kur")
Vsim <- lmomco::rlmomco(nsim, kurpar)

print(summary(V1)) # Kumaraswamy not core in QDF reconstruction
print(summary(V2)) # Kumaraswamy core in QDF reconstruction
print(summary(Vsim)) # Kumaraswamy use of the kumaraswamy

# Continuing with a conditional quantile 0.74 that will not land along one of the
# grid lines, a weighted interpolation will be done.
set.seed(1) # try not resetting the seed
nsim <- 5000
V <- EMPIRsimv(u=0.74, n=nsim, empgrid=uv.grid)
# It is important that the uv.grid used to make V is the same grid used in inversion
# with kumaraswamy=TRUE to guarantee that the correct Kumaraswamy parameters are
# available if a user is doing cut and paste and exploring these examples.
set.seed(1)
V1 <- lmomco::rlmomco(nsim, lmomco::vec2par(c(kur$Alpha[8], kur$Beta[8]), type="kur"))
set.seed(1)
V2 <- lmomco::rlmomco(nsim, lmomco::vec2par(c(kur$Alpha[9], kur$Beta[9]), type="kur"))

plot( lmomco::pp(V), sort(V), type="l", lwd=4, col=8) # GREY is empirical from grid
lines(lmomco::pp(V1), sort(V1), col=2, lwd=2) # Kumaraswamy at u=0.7 # RED
lines(lmomco::pp(V2), sort(V2), col=3, lwd=2) # Kumaraswamy at u=0.8 # GREEN

W1 <- 0.74 - 0.7; W2 <- 0.8 - 0.74
Vblend <- (V1/W1 + V2/W2) / sum(1/W1 + 1/W2)
lines(lmomco::pp(Vblend), sort(Vblend), col=4, lwd=2) # BLUE LINE
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# Notice how the grey line and the blue diverge for about F < 0.1 and F > 0.9.
# These are the limits of the grid spacing and linear interpolation within the
# grid intervals is being used and not direct simulation from the Kumaraswamy.
## End(Not run)

EuvCOP Expected value of U given V

Description

Compute the expected value of U given a V (the Y direction) through the conditional distribution
function G(Y ) using the appropriate partial derivative of a copula (C(u, v)) with respect to V . The
inversion of the partial derivative is the conditional quantile function. Basic principles provide the
expectation for a y ≥ 0 is

E[Y ] =

∫ ∞

0

yf(y)dy =

∫ ∞

0

(
1−Gy(Y )

)
dy,

which for the setting here becomes

E[U | V = v] =

∫ 1

0

(
1− δ

δv
C(u, v)

)
du.

This function solves the integral using the derCOP2 function. This avoids a call of the derCOPinv2
through its uniroot() inversion of the derivative. The example shown for EuvCOP() below does a
validation check using conditional simulation, which is dependence (of course) of the design of the
copBasic package, as part of simple isolation of a horizontal slice of the simulation and computing
the mean of the V within the slice.

Usage

EuvCOP(v=seq(0.01, 0.99, by=0.01), cop=NULL, para=NULL, asuv=FALSE, nsim=1E5,
subdivisions=100L, rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)

Arguments

v Nonexceedance probability v in the Y direction;

cop A copula function with vectorization as in asCOP;

para Vector of parameters or other data structures, if needed, to pass to the copula;

asuv Return a data frame of the U and V ;

nsim Number of simulations for Monte Carlo integration when the numerical integra-
tion fails (see Note);

subdivisions Argument of same name passed to integrate();

rel.tol Argument of same name passed to integrate();

abs.tol Argument of same name passed to integrate(); and

... Additional arguments to pass to derCOP2.
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Value

Value(s) for the expectation are returned.

Note

The author is well aware that the name of this function does not contain the number 2 as the family
of functions also sharing this with respect to v nature. It was a design mistake in 2008 to have used
the 2. The uv in the function name is the moniker for this with respect to v.

There can be the rare examples of the numerical integration failing. In such circumstances, Monte
Carlo integration is performed and the returned vector becomes a named vector with the sim iden-
tifying values stemming from the simulation.

para <- list(cop=RFcop, para=0.9)
para <- list(cop=COP, para=para, reflect=1, alpha=0, beta=0.3)
EuvCOP(c(0.0001, 0.0002, 0.001, 0.01, 0.1), cop=composite1COP, para=para)
# sim
#[1] 0.001319395 0.002238238 0.006905300 0.034608078 0.173451788

Author(s)

W.H. Asquith

See Also

EvuCOP, derCOP2

Examples

# We can show algorithmic validation using a highly asymmetric case of a
# copula having its parameter also nearly generating a singular component.
v <- c(0.2, 0.8); n <- 5E2; set.seed(1)
para <- list(cop=HRcop, para=120, alpha=0.4, beta=0.05)
UV <- simCOP(n, cop=composite1COP, para=para, graphics=FALSE) # set TRUE to view

sapply(v, function(vv) EuvCOP(vv, cop=composite1COP, para=para))
# [1] 0.3051985 0.7059999

sapply(v, function(vv) mean( UV$U[UV$V > vv - 50/n & UV$V < vv + 50/n] ) )
# [1] 0.2796518 0.7092755 # general validation is thus shown as n-->large

# If visualized, we see in the lower corner than heuristics suggest a mean further
# to the right of the "singularity" for v=0.2 than v=0.80. For v=0.80, the
# "singularity" appears tighter given the upper tail dependency contrast of the
# coupla in the symmetrical case (alpha=0, beta=0) and changing the parameter to
# a Spearman Rho (say) similar to the para settting in this example. So, 0.70 for
# the mean given v=0.80 makes sense. Further notice that the two estimates of the
# mean are further apparent for v=0.2 relative to v=0.80. Again, this makes sense
# when the copula is visualized even at small n let alone large n.

# See additional Examples under EvuCOP().
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## Not run:
set.seed(1)
n <- 5000; Vlo <- rep(0.001, n); Vhi <- rep(0.95, n); Theta <- 3
Ulo <- simCOPmicro(Vlo, cop=JOcopB5, para=Theta); dlo <- density(Ulo)
Uhi <- simCOPmicro(Vhi, cop=JOcopB5, para=Theta); dhi <- density(Uhi)
dlo$x[dlo$x < 0] <- 0; dhi$x[dhi$x < 0] <- 0
dlo$x[dlo$x > 1] <- 1; dhi$x[dhi$x > 1] <- 1

summary(Ulo)
Ulomu <- EuvCOP(Vlo[1], cop=JOcopB5, para=Theta); print(Ulomu)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.0000669 0.0887330 0.2006123 0.2504796 0.3802847 0.9589315
# Ulomu -----> 0.2502145
summary(Uhi)
Uhimu <- EuvCOP(Vhi[1], cop=JOcopB5, para=Theta); print(Uhimu)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.01399 0.90603 0.93919 0.9157600 0.95946 0.99411
# Uhimu -----> 0.9154093

UV <- simCOP(n, cop=JOcopB5, para=Theta,
cex=0.6, pch=21, bg="palegreen", col="darkgreen")

abline(h=Vlo[1], col="salmon", lty=3) # near the bottom to form datum for density
abline(h=Vhi[1], col="purple", lty=3) # near the top to form datum for density
lines(dlo$x, dlo$y/max(dlo$y)/2 + Vlo[1], col="salmon", lwd=2)
# re-scaled density along the line already drawn near the bottom (Vlo)
# think rug plotting to bottom the values plotting very close to the line
lines(dhi$x, 1-dhi$y/max(dhi$y)/2 - (1-Vhi[1]), col="purple", lwd=2)
# re-scaled density along the line already drawn near the top (Vhi)
# think rug plotting to bottom the values plotting very close to the line
uv <- seq(0.001, 0.999, by=0.001) # for trajectory of E[U | V=v]
lines(EuvCOP(uv, cop=JOcopB5, para=Theta), uv, col="blue", lwd=3.5, lty=2)
points(Ulomu, Vlo[1], pch=16, col="salmon", cex=2)
points(Uhimu, Vhi[1], pch=16, col="purple", cex=2) #

## End(Not run)

EvuCOP Expected value of V given U

Description

Compute the expected value of V given a U (the X direction) through the conditional distribution
function F (X) using the appropriate partial derivative of a copula (C(u, v)) with respect to U . The
inversion of the partial derivative is the conditional quantile function. Basic principles provide the
expectation for a x ≥ 0 is

E[X] =

∫ ∞

0

xf(x)dx =

∫ ∞

0

(
1− Fx(X)

)
dx,
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which for the setting here becomes

E[V | U = u] =

∫ 1

0

(
1− δ

δu
C(u, v)

)
dv.

This function solves the integral using the derCOP function. Verification study is provided in the
Note section.

Usage

EvuCOP(u=seq(0.01, 0.99, by=0.01), cop=NULL, para=NULL, asuv=FALSE, nsim=1E5,
subdivisions=100L, rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)

Arguments

u Nonexceedance probability u in the X direction;
cop A copula function with vectorization as in asCOP;
para Vector of parameters or other data structures, if needed, to pass to the copula;
asuv Return a data frame of the U and V ;
nsim Number of simulations for Monte Carlo integration when the numerical integra-

tion fails (see Note in EvuCOP);
subdivisions Argument of same name passed to integrate();
rel.tol Argument of same name passed to integrate();
abs.tol Argument of same name passed to integrate(); and
... Additional arguments to pass to derCOP.

Value

Value(s) for the expectation are returned.

Note

For the PSP copula with no parameters, compute the the median and mean V given U = 0.4,
respectively:

U <- 0.4; n <- 1E4
med.regressCOP(u=U, cop=PSP) # V = 0.4912752
set.seed(1)
median(replicate(n, derCOPinv(cop=PSP, U, runif(1)) ) ) # V = 0.4876440
mean( replicate(n, derCOPinv(cop=PSP, U, runif(1)) ) ) # V = 0.5049729

It is seen in the above that the median V givenU is very close to the mean, but is not equal. Using the
derivative inversion within med.regressCOP the median is about 0.491 and then using large-sample
simulation, about 0.491 too is computed. This confirms the median and long standing proven use of
derCOP (conditional distribution function) and derCOPinv (conditional quantile function) within the
package. The expectation (mean) by simulation provides the anchor point to check implementation
of EuvCOP(). The mean for V given U is about 0.505. Continuing, the core logic of EvuCOP() is
to use numerical integration of the conditional distribution function (the partial derivative) and not
bother for speed purposes to use the inversion of the partial derivative:
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integrate(function(v) 1-derCOP( cop=PSP, U, v),
lower=0, upper=1) # 0.5047805 with absolute error < 1.4e-11

integrate(function(v) sapply(v, function(t) derCOPinv(cop=PSP, U, t)),
lower=0, upper=1) # 0.5047862 with absolute error < 7.2e-05

The two integrals match, which functions as a confirmation of the (1−F ) term in the mathematical
definition. Finally, the two integrals match the simulation results. The expectation or mean V |
U = 0.4 for the PSP copula is about 0.5048.

Author(s)

W.H. Asquith

See Also

EuvCOP, derCOP

Examples

# Highly asymmetric and reflected Clayton copula for which visualization
para <- list(cop=CLcop, para=30, alpha=0.2, beta=0.6, reflect=3)
# UV <- simCOP(5000, cop=breveCOP, para=para, cex=0.5); abline(v=0.25, col="red")
EvuCOP(0.25, cop=breveCOP, para=para) # 0.5982261
# confirms that at U=0.25 that an intuitive estimate would be about 0.6.

## Not run:
# Secondary validation of the EvuCOP() and EuvCOP() implementation
UV <- simCOP(200, cop=PSP)
u <- seq(0.005, 0.995, by=0.005)
v <- sapply(u, function(t) integrate(function(k)

1 - derCOP(cop=PSP, t, k), lower=0, upper=1)$value)
lines(u,v, col="red", lwd=7, lty=1) # red line
v <- seq(0.005, 0.995, by=0.005)
u <- sapply(v, function(t) integrate(function(k)

1 - derCOP2(cop=PSP, k, t), lower=0, upper=1)$value)
lines(u,v, col="red", lwd=7, lty=2) # dashed red line

uv <- seq(0.005, 0.995, by=0.005) # solid and dashed white lines
lines(EvuCOP(uv, cop=PSP, asuv=TRUE), col="white", lwd=3, lty=1)
lines(EuvCOP(uv, cop=PSP, asuv=TRUE), col="white", lwd=3, lty=3)

# median regression lines for comparison, green and green dashed lines
lines(med.regressCOP( uv, cop=PSP), col="seagreen", lwd=1.5, lty=1)
lines(med.regressCOP2(uv, cop=PSP), col="seagreen", lwd=1.5, lty=4) #

## End(Not run)

## Not run:
uv <- seq(0.005, 0.995, by=0.005) # stress testing eample with singularity
UV <- simCOP(50, cop=M_N5p12b, para=2)
lines(EvuCOP(uv, cop=M_N5p12b, para=2, asuv=TRUE), col="red", lwd=5)
lines(EuvCOP(uv, cop=M_N5p12b, para=2, asuv=TRUE), col="skyblue", lwd=1) #
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## End(Not run)

## Not run:
uv <- seq(0.005, 0.995, by=0.005) # more asymmetry ---- mean regression in UV and VU
para <- list(cop=GHcop, para=23, alpha=0.1, beta=0.6, reflect=3)
para <- list(cop=breveCOP, para=para)
UV <- simCOP(200, cop=COP, para=para)
lines(EuvCOP(uv, cop=COP, para=para, asuv=TRUE), col="red", lwd=2)
lines(EvuCOP(uv, cop=COP, para=para, asuv=TRUE), col="blue", lwd=2) #

## End(Not run)

## Not run:
# Open questions? The derCOP() and derCOPinv() functions of the package have long
# been known to work "properly." But let us think again on the situation of
# permutation symmetry about the equal value line. Recalling that this symmetry is
# orthogonal to the equal value line, it remains open whether there could be
# asymmetry in the vertical (or horizontal). Let us draw some median regression lines
# and see that the do not plot perfectly on the equal value line, but coudl this be
# down to numerical issues and by association the simulation of the copula itself
# that is also using derCOPinv() (conditional simulation method). Then, we can plot
# the expections and we see that these are not equal to the medians, but again are
# close. *** Do results here indicate edges of numerical performance? ***
t <- seq(0.01, 0.99, by=0.01)
UV <- simCOP(10000, cop=N4212cop, para=4, pch=21, lwd=0.8, col=8, bg="white")
lines(med.regressCOP( cop=N4212cop, para=4, asuv=TRUE), col="red")
lines(med.regressCOP2(cop=N4212cop, para=4, asuv=TRUE), col="red")
abline(0, 1, col="deepskyblue", lwd=3); abline(v=0.5, col="deepskyblue", lwd=4)
lines(EvuCOP(t, cop=N4212cop, para=4, asuv=TRUE), pch=16, col="darkgreen")
lines(EuvCOP(t, cop=N4212cop, para=4, asuv=TRUE), pch=16, col="darkgreen") #

## End(Not run)

FGMcop The Generalized Farlie–Gumbel–Morgenstern Copula

Description

The generalized Farlie–Gumbel–Morgenstern copula (Bekrizade et al., 2012) is

CΘ,α,n(u, v) = FGM(u, v) = uv[1 + Θ(1− uα)(1− vα)]n,

where Θ ∈ [−min{1, 1/(nα2)},+1/(nα)], α > 0, and n ∈ 0, 1, 2, · · · . The copula Θ = 0 or
α = 0 or n = 0 becomes the independence copula (Π(u, v); P). When α = n = 1, then the well-
known, single-parameter Farlie–Gumbel–Morgenstern copula results, and Spearman Rho (rhoCOP)
is ρC = Θ/3 but in general

ρC = 12

n∑
r=1

(
n

r

)
Θr

[
Γ(r + 1)Γ(2/α)

αΓ(r + 1 + 2/α)

]2
.

The support of ρC(· · · ; Θ, 1, 1) is [−1/3,+1/3] but extends via α and n to ≈ [−0.50,+0.43],
which shows that the generalization of the copula increases the range of dependency. The general-
ized version is implemented by FGMcop.
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The iterated Farlie–Gumbel–Morgenstern copula (Chine and Benatia, 2017) for the rth iteration is

Cβ(u, v) = FGMi(u, v) = uv +

r∑
j=1

βj · (uv)[j/2] · (u′v′)[(j+1)/2],

where u′ = 1 − u and v′ = 1 − v for |βj | ≤ 1 that has r dimensions β = (β1, · · · , βj , · · · , βr)
and [t] is the integer part of t. The copula β = 0 becomes the independence copula (Π(u, v); P).
The support of ρC(· · · ;β) is approximately [−0.43,+0.43]. The iterated version is implemented
by FGMicop. Internally, the r is determined from the length of the β in the para argument.

Usage

FGMcop( u, v, para=c(NA, 1,1), ...)
FGMicop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector of parameters. For the generalized version, the Θ, α, and n of the
copula where the default argument shows the need to include the Θ. However,
if a fourth parameter is present, it is treated as a logical to reverse the copula
(u + v − 1 + FGM(1 − u, 1 − v; Θ, α, n)). Also if a single parameter is
given, then the α = n = 1 are automatically set to produce the single-parameter
Farlie–Gumbel–Morgenstern copula. For the iterated version, the β vector of r
iterations;

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Bekrizade, Hakim, Parham, G.A., Zadkarmi, M.R., 2012, The new generalization of Farlie–Gumbel–
Morgenstern copulas: Applied Mathematical Sciences, v. 6, no. 71, pp. 3527–3533.

Chine, Amel, and Benatia, Fatah, 2017, Bivariate copulas parameters estimation using the trimmed
L-moments methods: Afrika Statistika, v. 12, no. 1, pp. 1185–1197.

See Also

P, mleCOP
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Examples

## Not run:
# Bekrizade et al. (2012, table 1) report for a=2 and n=3 that range in
# theta = [-0.1667, 0.1667] and range in rho = [-0.1806641, 0.4036458]. However,
# we see that they have seemingly made an error in listing the lower bounds of theta:
rhoCOP(FGMcop, para=c( 1/6, 2, 3)) # 0.4036458
rhoCOP(FGMcop, para=c( -1/6, 2, 3)) # Following error results
# In cop(u, v, para = para, ...) : parameter Theta < -0.0833333333333333
rhoCOP(FGMcop, para=c(-1/12, 2, 3)) # -0.1806641
## End(Not run)

## Not run:
# Support of FGMrcop(): first for r=1 iterations and then for large r.
sapply(c(-1, 1), function(t) rhoCOP(cop=FGMrcop, para=rep(t, 1)) )
# [1] -0.3333333 0.3333333
sapply(c(-1, 1), function(t) rhoCOP(cop=FGMrcop, para=rep(t,50)) )
# [1] -0.4341385 0.4341385
## End(Not run)

## Not run:
# Maximum likelihood estimation near theta upper bounds for a=3 and n=2.
set.seed(832)
UV <- simCOP(300, cop=FGMcop, para=c(+0.16, 3, 2))
# Define a transform function for parameter domain, though mleCOP does
# provide some robustness anyway---not forcing n into the positive
# domain via as.integer(exp(p[3])) seems to not always be needed.
FGMpfunc <- function(p) {

d <- p[1]; a <- exp(p[2]); n <- as.integer(exp(p[3]))
lwr <- -min(c(1,1/(n*a^2))); upr <- 1/(n*a)
d <- ifelse(d <= lwr, lwr, ifelse(d >= upr, upr, d))
return( c(d, a, n) )

}
para <- c(0.16, 3, 2); init <- c(0, 1, 1)
ML <- mleCOP(UV$U, UV$V, cop=FGMcop, init.para=init, parafn=FGMpfunc)
print(ML$para) # [1] 0.1596361 3.1321228 2.0000000
# So, we have recovered reasonable estimates of the three parameters
# given through MLE estimation.
densityCOPplot(cop=FGMcop, para= para, contour.col=2)
densityCOPplot(cop=FGMcop, para=ML$para, ploton=FALSE) #
## End(Not run)

footCOP The Spearman Footrule of a Copula

Description

Compute the measure of association known as the Spearman Footrule ψC (Nelsen et al., 2001, p.
281), which is defined as
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ψC =
3

2
Q(C,M)− 1

2
,

where C(u, v) is the copula, M(u, v) is the Fréchet–Hoeffding upper bound (M), and Q(a, b) is a
concordance function (concordCOP) (Nelsen, 2006, p. 158). The ψC in terms of a single integration
pass on the copula is

ψC = 1−
∫
I2

|u− v|dC(u, v) = 6

∫ 1

0

C(u, u) du− 2.

Note, Nelsen et al. (2001) use ϕC but that symbol is taken in copBasic for the Hoeffding Phi
(hoefCOP), and Spearman Footrule does not seem to appear in Nelsen (2006). From the definition,
Spearman Footrule only depends on the primary diagnonal (alt. main diagonal, Genest et al., 2010)
of the copula, C(t, t) (diagCOP).

Usage

footCOP(cop=NULL, para=NULL, by.concordance=FALSE, as.sample=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

by.concordance Instead of using the single integral to compute ψC, use the concordance function
method implemented through concordCOP; and

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the ψ̂ (see Note); and

... Additional arguments to pass, which are dispatched to the copula function cop
and possibly concordCOP, such as brute or delta used by that function.

Value

The value for ψC is returned.

Note

Conceptually, the sample Spearman Footrule is a standardized sum of the absolute difference in the
ranks (Genest et al., 2010). The sample ψ̂ is

ψ̂ = 1− 3

n2 − 1

n∑
i=1

|Ri − Si|,

where Ri and Si are the respective ranks of X and Y and n is sample size. The sampling variance
of ψ̂ under assumption of independence between X and Y is

var(ψ̂) =
2n2 + 7

5(n+ 1)(n− 1)2
.
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Genest et al. (2010, p. 938) say that prior literature shows that in small samples, Spearman Footrule
is less variable than the well-known Spearman Rho (rhoCOP). For a copula having continuous partial
derivatives, then as n→ ∞, the quantity (ψ̂−ψC)

√
n ∼ Normal(0, var(γC)). Genest et al. (2010)

show variance of ψ̂ for the independence copula (C(u, v) = Π(u, v)) (P) as var(ψC) = 2/5. For
comparison, the Gini Gamma for independence is larger at var(γC) = 2/3 (see giniCOP Note).
Genest et al. (2010) also present additional material for estimation of the distribution ψ̂ variance
for conditions of dependence based on copulas. In Genest et al. independence and two examples of
dependence (p. 941), var(γ̂) > var(ψ̂), but those authors do not appear to remark on whether this
inequality holds for all copula.

Author(s)

W.H. Asquith

References

Genest, C., Nešlehová, J., and Ghorbal, N.B., 2010, Spearman’s footrule and Gini’s gamma—
A review with complements: Journal of Nonparametric Statistics, v. 22, no. 8, pp. 937–954,
doi:10.1080/10485250903499667.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Nelsen, R.B., Quesada-Molina, J.J., Rodríguez-Lallena, J.A., Úbeda-Flores, M., 2001, Distribution
functions of copulas—A class of bivariate probability integral transforms: Statistics and Probability
Letters, v. 54, no. 3, pp. 277–282, doi:10.1016/S01677152(01)000608.

See Also

blomCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP

Examples

footCOP(cop=PSP) # 0.3177662
# footCOP(cop=PSP, by.concordance=TRUE) # 0.3178025

## Not run:
n <- 2000; UV <- simCOP(n=n, cop=GHcop, para=2.3, graphics=FALSE)
footCOP(para=UV, as.sample=TRUE) # 0.5594364 (sample version)
footCOP(cop=GHcop, para=2.3) # 0.5513380 (copula integration)
footCOP(cop=GHcop, para=2.3, by.concordance=TRUE) # 0.5513562 (concordance function)
# where the later issued warnings on the integration
## End(Not run)

## Not run:
set.seed(1); nsim <- 1000
varFTunderIndpendence <- function(n) {

(2*n^2 + 7) / (5*(n+1)*(n-1)^2) # Genest et al. (2010)
}
ns <- c(10, 15, 20, 25, 50, 75, 100)
plot(min(ns):max(ns), varFTunderIndpendence(10:max(ns)), type="l",

xlab="Sample size", ylab="Variance of Sample Estimator", col="salmon4")
mtext("Sample Spearman Footrule Under Independence", col="salmon4")

https://doi.org/10.1080/10485250903499667
https://doi.org/10.1016/S0167-7152%2801%2900060-8
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for(n in ns) {
sFT <- vector(length=nsim)
for(i in seq_len(nsim)) {
uv <- simCOP(n=n, cop=P, para=2, graphics=FALSE)
sFT[i] <- footCOP(para=uv, as.sample=TRUE)

}
varFT <- varFTunderIndpendence(n)
zz <- round(c(n, mean(sFT), var(sFT), varFT), digits=6)
names(zz) <- c("n", "mean_sim", "var_sim", "var_Genest")
print(zz)
points(n, zz[3], cex=2, pch=21, col="salmon4", bg="salmon1")

} # results show proper implementation and Genest et al. (2010, sec. 3)
## End(Not run)

FRECHETcop The Fréchet Family Copula

Description

The Fréchet Family copula (Durante, 2007, pp. 256–259) is

Cα,β(u, v) = FF(u, v) = αM(u, v) + (1− α− β)Π(u, v) + βW(u, v),

where α, β ≥ 0 and α + β ≤ 1. The Fréchet Family copulas are convex combinations of the
fundamental copulas W (Fréchet–Hoeffding lower-bound copula; W), Π (independence; P), and M
(Fréchet–Hoeffding upper-bound copula; M). The copula is comprehensive because both W and
M can be obtained. The parameters are readily estimated using Spearman Rho (ρC; rhoCOP) and
Kendall Tau (τC; tauCOP) by

τC =
(α− β)(α+ β + 2)

3
and ρC = α− β.

The Fréchet Family copula virtually always has a visible singular component unless α, β = 0.
The copula has respective lower- and upper-tail dependency parameters of λL = α and λU = α
(taildepCOP). Durante (2007, p. 257) reports that the Fréchet Family copula can approximate any
bivariate copula in a “unique way” and the error bound can be estimated.

Usage

FRECHETcop(u,v, para=NULL, rho=NULL, tau=NULL, par2rhotau=FALSE, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (two element) of parameters α and β;

rho Spearman Rho from which to estimate the parameters;

tau Kendall Tau from which to estimate the parameters;
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par2rhotau A logical that if TRUE will return an R list of the ρC and τC for the parameters;
and

... Additional arguments to pass.

Details

The function will check the consistency of the parameters whether given by argument or computed
from ρC and τC. The term “Family” is used with this particular copula in copBasic so as to draw
distinction to the Fréchet lower- and upper-bound copulas as the two limiting copulas are called.

For no other reason than that it can be easily done and makes a nice picture, loop through a nest of
ρ and τ for the Fréchet Family copula and plot the domain of the resulting parameters:

ops <- options(warn=-1) # warning supression because "loops" are dumb
taus <- rhos <- seq(-1,1, by=0.01)
plot(NA, NA, type="n", xlim=c(0,1), ylim=c(0,1),

xlab="Frechet Copula Parameter Alpha",
ylab="Frechet Copula Parameter Beta")

for(tau in taus) {
for(rho in rhos) {
fcop <- FRECHETcop(rho=rho, tau=tau)
if(! is.na(fcop$para[1])) points(fcop$para[1], fcop$para[2])

}
}
options(ops)

Value

Value(s) for the copula are returned using the α and β as set by argument para; however, if
para=NULL and rho and tau are set and compatible with the copula, then {ρC, τC} → {α, β},
parameter estimation made, and an R list is returned.

Note

A convex combination (convex2COP) of Π and M, which is a modification of the Fréchet Family,
is the Linear Spearman copula:

Cα(u, v) = (1− α)Π(u, v) + αM(u, v),

for 0 ≤ α ≤ 1, and the parameter is equal to ρC. When the convex combination is used for
construction, the complement of the parameter is equal to ρC (e.g. 1 − α = ρC; rhoCOP), which
can be validated by

rhoCOP(cop=convex2COP, para=list(alpha=1-0.48, cop1=P, cop2=M)) # 0.4799948

Author(s)

W.H. Asquith
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References

Durante, F., 2007, Families of copulas, Appendix C, in Salvadori, G., De Michele, C., Kottegoda,
N.T., and Rosso, R., 2007, Extremes in Nature—An approach using copulas: Springer, 289 p.

See Also

M, P, W

Examples

## Not run:
ppara <- c(0.25, 0.50)
fcop <- FRECHETcop(para=ppara, par2rhotau=TRUE)
RHO <- fcop$rho; TAU <- fcop$tau

level.curvesCOP(cop=FRECHETcop, para=ppara) # Durante (2007, Fig. C.27(b))
mtext("Frechet Family copula")
UV <- simCOP(n=50, cop=FRECHETcop, para=ppara, ploton=FALSE, points=FALSE)

tau <- cor(UV$U, UV$V, method="kendall" ) # sample Kendall Tau
rho <- cor(UV$U, UV$V, method="spearman") # sample Spearman Rho
spara <- FRECHETcop(rho=rho, tau=tau) # a fitted Frechet Family copula
spara <- spara$para
if(is.na(spara[1])) { # now a fittable combination is not guaranteed

warning("sample rho and tau do not provide valid parameters, ",
"try another simulation")

} else { # now if fit, draw some red-colored level curves for comparison
level.curvesCOP(cop=FRECHETcop, para=spara, ploton=FALSE, col=2)

} #
## End(Not run)

gEVcop The Gaussian-based (Extreme Value) Copula

Description

The g-EV copula (Joe, 2014, p. 105) is a limiting form of the Gaussian copula:

Cρ(u, v) = gEV(u, v; ρ) = exp
(
−A(x, y; ρ)

)
,

where x = − log(u), y = − log(v), and

A(x, y; ρ) = y,

for 0 ≤ x/(x+ y) ≤ ρ2/(1 + ρ2),

A(x, y; ρ) = (x+ y − 2ρ
√
xy)/(1− ρ2),

for ρ2/(1 + ρ2) ≤ x/(x+ y) ≤ 1/(1 + ρ2),

A(x, y; ρ) = x,
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for 1/(1 + ρ2) ≤ x/(x + y) ≤ 1 and where ρ ∈ [0, 1]. A somewhat curious observation is that
this copula has relative hard boundaries into the upper-left and lower-right corners when compared
to the other copulas supported by the copBasic package. In other words, the hull defined by the
copula has a near hard (not fuzzy) curvilinear boundaries that adjust with the parameter ρ.

Usage

gEVcop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para The parameter ρ; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

tEVcop

Examples

## Not run:
UV <- simCOP(200, cop=gEVcop, para=0.8) #
## End(Not run)

## Not run:
# Joe (2014, p. 105) has brief detail indicating rho = [0,1] and though it seems
# Rho would be a Pearson correlation, this does not seem to be the case. The Rho
# seems to start with that of the Gaussian and then through the extreme-value
# transform, it just assumes the role of a parameter called Rho.
rho <- 0.8
UV <- simCOP(2000, cop=gEVcop, para=rho)
P <- cor(UV[,1], UV[,2], method="pearson")
if(abs(P - rho) < 0.001) {

print("Yes same")
} else { print("nope not") } #
## End(Not run)
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## Not run:
gEVparameter <- seq(0.02, 1, by=0.02)
SpearmanRho <- sapply(gEVparameter, function(k) rhoCOP(cop=gEVcop, para=k))
plot(gEVparameter, SpearmanRho)

for(rho in gEVparameter) UV <- simCOP(n=1000, cop=gEVcop, para=rho) #
## End(Not run)

GHcop The Gumbel–Hougaard Extreme Value Copula

Description

SYMMETRIC GUMBEL-HOUGAARD—The Gumbel–Hougaard copula (Nelsen, 2006, pp. 118
and 164) is

CΘ(u, v) = GH(u, v) = exp{−[(− log u)Θ + (− log v)Θ]1/Θ},

where Θ ∈ [1,∞). The copula here is a bivariate extreme value copula (BEV ). The parameter Θ
is readily estimated using a Kendall Tau (say a sample version τ̂ ) where the τ of the copula (τC) is
defined as

τC =
Θ− 1

Θ
→ Θ =

1

1− τ
.

The copula is readily extended into d dimensions by

CΘ(u, v) = exp{−[(− log u1)
Θ + · · ·+ (− log ud)

Θ]1/Θ}.

However, such an implementation is not available in the copBasic package.

Every Gumbel–Hougaard copula is a multivariate extreme value (MEV ) copula, and hence useful
in analysis of extreme value distributions. The Gumbel–Hougaard copula is the only Archimedean
MEV (Salvadori et al., 2007, p. 192). The Gumbel–Hougaard copula has respective lower- and
upper-tail dependency parameters of λL = 0 and λU = 2 − 21/Θ, respectively. Nelsen (2006, p.
96) shows that Cr

θ(u
1/r, v1/r) = Cθ(u, v) so that every Gumbel–Hougaard copula has a property

known as max-stable. A dependence measure uniquely defined for BEV copulas is shown under
rhobevCOP.

A comparison through simulation between Gumbel–Hougaard implementations by the R packages
acopula, copBasic, copula, and Gumbel is shown in the Examples section. At least three diver-
gent techniques for random variate generation are used amongst those packages. The simulations
also use copBasic-style random variate generation (conditional simulation) using an analytical-
numerical hybrid solution to conditional inverse described in the Note section.

TWO-PARAMETER GUMBEL–HOUGAARD—A permutation symmetric (isCOP.permsym) but al-
most certainly radial asymmetric (isCOP.radsym) version of the copula is readily constructed
(Brahimi et al., 2015) into a two-parameter version:

C(u, v;β1, β2) =

[((
u−β2 − 1

)β1
+

(
v−β2 − 1

)β1

)1/β1

+ 1

]−1/β2

,
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where β1 ≥ 1 and β2 > 0. Both parameters controls the general level of association, whereas
parameter β2 can be thought of as controlling left-tail dependency (taildepCOP, λ[U |L]

(β1,β2)
; e.g.

λU(1.5;β2)
= 0.413 for all β2 but λL(1.5;0.2) = 0.811 and λL(1.5;2.2) = 0.099. Brahimi et al. (2015)

report a Spearman Rho (rhoCOP) for a GH(1.5,0.2)(u, v) is 0.5, which is readily confirmed in cop-
Basic by the function call rhoCOP(cop=GHcop, para=c(1.5,0.2)). The two-parameter GH is
triggered if the length of the para argument is exactly 2.

ASYMMETRIC GUMBEL–HOUGAARD—An asymmetric version of the copula is readily con-
structed (Joe, 2014, p. 185–186) into a three-parameter version with Marshall–Olkin copulas on
the boundaries:

C(u, v; Θ, π2, π3) = exp[−A(− log u,− log v; Θ, π2, π3)],

where Θ ≥ 1 as before, 0 ≤ π2, π3 ≤ 1, and

A(x, y; Θ, π2, π3) = [(π2x)
Θ + (π3y)

Θ]1/Θ + (1− π2)x+ (1− π3)y.

The asymmetric GH is triggered if the length of the para argument is exactly 3. The GHcop function
provides no mechanism for estimation of the parameters for the asymmetric version. Reviewing
simulations, the bounds on the π parameters in Joe (2014, p. 185) “[0 ≤ π2 < π3 ≤ 1]” might
be incorrect—by Joe back referencing to Joe (2014, eq. 4.35, p. 183) the π-limits as stated for
copBasic are shown. An algorithm for parameter estimation for the asymmetric GH using two
different measures of bivariate skewness as well as an arbitrary measure of association is shown in
section Details in joeskewCOP.

Usage

GHcop(u, v, para=NULL, tau=NULL, tau.big=0.985, cor=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element or triplet) of parameters—the Θ parameter of the cop-
ula;

tau Kendall Tau τ from which to estimate the parameter Θ;

tau.big The largest value for τC prior to switching to the M copula applicable to the the
symmetric version of this copula;

cor A copBasic syntax for “the correlation coefficient” suitable for the copula—a
synonym for tau; and

... Additional arguments to pass.

Details

Numerical experiments seem to indicate for τC > 0.985 that failures in the numerical partial deriva-
tives in derCOP and derCOP2 result—a τC this large is indeed large. As Θ → ∞ the Gumbel–
Hougaard copula becomes the Fréchet–Hoeffding upper-bound copula M (see M). A τC ≈ 0.985
yields Θ ≈ 66 + 2/3, then for Θ > 1/(1− τC) flips over to the M copula with a warning issued.
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Value

Value(s) for the copula are returned using the Θ as set by argument para. Alternative returned
values are possible: (1) If para=NULL and tau is set, then τC → Θ and an R list is returned. (2) If
para=NULL and tau=NULL, then an attempt to estimate Θ from the u and v is made by cor(u, v)τ →
τC → Θ by either trigger using cor(u,v, method="kendall") in R, and an R list is returned.
The possibly returned list has the following elements:

para The computed Θ from the given bivariate data in para; and

tau The sample estimate of τ .

Note

SYMMETRIC GUMBEL–HOUGAARD—A function for the derivative of the copula (Joe, 2014, p.
172) given u is

"GHcop.derCOP" <- function(u, v, para=NULL, ...) {
x <- -log(u); y <- -log(v)
A <- exp(-(x^para + y^para)^(1/para)) * (1 + (y/x)^para)^(1/para - 1)
return(A/u)

}

that can be tested by the following

Theta <- 1/(1-.15) # a Kendall Tau of 0.15
GHcop.derCOP( 0.5, 0.75, para=Theta) # 0.7787597
derCOP(cop=GHcop, 0.5, 0.75, para=Theta) # 0.7787597
# The next two nearly return same value but conversion to GRVs
# (Gumbel Reduced Variates) to magnify the numerical differences.
# The GHcop.derCOP is expected to be the more accurate of the two.
lmomco::prob2grv(GHcop.derCOP( 0.5, 0.9999999, para=Theta)) # 18.83349
lmomco::prob2grv(derCOP(cop=GHcop, 0.5, 0.9999999, para=Theta)) # 18.71497
lmomco::prob2grv(derCOP(cop=GHcop, 0.5, 0.9999999, para=Theta,

delu=.Machine$double.eps^.25)) # 18.83341

where the last numerical approximation shows that tighter tolerance is needed. A function for the
inverse of the derivative (Joe, 2014, p. 172) given u by an analytical-numerical hybrid is

"GHcop.derCOPinv" <- function(u,t, para=NULL, verbose=FALSE,
tol=.Machine$double.eps, ...) {

if(length(u) > 1) warning("only the first value of u will be used")
if(length(t) > 1) warning("only the first value of t will be used")
if(is.null(para)) { warning("para can not be NULL"); return(NA) }
u <- u[1]; t <- t[1]; rt <- NULL
x <- -log(u); A <- (x + (para - 1)*log(x) - log(t))
hz <- function(z) { z + (para - 1)*log(z) - A }
zmax <- x; i <- 0; hofz.lo <- hz(zmax)
if(sign(hofz.lo) != -1) warning("sign for h(z) is not negative!")
while(1) {
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i <- i + 1
if(i > 100) {

warning("maximum iterations looking for zmax reached"); break
}
# increment zmax by 1/2 log cycle, sign(hofz.lo) should be negative!
if(sign(hz(zmax <- zmax + 1/2)) != sign(hofz.lo)) break

}
try(rt <- uniroot(hz, c(x, zmax), tol=tol, ...), silent=FALSE)
if(verbose) print(rt)
if(is.null(rt)) {

warning("NULL on the inversion of the GH copula derivative")
return(NA)

}
zo <- rt$root
y <- (zo^para - x^para)^(1/para)
names(y) <- NULL
return(exp(-y))

}

that can be tested by the following, which also shows how to increase the tolerance on the numerical
implementation

u <- 0.999; p <- 0.999
GHcop.derCOPinv( u, p, para=1.56) # 0.999977
derCOPinv(cop=GHcop, u, p, para=1.56) # 1 (unity), needs tighter tolerance
derCOPinv(cop=GHcop, u, p, para=1.56, tol=.Machine$double.eps/10) # 0.999977

ASYMMETRIC GUMBEL–HOUGAARD—Set τC = 0.35 then for a symmetric and then reflection
on the 1:1 line of the asymmetric Gumbel–Hougaard copula and compute the primary parameter Θ,
and lastly, compute three bivariate νC skewnesses (nuskewCOP):

Theta1 <- uniroot(function(t) {
0.35 - tauCOP(cop=GHcop, para=c(t)) }, c(1,10))$root

Theta2 <- uniroot(function(t) { # asymmetric
0.35 - tauCOP(cop=GHcop, para=c(t, 0.6, 0.9)) }, c(1,30))$root

Theta3 <- uniroot(function(t) { # asymmetric reflection on 1:1
0.35 - tauCOP(cop=GHcop, para=c(t, 0.9, 0.6)) }, c(1,30))$root

# Theta1 = 1.538462 and Theta2 = Theta3 = 2.132856
# Three "skews" based on a combination of U, V, and C(u,v) [nuskew()]
nuskewCOP(cop=GHcop, 1.538462) # zero bivariate skewness
nuskewCOP(cop=GHcop, c(2.132856, 0.6, 0.9)) # 0.008245653
nuskewCOP(cop=GHcop, c(2.132856, 0.9, 0.6)) # -0.008245653

So, we see, holding τC constant, that the GH has a νGH(1.538) = 0 but the asymmetric case
νGH(2.133,0.6,0.9) = 0.0082 and νGH(2.133,0.9,0.6) = −0.0082 where the change in sign represents
reflection about the 1:1 line. Finally, compute L-coskew by large simulation and the adjective “bow”
representing the direction of bowing or curvature of the principle copula density.

# Because the Tau's are all similar, there is nothing to learn from the
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# L-correlation, let us inspect the L-coskew instead:
coT3.1<-lmomco::lcomoms2(simCOP(n=8000, cop=GHcop, para=c(Theta1 )))$T3
coT3.2<-lmomco::lcomoms2(simCOP(n=8000, cop=GHcop, para=c(Theta2,.6,.9)))$T3
coT3.3<-lmomco::lcomoms2(simCOP(n=8000, cop=GHcop, para=c(Theta3,.9,.6)))$T3
# The simulations for Theta1 have no curvature about the diagonal.
# The simulations for Theta2 have curvature towards the upper left.
# The simulations for Theta3 have curvature towards the lower right.
message("# L-coskews: ",round(coT3.1[1,2],digits=4),"(symmetric) ",

round(coT3.2[1,2],digits=4),"(asym.--bow UL) ",
round(coT3.3[1,2],digits=4),"(asym.--bow UL)")

message("# L-coskews: ",round(coT3.1[2,1],digits=4),"(symmetric) ",
round(coT3.2[2,1],digits=4),"(asym.--bow LR) ",
round(coT3.3[2,1],digits=4),"(asym.--bow LR)")

# L-coskews: 0.0533(symmetric) 0.1055(asym.--bow UL) 0.0021(asym.--bow UL)
# L-coskews: 0.0679(symmetric) 0.0112(asym.--bow LR) 0.1154(asym.--bow LR)

Thus, the L-comoments (Asquith, 2011) using their sample values measure something fundamental
about the bivariate association between the three copulas choosen. The L-coskews for the symmet-
rical case are about equal and are

τ
GH(Θ1)
3[12] ≈ τ

GH(Θ1)
3[21] → (0.0533 + 0.0679)/2 = 0.0606,

whereas the L-coskew for the curvature to the upper left are

τ
GH(Θ2,0.6,0.9)
3[12] = 0.1055 and τGH(Θ2,0.6,0.9)

3[12] = 0.0112,

whereas the L-coskew for the curvature to the lower right are

τ
GH(Θ3,0.9,0.6)
3[12] = 0.0021 and τGH(Θ3,0.6,0.9)

3[12] = 0.1154.

Thus, the π2 and π3 parameters as choosen add about ((0.1154+ 0.1055)/2− 0.0606 → 0.1105−
0.0606 = 0.05) L-coskew units to the bivariate distribution.
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See Also

M, GLcop, HRcop, tEVcop, rhobevCOP

Examples

Theta <- 2.2 # Let us see if numerical and analytical tail deps are the same.
del.lamU <- abs( taildepCOP(cop=GHcop, para=Theta)$lambdaU - (2-2^(1/Theta)) )
as.logical(del.lamU < 1E-6) # TRUE
## Not run:
# The simulations match Joe (2014, p. 72) for Gumbel-Hougaard
n <- 600; nsim <- 1000; set.seed(946) # see for reproducibility
SM <- sapply(1:nsim, function(i) { rs <- semicorCOP(cop=GHcop, para=1.35, n=n)

c(rs$botleft.semicor, rs$topright.semicor) })
RhoM <- round(mean(SM[1,]), digits=3)
RhoP <- round(mean(SM[2,]), digits=3)
SE.RhoM <- round( sd(SM[1,]), digits=3)
SE.RhoP <- round( sd(SM[2,]), digits=3)
SE.RhoMP <- round( sd(SM[2,] - SM[1,]), digits=3)
# Semi-correlations (sRho) and standard errors (SEs)
message("# sRho[-]=", RhoM, " (SE[-]=", SE.RhoM, ") Joe(p.72)=0.132 (SE[-]=0.08)")
message("# sRho[+]=", RhoP, " (SE[+]=", SE.RhoP, ") Joe(p.72)=0.415 (SE[+]=0.07)")
message("# SE(sRho[-] - sRho[+])=", SE.RhoMP, " Joe(p.72) SE=0.10")
# sRho[-]=0.134 (SE[-]=0.076) Joe(p.72)=0.132 (SE[-]=0.08)
# sRho[+]=0.407 (SE[+]=0.074) Joe(p.72)=0.415 (SE[+]=0.07)
# SE(sRho[-] - sRho[+])=0.107 Joe(p.72) SE=0.10
# Joe (2014, p. 72) reports the values 0.132, 0.415, 0.08, 0.07, 0.10, respectively.
## End(Not run)

## Not run:
file <- "Lcomom_study_of_GHcopPLACKETTcop.txt"
x <- data.frame(tau=NA, trho=NA, srho=NA, PLtheta=NA, PLT2=NA, PLT3=NA, PLT4=NA,

GHtheta=NA, GHT2=NA, GHT3=NA, GHT4=NA )
write.table(x, file=file, row.names=FALSE, quote=FALSE)
n <- 250 # Make a large number for very long CPU run but seems stable
for(tau in seq(0,0.98, by=0.005)) {

thetag <- GHcop(u=NULL, v=NULL, tau=tau)$para
trho <- rhoCOP(cop=GHcop, para=thetag)
GH <- simCOP(n=n, cop=GHcop, para=thetag, points=FALSE, ploton=FALSE)
srho <- cor(GH$U, GH$V, method="spearman")
thetap <- PLACKETTpar(rho=trho)
PL <- simCOP(n=n, cop=PLACKETTcop, para=thetap, points=FALSE, ploton=FALSE)
GHl <- lmomco::lcomoms2(GH, nmom=4); PLl <- lmomco::lcomoms2(PL, nmom=4)
x <- data.frame(tau=tau, trho=trho, srho=srho,

GHtheta=thetag, PLtheta=thetap,
GHT2=mean(c(GHl$T2[1,2], GHl$T2[2,1])),
GHT3=mean(c(GHl$T3[1,2], GHl$T3[2,1])),
GHT4=mean(c(GHl$T4[1,2], GHl$T4[2,1])),
PLT2=mean(c(PLl$T2[1,2], PLl$T2[2,1])),
PLT3=mean(c(PLl$T3[1,2], PLl$T3[2,1])),
PLT4=mean(c(PLl$T4[1,2], PLl$T4[2,1])) )

write.table(x, file=file, row.names=FALSE, col.names=FALSE, append=TRUE)
}
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# After a processing run with very large "n", then meaningful results exist.
D <- read.table(file, header=TRUE); D <- D[complete.cases(D),]
plot(D$tau, D$GHT3, ylim=c(-0.08,0.08), type="n",

xlab="KENDALL TAU", ylab="L-COSKEW OR NEGATED L-COKURTOSIS")
points(D$tau, D$GHT3, col=2); points(D$tau, D$PLT3, col=1)
points(D$tau, -D$GHT4, col=4, pch=2); points(D$tau, -D$PLT4, col=1, pch=2)
LM3 <- lm(D$GHT3~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)
LM4 <- lm(D$GHT4~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)
LM3c <- LM3$coe; LM4c <- LM4$coe
Tau <- seq(0,1, by=.01); abline(0,0, lty=2, col=3)
lines(Tau, 0 + LM3c[1]*Tau^1 + LM3c[2]*Tau^2 + LM3c[3]*Tau^4, col=4, lwd=3)
lines(Tau, -(0 + LM4c[1]*Tau^1 + LM4c[2]*Tau^2 + LM4c[3]*Tau^4), col=2, lwd=3) #
## End(Not run)

## Not run:
# Let us compare the conditional simulation method of copBasic by numerics and by the
# above analytical solution for the Gumbel-Hougaard copula to two methods implemented
# by package gumbel, a presumed Archimedean technique by package acopula, and an
# Archimedean technique by package copula. Setting seeds by each "method" below does
# not appear diagnostic because of the differences in which the simulations are made.
nsim <- 10000; kn <- "kendall" # The theoretical KENDALL TAU is (1.5-1)/1.5 = 1/3
# Simulate by conditional simulation using numerical derivative and then inversion
A <- cor(copBasic::simCOP(nsim, cop=GHcop, para=1.5, graphics=FALSE), method=kn)[1,2]
U <- runif(nsim) # GHcop.derCOPinv() comes from earlier in this documentation.
V <- sapply(1:nsim, function(i) { GHcop.derCOPinv(U[i], runif(1), para=1.5) })
# Simulate by conditional simulation using exact analytical solution
B <- cor(U, y=V, method=kn); rm(U, V)
# Simulate by the "common frailty" technique
C <- cor(gumbel::rgumbel(nsim, 1.5, dim=2, method=1), method=kn)[1,2]
# Simulate by "K function" (Is the K function method, Archimedean?)
D <- cor(gumbel::rgumbel(nsim, 1.5, dim=2, method=2), method=kn)[1,2]
# Simulate by an Archimedean implementation (presumably)
E <- cor(acopula::rCopula(nsim, pars=1.5), method=kn)[1,2]
# Simulate by an Archimedean implementation
G <- cor(copula::rCopula(nsim, copula::gumbelCopula(1.5)), method=kn)[1,2]
K <- round(c(A, B, C, D, E, G), digits=5); rm(A, B, C, D, E, G, kn); tx <- ", "
message("Kendall Tau: ", K[1], tx, K[2], tx, K[3], tx, K[4], tx, K[5], tx, K[6])
# Kendall Tau: 0.32909, 0.32474, 0.33060, 0.32805, 0.32874, 0.33986 -- run 1
# Kendall Tau: 0.33357, 0.32748, 0.33563, 0.32913, 0.32732, 0.32416 -- run 2
# Kendall Tau: 0.34311, 0.33415, 0.33815, 0.33224, 0.32961, 0.33008 -- run 3
# Kendall Tau: 0.32830, 0.33573, 0.32756, 0.33401, 0.33567, 0.33182 -- nsim=50000!
# All solutions are near 1/3 and it is unknown without further study which of the
# six methods would result in the least bias and (or) sampling variability.
## End(Not run)

giniCOP The Gini Gamma of a Copula
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Description

Compute the measure of association known as the Gini Gamma γC (Nelsen, 2006, pp. 180–182),
which is defined as

γC = Q(C,M) +Q(C,W),

where C(u, v) is the copula, M(u, v) is the M function, and W(u, v) is the W function. The function
Q(a, b) (concordCOP) is a concordance function (Nelsen, 2006, p. 158). Nelsen also reports
that “Gini Gamma measures a concordance relation of “distance” between C(u, v) and monotone
dependence, as represented by the Fréchet–Hoeffding lower bound and Fréchet–Hoeffding upper
bound copulas [M(u, v), M and W(u, v), W respectively]”

A simpler method of computation and the default for giniCOP is to compute γC by

γC = 4

[∫
I
C(u, u) du+

∫
I
C(u, 1− u) du

]
− 2,

or in terms of the primary diagonal (alt. main diagonal, Genest et al., 2010) δ(t) and secondary
diagonal δ⋆(t) (see diagCOP) by

γC = 4

[∫
I
δ(t) dt+

∫
I
δ⋆(t) dt

]
− 2.

The simpler method is more readily implemented because single integration is fast. Lastly, Nelsen
et al. (2001, p. 281) show that γC also is computable by

γC = 2Q(C,A),

where A is a convex combination (convex2COP, using α = 1/2) of the copulas M and W or
A = (M + W)/2. However, integral convergence errors seem to trigger occasionally, and the
first definition by summation Q(C,M) + Q(C,W) thus is used. The convex combination is
demonstrated in the Examples section.

Usage

giniCOP(cop=NULL, para=NULL, by.concordance=FALSE, as.sample=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

by.concordance Instead of using the single integrals (Nelsen, 2006, pp. 181–182) to compute
γC, use the concordance function method implemented through concordCOP;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the γ̂C (see Note); and

... Additional arguments to pass, which are dispatched to the copula function cop
and possibly concordCOP if by.concordance=TRUE, such as delta used by that
function.

Value

The value for γC is returned.
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Note

Conceptually, the sample Gini Gamma (γ̂; Genest et al., 2010) is

γ̂ =
1

⌊n2/2⌋

n∑
i=1

| (n+ 1−Ri)− Si | − | Ri − Si | ,

where ⌊m⌋ denotes the integer part of arbitrary m > 0, Ri and Si are the respective ranks of X and
Y and n is sample size. The sampling variance of γ̂ under assumption of independence between X
and Y is

var(γ̂)n even =
2

3

(n2 + 2)

(n− 1)n2
and

var(γ̂)n odd =
2

3

(n2 + 3)

(n− 1)(n2 − 1)
.

Genest et al. (2010) present additional equations for estimation of the distribution γ̂ variance for
conditions of dependence based on copulas. For a copula having continuous partial derivatives, then
as n → ∞, the quantity (γ̂ − γC)

√
n ∼ Normal(0, var(γC)). Genest et al. (2010) show variance

of γ̂ for the independence copula (C(u, v) = Π(u, v)) (P) as var(γC) = 2/3. For comparison, the
Spearman Footrule for independence is smaller at var(ψC) = 2/5 (see footCOP Note). In Genest
et al. independence and two examples of dependence (p. 941), var(γ̂) > var(ψ̂), but those authors
do not appear to remark on whether this inequality holds for all copula.
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Examples

giniCOP(cop=PSP) # = 0.3819757
## Not run:
giniCOP( cop=PSP, by.concordance=TRUE) # Q(C,M) + Q(C,W) = 0.3820045
# use convex combination ---triggers integration warning but returns anyway
cxpara <- list(alpha=1/2, cop1=M, cop2=W) # parameters for convex2COP()
2*tauCOP(cop=PSP, cop2=convex2COP, para2=cxpara) # 2*Q(C,A) = 0.3819807
# where the later issued warnings on the integration
## End(Not run)

## Not run:
n <- 2000; UV <- simCOP(n=n, cop=N4212cop, para=9.3, graphics=FALSE)
giniCOP(para=UV, as.sample=TRUE) # 0.9475900 (sample version)
giniCOP(cop=N4212cop, para=9.3) # 0.9479528 (copula integration)
giniCOP(cop=N4212cop, para=9.3, by.concordance=TRUE) # 0.9480267 (concordance function)
# where the later issued warnings on the integration
## End(Not run)

## Not run:
# The canoncial example of theoretical and sample estimators of bivariate
# association for the package: Blomqvist Beta, Spearman Footrule, Gini Gamma,
# Hoeffding Phi, Kendall Tau, Spearman Rho, and Schweizer-Wolff Sigma
# and comparison to L-correlation via lmomco::lcomoms2().
n <- 9000; set.seed(56)
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=1.45, para2=21.9,

alpha=0.41, beta=0.08)
D <- simCOP(n=n, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
blomCOP(cop=composite2COP, para=para) # 0.4037908 (theoretical)
blomCOP(para=D, as.sample=TRUE) # 0.4008889 (sample)
footCOP(cop=composite2COP, para=para) # 0.3721555 (theoretical)
footCOP(para=D, as.sample=TRUE) # 0.3703623 (sample)
giniCOP(cop=composite2COP, para=para) # 0.4334687 (theoretical)
giniCOP(para=D, as.sample=TRUE) # 0.4311698 (sample)
tauCOP(cop=composite2COP, para=para) # 0.3806909 (theoretical)
tauCOP(para=D, as.sample=TRUE) # 0.3788139 (sample)
rhoCOP(cop=composite2COP, para=para) # 0.5257662 (theoretical)
rhoCOP(para=D, as.sample=TRUE) # 0.5242380 (sample)
lmomco::lcomoms2(D)$T2 # 1 # 0.5242388 (sample matrix)

# 0.5245154 1
hoefCOP(cop=composite2COP, para=para) # 0.5082776 (theoretical)
subsample <- D[sample(1:n, n/5),] # subsampling for speed
hoefCOP(para=subsample, as.sample=TRUE) # 0.5033842 (re-sample)
#hoefCOP(para=D, as.sample=TRUE) # major CPU hog, n too big
# because the Ds are already "probabilities" just resample as shown above
wolfCOP(cop=composite2COP, para=para) # 0.5257662 (theoretical)
#wolfCOP(para=D, as.sample=TRUE) # major CPU hog, n too big
wolfCOP(para=subsample, as.sample=TRUE) # 0.5338009 (re-sample)
## End(Not run)

## Not run:
set.seed(1); nsim <- 1000
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varGIunderIndpendence <- function(n) {
if(3 %/% 2 == 3 / 2) { # even
(2/3)*( (n^2 + 2) ) / ( (n-1)* n^2 ) # Genest et al. (2010)

} else {
(2/3)*( (n^2 + 3) ) / ( (n-1)*(n^2-1) ) # Genest et al. (2010)

}
}
ns <- c(10, 15, 20, 25, 50, 75, 100)
plot(min(ns):max(ns), varGIunderIndpendence(10:max(ns)), type="l",

xlab="Sample size", ylab="Variance of Sample Estimator", col="darkgreen")
mtext("Sample Gini Gamma Under Independence", col="darkgreen")
for(n in ns) {

sGI <- vector(length=nsim)
for(i in seq_len(nsim)) {
uv <- simCOP(n=n, cop=P, para=2, graphics=FALSE)
sGI[i] <- giniCOP(para=uv, as.sample=TRUE)

}
varGI <- varGIunderIndpendence(n)
zz <- round(c(n, mean(sGI), var(sGI), varGI), digits=6)
names(zz) <- c("n", "mean_sim", "var_sim", "var_Genest")
print(zz)
points(n, zz[3], cex=2, pch=21, col="darkgreen", bg="lightgreen")

} # results show proper implementation and Genest et al. (2010, sec. 3)
## End(Not run)

GLcop The Galambos Extreme Value Copula (with Gamma Power Mixture
[Joe/BB4] and Lower Extreme Value Limit)

Description

The Galambos copula (Joe, 2014, p. 174) is

CΘ(u, v) = GL(u, v) = uv exp
[(
x−Θ + y−Θ

)−1/Θ]
,

where Θ ∈ [0,∞), x = − log u, and y = − log v. As Θ → 0+, the copula limits to independence
(Π; P) and as Θ → ∞, the copula limits to perfect association (M; M). The copula here is a bivariate
extreme value copula (BEV ), and parameter estimation for Θ requires numerical methods.

There are two other genetically related forms. Joe (2014, p. 197) describes an extension of the
Galambos copula as a Galambos gamma power mixture (GLPM), which is Joe’s BB4 copula, with
the following form

CΘ,δ(u, v) = GLPM(u, v) =

(
x+ y − 1−

[
(x− 1)−δ + (y − 1)−δ

]−1/δ
)−1/Θ

,

where x = u−Θ, y = v−Θ, and Θ ≥ 0, δ ≥ 0. (Joe shows δ > 0, but zero itself seems to work
without numerical problems in practical application.) As δ → 0+, the “MTCJ family” (Mardia–
Takahasi–Cook–Johnson) results (implemented internally with Θ as the incoming parameter). As
Θ → 0+ the Galambos above results with δ as the incoming parameter.
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This second copula in turn has a lower extreme value limit form that leads to a min-stable bivariate
exponential having Pickand dependence function of

A(x, y; Θ, δ) = x+ y −
[
x−Θ + y−Θ − (xΘδ + yΘδ)−1/δ

]−1/Θ
,

where this third copula is

CLEV
Θ,δ (u, v) = GLEV(u, v) = exp[−A(− log u,− log v; Θ, δ)],

for Θ ≥ 0, δ ≥ 0 and is known as the two-parameter Galambos. (Joe shows δ > 0, but δ = 0 itself
seems to work without numerical problems in practical application.)

Usage

GLcop( u, v, para=NULL, ...)
GLEVcop( u, v, para=NULL, ...)
GLPMcop( u, v, para=NULL, ...) # inserts third parameter automatically
JOcopBB4(u, v, para=NULL, ...) # inserts third parameter automatically

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para To trigger GL(u, v), a vector (single element) of Θ, to trigger GLEV(u, v), a
two element vector of Θ and δ and alias is GLEVcop, and to trigger GLPM(u, v),
a three element vector of Θ, δ, and any number (the presence of the third entry
alone is the triggering mechanism) though aliases GLPM or JOcopBB4 will insert
the third parameter automatically for convenience; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

Joe (2014, p. 198) shows GLEV(u, v; Θ, δ) as a two-parameter Galambos, but its use within the
text seemingly is not otherwise obvious. However, testing of the implementation here seems to
show that this copula is really not broader in form than GL(u, v;α). The α can always(?) be
chosen to mimic the {Θ, δ}. This assertion can be tested from a semi-independent direction. First,
define an alternative style of one-parameter Galambos:

GL1cop <- function(u,v, para=NULL, ...) {
GL1pA <- function(x,y,t) { # Pickend dependence func form 1p Galambos

x + y - (x^-t + y^-t)^(-1/t)
}
if(length(u) == 1) { u <- rep(u, length(v)) } else
if(length(v) == 1) { v <- rep(v, length(u)) }
exp(-GL1pA(-log(u), -log(v), para[1]))

}
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Second, redefine the two-parameter Galambos:

GL2cop <- function(u,v, para=NULL, ...) {
GL2pA <- function(x,y,t,d) { # Pickend dependence func form 2p Galambos

x + y - (x^-t + y^-t - (x^(t*d) + y^(t*d))^(-1/d))^(-1/t)
}
if(length(u) == 1) { u <- rep(u, length(v)) } else
if(length(v) == 1) { v <- rep(v, length(u)) }
exp(-GL2pA(-log(u), -log(v), para[1], para[2]))

}

Next, we can combine the Pickend dependence functions into an objective function. This objective
function will permit the computation of the α given a pair {Θ, δ}.

objfunc <- function(a,t=NA,d=NA, x=0.7, y=0.7) {
lhs <- (x^-t + y^-t - (x^(t*d) + y^(t*d))^(-1/d))^(-1/t)
rhs <- (x^-a + y^-a)^(-1/a); return(rhs - lhs) # to be uniroot'ed

}

A demonstration can now be made:

t <- 0.6; d <- 4; lohi <- c(0,100)
set.seed(3); UV <- simCOP(3000, cop=GL2cop, para=c(t,d), pch=16,col=3,cex=0.5)
a <- uniroot(objfunc, interval=lohi, t=t, d=d)$root
set.seed(3); UV <- simCOP(3000, cop=GL1cop, para=a, lwd=0.5, ploton=FALSE)

The graphic so produced shows almost perfect overlap in the simulated values. To date, the author
has not really found that the two parameters can be chosen such that the one-parameter version
can not attain. Extensive numerical experiments using simulated parameter combinations through
the use of various copula metrics (tail dependencies, L-comoments, etc) have not found material
differences. Has the author of this package missed something?

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

M, P, GHcop, HRcop, tEVcop

Examples

# Theta = pi for GLcop and recovery through Blomqvist Beta (Joe, 2014, p. 175)
log(2)/(log(log(2)/log(1+blomCOP(cop=GLcop, para=pi))))

# Theta = 2 and delta = 3 for the GLPM form and Blomqvist Beta (Joe, 2014, p. 197)
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t <- 2; Btheo <- blomCOP(GLPMcop, para=c(t,3))
Bform <- (2^(t+1) - 1 - taildepCOP(GLPMcop, para=c(t,3))$lambdaU*(2^t -1))^(-1/t)
print(c(Btheo, 4*Bform-1)) # [1] 0.8611903 0.8611900

## Not run:
# See the Note section but check Blomqvist Beta here:
blomCOP(cop=GLcop, para=c(6.043619)) # 0.8552863 (2p version)
blomCOP(cop=GLcop, para=c(5.6, 0.3)) # 0.8552863 (1p version)

## End(Not run)

glueCOP Gluing Two Copulas

Description

The gluing copula technique (Erdely, 2017, p. 71), given two bivariate copulas CA and CB and a
fixed value 0 ≤ γ ≤ 1 is

Cγ(u, v) = γ ·CA(u/γ, v)

for 0 ≤ u ≤ γ and
Cγ(u, v) = (1− γ) ·CB((u− γ) / (1− γ), v)

for γ ≤ u ≤ 1 and γ represents the gluing point in u (horizontal axis). The logic is simply the
rescaling of CA to [0, γ] × [0, 1] and CB to [γ, 1] × [0, 1]. Copula gluing is potentially useful in
circumstances for which regression is non-monotone.

Usage

glueCOP(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
para A special parameter list (see Note) with a mandatory element of glue param-

eter γ; and
... Additional arguments to pass to the copulas.

Value

Value(s) for the copula are returned.

Note

The following descriptions list in detail the structure and content of the para argument:

glue — The γ gluing parameter;
cop1 — Function of the first copula A;
cop2 — Function of the second copula B;
para1 — Vector of parameters ΘA for A; and
para2 — Vector of parameters ΘB for B.
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Author(s)

W.H. Asquith

References

Erdely, A., 2017, Copula-based piecewise regression (chap. 5) in Copulas and dependence models
with applications—Contributions in honor of Roger B. Nelsen, eds. Flores, U.M., Amo Artero, E.,
Durante, F., Sánchez, J.F.: Springer, Cham, Switzerland, ISBN 978–3–319–64220–9, doi:10.1007/
9783319642215.

See Also

COP, breveCOP, composite1COP, composite2COP, composite3COP, convexCOP

Examples

## Not run:
para <- list(cop1=PLACKETTcop, para1=.2, cop2=GLcop, para2=1.2, glue=0.6)
densityCOPplot(cop=glueCOP, para=para) #
## End(Not run)

## Not run:
# Concerning Nelsen (2006, exam. 3.3, pp. 59-61)
# Concerning Erdely (2017, exam. 5.1, p. 71)
# Concerning Erdely (2017, exam. 5.2, p. 75)
# Nelsen's example is a triangle with vertex at [G, 1].
# Erdley's example permits the construction using glueCOP from M and W.
"coptri" <- function(u,v, para=NA, ...) {

p <- para[1]; r <- 1 - (1-p)*v
if(length(u) > 1 | length(v) > 1) stop("only scalars for this function")
if(0 <= u & u <= p*v & p*v <= p) { return(u)
} else if( 0 <= p*v & p*v < u & u < r) { return(p*v)
} else if( p <= r & r <= u & u <= 1 ) { return(u+v-1)
} else { stop("should not be here in logic") }

}
"UsersCop" <- function(u,v, ...) { asCOP(u,v, f=coptri, ...) }
# Demonstrate Nelsen's triangular copula (black dots )
UV <- simCOP(cop=UsersCop, para=0.35, cex=0.5, pch=16)
# Add Erdley's gluing of M() and W() copula (red circles)
para <- list(cop1=M, cop2=W, para1=NA, para2=NA, glue=0.35)
UV <- simCOP(cop=glueCOP, para=para, col=2, ploton=FALSE)
# We see in the plot that the triangular copulas are the same.

# For G = 0.5, Erdley shows Spearman Rho = 2*G-1 = 0, but
# Schweizer-Wolff = G^2 + (G-1)^2 = 0.5, let us check these:
para <- list(cop1=M, cop2=W, para1=NA, para2=NA, glue=0.5)
rhoCOP( cop=glueCOP, para=para) # -2.181726e-17
wolfCOP(cop=glueCOP, para=para) # 0.4999953
# So, rhoCOP() indicates independence, but wolfCOP() indicates
# dependence at the minimum value possible for a triangular copula.
## End(Not run)

https://doi.org/10.1007/978-3-319-64221-5
https://doi.org/10.1007/978-3-319-64221-5
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gridCOP Compute a Copula on a Grid

Description

Compute a grid of copula values. This function has the primary intention of supporting 3D ren-
derings or 2D images of the copulatic surface. Users should be aware of the convention of the
placement of the plotting origin and the various plotting mechanisms available to them in R. By
convention copulatic surfaces start in lower left corner for u = v = 0, but matrix conventions (or at
least how some functions plot matrices) start with the origin in the upper left.

Usage

gridCOP(cop=NULL, para=NULL, delta=0.05, transpose=TRUE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

delta The ∆u = ∆v of the grid edges;

transpose A logical to transpose the returned grid. This is needed if functions such as
image() in R are to be used for visualization (see last example in Examples
with composite2COP); and

... Additional arguments to pass.

Value

The values for C(u, v) are returned as a grid as an R matrix.

Author(s)

W.H. Asquith

See Also

EMPIRcopdf

Examples

## Not run:
the.grid <- gridCOP(cop=PSP)
the.grid[1,1] <- 0 # replace the NaN
image(the.grid) # ramps to the upper right
## End(Not run)

## Not run:
# See this composite copula also used in densityCOPplot() documentation.
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para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96,
cop1=GHcop, cop2=PLACKETTcop, para1=5.5, para2=0.07)

GR <- gridCOP(cop=composite2COP, para=para, delta=0.005)
image(GR, col=terrain.colors(20)) # asymmetric, high curvature in top half
## End(Not run)

hoefCOP The Hoeffding Phi of a Copula or Lp Distances (Independence, Radial
Asymmetry, or Reflection Symmetry Forms)

Description

Compute the measure of association known as the Hoeffding Phi ΦC of a copula from independence
(uv = Π; P) according to Cherunbini et al. (2004, p. 164) by

ΦC = 3

√
10

∫ ∫
I2

(
C(u, v)− uv

)2
dudv,

and Nelsen (2006, p. 210) shows this as (and absolute value notation by Nelsen helps in general-
ization)

ΦC =

(
90

∫ ∫
I2

|C(u, v)− uv|2 dudv
)1/2

,

for which Φ2
C (the square of the quantity) is known as the dependence index. Gaißer et al. (2010,

eq. 1) have Φ2
C as the Hoeffding Phi-Square, and their definition, when square-rooted, matches

Nelsen’s listing.

A generalization (Nelsen, 2006) to Lp distances from independence (uv = Π; P) through the LpCOP
function is

Lp ≡ ΦC(p) =

(
k(p)

∫ ∫
I2

|C(u, v)− uv|p dudv
)1/p

,

for a p : 1 ≤ p ≤ ∞ and where k(p) is a normalization constant such that ΦC(p) = 1 when the
copula C is M (see M) or W (see W). The k(p) (bivariate definition only) for other powers is given
(Nelsen, 2006, exer. 5.44, p. 213) in terms of the complete gamma function Γ(t) by

k(p) =
Γ(2p+ 3)

2[Γ(p+ 1)]2
,

which is implemented by the hoefCOP function. It is important to realize that the Lp distances are
all symmetric nonparametric measures of dependence (Nelsen, 2006, p. 210). These are symmetric
because distance from independence is used as evident by “uv” in the above definitions.

Reflection/Radial and Permutation Asymmetry—Asymmetric forms similar to the above distances
exist. Joe (2014, p. 65) shows two measures of bivariate reflection asymmetry or radial asymme-
try (term favored in copBasic) as the distance between C(u, v) and the survival copula Ĉ(u, v)
(surCOP) measured by
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Lradsym
∞ = sup0≤u,v≤1|C(u, v)− Ĉ(u, v)|,

or its Lradsym
p counterpart

Lradsym
p =

[∫ ∫
I2

|C(u, v)− Ĉ(u, v)|p dudv
]1/p

with p ≥ 1,

where Ĉ(u, v) = u+ v− 1+C(1− u, 1− v) and again p : 1 ≤ p ≤ ∞. Joe (2014) does not seem
to discuss and normalization constants for these two radial asymmetry distances.

Joe (2014, p. 66) offers analogous measures of bivariate permutation asymmetry (isCOP.permsym)
(C(u, v) ̸= C(v, u)) defined as

Lpermsym
∞ = sup0≤u,v≤1|C(u, v)− Ĉ(v, u)|,

or its Lpermsym
p counterpart

Lpermsym
p =

[∫ ∫
I2

|C(u, v)− Ĉ(v, u)|p dudv
]1/p

with p ≥ 1,

where p : 1 ≤ p ≤ ∞. Again, Joe (2014) does not seem to discuss and normalization constants
for these two permutation symmetry distances. Joe (2014, p. 65) states that the “simplest one-
parameter bivariate copula families [and] most of the commonly used two-parameter bivariate cop-
ula families are permutation symmetric.” The Lpermsym

∞ (or rather a similar form) is implemented
by LzCOPpermsym and demonstration made in that documentation.

The asymmetrical L∞ and Lp measures identified by Joe (2014, p. 66) are nonnegative with an
upper bounds that depends on p. The bound dependence on p is caused by the lack of normalization
constant k(p). In an earlier paragraph, Joe (2014) indicates an upper bounds of 1/3 for both (likely?)
concerning Lradsym

∞ and Lpermsym
∞ . Discussion of this 1/3 or rather the integer 3 is made within

LzCOPpermsym.

The numerical integrations for Lradsym
p and Lpermsym

p can readily return zeros. Often inspection of
the formula for the C(u, v) itself would be sufficient to judge whether symmetry exists and hence
the distances are uniquely zero.

Joe (2014, p. 66) completes the asymmetry discussion with three definitions of skewness of combi-
nations of random variables U and V : Two definitions are in uvlmoms (for U + V − 1 and U − V )
and two are for V − U (nuskewCOP) and U + V − 1 (nustarCOP).

Usage

hoefCOP( cop=NULL, para=NULL, p=2, as.sample=FALSE,
sample.as.prob=TRUE,
brute=FALSE, delta=0.002, ...)

LpCOP( cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)
LpCOPradsym( cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)
LpCOPpermsym(cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)
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Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

p The value for p as described above with a default to 2 to match the discussion of
Nelsen (2006) and the Hoeffding Phi of Cherubini et al. (2004). Do not confuse
p with d described in Note;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the Φ̂C (see Note). If set to -1, then the message concerning CPU
effort will be surpressed;

sample.as.prob When as.sample triggered, what are the units incoming in para? If they are
probabilities, the default is applicable. If they are not, then the columns are re-
ranked and divided simply by 1/n—more sophisticated empirical copula prob-
abilities are not used (EMPIRcop);

brute Should brute force be used instead of two nested integrate() functions in R
to perform the double integration;

delta The du and dv for the brute force (brute=TRUE) integration; and

... Additional arguments to pass.

Value

The value for ΦC(p) is returned.

Note

Concerning the distance from independence, when p = 1, then the Spearman Rho (rhoCOP) of a
copula is computed where is it seen in that documentation that the kp(1) = 12. The respective
values of k(p) for select integers p are

p 7→ [1, 2, 3, 4, 5] ≡ k(p) 7→ {12, 90, 560, 3150, 16600},

and these values are hardwired into hoefCOP and LpCOP. The integers for kp ensures that the equality
in the second line of the examples is TRUE, but the p can be a noninteger as well. Nelsen (2006, p.
211) reports that when p = ∞ that L∞ is

L∞ ≡ ΦC(∞) = ΛC = 4 supu,v∈I |C(u, v)− uv|.

A sample Φ̂C (square root of the Hoeffding Phi-Square) based on nonparametric estimation gen-
eralized for d dimensions (d = 2 for bivariate) is presented by Gaißer et al. (2010, eq. 10) for
estimated probabilities Ûij for the ith dimension and jth row (observation) for sample of size n.
Those authors suggest that the Ûij be estimated from the empirical copula:

Φ̂C =
√
h(d)[A+B],

where

A =

(
1

n

)2 n∑
j=1

n∑
k=1

d∏
i=1

[
1−max

(
Ûij , Ûik

)]
,
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B =

(
1

3

)d

−
(
2

n

)(
1

2

)d n∑
j=1

d∏
i=1

[1− Û2
ij ].

The normalization constant is a function of dimension and is

h(d)−1 =
2

(d+ 1)(d+ 2)
−

(
1

2

)d
d !∏d

i=0

(
i+ (1/2)

) +

(
1

3

)d

.

set.seed(1); UV <- simCOP(n=1000, cop=PSP)
hoefCOP(cop=PSP) # 0.4547656 (theo.)
hoefCOP(para=UV, as.sample=TRUE) # 0.4892757
set.seed(1); UV <- simCOP(n=1000, cop=PSP, snv=TRUE) # std normal variates
hoefCOP(para=UV, as.sample=TRUE, sample.as.prob=FALSE) # 0.4270324

Author(s)

W.H. Asquith

References

Cherubini, U., Luciano, E., and Vecchiato, W., 2004, Copula methods in finance: Hoboken, NJ,
Wiley, 293 p.

Gaißer, S., Ruppert, M., and Schmid, F., 2010, A multivariate version of Hoeffding’s Phi-Square:
Journal of Multivariate Analysis, v. 101, no. 10, pp. 2571–2586.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

blomCOP, footCOP, giniCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, uvlmoms, LzCOPpermsym

Examples

## Not run:
# Example (ii) Gaisser et al. (2010, p. 2574)
Theta <- 0.66 # Phi^2 = Theta^2 ---> Phi == Theta as shown
hoefCOP(cop=convex2COP, para=c(alpha=Theta, cop1=M, cop2=P)) # 0.6599886

rhoCOP(cop=PSP) == hoefCOP(cop=PSP, p=1) # TRUE
LpCOP(cop=PLACKETTcop, para=1.6, p=2.6) # 0.1445137 (Fractional p)
## End(Not run)

## Not run:
set.seed(938) # Phi(1.6; Plackett) = 0.1184489; L_1 = 0.1168737
UV <- simCOP(cop=PLACKETTcop, para=1.6, n=2000, ploton=FALSE, points=FALSE)
hoefCOP(cop=PLACKETTcop, para=1.6, p=200) # Large p near internal limits
L_1 <- 4*max(abs(PLACKETTcop(UV$U, UV$V, para=1.6) - UV$U*UV$V)) # p is infty
# and finite n and arguably a sample-like statistic here, now on intuition try
# a more sample-like means
U <- runif(10000); V <- runif(10000)
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L_2 <- 4*max(abs(EMPIRcop(U, V, para=UV) - U*V)) # 0.1410254 (not close enough)
## End(Not run)

## Not run:
para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96,

cop1=GHcop, cop2=PLACKETTcop, para1=5.5, para2=0.07)
LpCOPradsym( cop=composite2COP, para=para) # 0.02071164
LpCOPpermsym(cop=composite2COP, para=para) # 0.01540297
## End(Not run)

## Not run:
"MOcop.formula" <- function(u,v, para=para, ...) {

alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
"MOcop" <- function(u,v, ...) { asCOP(u,v, f=MOcop.formula, ...) }

LpCOPradsym( cop=MOcop, para=c(0.8, 0.5)) # 0.0261843
LpCOPpermsym(cop=MOcop, para=c(0.8, 0.5)) # 0.0243912

## End(Not run)

HRcop The Hüsler–Reiss Extreme Value Copula

Description

The Hüsler–Reiss copula (Joe, 2014, p. 176) is

CΘ(u, v) = HR(u, v) = exp
[
− xΦ(X)− yΦ(Y )

]
,

where Θ ≥ 0, x = − log(u), y = − log(v), Φ(.) is the cumulative distribution function of the
standard normal distribution, X and Y are defined as:

X =
1

Θ
+

Θ

2
log(x/y) and Y =

1

Θ
+

Θ

2
log(y/x).

As Θ → 0+, the copula limits to independence (Π; P). The copula here is a bivariate extreme value
copula (BEV ), and the parameter Θ requires numerical methods.

Usage

HRcop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula; and

... Additional arguments to pass.



isCOP.LTD 157

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

P, GHcop, GLcop, tEVcop

Examples

# Parameter Theta = pi recovery through the Blomqvist Beta (Joe, 2014, p. 176)
qnorm(1 - log( 1 + blomCOP(cop=HRcop, para=pi) ) / ( 2 * log(2) ) )^(-1)

isCOP.LTD Is a Copula Left-Tail Decreasing

Description

Numerically set a logical whether a copula is left-tail decreasing (LTD) as described by Nelsen
(2006, pp. 192–193) and Salvadori et al. (2007, p. 222). A copula C(u, v) is left-tail decreasing
for LTD(V |U) if and only if for any v ∈ [0, 1] that the following holds

δC(u, v)

δu
≤ C(u, v)

u

for almost all u ∈ [0, 1]. Similarly, a copula C(u, v) is left-tail decreasing for LTD(U |V ) if and
only if for any u ∈ [0, 1] that the following holds

δC(u, v)

δv
≤ C(u, v)

v

for almost all v ∈ [0, 1] where the later definition is controlled by the wrtV=TRUE argument.

The LTD concept is associated with the concept of tail monotonicity (Nelsen, 2006, p. 191). Specif-
ically, but reference to Nelsen (2006) definitions and geometric interpretations is recommended,
LTD(V |U) (or LTD(V |U)) means that the probability P [Y ≤ y | X ≤ x] (or P [X ≤ x | Y ≤ y])
is a nonincreasing function of x (or y) for all y (or x).

A positive LTD of either LTD(V |U) or LTD(U |V ) implies positively quadrant dependency (PQD,
isCOP.PQD) but the condition of PQD does not imply LTD. Finally, the accuracy of the numerical
assessment of the returned logical by isCOP.LTD is dependent on the the “smallness” of the delta
argument passed into the function.
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Usage

isCOP.LTD(cop=NULL, para=NULL, wrtV=FALSE, delta=0.005, ...)

Arguments

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

wrtV A logical to toggle between with respect to v or u (default);

delta The increment of {u, v} 7→ [0 + ∆δ, 1−∆δ,∆δ] set by wrtV; and

... Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in nature—An
approach using copulas: Dordrecht, Netherlands, Springer, Water Science and Technology Library
56, 292 p.

See Also

isCOP.RTI, isCOP.PQD

Examples

## Not run:
isCOP.LTD(cop=P, delta=0.01) # independence should be FALSE
# Positive association
isCOP.LTD(cop=PSP) # TRUE
# Negative association Plackett
isCOP.LTD(cop=PLACKETTcop, para=0.15) # FALSE
# Positive association Plackett
isCOP.LTD(cop=PLACKETTcop, para=15) # TRUE
# Negative association Plackett
isCOP.LTD(cop=PLACKETTcop, wrtv=TRUE, para=0.15) # FALSE
# Positive association Plackett
isCOP.LTD(cop=PLACKETTcop, wrtV=TRUE, para=15) # TRUE
## End(Not run)
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isCOP.permsym Is a Copula Permutation Symmetric

Description

Numerically set a logical whether a copula is symmetric (Nelsen, 2006, p. 38), or has exchangable
variables, or is permutation symmetric (Joe, 2014, p. 66). A copula C(u, v) is permutation sym-
metric if and only if for any {u, v} ∈ [0, 1] the following holds

C(u, v) = C(v, u).

The computation is (can be) CPU intensive.

Usage

isCOP.permsym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)

Arguments

cop A copula function;
para Vector of parameters, if needed, to pass to the copula;
delta The increment of {u, v} 7→ [0 + ∆δ, 1−∆δ,∆δ];
tol A tolerance on the check for symmetry, default 1 part in 10,000, which is the

test for the ≡ 0 (zero equivalence, see source code); and
... Additional arguments to pass to the copula.

Value

A logical TRUE or FALSE is returned.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

LzCOPpermsym, isCOP.radsym

Examples

## Not run:
isCOP.permsym(cop=GHcop, para=1.3) # TRUE
## End(Not run)
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isCOP.PQD The Positively Quadrant Dependency State of a Copula

Description

Numerically determine the global property of the positively quadrant dependency (PQD) charac-
teristic of a copula as described by Nelsen (2006, p. 188). The random variables X and Y are
PQD if for all (x, y) in R2 when H(x, y) ≥ F (x)G(x) for all (x, y) in R2 and thus by the copula
C(u, v) ≥ uv for all (u, v) in I2. Alternatively, this means that C(u, v) ≥ Π, and thus it can be
said that it is globally “greater” than independence (uv = Π; P).

Nelsen (2006) shows that a copula is PQD when

0 ≤ βC, 0 ≤ γC, and 0 ≤ ρC ≤ 3τC,

where βC, γC, ρC, and τC are various copula measures of association or concordance that are re-
spectively described in blomCOP, giniCOP, rhoCOP, and tauCOP. The concept of negatively quadrant
dependency (NQD) is the reverse: C(u, v) ≤ Π for all (u, v) in I2; so NQD is globally “smaller”
than independence.

Conceptually, PQD is related to the probability that two random variables are simultaneously small
(or simultaneously large) is at least as great as it would be if they were independent. The graph of
a PQD copula lies on or above the copulatic surface of the independence copula Π, and conversely
a NQD copula lies on or below Π.

Albeit a “global” property of a copula, there can be “local” variations in the PQD/NQD state. Points
in I2 where C(u, v) − Π ≥ 0 are locally PQD, whereas points in I2 where C(u, v) − Π ≤ 0
and locally NQD. Lastly, readers are directed to the last examples in wolfCOP because as those
examples involve the copulatic difference from independence C(u, v) − Π = C(u, v) − Π with
3-D renderings.

Usage

isCOP.PQD(cop=NULL, para=NULL, uv=NULL, empirical=FALSE, verbose=TRUE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

uv An optional R data.frame of U and V nonexceedance probabilities u and v
for the random variables X and Y . This argument triggers different value return
behavior (see Value);

empirical A logical that will use sample versions for Gini Gamma, Spearman Rho, and
Kendall Tau. This feature is only applicable if the copula is empirical and there-
fore the para argument is the data.frame of u and v, which will be passed
along to sample version functions instead of copula (see Note);

verbose A logical that will report the four concordance measures; and

... Additional arguments to pass, which are then passed to subordinate functions.
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Value

If uv=NULL then a logical for the global property of PQD is returned but if argument uv is a
data.frame, then an R list is returned, and that list holds the global condition in global.PQD
and local condition assessments in local.PQD and local.NQD.

Note

The function isCOP.PQD will try brute force computations if subordinate calls to one or more
functions fails. The user can use ... to set the delta argument for giniCOP, rhoCOP, and (or)
tauCOP.

This function is not guaranteed to work using a bivariate empirical copula such as the following
operation: copPQD(cop=EMPIRcop, para=the.data). An evidently open problem for copBasic is
how to support PQD assessment (either globally or locally) for empirical copulas. The τC for the
bivariate empirical copula example brute=TRUE|FALSE to unity and γC and ρC reach maximum
number of subdivisions on the numerical integration and thus fail. If an empirical bivariate copula is
“Tau’d” to itself, is τC ≡ 1 guaranteed? The τC computation relies on numerical partial derivatives
of the copula, whereas the γC and ρC use the copula itself. It seems in the end that use of sample
versions of γC, ρC, and τC would be appropriate and leave the βC as either copula or direct sample
computation (see Examples).

SPECIAL DEMONSTRATION 1—Given the following,

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=c(14.5),para2=c(1.45),
alpha=0.51, beta=0.15, kappa=0.45, gamma=0.78)

D <- simCOP(n=500, cop=composite3COP, para=para, cex=0.5, col=1, pch=16)

the two different call types to isCOP.PQD for an empirical copula are illustrative:

global.only <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE)

and

PQD.list <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE, uv=D)
points(D, col=PQD.list$local.PQD+2, lwd=2) # red (if present) is local NQD

which in the former only returns the global PQD and the later returns an R list with global
(global.PQD), local (local.PQD as well as local.NQD), and the four statistics (beta βC, gamma
γC, rho ρC, tau τC) used to determine global PQD.

SPECIAL DEMONSTRATION 1—Lastly, the ctype="bernstein" argument to the empirical cop-
ula can be used. Repeated iterations of the following will show that local quadrant dependency can
appear slightly different when the bernstein argument is present. The simulation sample size is
reduced considerably for this second example because of the CPU effort triggered by the Bernstein
extension (see EMPIRcop) having been turned on.

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=14.5, para2=1.45,
alpha=0.51, beta=0.15, kappa=0.45, gamma=0.78)

D <- simCOP(n=50, cop=composite3COP, para=para, cex=0.5, col=1, pch=16)
PQD.A<- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE, uv=D)
points(D, col=PQD.A$local.PQD+2, lwd=2) # red (if present) is local NQD
PQD.B<- isCOP.PQD(cop=EMPIRcop,para=D,empirical=TRUE,uv=D,ctype="bernstein")
points(D, col=PQD.B$local.PQD+2, lwd=1, pch=3, cex=1.5)
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Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

blomCOP, giniCOP, rhoCOP, tauCOP, isCOP.LTD, isCOP.RTI

Examples

## Not run:
isCOP.PQD(cop=PSP) # TRUE
## End(Not run)

## Not run:
# Example concerning Empirical Bivariate Copula and sample versions for comparison.
set.seed(10); n <- 1000
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.145, para2=1.45,

alpha=0.81, beta=0.8)
D <- simCOP(n=n, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
#tauCOP(cop=EMPIRcop, para=D) # ??? but == 1
cor(D$U, D$V, method="kendall") # -0.3224705
blomCOP(cop=EMPIRcop, para=D) # -0.332
giniCOP(cop=EMPIRcop, para=D) # -0.3692037
GINI <- sum(abs(rank(D$U)+rank(D$V)-n-1)) - sum(abs(rank(D$U)-rank(D$V)))
print(GINI/as.integer(n^2/2)) # -0.369996
rhoCOP(cop=EMPIRcop, para=D) # ??? but fails
cor(D$U, D$V, method="spearman") # -0.456694
lmomco::lcomoms2(D)$T2 # 1.0000000 -0.4568357

# -0.4567859 1.0000000
## End(Not run)

isCOP.radsym Is a Copula Radially Symmetric

Description

Numerically set a logical whether a copula is radially symmetric (Nelsen, 2006, p. 37) [reflection
symmetric, Joe (2014, p. 64)]. A copula C(u, v) is radially symmetric if and only if for any
{u, v} ∈ [0, 1] either of the following hold

C(u, v) = u+ v − 1 +C(1− u, 1− v)

or
u+ v − 1 +C(1− u, 1− v)−C(u, v) ≡ 0.

Thus, if the equality of the copula C(u, v) = Ĉ(u, v) (the survival copula), then radial symmetry
exists: COP = surCOP or C(u, v) = Ĉ(1− u, 1− v). The computation is (can be) CPU intensive.



isCOP.radsym 163

Usage

isCOP.radsym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)

Arguments

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

delta The increments of {u, v} 7→ [0 + ∆δ, 1−∆δ,∆δ];

tol A tolerance on the check for symmetry, default 1 part in 10,000, which is the
test for the ≡ 0 (zero equivalence, see source code); and

... Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.

Note

An open research question possibly exists: Is a radially symmetric copula characterized by the
L-comoments for orders r≥3 as having values of zero? The author asks this question partly out
of intuition stemming from numerical experiments (some not show here) suggesting this condition,
and review of copula literature does not seem to directly address this question. Let us consider
the two symmetrical copulas: the parameterless PSP(u, v) (see PSP) and the single parameter
PL(u, v; Θ) (see PLACKETTcop) with the ΘPL = 4.708664 (see rhoCOP). The two copulas have
different radial symmetries as shown below.

plackpar <- PLACKETTpar(rho=rhoCOP(cop=PSP)) # Spearman Rho = 0.4784176
isCOP.radsym(cop=PSP) # FALSE
isCOP.radsym(cop=PLACKETTcop, para=plackpar) # TRUE

Now, let us compute the L-comoments from the lmomco R package for n = 10,000 simulations
from each copula. The L-correlations are each about 0.48, which agree with the given ρC.

set.seed(639)
UVa <- simCOP(n=10000, cop=PSP, para=NA, graphics=FALSE)
set.seed(639)
UVb <- simCOP(n=10000, cop=PLACKETTcop, para=plackpar, graphics=FALSE)
lmomco::lcomoms2(UVa, nmom=4)$T3[2,1] # Only show L-coskew of V wrt U.
lmomco::lcomoms2(UVb, nmom=4)$T3[2,1] # Only show L-coskew of V wrt U.

The L-coskew for the PSP is about −0.129 and that for the PL copula is about zero (< 0.0029).
L-cokurtosis provides a similar result if T3 is changed to T4. The PSP L-cokurtosis is about 0.041,
whereas the PL L-cokurtosis is about < 0.0037.

Author(s)

W.H. Asquith
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References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

isCOP.permsym

Examples

# Radially symmetry is computationally intensive and relies on a gridded [0,1]x[0,1]
# space and laborious check on equality. Thus these examples are commented out for
# R --timings check. Note, the proof of radial symmetry absent of algebraic
# manipulation or verification is difficult and subject to the fineness of the grid
# to find a nonequality from which to immediately conclude FALSE.
## Not run:
isCOP.radsym(cop=P) # TRUE

para <- list(cop1=PLACKETTcop, cop2=M, para1=c(.3), para2=NA, alpha=0.8, beta=0.5)
isCOP.radsym(composite2COP, para=para) # FALSE

## End(Not run)
## Not run:
gh <- simCOP(n=34, cop=GHcop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend gh is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics

set.seed(120); theta <- 2
gh <- simCOP(n=34, cop=GHcop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics

isCOP.radsym(cop=EMPIRcop, para=uv) # FALSE
isCOP.LTD(cop=EMPIRcop, para=uv) # TRUE
isCOP.RTI(cop=EMPIRcop, para=uv) # FALSE
isCOP.PQD(cop=EMPIRcop, para=uv,

empirical=TRUE) # TRUE
# Blomqvist's Beta = 0.2941
# Gini's Gamma = 0.5606
# Spearman's Rho = 0.6584
# Kendall's Tau = 0.5045
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isCOP.radsym(cop=GHcop, para=theta) # FALSE
isCOP.LTD(cop=GHcop, para=theta) # TRUE
isCOP.RTI(cop=GHcop, para=theta) # TRUE
isCOP.PQD(cop=GHcop, para=theta) # TRUE

# Blomqvist's Beta = 0.5009
# Gini's Gamma = 0.5591
# Spearman's Rho = 0.6822
# Kendall's Tau = 0.5000

# Notice that isCOP.RTI is not the same for empirical and theoretical.
# This shows the difficulty in tail dependence parameter estimation for
# small samples (see Salvadori et al., 2007 p. 175).
## End(Not run)

isCOP.RTI Is a Copula Right-Tail Increasing

Description

Numerically set a logical whether a copula is right-tail increasing (RTI) as described by Nelsen
(2006, pp. 192–193) and Salvadori et al. (2007, p. 222). A copula C(u, v) is right-tail decreasing
for RTI(V |U) if and only if for any v ∈ [0, 1],

δC(u, v)

δu
≤ v −C(u, v)

1− u

for almost all u ∈ [0, 1]. Similarly, a copula C(u, v) is right-tail decreasing for RTI(U |V ) if and
only if for any u ∈ [0, 1],

δC(u, v)

δv
≤ u−C(u, v)

1− v

for almost all v ∈ [0, 1] where the later definition is controlled by the wrtV=TRUE argument.

The RTI concept is associated with the concept of tail monotonicity (Nelsen, 2006, p. 191). Specif-
ically, but reference to Nelsen (2006) definitions and geometric interpretations is recommended,
RTI(V |U) (or RTI(V |U)) means that the probability P [Y > y | X > x] (or P [X > x | Y > y])
is a nondecreasing function of x (or y) for all y (or x).

A positive RTI of either RTI(V |U) or RTI(U |V ) implies positively quadrant dependency (PQD,
isCOP.PQD) but the condition of PQD does not imply RTI. Finally, the accuracy of the numerical
assessment of the returned logical by isCOP.RTI is dependent on the the smallness of the delta
argument passed into the function.

Usage

isCOP.RTI(cop=NULL, para=NULL, wrtV=FALSE, delta=0.005, ...)
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Arguments

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

wrtV A logical to toggle between with respect to v or u (default);

delta The increment of {u, v} 7→ [0 + ∆δ, 1−∆δ,∆δ] set by wrtV; and

... Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in nature—An
approach using copulas: Dordrecht, Netherlands, Springer, Water Science and Technology Library
56, 292 p.

See Also

isCOP.LTD, isCOP.PQD

Examples

## Not run:
isCOP.RTI(cop=P, delta=0.01) # independence should be FALSE
# but function returns TRUE. Note, same logic for isCOP.LTD returns FALSE.
isCOP.RTI(cop=PSP) # TRUE : positive assoc.
isCOP.RTI(cop=PLACKETTcop, para=.15) # FALSE : negative assoc. Plackett
isCOP.RTI(cop=PLACKETTcop, para=15) # TRUE : positive assoc. Plackett
isCOP.RTI(cop=PLACKETTcop, wrtv=TRUE, para=.15) # FALSE : negative assoc. Plackett
isCOP.RTI(cop=PLACKETTcop, wrtV=TRUE, para=15) # TRUE : positive assoc. Plackett
## End(Not run)
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isfuncCOP Is a General Bivariate Function a Copula by Gridded Search?

Description

Is a general bivariate function a copula? Three properties are identified by Nelsen (2006, p. 10) for
a bivariate copula C(u, v):

C(u, 0) = 0 = C(0, v) Nelsen 2.2.2a,

C(u, 1) = u and C(1, v) = v Nelsen 2.2.2b, and

for every u1, u2, v1, v2 in I2 such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)−C(u2, v1)−C(u1, v2) +C(u1, v1) ≥ 0 Nelsen 2.2.2c.

The last condition is known also as “2-increasing.” The isfuncCOP works along a gridded search
in the domain I2 = [0, 1]× [0, 1] for the 2-increasing check with a resolution ∆u = ∆v = delta.
Because there are plenty of true copula functions available in the literature it seems unlikely that
this function provides much production utility in investigations. This function is provided because
part of the objectives of the copBasic package is for instructional purposes. The computational
overhead is far too great for relative benefit to somehow dispatch to this function all the time using
the other copula utilities in this package.

Usage

isfuncCOP(cop=NULL, para=NULL, delta=0.002, ...)

Arguments

cop A potential bivariate copula function that accepts two arguments for the u and
v and parameters along argument para with option of additional arguments
through the ... argument;

para Vector of parameters or other data structure, if needed, to pass to the copula;

delta The ∆u = ∆v of the grid edges; and

... Additional arguments to pass to the copula function.

Value

A logical value of TRUE or FALSE is returned.

Author(s)

S. Kloibhofer (idea and most code) and W.H. Asquith (documentation)

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
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See Also

densityCOP

Examples

## Not run:
"NelsenEx2.11" <- function(u,v, ...) { # Nelsen (2006, exer. 2.11, p. 16)

if(length(u) > 1 & length(v) > 1 & length(u) != length(v)) return(NA)
if(length(u) == 1) u <- rep(u, length(v))
if(length(v) == 1) v <- rep(v, length(u))
return(sapply(1:length(u), function(i) { upv <- u[i] + v[i]

if(2/3 <= upv & upv <= 4/3) return(min(c(u,v,1/3,upv-(2/3))))
max(u[i]+v[i]-1, 0) }))

}
isfuncCOP(cop=NelsenEx2.11) # FALSE
## End(Not run)

JOcopB5 The Joe/B5 Copula (B5)

Description

The Joe/B5 copula (Joe, 2014, p. 170) is

CΘ(u, v) = B5(u, v) = 1−
(
(1− u)Θ + (1− v)Θ − (1− u)Θ(1− v)Θ

)
,

where Θ ∈ [1,∞). The copula as Θ → ∞ limits to the comonotonicity coupla (M(u, v) and M), as
Θ → 1+ limits to independence copula (Π(u, v); P). Finally, the parameter Θ is readily computed
from a Kendall Tau (tauCOP) by

τC = 1 +
2

2−Θ

(
ψ(2)− ψ(1 + 2/Θ)

)
,

where ψ is the digamma() function and as Θ → 2 then

τC(Θ → 2) = 1− ψ′(2)

where ψ′ is the trigamma() function.

Usage

JOcopB5(u, v, para=NULL, tau=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula;

tau Optional Kendall Tau; and

... Additional arguments to pass.
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Value

Value(s) for the copula are returned. Otherwise if tau is given, then the Θ is computed and a list
having

para The parameter Θ, and

tau Kendall Tau.

and if para=NULL and tau=NULL, then the values within u and v are used to compute Kendall Tau
and then compute the parameter, and these are returned in the aforementioned list.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

M, P

Examples

# Upper tail dependency of Theta = pi --> 2 - 2^(1/pi) = 0.753131 (Joe, 2014, p. 171).
taildepCOP(cop=JOcopB5, para=pi)$lambdaU # 0.75313

# Blomqvist Beta of Theta = pi (Joe, 2014, p. 171).
blomCOP(cop=JOcopB5, para=pi) # 0.5521328
3 - 4*(2*(1/2)^pi - (1/4)^pi)^(1/pi) # 0.5521328

## Not run:
# A test near the limiting Theta for trigamma()
UV <- simCOP(cop=JOcopB5, para=2, n=10000)
para <- JOcopB5(UV[,1], UV[,2])$para
message("Tau difference ", round(2-para, digits=2), " is small.") #
## End(Not run)

joeskewCOP Joe’s Nu-Skew and the copBasic Nu-Star of a Copula

Description

Compute the measure of permutation asymmetry, which can be thought of as bivariate skewness,
named for the copBasic package as Nu-Skew νC of a copula according to Joe (2014, p. 66) by

νC = 3E[UV 2 − U2V ] = 6

∫ ∫
I2

(v − u)C(u, v) dudv.
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This definition is effectively the type="nu" for the function for which the multiplier 6 has been
converted to 96 as explained in the Note.

Numerical results indicate νW ≈ 0 (W), νΠ = 0 (P), νM ≈ 0 (M), νPL ≈ 0 for all Θ (PLcop), and
the ν⋆GH = 0 (GHcop); copulas with mirror symmetry across the equal value line have νC = 0.

Asymmetric copulas do exist. For example, consider an asymmetric Gumbel–Hougaard GH copula
with Θp = (5, 0.8, p):

optimize(function(p) { nuskewCOP(cop=GHcop, para=c(5,0.8, p)) },
c(0,0.99) )$minimum

UV <- simCOP(n=10000, cop=GHcop, c(5,0.8, 0.2836485)) # inspect the graphics
48*mean(UV$U*$V^2 - UV$U^2*UV$V) # -0.2847953 (not the 3rd parameter)

The minimization yields νGH(5,0.8,0.2836485) = −0.2796104, which is close the expectation com-
puted where 48 = 96/2.

A complementary definition is supported, triggered by type="nustar", and is computed by

ν⋆C = 12

∫ ∫
I2

(v + u)C(u, v) dudv − 4,

which has been for the copBasic package, ν⋆C is named as Nu-Star, which the 12 and the −4 have
been chosen so that numerical results indicate ν⋆W = −1 (W), ν⋆Π = 0 (P), and ν⋆M = +1 (M).

Lastly, the uvlmoms function provides for a quantile-based measure of bivariate skewness based on
the difference U − V that also is discussed by Joe (2014, p. 66).

Usage

joeskewCOP(cop=NULL, para=NULL, type=c("nu", "nustar", "nuskew"),
as.sample=FALSE, brute=FALSE, delta=0.002, ...)

nuskewCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)
nustarCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

type The type of metric to compute (nu and nuskew are synonymous for νC and
nustar is for ν⋆C);

brute Should brute force be used instead of two nested integrate() functions to
perform the double integration;

delta The du and dv for the brute force integration using brute;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the sample ν̂ or ν̂⋆ (see Note). If set to -1, then the message concerning
CPU effort will be surpressed; and

... Additional arguments to pass.
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Details

The implementation of joeskewCOP for copBasic provides the second metric of asymmetry, but
why? Consider the results that follow:

joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# -0.2796104

joeskewCOP(cop=GHcop, para=c(5, 0.2836485, 0.8), type="nu")
# +0.2796103

joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# 0.3571276

joeskewCOP(cop=GHcop, para=c(5, 0.2836485, 0.8), type="nu")
# 0.3571279

tauCOP( cop=GHcop, para=c(5, 0.2836485, 0.8))
# 0.2443377

The demonstration shows—at least for the symmetry (switchability) of the 2nd and 3rd parameters
(π2 and π3) of the asymmetric GH copula—that the first definition ν is magnitude symmetric but
carries a sign change. The demonstration shows magnitude and sign stability for ν⋆, and ends with
Kendall Tau (tauCOP). Collectively, Kendall Tau (or the other symmetric measures of association,
e.g. blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, wolfCOP) when combined with ν and ν⋆ might
provide a framework for parameter optimization of the asymmetric GH copula (see below).

The asymmetric GH(5,0.2836485,0.8) is not radial (isCOP.radsym) or permutation (isCOP.permsym),
but if π2 = π3 then the resulting GH copula is not radially symmetric but is permutation symmet-
ric:

isCOP.radsym( cop=GHcop, para=c(5, 0.2836485, 0.8)) # FALSE
isCOP.permsym(cop=GHcop, para=c(5, 0.2836485, 0.8)) # FALSE
isCOP.radsym( cop=GHcop, para=c(5, 0.8, 0.8)) # FALSE
isCOP.permsym(cop=GHcop, para=c(5, 0.8, 0.8)) # TRUE

The use of νC and ν⋆C with a measure of association is just suggested above for parameter op-
timization. Suppose we have GH(5,0.5,0.7) with Spearman Rho ρ = 0.4888, ν = 0.001475, and
ν⋆ = 0.04223, and the asymmetric GH coupla is to be fit. Parameter estimation for the asymmetric
GH is accomplished by

"fitGHcop" <- function(hats, assocfunc=rhoCOP, init=NA, eps=1E-4, ...) {
H <- GHcop # shorthand for the copula
"objfunc" <- function(par) {

par[1] <- ifelse(par[1] < 1, return(Inf), exp(par[1])) # edge check
par[2:3] <- pnorm(par[2:3]) # detransform
hp <- c(assocfunc(H, par), nuskewCOP(H, par), nustarCOP(H, par))
return(sum((hats-hp)^2))

}
# Theta=1 and Pi2 = Pi3 = 1/2 # as default initial estimates
if(is.na(init)) init <- c(1, rep(1/2, times=2))
opt <- optim(init, objfunc, ...); par <- opt$par
para <- c( exp(par[1]), pnorm(par[2:3]) )
names(para) <- c("Theta", "Pi2", "Pi3")
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fit <- c(assocfunc(H, para), nuskewCOP(H, para), nustarCOP(H, para))
txt <- c("AssocMeasure", "NuSkew", "NuStar")
names(fit) <- txt; names(hats) <- txt
if(opt$value > eps) warning("inspect the fit")
return(list(para=para, fit=fit, given=hats, optim=opt))

}
father <- c(5,.5,.7)
densityCOPplot(cop=GHcop, para=father, contour.col=8)
fRho <- rhoCOP( cop=GHcop, father)
fNu <- nuskewCOP(cop=GHcop, father)
fStar <- nustarCOP(cop=GHcop, father)

child <- fitGHcop(c(fRho, fNu, fStar))$para
densityCOPplot(cop=GHcop, para=child, ploton=FALSE)

cRho <- rhoCOP( cop=GHcop, child)
cNu <- nuskewCOP(cop=GHcop, child)
cStar <- nustarCOP(cop=GHcop, child)
message("Father stats: ", paste(fRho, fNu, fStar, sep=", "))
message("Child stats: ", paste(cRho, cNu, cStar, sep=", "))
message("Father para: ", paste(father, collapse=", "))
message("Child para: ", paste(child, collapse=", "))

The initial parameter estimate has the value Θ = 1, which is independence for the one parameter
GH. The two other parameters are set as π2 = π3 = 1/2 to be in the mid-point of their domain.
The transformations using the log() ↔ exp() and qnorm() ↔ pnorm() functions in R are used
to keep the optimization in the viable parameter domain. The results produce a fitted copula of
GH(4.907,0.5006,0.7014). This fit aligns well with the parent, and the three statistics are essentially
matched during the fitting.

The ν⋆C can be similar to rhoCOP, but differences do exist. In the presence of radial symmetry,
(νC == 0), the ν⋆C is nearly equal to Spearman Rho for some copulas. Let us test further:

p <- 10^seq(0,2,by=.01)
s <- sapply(p, function(t) nustarCOP(cop=GHcop, para=c(t)))
r <- sapply(p, function(t) rhoCOP(cop=GHcop, para=c(t)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)

Now let us add some asymmetry

s <- sapply(p, function(t) nustarCOP(cop=GHcop, para=c(t, 0.25, 0.75)))
r <- sapply(p, function(t) rhoCOP(cop=GHcop, para=c(t, 0.25, 0.75)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)

Now let us choose a different (the Clayton) copula

s <- sapply(p, function(t) nustarCOP(cop=CLcop, para=c(t)))
r <- sapply(p, function(t) rhoCOP(cop=CLcop, para=c(t)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)
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Value

The value for νC or ν⋆C is returned.

Note

The νC definition is given with a multiplier of 6 on the integrals in order to agree with Joe (2014)
relation that is also shown. However, in mutual parameter estimation experiments using a simple
sum-of-square errors as shown in the Details, it is preferred to have νC measured on a larger scale.
Where does the 96 then come from? It is heuristically made so that the upright and rotated cophalf
(see Examples under asCOP and bilmoms for this copula) acquires νC values of +1 and −1, re-
spectively. As a result to make back comparisons to Joe results, the ratios of 96 are made in this
documentation.

The source code shows slightly different styles of division by the sample size as part of the sample
estimation of the statistics. The ν̂ using just division by the sample size as testing indicates that this
statistic is reasonably unbiased for simple copula. The ν̂⋆ with similar division is a biased statistic
and the bias is not symmetrical in magnitude or sign it seems whether the ν̂⋆ is positive or negative.
The salient code is spm <- ifelse(corsgn == -1, +2.4, +1.1) within the sources for which the
corrections were determined heuristically through simulation, and corsgn is the sign of the sample
Spearman Rho through the cor() function of R.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

uvskew, blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP

Examples

nuskewCOP(cop=GHcop,para=c(1.43,1/2,1))*(6/96) # 0.005886 (Joe, 2014, p. 184; 0.0059)

## Not run:
joeskewCOP( cop=GHcop, para=c(8, .7, .5)) # -0.1523491
joeskewCOP( cop=GHcop, para=c(8, .5, .7)) # +0.1523472
# UV <- simCOP(n=1000, cop=GHcop, para=c(8, .7, .5)) # see the switch in
# UV <- simCOP(n=1000, cop=GHcop, para=c(8, .5, .7)) # curvature
## End(Not run)

## Not run:
para=c(19,0.3,0.8); set.seed(341)
nuskew <- nuskewCOP( cop=GHcop, para=para) # 0.3057744
UV <- simCOP(n=10000, cop=GHcop, para=para) # a large simulation
mean((UV$U - UV$V)^3)/(6/96) # 0.3127398

# Two other definitions of skewness follow and are not numerically the same.
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uvskew(u=UV$U, v=UV$V, umv=TRUE) # 0.3738987 (see documentation uvskew)
uvskew(u=UV$U, v=UV$V, umv=FALSE) # 0.3592739 ( or documentation uvlmoms)
# Yet another definition of skew, which requires large sample approximation
# using the L-comoments (3rd L-comoment is L-coskew).
lmomco::lcomoms2(UV)$T3 # L-coskew of the simulated values [1,2] and [2,1]
# [,1] [,2]
#[1,] 0.007398438 0.17076600
#[2,] -0.061060260 -0.00006613
# See the asymmetry in the two L-coskew values and consider this in light of
# the graphic produced by the simCOP() called for n=10,000. The T3[1,1] is
# the sampled L-skew (univariate) of the U margin and T3[2,2] is the same
# but for the V margin. Because the margins are uniform (ideally) then these
# for suitable large sample must be zero because the L-skew of the uniform
# distribution is by definition zero.
#
# Now let us check the sample estimator for sample of size n=300, and the
# t-test will (should) result in acceptance of the NULL hypothesis.
S <- replicate(60, nuskewCOP(para=simCOP(n=300, cop=GHcop, para=para,

graphics=FALSE), as.sample=TRUE))
t.test(S, mu=nuskew)
# t = 0.004633, df = 59, p-value = 0.9963
# alternative hypothesis: true mean is not equal to 0.3057744
# 95 percent confidence interval:
# 0.2854282 0.3262150
# sample estimates:
# mean of x
# 0.3058216
## End(Not run)

## Not run:
# Let us run a large ensemble of copula properties that use the whole copula
# (not tail properties). We composite a Plackett with a Gumbel-Hougaard for
# which the over all association (correlation) sign is negative, but amongst
# these statistics with nuskew and nustar at the bottom, there are various
# quantities that can be extracted. These could be used for fitting.
set.seed(873)
para <- list(cop1=PLcop, cop2=GHcop, alpha=0.6, beta=0.9,

para1=.005, para2=c(8.3,0.25,0.7))
UV <- simCOP(1000, cop=composite2COP, para=para) # just to show

blomCOP(composite2COP, para) # -0.4078657
footCOP(composite2COP, para) # -0.2854227
hoefCOP(composite2COP, para) # +0.5713775
lcomCOP(composite2COP, para)$lcomUV[3] # +0.1816084
lcomCOP(composite2COP, para)$lcomVU[3] # +0.1279844
rhoCOP(composite2COP, para) # -0.5688417

rhobevCOP(composite2COP, para) # -0.2005210
tauCOP(composite2COP, para) # -0.4514693
wolfCOP(composite2COP, para) # +0.5691933

nustarCOP(composite2COP, para) # -0.5172434
nuskewCOP(composite2COP, para) # +0.0714987
## End(Not run)
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joint.curvesCOP Compute Coordinates of the Marginal Probabilities given joint AND
or OR Probabilities

Description

Compute the coordinates of the bivariate marginal probabilities for variablesU and V given selected
probabilities levels t for a copula C(u, v) for v with respect to u. For the case of a joint and
probability, symbolically the solution is

Pr[U ≤ v, V ≤ v] = t = C(u, v),

where U 7→ [ti, uj , uj+1, · · · , 1;∆t] (an irregular sequence of u values from the ith value of ti
provided through to unity) and thus

ti 7→ C(u = U, v),

and solving for the sequence of v. The index j is to indicate that a separate loop is involved and
is distinct from i. The pairings {u(ti), v(ti)} for each t are packaged as an R data.frame. This
operation is very similiar to the plotting capabilities in level.curvesCOP for level curves (Nelsen,
2006, pp. 12–13) but implemented in the function joint.curvesCOP for alternative utility.

For the case of a joint or probability, the dual of a copula (function) or C̃(u, v) from a copula
(Nelsen, 2006, pp. 33–34) is used and symbolically the solution is:

Pr[U ≤ v or V ≤ v] = t = C̃(u, v) = u+ v −C(u, v),

where U 7→ [0, uj , uj+1, · · · , ti; ∆t] (an irregular sequence of u values from zero through to the
ith value of t) and thus

ti 7→ C̃(u = U, v),

and solving for the sequence of v. The index j is to indicate that a separate loop is involved and is
distinct from i. The pairings {u(ti), v(ti)} for each t are packaged as an R data.frame.

Usage

joint.curvesCOP(cop=NULL, para=NULL, type=c("and", "or"),
probs=c(0.5, 0.8, 0.90, 0.96, 0.98, 0.99, 0.995, 0.998),
zero2small=TRUE, small=1E-6, divisor=100, delu=0.001, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

type What type of joint probability is to be computed;

probs The joint probabilities ti from which to compute the coordinates. The default
values represent especially useful annual return period equivalents that are use-
ful in hydrologic risk analyses;
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zero2small A logical controlling whether exactly zero value for probability are converted to
a small value and exactly unity values for probability are converted to the value
1 - small; this logical is useful if transformation from probability space into
standard normal variates or Gumbel reduced variates (see function prob2grv()
in package lmomco) is later desired by the user for attendant graphics (see Ex-
amples section);

small The value for small described for zero2small;

divisor A divisor on a computation of a ∆t for incrementing through the irregularly-
spaced u domain as part of the coordinate computation (see source code);

delu A ∆u for setup of the incrementing through the irregularly-space u domain as
part of the coordinate computation (see source code); and

... Additional arguments to pass to the duCOP function of copBasic or uniroot()
function in R.

Value

An R list is returned with elements each of the given probs.

Note

The arguments divisor and delu provide flexibility to obtain sufficient smoothness in the coordi-
nate curvatures for a given t. The pairings {u(ti), v(ti)} for each t packaged as data.fames within
the returned list each have their own unique length, and this is the reason that a single “master”
data.frame is not returned by this function.

Extended Example—The code below shows both types of joint probability being computed using
the default probs. The plotting is made in Gumbel reduced variates (GRV; see prob2grv in package
lmomco). This transformation is somewhat suitable for the magnitude variation in and at tail depth
of the probs. Also with transformation is being used, the zero2small logical is kept at TRUE, which
is appropriate. The zero2small being set is also useful if standard normal variate transformation
(by the qnorm() function in R) were used instead.

The Gumbel–Hougaard copula (GHcop) and a reversed Gumbel–Hougaard copula rGH are com-
posited together by composite2COP. These were chosen so that some asymmetry in the solutions
by joint.curvesCOP could be seen. We begin by specifying symmetrical plotting limits for later
use and then creating a function for the reversed Gumbel–Hougaard and setting the parameters and
composition weights:

grvlim <- lmomco::prob2grv(c(0.25,0.999)) # out to 1,000 years
"rGHcop" <- function(u,v, ...) { u + v - 1 + GHcop(1-u, 1-v, ...) }
para <- list(alpha=0.16, beta=0.67, cop1 =GHcop, cop2 =rGHcop,

para1=4.5, para2=2.2)
tau <- tauCOP( cop=composite2COP, para=para) # Tau = 0.351219
nuskew <- nuskewCOP(cop=composite2COP, para=para) # Nuskew = 0.084262
UV <- simCOP(n=1000, cop=composite2COP, para=para, snv=TRUE)

The code also computed the Kendall Tau (tauCOP) and Nu-Skew (nuskewCOP) and the results shown.
The code finishes with a simulation by simCOP of the copula composition just for reference.
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Next, we compute and plot the joint probability curves. The tolerance for the uniroot calls is
reset from the R defaults because slight wooble in the numerical solutions exists otherwise. The
AND and OR lists each provide data.frames from which successive graphic calls plot the lines.
The second plot() call is commented out so that both sets of joint probability curves are drawn on
the same plot.

AND <- joint.curvesCOP(cop=composite2COP, para=para, type="and",
divisor=1000, tol=.Machine$double.eps)

plot(grvlim, grvlim, type="n",
xlab="GUMBEL REDUCED VARIATE IN U", ylab="GUMBEL REDUCED VARIATE IN V")

for(t in sort(as.numeric(names(AND)))) {
UV <- get(as.character(t), AND)
lines(lmomco::prob2grv(UV$U), lmomco::prob2grv( UV$V))
text( lmomco::prob2grv(median(UV$U)), lmomco::prob2grv(median(UV$V)),

as.character(round(1/(1-t)), digits=0))
}

OR <- joint.curvesCOP(cop=composite2COP, para=para, type="or",
divisor=1000, tol=.Machine$double.eps)

for(t in sort(as.numeric(names(OR)))) {
UV <- get(as.character(t), OR)
lines(lmomco::prob2grv(UV$U), lmomco::prob2grv(UV$V), col=2)
text( lmomco::prob2grv(median(UV$U)), lmomco::prob2grv(median(UV$V)),

as.character(round(1/(1-t)), digits=0), col=2)
}
mtext("Return Periods: black=cooperative risk, red=dual risk")
abline(0,1, lty=2) # dash line is simply and equal value line

Black Curves—The black curves represent the nonexceedance joint and condition. The black
curves are a form of level curve (see level.curvesCOP), but it seems appropriate to not name
them as such because Nelsen’s examples and others usually have the level curves on an even step
interval of probability such as 10-percent level curves. The complement of nonexceedance joint
and is the probability level that either or both random variables (say “hazards”) U or V causes
“failure” at the respective return period.

Red Curves—The red curves represent the nonexceedance joint or (inclusive) condition. The com-
plement of nonexceedance joint or (inclusive) is the probability level that both random variables
(say “hazards”) U or V must simultaneously (or dually) occur for “failure” at the respective return
period. Note, there is obviously asymmetry in the joint or curves.

Interpretation—Because the two hazards can “cooperate” to cause failure (see coCOP) for an equal
level of protection (say 500-year event) relative to the complement of nonexceedance joint or (in-
clusive) condition (see surCOP), the marginal probabilities must be considerably higher. Users are
encouraged to review copBasic-package and the figure therein.

Author(s)

W.H. Asquith
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References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

diagCOPatf, duCOP, jointCOP, joint.curvesCOP2, level.curvesCOP

Examples

# See Note section

joint.curvesCOP2 Compute Coordinates of the Marginal Probabilities given joint AND
or OR Probability

Description

Compute the coordinates of the bivariate marginal probabilities for variablesU and V given selected
probabilities levels t for a copula C(u, v) for u with respect to v. For the case of a joint and
probability, symbolically the solution is

Pr[U ≤ v, V ≤ v] = t = C(u, v),

where V 7→ [ti, tj , tj+1, · · · , 1;∆] (an irregular sequence of v values from the ith value of ti
provided through to unity) and thus

ti 7→ C(u, v = V ),

and solving for the sequence of u. The index j is to indicate that a separate loop is involved and
is distinct from i. The pairings {u(ti), v(ti)} for each t are packaged as an R data.frame. This
operation is very similiar to the plotting capabilities in level.curvesCOP2 for level curves (Nelsen,
2006, pp. 12–13) but implemented in the function joint.curvesCOP2 for alternative utility.

For the case of a joint or probability, the dual of a copula (function) or C̃(u, v) from a copula
(Nelsen, 2006, pp. 33–34) is used and symbolically the solution is:

Pr[U ≤ v or V ≤ v] = t = C̃(u, v) = u+ v −C(u, v),

where V 7→ [0, vj , vj+1, · · · , ti; ∆] (an irregular sequence of v values from zero through to the ith
value of t) and thus

ti 7→ C̃(u, v = V ),

and solving for the sequence of u. The index j is to indicate that a separate loop is involved and is
distinct from i. The pairings {u(ti), v(ti)} for each t are packaged as an R data.frame.

Usage

joint.curvesCOP2(cop=NULL, para=NULL, type=c("and", "or"),
probs=c(0.5, 0.8, 0.90, 0.96, 0.98, 0.99, 0.995, 0.998),
zero2small=TRUE, small=1E-6, divisor=100, delv=0.001, ...)
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Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

type What type of joint probability is to be computed;

probs The joint probabilities for which to compute the coordinates. The default values
represent especially useful annual return period equivalents that are useful in
hydrologic risk analyses;

zero2small A logical controlling whether precise zero value for probability are converted
to a small value and precise unity values for probability are converted to the
value 1 - small; this logical is useful if transformation from probability space
into standard normal variates or Gumbel reduced variates (GRV; see function
prob2grv() in package lmomco) is later desired by the user for attendant graph-
ics (see Examples section);

small The value for small described for zero2small;

divisor A divisor on a computation of a ∆ for incrementing through the v domain as
part of the coordinate computation (see source code);

delv A ∆v for setup of the incrementing through the v domain as part of the coordi-
nate computation (see source code); and

... Additional arguments to pass to the duCOP function of copBasic or uniroot()
function.

Value

An R list is returned with elements each of the given probs.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

diagCOPatf, duCOP, jointCOP, joint.curvesCOP, level.curvesCOP2

Examples

# See Note for joint.curvesCOP()
## Not run:
# Approach the joint curves from both "with respect two" perspectives---results same.
JCvwrtu <- joint.curvesCOP( cop=PSP, prob=0.98)$"0.98"
JCuwrtv <- joint.curvesCOP2(cop=PSP, prob=0.98)$"0.98"; lim <- c(2,5)
plot(qnorm(JCvwrtu$U), qnorm(JCvwrtu$V), type="l", lwd=6, col=8, xlim=lim, ylim=lim,

xlab="STANDARD NORMAL VARIATE OF U", ylab="STANDARD NORMAL VARIATE OF V")
lines(qnorm(JCuwrtv$U), qnorm(JCuwrtv$V), col=2, lwd=2)
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mtext("98th Joint Percentile Level Curve for PSP Copula")#
## End(Not run)

jointCOP Compute Equal Marginal Probabilities Given a Single Joint AND or
OR Probability for a Copula

Description

Given a single joint probability denoted as t for a copula C(u, v) numerically solve for bivariate
marginal probabilities U and V such that they are also equal to each other (u = v = w). For the
case of a joint and probability, the primary diagonal of the copula (Nelsen, 2006, pp. 12 and 16) is
solved for by a simple dispatch to the diagCOPatf function instead. Symbolically the solution is

Pr[U ≤ v, V ≤ v] = t = C(w,w).

For the case of a joint or probability, the dual of a copula (function) or C̃(u, v) from a copula
(Nelsen, 2006, pp. 33–34; duCOP) is used where symbolicaly the solution is

Pr[U ≤ v or V ≤ v] = t = C̃(u, v) = u+ v −C(u, v),

or
Pr[U ≤ v or V ≤ v] = t = 2w −C(w,w).

The function for type="or" tests C̃(0, 0) and if it returns NA or NaN then the lower limit for the
rooting is treated as .Machine$double.eps instead of 0 (zero).

Usage

jointCOP(t, cop=NULL, para=NULL, type=c("and", "or"), ...)

Arguments

t The joint probability level t;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

type The type of joint probability is to be computed; and

... Additional arguments to pass to the duCOP function of copBasic or uniroot()
function.

Value

A vector of the equal u and v probabilties for the given type at the joint probability level of t. The
vector includes the t as the third element.
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Note

ENSEMBLE 1—Counting and Copula Probabilities from a Massive Sample Size: Simulations
can be used to check/verify select copula concepts. We begin with a Gumbel–Hougaard copula
GH(u, v) = CΘ(u, v) having parameter Θ = 1.5, which corresponds to a Kendall Tau τC = 1/3
(GHcop). Next, simulate and count the number of either U or V exceeding the 99th percentile
“event.” The event can occur either from the random variable U or from V with equal “loss.” If the
event occurs in both U and V , the loss is just the same as if U or V occurred. So, if a design were at
the 100-year level and thus a 0.01 chance of loss each year, then 500 losses in 50,000 years would
be expected.

set.seed(89); n <- 50000
UV <- simCOP(n, cop=GHcop, para=1.5, graphics=FALSE)
length(UV$U[UV$U > 0.99 | UV$V > 0.99]) # 799 times (losses)
length(UV$U[UV$U > 0.99356 | UV$V > 0.99356]) # 500 times (losses)

Letting JP equal 0.99356, which forces the required acceptance of 500 losses for the design has
conditions of UV$U > JP or UV$V > JP as well as condition of UV$U > JP and UV$V > JP. These three
conditions are captured using the structure of the R code listed. Up until now, manual searching
resulted in a value for JP equaling 0.99356, which produces the 500 count losses (acceptable losses).
Thus, JP is a marginal bivariate probability (in this case equality between Ucrit. = Vcrit. declared)
necessary to attain a 99th percentile joint protection from loss. The magnitude for either U or V
thus must exceed the 99th percentile, and this is what the code shows with 799 losses.

It is important to consider that unless U and V are in perfect positive correlation (e.g. M(u, v),
M, Fréchet–Hoeffding upper-bound copula), that protection from loss needs to be higher than 0.99
if the marginal risk is set at that level. Continuing, if the 99th percentile is the 100-year event,
then design criteria should be about 155 years instead [lmomco::prob2T(0.99356)]. The user can
readily see this with the switch to perfect independence with the GH(u, v) copula with Θ = 1 and
produce quite different results or extreme correlation with say Θ > 20.

To provide the protection for 500 exceedances in n = 50,000 trials and for purposes of demonstra-
tion, balance the protection betweenU and V by setting their probabilities equal, then the theoretical
joint probability is

diagCOPatf(0.99, 0.99, cop=GHcop, para=1.5) # 0.9936887
jointCOP( 0.99, cop=GHcop, para=1.5, type="and") # 0.9936887

and these two probabilities, which in reality are actually based on same computation (diagCOPatf),
and nearly are the same as JP = 0.99356 that was determined by the manual searching on the
simulated data.

A mutually inclusive and condition can be arranged as follows, and it is implicit in the definition
that both loss events occur at the same time:

length(UV$U[UV$U > 0.99 & UV$V > 0.99]) # 208 losses ( simulated )
surCOP( 1-0.99, 1-0.99, cop=GHcop, para=1.5) * n # 209 losses (theoretical)
surfuncCOP(0.99, 0.99, cop=GHcop, para=1.5) * n # 209 losses (theoretical)

What are the expected number of exceedances if designs for U and V are built at U = V = 0.99
marginal probabilities for protection?
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coCOP(1-0.99, 1-0.99, cop=GHcop, para=1.5) * n # 791 losses (theoretical)
# by the co-copula which from the copula as nonexceedances is
(1-COP( 0.99, 0.99, cop=GHcop, para=1.5)) * n # 791 losses (theoretical)

Note, the 791 losses is nearly equal to 799, but obviously not 500 as one might incorrectly have
imagined strictly in a univariate world.

Now a couple of questions can be asked about the joint and and joint or probabilities using the
definition of a copula COP and then the dual of a copula (function) (C̃(u, v), duCOP), respectively:

# The AND nonexceedances:
length(UV$U[UV$U <= 0.99 & UV$V <= 0.99]) / n # 0.98402 ( simulated )
COP(0.99, 0.99, cop=GHcop, para=1.5) # 0.9841727 (theoretical)

# The OR nonexceedances:
length(UV$U[UV$U <= 0.99 | UV$V <= 0.99]) / n # 0.99584 ( simulated )
duCOP(0.99, 0.99, cop=GHcop, para=1.5) # 0.9958273 (theoretical)

How about inversion of C̃(u, v) by jointCOP and check against the simulation?

jointCOP(0.99, cop=GHcop, para=1.5, type="or")[1] # 0.9763951 ( theor. )
length(UV$U[UV$U <= 0.9763951 | UV$V <= 0.9763951])/n # 0.98982 ( simulated)

The second probability is a value quite near to 0.99. So, if one wants mutual loss protection,
compute the inversion of the dual of a copula using jointCOP(..., type="or"). Let us say that
0.80 mutual loss protection is wanted

jointCOP(0.80, cop=GHcop, para=1.5, type="or")[1] # 0.6561286
n - length(UV$U[UV$U <= 0.6561286 | UV$V <= 0.6561286])# 10049 losses ( sim.)
n - (1-0.8)*n # 10000 losses (theoretical)

The example here shows numerical congruence of 10,049 ≈ 10,000. An opposing question is also
useful. How about a mutually exclusive or condition as nonexceedances?

# The mutually exclusive OR as nonexceedances:
length((UV$U[ (UV$U <= 0.99 | UV$V <= 0.99) &

! (UV$U <= 0.99 & UV$V <= 0.99)])) # 591 losses ( simulated )
# The mutually exclusive OR as exceedances:
length(UV$U[ (UV$U > 0.99 | UV$V > 0.99) &

! (UV$U > 0.99 & UV$V > 0.99)]) # 591 losses ( simulated )

It is clear that 208 + 591 = 799 as shown earlier. Readers are asked to notice how there are two
ways to get at the 591 count. There are 208 mutual loss events and 591 occassions where either U
or V is the causation of loss. For comparison, how many observed events by random variable?

length(UV$U[ (UV$U > 0.99)]) # 519 ( simulated )
length(UV$U[ (UV$V > 0.99)]) # 491 ( simulated )
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which if they were perfectly uncorrelated (P(u, v), P, independence copula) would be 519 + 491
= 1,007 losses. But for the simulations here, 799 losses occurred, so 1,007 − 799 = 208 losses
were at the same time caused by U and V .

Both of the following lengths A and B are 799 and both represent a joint or condition—the opera-
tions do not represent a mutually exclusive or condition.

A <- length(UV$U[UV$U > 0.99]) + length(UV$U[UV$V > 0.99]) -
length(UV$U[UV$U > 0.99 & UV$V > 0.99])

B <- length(UV$U[UV$U > 0.99 | UV$V > 0.99]) # A == B == 799

ENSEMBLE 2—Simulation Study using a Real-World Sample Size: Now with identities of sorts
shown and described above, let us test a theoretically consistent version of a sample of size 150
repeated 1,000 times at the 98th percentile against loss by one or the other random variables or both
for slightly correlated U or V again following the Gumbel–Hougaard copula. The losses incurred
by mutual event occurrence is the same as if one or the other variables produced an event causing
loss.

n <- 250; nsim <- 1000; EitherEvent <- 0.98; MutualEvent <- 0.99; Theta<- 1.5
PT <- jointCOP(EitherEvent, cop=GHcop, para=Theta, type="and")[1] # 0.9873537
DU <- jointCOP(MutualEvent, cop=GHcop, para=Theta, type="or" )[1] # 0.9763951

This next code listing is a redundant example to the one that follows but it is shown anyway because
a slight possibility of confusion in the vectorized conditional evaluations in R. This first example
concretely changes the loss events into binary states and adds them up prior to the condition.

set.seed(894234)
EX1a <- sapply(1:nsim, function(i) {

uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
length(uv$U[ as.numeric(uv$U > PT) + as.numeric(uv$V > PT) >= 1 ]) })

t.test(EX1a, mu=(1-EitherEvent) * n)

The expected count E[EX1a] = 5 and the simulation run yielded 5.058. The t.test() function in
R results in a statistically insignificant difference. The following two example use a similar there.
For sake of both code brevity and clarity, the examples here all restart the simulations at the expense
of computation time.

set.seed(894234)
EX1b <- sapply(1:nsim, function(i) {

uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
length(uv$U[uv$U > PT | uv$V > PT]) })

t.test(EX1b, mu=(1-EitherEvent) * n)

The expected count E[EX1b] = 5—the same results are shown as in the first example listing.

Next, let us demonstrate the dual of a copula for mutually occurring events.

set.seed(894234)
EX2 <- sapply(1:nsim, function(i) {

uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
length(uv$U[uv$U > DU & uv$V > DU]) })

t.test(EX2, mu=(1-MutualEvent) * n)
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The expected count E[EX2] = 2.5 and the simulation run yielded 2.49. The t.test() again results
in a statistically insignificant difference.

Now the U = V = 0.9873537 for the “and” and U = V = 0.9763951 for the “or” are not
equal marginal probabilities. Taking the larger of the two marginal probabilities, the actual joint
protection from mutual event occurrance can be computed:

duCOP(0.9873537, 0.9873537, cop=GHcop, para=Theta) # 0.9947075
(1-0.9947075)*n # which is about 1.32 events per 250 trials.

So, the larger protection in terms of joint probabilities provided by EitherEvent at 0.98 instead of
MutualEvent at 0.99 with respective protection at the 0.9873537 provides a MutualEvent protec-
tion of 0.9947075.

set.seed(894234)
EX3 <- sapply(1:nsim, function(i) {

uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
length(uv$U[uv$U > 0.9873537 & uv$V > 0.9873537]) })

t.test(EX3, mu=(1-0.9947075) * n)

The expected countE[EX3] = 1.32 and the simulation run yielded 1.31. The t.test() again results
in a statistically insignificant difference, and thus the result indistinguishable from the expectation.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

diagCOPatf, duCOP, joint.curvesCOP, level.curvesCOP

Examples

jointCOP(0.50, cop=GHcop, para=1.5, type="and") # 0.6461941 0.6461941 0.5000000
jointCOP(2/3, cop=GHcop, para=1.5, type="or" ) # 0.4994036 0.4994036 0.6666667

# See extended code listings and discussion in the Note section
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kfuncCOP The Kendall (Distribution) Function of a Copula

Description

To begin, there are at least three terms in the literature for what appear as the same function sup-
ported by the kfuncCOP function. The Kendall Function also is known as Kendall Distribution
Function (Nelsen, 2006, p. 163) and Kendall Measure (Salvadori et al., 2007, p. 148). Each of
these is dealt with in sequel to set the manner of the rather lengthy documentation for this function.

KENDALL FUNCTION—The Kendall Function (FK) (Joe, 2014, pp. 419–422) is the cumulative
distribution function (CDF) of the vector U = (U1, U2, . . .) or U = (u, v) (bivariate) where U
is distributed as the copula: U ∼ C(u, v). Letting Z be the random variable for C(u, v) : Z =
C(u, v), the Kendall Function is defined as

FK(z;C) = Pr[Z ≤ z;U ∼ C(u, v)],

where FK is the nonexceedance probability of the joint probability z stemming from the C. Note,
unlike its univariate counterpart, FK(z) is rarely uniformly distributed (Nelsen et al., 2001, p.
278). The inverse F (−1)

K (z) is implemented by the kfuncCOPinv function, which could be used
for simulation of the correct joint probability using a single unformly distributed ∼ U(0,1) random
variable. A reminder is needed that Z is the joint probability and FK(z) is the Kendall Function.

Joe (2014) and others as cited list various special cases of FK(z), inequalities, and some useful
identities suitable for validation study:

• For M(u, v) (see M): FK(z) = z for all 0 < z < 1 for all d ≥ 2 dimensions;
• For W(u, v) (see W): FK(z) = 1 for all 0 < z < 1 for d = 2 (bivariate only);
• For Π(u, v) (see P): FK(z) = z − z log z for 0 < z < 1 for d = 2 (bivariate only);
• For any C: z ≤ FK(z) for 0 < z < 1; and
• For any C: E[Z] = 1−

∫ 1

0
FK(t) dt ≥ z (Nelsen, 2001, p. 281) — Z expectation, not FK!

• For any C: τC = 3− 4
∫ 1

0
FK(t) dt (Nelsen, 2006, p. 163; see tauCOP [Examples]).

• For any C: FK(t) does not uniquely determine the copula.

The last item is from Durante and Sempi (2015, p. 118), and later discussion herein will concern
an example of theirs. By coincidence within a few days before receipt of the Durante and Sempi
book, experiments using kfuncCOP suggested that numerically the Galambos (GLcop), Gumbel–
Hougaard (GHcop), and Hüsler–Reiss (HRcop) extreme value copulas for the same Kendall Tau (τC)
all have the same FK(t). Therefore, do all EV-copulas have the same Kendall Function? Well in
fact, they do and Durante and Sempi (2015, p. 207) show that FK(z) = z − (1 − τC)z log(z) for
an EV-copula.

Joe (2014, p. 420) also indicates that strength of lower-tail dependence (taildepCOP) affects FK(z)
as z → 0+, whereas strength of upper-tail dependence affects FK(z) as z → 1−. (A demonstration
of tail dependence dependence is made in section Note.) Also compared to comonotonicity copula
[M] there are no countermonotonicity copula (Wd>2) for dimensions greater the bivariate (Joe,
2014, p. 214)

Joe (2014) does not explicitly list an expression of FK(z) that is computable directly for any
C(u, v), and Nelsen (2006, p. 163) only lists a form (see later in documentation) for Archimedean
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copulas. Salvadori et al. (2007, eq. 3.47, p. 147) also list the Archimedean form; however, Sal-
vadori et al. (2007, eq. 3.49, p. 148) also list a form computable directly for any C(u, v).
Considerable numerical experiments and derivations involving the Π(u, v) copula and results for
KC(z) shown later, indicate that the correct Kendall form for any C(u, v) is

FK(z) ≡ z +

∫ 1

z

δC(u, t)

δu
du,

where t = C(−1)(u, z) for 0 ≤ z ≤ 1, t can be computed by the COPinv function, and the partial
derivative δC(u, t)/δu can be computed by the derCOP function. It is a curiosity that this form
is not in Joe (2014), Nelsen et al. (2001, 2003), or Nelsen (2006), but actually in Salvadori et al.
(2007).

KENDALL MEASURE—The actual expression for any C(u, v) by Salvadori et al. (2007, eq. 3.49,
p. 148) is for Kendall Measure (KC) of a copula:

KC(z) = z −
∫ 1

z

δC(u, t)

δu
du,

where t = C(−1)(u, z) for 0 ≤ z ≤ 1. Those authors report that KC(z) is the CDF of a random
variable Z whose distribution is C(u, v). This is clearly appears to be the same meaning as Joe
(2014) and Nelsen (2006). The minus “−” in the above equation is very important.

Salvadori et al. (2007, p. 148) report that “the function KC(z) represents a fundamental tool
for calculating the return period of extreme events.” The complement of KC(z) is KC(z) =
1−KC(z), and the KC(z) inverse

1

1−KC(z)
=

1

KC(z)
= TKC

is referred to as a secondary return period (Salvadori et al., 2007, pp. 161–170).

KENDALL DISTRIBUTION FUNCTION—Nelsen (2006, p. 163) defines the Kendall Distribution
Function (say K⋆

C(t)) as

K⋆
C(t) = t− ϕ(t)

ϕ′(t+)
,

where ϕ(t) is a generator function of an Archimedean copula and ϕ′(t+) is a one-sided derivative
(Nelsen, 2006, p. 125), and ϕ(t) is ϕ(C(u, v)) = ϕ(u)+ϕ(v). This same form is listed by Salvadori
et al. (2007, eq. 3.47).

Nelsen (2006) does not seem to list a more general definition for any C(u, v). Because there is
considerable support for Archimedean copulas in R, copBasic has deliberately been kept from
being yet another Archimedean-based package. This is made for more fundamental theory and
pedogogic reasons without the algorithmic efficiency relative to the many convenient properties of
Archimedean copulas.

The similarity of FK(z), KC(z), and K⋆
C(t), however, is obvious—research shows that there are

no syntatic differences between FK(z) and KC(t) and K⋆
C(z)—they all are the CDF of the joint

probability Z of the copula. Consider now that Salvadori et al. show KC having the form a − b
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and not a form a+ b as previously shown for FK(z). Which form is thus correct? The greater bulk
of this documentation seeks to answer that question, and it must be concluded that Salvadori et al.
(2007, eq. 3.49) definition for KC(z) has a typesetting error.

Usage

kfuncCOP(z, cop=NULL, para=NULL, wrtV=FALSE, as.sample=FALSE,
verbose=FALSE, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)

kmeasCOP(z, cop=NULL, para=NULL, wrtV=FALSE, as.sample=FALSE,
verbose=FALSE, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)

Arguments

z The values for z;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

wrtV A logical to toggle between with respect to v or u (default);

as.sample A control on whether an optional R data.frame in para is used to compute the
empirical F̂K(z). Let vector length of para be denoted m and i = (1, . . . ,m),
if as.sample=TRUE, then for each of the probability pairs in para, the empiri-
cal copula (EMPIRcop) function with additional arguments ... is used to gen-
erate a vector (0, F ♯

K,m, 1) of length m + 2, then a vector of (0, z♯m, 1) again
of length m + 2 where z♯ = (i − 0.5)/m is created and linear interpola-
tion by the approx() function in R for each of the z values in z is used to
estimate F̂K(z) (see source code). If as.sample="genest", then the F̂K(z)
is estimated without interpolation using a simple empirical copula basis and
“pseudo-observations” after Genest et al. (2006, p. 339). The default F̂K

(as.sample=TRUE) is the linear interpolation based on the default call of Weibull
form of the empirical copula, but that can be confirmed by ctype="weibull"
(see Note);

verbose A logical supressing warnings from integrate() in R that are usually related
to “integral divergence” for z → 0+. The constructed behavior of kfuncCOP is
to return FK(z → 0+) = 0 if numerical integration returns NULL, and such a
construction is made to avoid “end points not of opposite sign” during FK(z)
inversion by kfuncCOPinv;

subdivisions Argument of same name passed to integrate(),

rel.tol Argument of same name passed to integrate(),

abs.tol Argument of same name passed to integrate(), and

... Additional arguments to pass.

Value

The value(s) for FK(z) is returned.
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Note

VALIDATION STUDY—A validation study using the Independence copula (Π = uv; P) with theo-
retical results of Joe (2014) and empiricism is readily performed using the expression for FK(z):

Z <- sort(c(0.01, seq(0,1, by=0.05), 0.99)) # ** Joint probabilities **
UV <- simCOP(n=4000, cop=P, graphics=FALSE); kendF <- Z - Z*log(Z)
emp.kendF <- kfuncCOP(Z, para=UV, as.sample="genest") # emp. Kendall func
theo.kendF <- kfuncCOP(Z, cop=P) # theo. Kendall func, numeric integration
plot(Z, kendF, type="l", col=3, lwd=4, lty=2, xlim=c(0,1), ylim=c(0,1),

xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]",
ylab="KENDALL FUNCTION, AS NONEXCEEDANCE PROBABILITY") # analytical

points(Z, kendF, col=3, lwd=1, lty=2, pch=16) # green (theo. values)
points(Z, emp.kendF, col=4, lwd=2, cex=1.5) # blue (empirical values)
lines(Z, theo.kendF, col=2) # red (theoretical line by numerical integration)
mtext("Kendall Functions: Independence Copula")

The figure so produced shows that the theoretical relation in Joe (2014) is correct because the
empirical values from the simulated sample (Empirical Kendall Function; Nelsen et al., 2003)
match other curves quite well. Rerunning the above code with either M (M) or W (W) copulas will
show that the special cases listed above are consistent with the empirical estimates. The case of
W(u, v) is degenerate at z = 0 so the empirical computation is in error for the smallest z given
because of interpolation. The M copula has FK along the equal value line (1:1) line.

Now consider a more comprehensive demonstration using the N4212cop copula with some relatively
weak dependence in Θ = 1.17.

Theta <- 1.17; print(rhoCOP(cop=N4212cop, para=Theta)) # Spearman Rho = 6/10
Z <- sort(c(0.01, seq(0,1, by=0.05), 0.99)) # ** Joint probabilities **
UV <- simCOP(n=16000, cop=N4212cop, para=Theta, graphics=TRUE)
empir.kendF <- kfuncCOP(Z, as.sample=TRUE, para=UV, ctype="weibull")
kwrtU <- kfuncCOP(Z, cop=N4212cop, para=Theta, wrtV=FALSE)
kwrtV <- kfuncCOP(Z, cop=N4212cop, para=Theta, wrtV=TRUE )
plot(Z, empir.kendF, type="p", col=2, lwd=7, lty=2, xlim=c(0,1),ylim=c(0,1),

xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]",
ylab="KENDALL FUNCTION, AS NONEXCEEDANCE PROBABILITY")

abline(0,1, lty=2, lwd=0.8); mtext("Kendall Functions: N4212(1.17) Copula")
lines(Z, kwrtU, col=4, lwd=4, lty=2); lines(Z, kwrtV, col=3, lwd=1, lty=2)

The figure so produced again shows congruence between the two theoretical computations and
the empirical curve. Now consider another comprehensive demonstration using the PLACKETTcop
copula with some strong negative dependence in Θ = 0.04.

Theta <- 0.04
Z <- sort(c(0.01, seq(0,1, by=0.05), 0.99)) # ** Joint probabilities **
UV <- simCOP(n=2600, cop=PLACKETTcop, para=Theta, graphics=TRUE)
empir.kendF <- kfuncCOP(Z, as.sample="hazen", para=UV)
kwrtU <- kfuncCOP(Z, cop=PLACKETTcop, para=Theta, wrtV=FALSE)
kwrtV <- kfuncCOP(Z, cop=PLACKETTcop, para=Theta, wrtV=TRUE )
plot(Z, empir.kendF, type="p", col=2, lwd=7, lty=2, xlim=c(0,1),ylim=c(0,1),
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xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]",
ylab="KENDALL FUNCTION, AS NONEXCEEDANCE PROBABILITY")

abline(0,1, lty=2, lwd=0.8); mtext("Kendall Function: Plackett Copula")
lines(Z, kwrtU, col=4, lwd=4, lty=2); lines(Z, kwrtV, col=3, lwd=1, lty=2)

The figure so produced again shows congruence between the two theoretical computations and the
empirical curve.

Another comparison of FK(z) is useful and concerns lower- and upper-tail dependency parameters
(taildepCOP) with a comparison of three different copula all having the same Kendall Tau. The
following code computes and draws the respective FK(z):

# Given a Kendall Tau of 0.4 and the GHcop, N4212, and Plackett copulas
# parameters respectively are:
Phi <- 1.666667; Nu <- 1.111119; Mu <- 6.60344
Z <- seq(0.005, 0.995, by=0.005) # ** Joint probabilities **
GHkenf <- kfuncCOP(Z, cop=GHcop, para=Phi, wrtV=FALSE)
N4212kenf <- kfuncCOP(Z, cop=N4212cop, para=Nu, wrtV=FALSE)
PLkenf <- kfuncCOP(Z, cop=PLACKETTcop, para=Mu, wrtV=FALSE)
plot(qnorm(GHkenf), Z, type="l", col=1, lwd=2, xlim=c(-3,3), ylim=c(0,1),

xlab="KENDALL FUNCTION, AS STANDARD NORMAL VARIATES",
ylab="COPULA(u,v) VALUE, AS NONEXCEEDANCE PROBABILITY") # black curve

lines(qnorm(N4212kenf), Z, col=2, lwd=2) # red curve
lines(qnorm(PLkenf), Z, col=4, lwd=2) # blue curve

The red curve for the N4212(Θ=1.1) copula (N4212cop) is higher on the left, which shows the
impact of its larger lower-tail dependency (λLGH=0 < λLN4212=0.535), whereas the black curve for
the GH(Θ=1.67) copula (GHcop) is similarly (about same magnitude) higher on the right, which
shows the impact of its larger upper-tail dependency (λLN4212=0 < λUGH=0.484). The blue curve
for the PL(Θ = 6.60) copula (PLACKETTcop) nearly overwrites on the left the GH curve, which
is a reflection of both copulae having zero lower-tail dependencies (λLGH = λLPL = 0). Finally, as
anticipated by λU , the curve on the right for the N4212 is just slightly larger for the PL because
the λUPL=0 < λUN4212=0.134 (a small difference however), and again on the right, the N4212
curve is considerably smaller than the GH because λUN4212=0 < λUGH=0.484.

Durante and Sempi (2015, p. 118) provide an example of two copula (C1 and C2) having the same
FK(z) = min(2z, 1). Let us check that out:

"C1" <- function(u,v, ...) {
if (length(u) == 1) { u <- rep(u, length(v)) } else
if (length(v) == 1) { v <- rep(v, length(u)) }
sapply(1:length(u), function(i) {

min(c(u[i], max(c(v[i]/2, u[i]+v[i]-1)))) })
}
"C2" <- function(u,v, ...) {

if (length(u) == 1) { u <- rep(u, length(v)) } else
if (length(v) == 1) { v <- rep(v, length(u)) }
sapply(1:length(u), function(i) { g <- 1/2
max(c(0, u[i]+v[i]-1, min(c(u[i], v[i]-g)), min(c(u[i]-g, v[i])))) })

}
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DSkf <- function(t) sapply(t, function(z) min(c(2*z, 1)))
zs <- seq(0,1, by=.01); plot(zs, DSkf(zs), col=2, cex=3) # red dots (theory)
lines(zs, kfuncCOP(zs, cop=C1), lwd=4, col=7) # thick yellow line
lines(zs, kfuncCOP(zs, cop=C2), lwd=1, col=1) # thin black line

The plot so produced shows indeed that the numerical operations by kfuncCOP solidly work on
these two strictly singular copulas C1 and C2 that are different from the two singular M and W
copulas. The FK(z) curves exactly matching the theoretical curve provided by Durante and Sempi
are produced.

CONVERSATIONAL ASIDE—Interestingly, Durante and Sempi (2015, pp. 115–121), like other
authors of major works cited herein, do not list a general expression for the FK(z) as a function
of any C(u, v). Those authors develop the idea of Kendall Function well and show results but for
the author (Asquith) the jump based of Theorem 3.9.2 to an expression, such as shown above for
FK(z) based on C(u, t)/δu, to an usable form for any C(u, v) is difficult.

This is a fascinating topic because if the Kendall Function is a reasonably important component of
copula theory, then why so much difficulty in finding a canonical reference? For this one piece,
whereas so much of copBasic features are quite nomenclaturely clear in say Nelsen (2006) or Joe
(2014) but somehow not for the Kendall Function.

Perhaps to the professional mathematicians, the descriptions (nomenclature) used in all but Sal-
vadori et al. (2007) are clear to intended readers. But even Salvadori et al. seemingly show theirs in
error—perhaps the author (Asquith) has missed something fundamental, but the validations shown
in this documentation prove at least that kfuncCOP does what it is supposed to be doing but perhaps
for the wrong reasoning. Lastly, Durante and Sempi have an error in their expression for Kendall
Tau as a function of FK(z) (see tauCOP).

SECONDARY RETURN PERIOD—As for “Kendall Measure” (after the lead of Salvadori et al.
[2007, pp. 161–170]), the following code shows for purposes of discussing secondary return period
that FK(z) is correct and once and for all as defined in this documentation FK(z) ̸≡ KC(z).
The secondary return period (TK) is the expected interarrival time between events exceeding a
T -year joint probability either from U , from V , or both. Let us use the 100-year level (primary
return period; T = 100), the Gumbel–Hougaard copula (GHcop) FGH(3.055)

K (z) where the choice
of Θ = 3.055 is made to match discussion in copBasic-package and Salvadori et al. (2007, table
3.3, p. 166).

# Gumbel-Hougaard [Kendall Tau=0.67267 (Salvadori et al. [2007])]
Tyear <- 100; ANEP <- 1-1/Tyear; nsim <- 30000; ix <- 1:nsim
1/(1-kfuncCOP(ANEP, cop=GHcop, para=3.055)) # 148.28 years
BarT <- sapply(1:20, function(i) {

UV <- simCOP(n=nsim, cop=GHcop, para=3.055, graphics=FALSE)
nsim/sum(GHcop(UV$U, UV$V, para=3.055) > ANEP) })

message("# BarBarT=", round(mean(BarT), digits=2),
" years and StdDev(BarT)=", round( sd(BarT), digits=2)," years")

# BarBarT=149.61 years and StdDev(BarT)=11.12 years

The mean of 20 repeats of a large sample simulation run for FGH(Θ=3.055)K(z=0.99) demon-
strates empirical results that closely approximate theory 149.61 ≈ 148.28, and thus congruence is
shown that the definition for FK(z) must be correct and that for KC(z) is incorrect. The table 3.3
in Salvadori et al. (2007) lists the secondary return period as 148.3 years, which obviously matches
the output of kfuncCOP and empirical results shown.
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Some additional details on secondary return period from Salvadori et al. (2007). Letting t⋆ be
some critical joint exceedance probability level, FK(z) be the complement of FK(z), those authors
(p. 166) name super-critical events having FK(t⋆) < 1 − t⋆. Thus, the secondary return period
(FK(t⋆)

−1 = TK) must be greater than the primary return period (t−1
⋆ ), which is the case here

(TK=148.3 > T=100) (Salvadori et al., 2007, p. 166).

Salvadori et al. (2007) provide considerable discussion of TK and some highlights are:
• (p. 162) events equally or exceeding probability FK(1 − 1/t⋆) or having return intervals

≥ TK “represent [a] class of potentially dangerous events, the outliers, and [FK can be used to]
introduce an ad hoc return period for such destructive events.”

• (p. 162) “primary return period [T ] . . . only takes into account the fact that a prescribed
critical event is expected to appear once in a given time interval [T ] . . .FK(t⋆) provides the exact
probability that a potentially destructive event will happen at any given realization of Z . . . and TK
gives the expected time for such an outlier to occur.”

• (p. 164) “[T ] only predicts that a critical event is expected to appear once in a given time
interval . . . would be more important to be able to calculate (1) the probability that a super-critical
[sic.] event will occur at any given realization of [Z], and (2) how long it takes, on average, for a
super-critical event to appear.”

• (p. 164) “the function FK turns the difficult analysis of bivariate dynamics of X and Y into
a simpler one-dimensional problem.”

Author(s)

W.H. Asquith

Source

The comprehensive demonstrations are shown in the Note because of a sign convention and (or)
probability convention incompatibility with the equation shown by Salvadori et al. (2007, p.
148). Initial source code development for copBasic was based on an hypothesis that the terms
the “Kendall Function” and “Kendall Measure” might somehow have separate meanings—that the
author must be blamed for misunderstanding the requisite nomenclature—this is evidently not true.

The KC(z) as shown herein simply can not reproduce FK(z;Π) = z − z log z for the Π copula
unless the “−” sign in the KC(z) equation is changed to a “+” to become the FK(z) definition
as shown. The detective work needed for a valid function kmeasCOP was further complicated by
fact that neither Durante and Sempi (2015), Joe (2014), Nelsen (2006), and others do not actually
present a general equation for FK(z) computation for any C(u, v).

Because of the subtle differences evidently between “Kendall functions” (lower case), an explict
derivation for FK(z;Π) is informative to confirm what is meant by the Kendall Function as defined
by FK(z). Starting with z = Π(u, v) = uv, then

v(z) = t = Π(−1)(u, z) = z/u, and

δ

δu
Π(u, t) =

δ

δu
u v → v =

z

u
,

substitution can now proceed:

FK(z;Π) = z +

∫ 1

z

δ

δu
Π(u, t) du = z +

∫ 1

z

z

u
du,
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which simplfies to

FK(z;Π) = z + [z log(u)]

∣∣∣∣1
z

= z + z[log(1)− log(z)] = z − z log z,

which matches the special case shown by Joe (2014) for the independence copula (Π; P). It is
obvious thus that the “+” is needed in the FK(z) definition in order to stay consistent with the
basic form and integration limits shown by Salvadori et al. (2007) for KC(z).
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See Also

kfuncCOPinv, tauCOP, derCOP, derCOP2, derCOPinv, derCOPinv2

Examples

## Not run:
# Salvadori et al. (2007, p. 148, fig. 3.5 [right])
zs <- c(0.0001, seq(0.01, 1, by=0.01), 0.9999)
plot(zs, kmeasCOP(zs, cop=GHcop, para=5), log="y", type="l", lwd=4,

xlab="Z <= z", ylab="Kendall Function", xlim=c(0,1), ylim=c(0.001,1)) #
## End(Not run)

kfuncCOPinv The Inverse Kendall Function of a Copula

Description

Compute the (numerical) inverseF (−1)
K (z) ≡ z(FK) of the Kendall FunctionFK(z;C) (kfuncCOP)

of a copula C(u, v) given nonexceedance probability FK . The z is the joint probability of the ran-
dom variables U and V coupled to each other through the copula C(u, v) and the nonexceedance
probability of the probability z is FK—statements such as “probabilities of probabilities” are rhetor-
ically complex so pursuit of word precision is made herein.
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Usage

kfuncCOPinv(f, cop=NULL, para=NULL, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)

Arguments

f Nonexceedance probability (0 ≤ FK ≤ 1);

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

subdivisions Argument of same name passed to integrate() through kfuncCOP,

rel.tol Argument of same name passed to integrate() through kfuncCOP,

abs.tol Argument of same name passed to integrate() through kfuncCOP, and

... Additional arguments to pass.

Value

The value(s) for z(FK) are returned.

Note

The L-moments of Kendall Functions appear to be unresearched. Therefore, the kfuncCOPlmom
and kfuncCOPlmoms functions were written. These compute L-moments on the CDF FK(z) and
not the quantile function z(FK) and thus are much faster than trying to use kfuncCOPinv in the
more common definitions of L-moments. A demonstration of the mean (first L-moment) of the
Kendall Function numerical computation follows:

# First approach
"afunc" <- function(f) kfuncCOPinv(f, cop=GHcop, para=pi)
integrate(afunc, 0, 1) # 0.4204238 with absolute error < 2.5e-05
# Second approach
kfuncCOPlmom(1, cop=GHcop, para=pi) # 0.4204222

where the first approach uses z(FK), whereas the second method uses integration for the mean on
FK(z).

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

kfuncCOP
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Examples

## Not run:
Z <- c(0,0.25,0.50,0.75,1) # Joint probabilities of a N4212cop
kfuncCOPinv(kfuncCOP(Z, cop=N4212cop, para=4.3), cop=N4212cop, para=4.3)
# [1] 0.0000000 0.2499984 0.5000224 0.7500112 1.0000000
## End(Not run)

kfuncCOPlmoms The L-moments of the Kendall Function of a Copula

Description

Compute the L-moments of the Kendall Function (FK(z;C)) of a copula C(u, v) where the z is
the joint probability of the C(u, v). The Kendall Function (or Kendall Distribution Function) is the
cumulative distribution function (CDF) of the joint probability Z of the coupla. The expected value
of the z(FK) (mean, first L-moment λ1), because Z has nonzero probability for 0 ≤ Z ≤ ∞, is

E[Z] = λ1 =

∫ ∞

0

[
1− FK(t)

]
dt =

∫ 1

0

[
1− FK(t)

]
dt,

where for circumstances here 0 ≤ Z ≤ 1. The ∞ is mentioned only because expectations of
such CDFs are usually shown using (0,∞) limits, whereas integration of quantile functions (CDF
inverses) use limits (0, 1). Because the support of Z is (0, 1), like the probability FK , showing just
it (∞) as the upper limit could be confusing—statements such as “probabilities of probabilities” are
rhetorically complex. So, pursuit of word precision is made herein.

An expression for λr for r ≥ 2 in terms of the FK(z) is

λr =
1

r

r−2∑
j=0

(−1)j
(
r − 2

j

)(
r

j + 1

)∫ 1

0

[
FK(t)

]r−j−1 ×
[
1− FK(t)

]j+1
dt,

where because of these circumstances the limits of integration are (0, 1) and not (−∞,∞) as in
the usual definition of L-moments in terms of a distribution’s CDF. (Note, such expressions did not
make it into Asquith (2011), which needs rectification if that monograph ever makes it to a 2nd
edition.)

The mean, L-scale, coefficient of L-variation (τ2, LCV, L-scale/mean), L-skew (τ3, TAU3), L-
kurtosis (τ4, TAU4), and τ5 (TAU5) are computed. In usual nomenclature, the L-moments are λ1 =
mean, λ2 = L-scale, λ3 = third L-moment, λ4 = fourth L-moment, and λ5 = fifth L-moment,
whereas the L-moment ratios are τ2 = λ2/λ1 = coefficient of L-variation, τ3 = λ3/λ2 = L-skew,
τ4 = λ4/λ2 = L-kurtosis, and τ5 = λ5/λ2 = not named. It is common amongst practitioners to
lump the L-moment ratios into the general term “L-moments” and remain inclusive of the L-moment
ratios. For example, L-skew then is referred to as the 3rd L-moment when it technically is the 3rd
L-moment ratio. There is no first L-moment ratio (meaningless); so, results from kfuncCOPlmoms
function will canoncially show a NA in that slot. The coefficient of L-variation is τ2 (subscript 2)
and not Kendall Tau (τ ). Sample L-moments are readily computed by several packages in R (e.g.
lmomco, lmom, Lmoments, POT).
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Usage

kfuncCOPlmom(r, cop=NULL, para=NULL, ...)

kfuncCOPlmoms(cop=NULL, para=NULL, nmom=5, begin.mom=1, ...)

Arguments

r The rth order of a single L-moment to compute;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

nmom The number of L-moments to compute;

begin.mom The rth order to begin the sequence lambegr:nmom for L-moment computation.
The rarely used argument is means to bypass the computation of the mean if the
user has an alternative method for the mean or other central tendency character-
ization in which case begin.mom = 2; and

... Additional arguments to pass.

Value

An R list is returned by kfuncCOPlmoms and only the scalar value of λr by kfuncCOPlmom.

lambdas Vector of the L-moments. First element is λ1, second element is λ2, and so on;

ratios Vector of the L-moment ratios. Second element is τ , third element is τ3 and so
on; and

source An attribute identifying the computational source of the L-moments: “kfunc-
COPlmoms”.

Note

The L-moments of Kendall Functions appear to be not yet fully researched. An interesting research
direction would be the trajectories of the L-moments or L-moment ratio diagrams for the Kendall
Function and the degree to which distinction between copulas becomes evident—such diagrams are
in wide-spread use for distinquishing between univariate distributions. It is noted, however, that
Kendall Function L-moment ratio diagrams might be of less utility that in the univariate world—
recalling that a univariate distribution is unique characteristized by its L-moments—because dif-
ferent copulas can have the same FK(z), such as all bivariate extreme value copulas (see also
Examples).

Rhos <- c(0.001, 0.01, seq(0.05, 0.95, by=0.05), 0.99, 0.999)
L1 <- T2 <- T3 <- T4 <- Thetas <- vector(mode="numeric", length(Rhos))
for(i in 1:length(Thetas)) {

Thetas[i] <- uniroot(function(p)
Rhos[i] - rhoCOP(cop=PARETOcop, para=p), c(0,200))$root

message("Rho = ", Rhos[i], " and Pareto theta = ",
round(Thetas[i], digits=4))

lmr <- kfuncCOPlmoms(cop=PARETOcop, para=Thetas[i], nmom=4)
L1[i] <- lmr$lambdas[1]; T2[i] <- lmr$ratios[2]
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T3[i] <- lmr$ratios[3]; T4[i] <- lmr$ratios[4]
}
LMR <- data.frame(Rho=Rhos, Theta=Thetas, L1=L1, T2=T2, T3=T3, T4=T4)
plot(LMR$Rho, LMR$T2, ylim=c(-0.04, 0.5), xlim=c(0, 1),

xlab="Spearman Rho or coefficient of L-variation",
ylab="L-moment ratio", type="l", col="black")

lines(LMR$Rho, LMR$T3, lty=1, col="red" )
lines(LMR$Rho, LMR$T4, lty=1, col="green" )
lines(LMR$T2, LMR$T3, lty=2, col="blue" )
lines(LMR$T2, LMR$T4, lty=2, col="deepskyblue2")
lines(LMR$T3, LMR$T4, lty=2, col="purple" )

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

See Also

kfuncCOP

Examples

## Not run:
kfuncCOPlmom(1, cop=P) # 0.5 * 0.5 = 0.25 is expected joint prob. of independence
#[1] 0.2499999 (in agreement with theory)

ThetaGH <- 4.21
Rho <- rhoCOP(cop=GHcop, para=ThetaGH)
ThetaHR <- uniroot(function(p) Rho - rhoCOP(cop=HRcop, para=p), c(0, 100))$root
ThetaHR <- uniroot(function(p) Rho - rhoCOP(cop=HRcop, para=p), c(0, 100))$root
ThetaGL <- uniroot(function(p) Rho - rhoCOP(cop=GLcop, para=p), c(0, 100))$root
ls.str(kfuncCOPlmoms(cop=GHcop, para=ThetaGH)) # Gumbel-Hougaard copula
# lambdas : num [1:5] 0.440617 0.169085 0.011228 -0.000797 0.000249
# ratios : num [1:5] NA 0.383750 0.066400 -0.004720 0.001470
# L-skew = 0.066400
ls.str(kfuncCOPlmoms(cop=HRcop, para=ThetaHR)) # Husler-Reiss copula
# lambdas : num [1:5] 0.439627 0.169052 0.011427 -0.000785 0.000249
# ratios : num [1:5] NA 0.384540 0.067590 -0.004640 0.001470
# L-skew = 0.067590
ls.str(kfuncCOPlmoms(cop=GLcop, para=ThetaGL)) # Galambos copula
# lambdas : num [1:5] 0.440415 0.169079 0.011268 -0.000795 0.000248
# ratios : num [1:5] NA 0.383910 0.066650 -0.004700 0.001470
# L-skew = 0.066650
# These L-moments are extremely similar and within the numerics used.
# Extreme value copula all have the same Kendall Distribution function.
## End(Not run)
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## Not run:
UV <- simCOP(200, cop=PLcop, para=1/pi, graphics=FALSE)
theta <- PLpar(UV[,1], UV[,2])
zs <- c(0.001, seq(0.01, 0.99, by=0.01), 0.999) # for later

# Take the sample estimated parameter and convert to joint probabilities Z
# Convert the Z to the Kendall Function estimates again with the sample parameter
Z <- PLcop(UV[,1], UV[,2], para=theta); KF <- kfuncCOP(Z, cop=PLcop, para=theta)

# Compute L-moments of the "Kendall function" and the sample versions
# and again see that the L-moment are for the distribution of the Z!
KNFlmr <- kfuncCOPlmoms(cop=PLcop, para=theta); SAMlmr <- lmomco::lmoms(Z)
knftxt <- paste0("Kendall L-moments: ",

paste(round(KNFlmr$lambdas, digits=4), collapse=", "))
samtxt <- paste0("Sample L-moments: " ,

paste(round(SAMlmr$lambdas, digits=4), collapse=", "))

plot(Z, KF, xlim=c(0,1), ylim=c(0,1), col="black",
xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]",
ylab="KENDALL DISTRIBUTION FUNCTION (KDF), AS NONEXCEEDANCE PROBABILITY")

rug(Z, side=1, col="red", lwd=0.5); rug(KF, side=2, col="red", lwd=0.5) # rug plots
lines(zs, kfuncCOP(zs, cop=PLcop, para=1/pi), col="darkgreen")
knf_meanZ <- KNFlmr$lambdas[1]; sam_meanZ <- SAMlmr$lambdas[1]
knf_mean <- kfuncCOP(knf_meanZ, cop=PLcop, para=theta) # theo. Kendall function
sam_mean <- kfuncCOP(sam_meanZ, cop=PLcop, para=theta) # sam. est. of Kendall func
points(knf_meanZ, knf_mean, pch=16, col="blue", cex=3)
points(sam_meanZ, sam_mean, pch=16, col="cyan", cex=2)
lines(zs, zs-zs*log(zs), lty=2, lwd=0.8) # dash ref line for independence
text(0.2, 0.30, knftxt, pos=4, cex=1); text(0.2, 0.25, samtxt, pos=4, cex=1)
text(0.2, 0.18, paste0("Notice uniform distribution of vertical axis rug.\n",

"A Critical remark with respect to to KDFs."), cex=1, pos=4)
legend("bottomright", c("Independence copula", "KDF of Plackett copula",

"Theoretical mean", "Sample mean"), bty="n", y.intersp=1.5,
lwd=c(1, 1, NA, NA), lty=c(2, 1, NA, NA), pch=c(NA, NA, 16, 16),
col=c("black", "darkgreen", "blue", "cyan"), pt.cex=c(NA, NA, 3, 2)) #

## End(Not run)

kullCOP Kullback–Leibler Divergence, Jeffrey Divergence, and Kullback–
Leibler Sample Size

Description

Compute the Kullback–Leibler Divergence, Jeffrey Divergence, and Kullback–Leibler sample size
following Joe (2014, pp. 234–237). Consider two densities f = c1(u, v; Θf ) and g = c2(u, v; Θg)
for two different bivariate copulas C1(Θ1) and C2(Θ2) having respective parameters Θ, then the
Kullback–Leibler Divergence of f relative to g is

KL(f |g) =
∫ ∫

I2

g log(g/f) dudv,
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and Kullback–Leibler Divergence of g relative to f is

KL(g|f) =
∫ ∫

I2

f log(f/g) dudv,

where the limits of integration I2 theoretically are closed on [0, 1]2 but an open interval (0, 1)2

might be needed for numerical integration. Note, in general KL(f |g) ̸= KL(g|f). The KL(f |g) is
the expected log-likelihood ratios of g to f when g is the true density (Joe, 2014, p. 234), whereas
KL(g|f) is the opposite.

This asymmetry leads to Jeffrey Divergence, which is defined as a symmetrized version of the two
Kullback–Leibler Divergences, and is

J(f, g) = KL(f |g) + KL(g|f) =
∫ ∫

I2

(g − f) log(g/f) dudv.

The variances of the Kullback–Leibler Divergences are defined as

σ2
KL(f |g) =

∫ ∫
I2

g [log(g/f)]2 dudv − [KL(f |g)]2,

and
σ2
KL(g|f) =

∫ ∫
I2

f [log(f/g)]2 dudv − [KL(g|f)]2.

For comparison of copula families f and g and taking an α = 0.05, the Kullback–Leibler sample
size is defined as

nfg =
[
Φ(−1)(1− α)× ηKL

]2
,

where Φ(−1)(t) is the quantile function for the standard normal distribution ∼ N(0,1) for nonex-
ceedance probability t, and ηKL is the maximum of

ηKL = max
[
σKL(f |g)/KL(f |g), σKL(g|f)/KL(g|f)

]
.

The nfg gives an indication of the sample size needed to distinguish f and g with a probability of
at least 1− α = 1− 0.05 = 0.95 or 95 percent.

The copBasic features a naïve Monte Carlo integration scheme in the primary interface kullCOP,
although the function kullCOPint provides for nested numerical integration. This later function is
generally fast but suffers too much for general application from integral divergencies issued from
the integrate() function in R—this must be judged in the light that the copBasic package focuses
only on implementation of the function of the copula itself and numerical estimation of copula den-
sity (densityCOP) and not analytical copula densities or hybrid representations thereof. Sufficient
“bread crumbs” are left among the code and documentation for users to re-implement if speed is
paramount. Numerical comparison to the results of Joe (2014) (see Examples) suggests that the
default Monte Carlo sample size should be more than sufficient for general inference with the ex-
pense of considerable CPU time; however, a couple of repeated calls of kullCOP would be advised
and compute say the mean of the resulting sample sizes.

Usage

kullCOP(cop1=NULL, cop2=NULL, para1=NULL, para2=NULL, alpha=0.05,
del=0, n=1E5, verbose=TRUE, sobol=FALSE, scrambling=0, ...)

kullCOPint(cop1=NULL, cop2=NULL, para1=NULL, para2=NULL, alpha=0.05,
del=.Machine$double.eps^0.25, verbose=TRUE, ...)
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Arguments

cop1 A copula function corresponding to copula f in Joe (2014);

para1 Vector of parameters or other data structure, if needed, to pass to the copula f ;

cop2 A copula function corresponding to copula g in Joe (2014);

para2 Vector of parameters or other data structure, if needed, to pass to the copula g;

alpha The α in the Kullback–Leibler sample size equation;

del A small value used to denote the lo and hi values of the numerical integration:
lo = del and hi = 1 - del. If del == 0, then lo = 0 and hi = 1, which corre-
sponds to the theoretical limits I2 = [0, 1]2 and are defaulted here to [0, 1]2

because the Monte Carlo algorithm is preferred for general application. The end
point control, however, is maintained just in case pathological situations should
arise;

n kullCOP (Monte Carlo integration) only—the Monte Carlo integration simula-
tion size;

verbose A logical trigging a couple of status lines of output through the message() func-
tion in R;

sobol A logical trigging Sobol sequences for the Monte Carlo integration instead of
the bivariate uniform distribution. The Sobol sequences are dependent on the
randtoolbox package and the sobol() function of the randtoolbox package,
and the Sobol sequences canvas the I2 domain for smaller n values than re-
quired if statistical independence is used for the Monte Carlo integration. Note,
the randtoolbox at least at version 2.0.+ has “scrambling” of Sobol sequences
temporarily disabled, and hence scrambling=0 as default for kullCOP;

scrambling The argument of the same name for randtoolbox::sobol; and

... Additional arguments to pass to the densityCOP function.

Value

An R list is returned having the following components:

MonteCarlo.sim.size

kullCOP (Monte Carlo integration) only—The simulation size for numerical
integration;

divergences A vector of the Kullback–Leibler Divergences and their standard deviations:
KL(f |g), σKL(f |g), KL(g|f), and σKL(g|f), respectively;

stdev.divergences

kullCOP (Monte Carlo integration) only—The standard deviation of the diver-
gences and the variances;

Jeffrey.divergence

Jeffrey Divergence J(f, g);

KL.sample.size Kullback–Leibler sample size nfg; and

integrations kullCOPint (numerical integration) only—An R list of the outer call of the
integrate() function for the respective numerical integrals shown in this doc-
umentation.
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Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

densityCOP, vuongCOP

Examples

# See another demonstration under the Note section of statTn().
## Not run:
# Joe (2014, p. 237, table 5.2)
# Gumbel-Hougaard and Plackett copulas below each have a Kendall Tau of about 0.5, and
# Joe (2014) lists in the table that Jeffrey Divergence is about 0.110 and Kullback-Leibler
# sample size is 133. Joe (2014) does not list the copula parameters just says Tau = 0.5.
# Joe (2014) likely did the numerical integrations using analytical solutions to probability
# densities and not rectangular approximations as in copBasic::densityCOP().
set.seed(1)
KL <- kullCOP(cop1=GHcop, para1=2,

cop2=PLACKETTcop, para2=11.40484, sobol=FALSE)
message("Jeffery Divergence is ", round(KL$Jeffrey.divergence, digits=4),

" and Kullback-Leibler sample size is ", KL$KL.sample.size, ".")
# Jeffery Divergence is 0.1106 and Kullback-Leibler sample size is 137.
set.seed(1)
KL <- kullCOP(cop1=GHcop, para1=2,

cop2=PLACKETTcop, para2=11.40484, sobol=TRUE )
message("Jeffery Divergence is ", round(KL$Jeffrey.divergence, digits=4),

" and Kullback-Leibler sample size is ", KL$KL.sample.size, ".")
# Jeffery Divergence is 0.3062 and Kullback-Leibler sample size is 136.

set.seed(1)
S <- replicate(20, kullCOP(cop1=GHcop, para1=2, cop2=PLACKETTcop, sobol=FALSE,

para2=11.40484, verbose=FALSE)$KL.sample.size)
print(as.integer(c(mean(S), sd(S)))) # 132 plus/minus 5
S <- replicate(2 , kullCOP(cop1=GHcop, para1=2, cop2=PLACKETTcop, sobol=TRUE,

para2=11.40484, verbose=FALSE)$KL.sample.size)
# The two S in the later replication are both the same (136) for a sobol=TRUE
# does not produce variation and this is thought (June 2023) as a result
# of the disabled scrambling in the randtoolbox::sobol() function.
## End(Not run)

## Not run:
# Joe (2014, p. 237, table 5.3)
# Gumbel-Hougaard and Plackett copulas below each have a Spearman Rho of about 0.5, and
# Joe (2014) lists in the table that Jeffrey Divergence is about 0.063 and Kullback-Leibler
# sample size is 210. Joe (2014) does not list the parameters and just says that Rho = 0.5.
# Joe (2014) likely did the numerical integrations using analytical solutions to probability



kullCOP 201

# densities and not rectangular approximations as in copBasic::densityCOP().
set.seed(1)
KL <- kullCOP(cop1=GHcop, para1=1.541071,

cop2=PLACKETTcop, para2=5.115658, sobol=FALSE)
message("Jeffery Divergence is ", round(KL$Jeffrey.divergence, digits=4),

" and Kullback-Leibler sample size is ", KL$KL.sample.size, ".")
# Jeffery Divergence is 0.0642 and Kullback-Leibler sample size is 213.
set.seed(1)
KL <- kullCOP(cop1=GHcop, para1=1.541071,

cop2=PLACKETTcop, para2=5.115658, sobol=TRUE )
message("Jeffery Divergence is ", round(KL$Jeffrey.divergence, digits=4),

" and Kullback-Leibler sample size is ", KL$KL.sample.size, ".")
# Jeffery Divergence is 0.2001 and Kullback-Leibler sample size is 206.

set.seed(1)
S <- replicate(20, kullCOP(cop1=GHcop, para1=1.541071, cop2=PLACKETTcop,

para2=5.115658, verbose=FALSE)$KL.sample.size)
print(as.integer(c(mean(S), sd(S)))) # 220 plus/minus 19
## End(Not run)

## Not run:
# Compare Jeffery Divergence estimates as functions of sample size when computed
# using Sobol sequences or not for Gumbel-Hougaard and Pareto copulas.
GHpar <- PApar <- 2 # Spearman Rho = 0.6822339
Ns <- as.integer(10^c(seq(2.0, 3.5, by=0.01), seq(3.6, 5, by=0.05)))
JDuni <- sapply(1:length(Ns), function(i) {

kullCOP(cop1=GHcop, para1=GHpar, verbose=FALSE,
cop2=PAcop, para2=PApar, n=Ns[i],
sobol=FALSE)$Jeffrey.divergence })

JDsob <- sapply(1:length(Ns), function(i) {
kullCOP(cop1=GHcop, para1=GHpar, verbose=FALSE,

cop2=PAcop, para2=PApar, n=Ns[i],
sobol=TRUE )$Jeffrey.divergence })

plot(Ns, JDuni, type="l", log="x", # black line, notice likely outliers too
xlab="Simulation Sample Size", ylab="Jeffery Divergence")

lines(Ns, JDsob, col="red") # red line
legend("topright", c("Monte Carlo", "Sobol sequence"),

lwd=c(1,1), col=c("black", "red"), bty="n")
print( c( mean(JDuni), sd(JDuni) ) ) # [1] 0.05915608 0.01284682
print( c( mean(JDsob), sd(JDsob) ) ) # [1] 0.07274190 0.01838939

# The developer notes that plotting KL.sample.size for sobol=TRUE shows
# what appears to be numerical blow up but the Jeffery Divergence does not.
KLuni <- sapply(1:length(Ns), function(i) {

kullCOP(cop1=GHcop, para1=GHpar, verbose=FALSE,
cop2=PAcop, para2=PApar, n=Ns[i],
sobol=FALSE)$KL.sample.size })

KLsob <- sapply(1:length(Ns), function(i) {
kullCOP(cop1=GHcop, para1=GHpar, verbose=FALSE,

cop2=PAcop, para2=PApar, n=Ns[i],
sobol=TRUE )$KL.sample.size })

plot(Ns, KLuni, type="l", log="xy", # black line, notice likely outliers too
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xlab="Simulation Sample Size", ylab="Kullback-Leibler Sample Size")
lines(Ns, KLsob, col="red") # red line
nideal <- kullCOPint(cop1=GHcop, para1=GHpar, cop2=PAcop, para2=PApar)$KL.sample.size
abline(h=nideal, col="green", lwd=3) # nideal sample size is about 210
legend("topright", c("Monte Carlo", "Sobol sequence", "Judged ideal sample size"),

lwd=c(1,1,3), col=c("black", "red", "green"), bty="n")

# Let us attempt a visualization to highlight the differences in the two copula by
# simulation. First, using this n = nideal, being the apparent sample size to distinguish
# generally between the two copula having the same Spearman Rho. Do the segments help
# to visually highlight the differences? Next, ask would one judge the parents in the
# simulation being different knowing same Spearman Rho? (Note, the segments are all
# vertical because the U axis is the simulation and the V axis is the conditional
# probability given the U.)
set.seed(1); UVgh <- simCOP(nideal, GHcop, para=GHpar, graphics=FALSE)
set.seed(1); UVpa <- simCOP(nideal, PAcop, para=PApar, graphics=FALSE)
plot(c(0,1), c(0,1), type="n", xlab="U, nonexceedance probability",

ylab="V, nonexceedance probability")
segments(UVgh[,1], UVgh[,2], x1=UVpa[,1], y1=UVpa[,2])
points(UVgh, col="lightgreen", pch=16, cex=0.8) # dots
points(UVpa, col="darkgreen", pch= 1, lwd=0.8) # circles
# Repeat the above n = nideal visualizations but with a change to n = nideal*10, and see
# then that there are visually striking shifts systematically in both both tails but also
# in the U in the interval (0.3, 0.7) belt but to a smaller degree than seen in the tails.
## End(Not run)

lcomCOP L-comoments and Bivariate L-moments of a Copula

Description

Compute the L-comoments (Serfling and Xiao, 2007; Asquith, 2011) through the bivariate L-
moments (ratios) (δ[...]k;C) of a copula C(u, v; Θ) The L-comoments include L-correlation (Spearman
Rho), L-coskew, and L-cokurtosis. As described by Brahimi et al. (2015), the first four bivariate
L-moments δ[12]k for random variable X(1) or U with respect to (wrt) random variable X(2) or V
are defined as

δ
[12]
1;C = 2

∫ ∫
I2

C(u, v) dudv − 1

2
,

δ
[12]
2;C =

∫ ∫
I2

(12v − 6)C(u, v) dudv − 1

2
,

δ
[12]
3;C =

∫ ∫
I2

(60v2 − 60v + 12)C(u, v) dudv − 1

2
, and

δ
[12]
4;C =

∫ ∫
I2

(280v3 − 420v2 + 180v − 20)C(u, v) dudv − 1

2
,

where the bivariate L-moments are related to the L-comoment ratios by

6δ
[12]
k = τ

[12]
k+1 and 6δ

[21]
k = τ

[21]
k+1,
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where in otherwords, “the third bivariate L-moment δ[12]3 is one sixth the L-cokurtosis τ [12]4 .” The
first four bivariate L-moments yield the first five L-comoments. The terms and nomenclature are not
easy and also the English grammar adjective “ratios” is not always consistent in the literature. The
δ
[...]
k;C are ratios. The sample L-comoments are supported by the lmomco package, and in particular

for the bivariate case, they are supported by the lcomoms2() function of that package.

Similarly, the δ[21]k are computed by switching u→ v in the polynomials within the above integrals
multiplied to the copula in the system of equations with u. In general, δ[12]k ̸= δ

[21]
k for k > 1 unless

in the case of permutation symmetric (isCOP.permsym) copulas. By theory, δ[12]1 = δ
[21]
1 = ρC/6

where ρC is the Spearman Rho rhoCOP.

The integral for δ[12]4;C does not appear in Brahimi et al. (2015) but this and the other forms are
verified in the Examples and discussion in Note. The four k ∈ (1, 2, 3, 4) for U wrt V and V wrt
U comprise a full spectrum of system of seven (not eight) equations. One equation is lost because
δ
[12]
1 = δ

[21]
1 .

Chine and Benatia (2017) describe trimmed L-comoments as the multivariate extensions of the uni-
variate trimmed L-moments (Elamir and Seheult, 2003) that are implemented in lmomco. These are
not yet implemented in copBasic.

Usage

lcomCOP(cop=NULL, para=NULL, as.bilmoms=FALSE, orders=2:5, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

as.bilmoms A logical to trigger return of the δk and the return vectors will be named differ-
ently;

orders The orders of the L-comoments to return, which is internally adjusted if the
argument as.bilmoms is set. There is no first order L-comoment and the first
index on returned values is set to NA to remain index consistent with the lmomco
package. An order greater than 5 is not supported; and

... Additional arguments to pass to the densityCOP function.

Value

An R list of the L-comoments or bivariate L-moments is returned depending on as.bilmoms
setting.

bilmomUV The bivariate L-moments δ[12]k of U with respect to V for k ∈ [1, 2, 3, 4] if
orders is 2:5 and there is no NA index as for the L-comoments;

bilmomVU The bivariate L-moments δ[21]k of V with respect to U for k ∈ [1, 2, 3, 4] if
orders is 2:5 and there is no NA index as for the L-comoments;

lcomUV The L-comoments τ [12]k of V with respect to U for k ∈ [2, 3, 4, 5] if orders is
2:5 and index 1 is NA; and

lcomVU The L-comoments τ [21]k of V with respect to U for k ∈ [2, 3, 4, 5] if orders is
2:5 and index 1 is NA.
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Note

The documention here is highly parallel to bilmoms for which that function was developed some
years before lmomCOP was developed in January 2019. Also, bilmoms is based on gridded or Monte
Carlo integration, and bilmoms is to be considered deprecated. However, it is deliberate that related
background and various algorithm testing are still documented in bilmoms.

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

Brahimi, B., Chebana, F., and Necir, A., 2015, Copula representation of bivariate L-moments—A
new estimation method for multiparameter two-dimensional copula models: Statistics, v. 49, no. 3,
pp. 497–521.

Chine, Amel, and Benatia, Fatah, 2017, Bivariate copulas parameters estimation using the trimmed
L-moments methods: Afrika Statistika, v. 12, no. 1, pp. 1185–1197.

Elamir, E.A.H, and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data
Analysis, v. 43, p. 299–314.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Serfling, R., and Xiao, P., 2007, A contribution to multivariate L-moments—L-comoment matrices:
Journal of Multivariate Analysis, v. 98, pp. 1765–1781.

See Also

bilmoms, lcomCOPpv, uvlmoms

Examples

## Not run:
para <- list(alpha=0.5, beta=0.93, para1=4.5, cop1=GLcop, cop2=PSP)
copBasic:::lcomCOP(cop=composite2COP, para=para)$lcomUV[3]
# Lcomom:T3[12]= +0.156
copBasic:::lcomCOP(cop=composite2COP, para=para)$lcomVU[3]
# Lcomom:T3[21]= -0.0668
bilmoms(cop=composite2COP, n=10000, para=para, sobol=TRUE)$bilcomoms$T3
# Tau3[12]=+0.1566, Tau3[21]=-0.0655
# The numerical default Monte Carlo integration of bilmoms()
# matches the numerical integration of lcomCOP albeit with a
# substantially slower and less elegant means in bilmoms().
## End(Not run)

## Not run:
# The following Spearman Rho and L-coskew values are predicted for a monitoring
# location of the relation between peak streamflow (V) and time into the
# water year (U) where U and V are "U-statistics."
site_srho <- 0.15536430
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site_T3_12 <- 0.03866056
site_T3_21 <- -0.03090144

# Create an objective function for 3D optimization with some explicit intention that
# transforms are used to keep the parameters in acceptable parameter space for the
# alpha [0,1] and beta [0,1] and theta for the Plackett copula and the composite1COP
# used to add two more parameters to the Plackett.
ofunc <- function(par, srho=NA, T3_12=NA, T3_21=NA) {

alpha <- pnorm(par[1]) # takes -Inf to +Inf ---> 0 to 1 # compositing domain
beta <- pnorm(par[2]) # takes -Inf to +Inf ---> 0 to 1 # compositing domain
theta <- exp(par[3]) # takes -Inf to +Inf ---> 0 to +Inf # Plackett domain
lmr <- lcomCOP(cop=composite1COP,

para=list(alpha=alpha, beta=beta, para1=theta, cop1=PLcop))
return((lmr$lcomUV[2] - srho )^2 + # look carefully, the 2, 3, 3 index

(lmr$lcomUV[3] - T3_12)^2 + # use on the lmr list are correct, so do not
(lmr$lcomVU[3] - T3_21)^2) # expect to see 1, 2, 3 or 2, 3, 4.

}
# initial parameter guess ('middle' [0.5] compositing and independence [1]) and
# showing the transformations involved.
para_init <- c(qnorm(0.5), qnorm(0.5), log(1))
rt <- optim(par=para_init, ofunc,

srho=site_srho, T3_12=site_T3_12, T3_21=site_T3_21)
lcom_para <- list(alpha=pnorm(rt$par[1]), beta=pnorm(rt$par[2]),

para1=exp(rt$par[3]), cop1=PLcop)
sUV <- simCOP(10000, cop=composite1COP, para=lcom_para, col=grey(0, 0.2), pch=16)
# Now as an exercise, consider increasing site_srho or negating it. Consider
# switching the signs on the L-coskews or increasing their magnitudes and study
# the resulting simulation to develop a personal feeling for L-coskew meaning. #
## End(Not run)

lcomCOPpv Simulating the Sample Distribution(s) of L-correlation, L-coskew, and
L-cokurtosis for a Copula

Description

EXPERIMENTAL: The function provides two themes of sampling distribution characterization
by simulation of the first three L-comoment ratios (L-correlation τ2[...], L-coskew τ3[...] and L-
cokurtosis τ4[...]) of a copula. Subsequently, the sampling distribution can be used for inference.

First, semi-optional Monte Carlo integration estimation of the L-comoments of the parent copula are
computed. Second, simulations involving the sample size n presumed the size of the actual sample
from which the estimates of the sample L-comoments given as arguments. These simulations result
in a report of the L-moments (not L-comoments) of the sampling distribution and these then are used
to compute p-values for the L-comoment matrices provided by the user as a function argument.

Usage

lcomCOPpv(n, lcom, cop=NULL, para=NULL, repcoe=5E3, type="gno",
mcn=1E4, mcrep=10, usemcmu=FALSE, digits=5, ...)
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Arguments

n The sample size n. This argument is semi-optional because n = 0 can be given
to skip corresponding simulations and the ntable on return will only contain NA;
this feature permits rapid extraction of the Ntable and thus the lcom contents
are simply not used;

lcom The sample L-comoments (see below);

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

repcoe The replication coefficient ϕ affecting the number of simulations of size n;

type The distribution type used for modeling the distribution of the sampling values.
The generalized normal (see distribution type "gno" in package lmomco) ac-
commodates some skewness compared to the symmetry of the normal ("nor")
just in case situations arise in which non-ignorable skewness in the sample distri-
bution exists. The distribution abbreviations of package lmomco are recognized
for the type argument, but in reality the "nor" and "gno" should be more than
sufficient;

mcn The sample size N passed to the bilmoms function for the Monte Carlo inte-
gration. If N = 0 then the Monte Carlo integration is not used, otherwise the
minimum sample size is internally reset to N = 4 so that first four L-moments
are computable;

mcrep The number of replications of the Monte Carlo simulation by bilmoms;

usemcmu A logical toggling whether the mean value computed from the replicated Monte
Carlo integrations is used instead of the mean values for the small sample simu-
lation for the p-value computations;

digits The number of digits to round numerical entries in the returned tables and can
be NA for no rounding; and

... Additional arguments to pass to the bilmoms function or to the copula.

Details

The notation r[. . .] refers to two specific types of L-comoment definitions and a blend between
the two. The notation r[12] means that the rth L-comoment for random variables {X(1), X(2)}
whereX(2) is the sorted variable andX(1) is shuffled by the sorting index. Conversely, the notation
r[21] means that the rth L-comoment for random variables {X(1), X(2)} where X(1) is the sorted
variable and X(2) is shuffled by the sorting index. The notation r[12 : 21] means that the average
between the r[21] and r[21] is computed, which might prove useful in circumstances of known or
expected symmetry of the L-comoments.

Continuing, τ̂2[12] is the sample L-correlation, τ̂3[12] is the sample L-coskew, and τ̂4[12] is the sam-
ple L-cokurtosis all with respect to the sorting of the second variable. The computation of these
L-comoment matricies can be made by functions such as function lcomoms2() in the lmomco
package. The number of replications for the simulations involving the n sample size is computed
by

m = ϕ/
√
n,

where ϕ is the repcoe replication factor or coefficient. If usemcmu is TRUE then mcn > 0 else
usemcmu is reset to FALSE.
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Value

An R list is returned.

text A string functioning as a label for the remaining tables;

Ntable Another R list holding tables of the L-moments of the L-comoments derived
from Monte Carlo integration for samples of size N = mcn. The simulations are
replicated mcrep times; and

ntable Another R list holding tables of the L-moments of the L-comoments derived
from the small sample simulations for samples of size n = n as well as the
p-values estimated by a generalized normal distribution (see lmomco package
documentation) of the L-moments using either the small sample means or the
mean of the replicated Monte Carlo integrations as dictated by usemcmu. In all
circumstances, however, the results for the small sample simluations are tabu-
lated in ntable only the p-value will be reflective the setting of usemcmu.

Note

A significance column for the p-values is added to the right side of the returned ntable and is used
to guide the eye in interpretation of results. The significant codes having the following definitions
for a two-tailed form:

"_" > 0.1; ".", 0.1; "*", 0.05; "**", 0.01; "***", 0.001

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

lcomCOP, COP, kullCOP, vuongCOP

Examples

# See Note section of vuongCOP() for an extended discussion of copula inference
## Not run:
Tau <- 0.6410811; para <- GHcop(tau=Tau)$para # This Tau is from a situation of
# two river tributaries. These three L-comoments with univariate L-moments on the
T2 <- c(1, 0.79908960, 0.79908960, 1) # diagonals are derived from those river
# tributaries and downstream of the junction data.
T3 <- c(0, -0.04999318, 0.07689082, 0)
T4 <- c(0, 0.01773833, 0.04756257, 0) # Is the Ho:GHcop rejectable?
LCOM <- list(T2=matrix(T2, nrow=2), T3=matrix(T3, nrow=2), T4=matrix(T4, nrow=2))
set.seed(30312)
ZZ1 <- lcomCOPpv(75, LCOM, cop=GHcop, para=para, repcoe=2000, usemcmu=FALSE)
print(ZZ1)
set.seed(30312)
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ZZ2 <- lcomCOPpv(75, LCOM, cop=GHcop, para=para, repcoe=2000, usemcmu=TRUE)
print(ZZ2)
# The results here suggest that the GHcop is not rejectable.
## End(Not run)

lcomoms2.ABcop2parameter

Convert L-comoments to Parameters of Alpha-Beta Compositions of
Two One-Parameter Copulas

Description

EXPERIMENTAL—This function converts the L-comoments of a bivariate sample to the four pa-
rameters of a composition of two one-parameter copulas. Critical inputs are of course the first three
dimensionless L-comoments: L-correlation, L-coskew, and L-cokurtosis. The most complex input
is the solutionenvir, which is an environment containing arbitrarily long, but individual tables,
of L-comoment and parameter pairings. These pairings could be computed from the examples in
simcompositeCOP.

The individual tables are prescanned for potentially acceptable solutions and the absolute addi-
tive error of both L-comoments for a given order is controlled by the tNeps arguments. The de-
fault values seem acceptable. The purpose of the prescanning is to reduce the computation space
from perhaps millions of solutions to a few orders of magnitude. The computation of the solution
error can be further controlled by X or u with respect to Y or v using the comptNerrXY argu-
ments, but experiments thus far indicate that the defaults are likely the most desired. A solution
“matching” the L-correlation is always sought; thus there is no uset2err argument. The arguments
uset3err and uset4err provide some level of granular control on addition error minimization; the
defaults seek to “match” L-coskew and ignore L-cokurtosis. The setreturn controls which rank
of computed solution is returned; users might want to manually inspect a few of the most favor-
able solutions, which can be done by the setreturn or inspection of the returned object from the
lcomoms2.cop2parameter function. The examples are detailed and self-contained to the copBasic
package; curious users are asked to test these.

Usage

lcomoms2.ABcop2parameter(solutionenvir=NULL,
T2.12=NULL, T2.21=NULL,
T3.12=NULL, T3.21=NULL,
T4.12=NULL, T4.21=NULL,
t2eps=0.1, t3eps=0.1, t4eps=0.1,
compt2erruv=TRUE, compt2errvu=TRUE,
compt3erruv=TRUE, compt3errvu=TRUE,
compt4erruv=TRUE, compt4errvu=TRUE,
uset3err=TRUE, uset4err=FALSE,
setreturn=1, maxtokeep=1e5)
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Arguments

solutionenvir The environment containing solutions;

T2.12 L-correlation τ [12]2 ;

T2.21 L-correlation τ [21]2 ;

T3.12 L-coskew τ
[12]
3 ;

T3.21 L-coskew τ
[21]
3 ;

T4.12 L-cokurtosis τ [12]4 ;

T4.21 L-cokurtosis τ [21]4 ;

t2eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

2 ;

t3eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

3 ;

t4eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

4 ;

compt2erruv Compute an L-correlation error using the 1 with respect to 2 (or u wrt v);

compt2errvu Compute an L-correlation error using the 2 with respect to 1 (or v wrt u);

compt3erruv Compute an L-coskew error using the 1 with respect to 2 (or u wrt v);

compt3errvu Compute an L-coskew error using the 2 with respect to 1 (or v wrt u);

compt4erruv Compute an L-cokurtosis error using the 1 with respect to 2 (or u wrt v);

compt4errvu Compute an L-cokurtosis error using the 2 with respect to 1 (or v wrt u);

uset3err Use the L-coskew error in the determination of the solution. The L-correlation
error is always used;

uset4err Use the L-cokurtosis error in the determination of the solution. The L-correlation
error is always used;

setreturn Set (index) number of the solution to return. The default of 1 returns the pre-
ferred solutions based on the controls for the minimization; and

maxtokeep The value presets the number of rows in the solution matrix. This matrix is
filled with potential solutions as the various subfiles of the solutionenvir are
scanned. The matrix is trimmed of NAs and error trapping is in place for too small
values of maxtokeep. The default value appears appropriate for the feeding of
massively large simulated parameter spaces.

Value

An R data.frame is returned.

Author(s)

W.H. Asquith
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References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

simCOP, simcompositeCOP, composite2COP

Examples

## Not run:
# Build an initial parameter to L-comoment mapping table.

mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1gen=function() { return(10^runif(1, min=-5, max=0)) },
para2gen=function() { return(10^runif(1, min=0, max=5)) })

nsim <- 1E4
sample.size.for.estimation <- 1000 # really use vastly larger sample size
PlackettPlackettNP <-

simcompositeCOP(n=sample.size.for.estimation, nsim=nsim, parent=mainpara)
save(PlackettPlackettNP, file="PlackettPlackettNP.RData", compress="xz")

# Plackett-Plackett composited copula from the copBasic package
# Then create an environment to house the "table."
PlackettPlackett <- new.env()
assign("NeedToCreateForDemo", PlackettPlackettNP, envir=PlackettPlackett)
# Now that the table is assigned into the environment, the parameter
# estimation function can be used. In reality, a much much larger
# solution set is needed, but this effort is experimental.

# Now grab the closest Plackett-Plackett solution having the following six
# arbitrary L-comoments. Then simulate 1000 values and plot them to show
# the underlying bivariate distribution.
PPcop <- lcomoms2.ABcop2parameter(solutionenvir=PlackettPlackett,

T2.12=-0.5059, T2.21=-0.5110,
T3.12= 0.1500, T3.21= 0.1700,
T4.12=-0.0500, T4.21= 0.0329,
uset3err=TRUE, uset4err=TRUE)

# A user in encouraged to inspect the contents of PPcop to "assess" the
# solution by a method of L-comoments, we will now proceed with showing the
# copula via a simulation of the fitted version.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=PPcop$alpha, beta=PPcop$beta,

para1=PPcop$Cop1Thetas, para2=PPcop$Cop2Thetas)

D <- simCOP(n=5000, cop=composite2COP, para=para, col=rgb(0,0,0,0.1), pch=16)
# The sample L-comoments of the fitted Plackett-Plackett may be found by
lmomco::lcomoms2(D, nmom=4) # from the lmomco package, and six sample values shown
T2.12 <- -0.5151547; T2.21 <- -0.5139863
T3.12 <- 0.1502336; T3.21 <- 0.1721355
T4.12 <- -0.0326277; T4.21 <- 0.0233979
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PPcop <- lcomoms2.ABcop2parameter(solutionenvir=PlackettPlackett,
T2.12=T2.12, T2.21=T2.21,
T3.12=T3.12, T3.21=T3.21,
T4.12=T4.12, T4.21=T4.21, uset4err=TRUE)

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=PPcop$alpha, beta=PPcop$beta,
para1=PPcop$Cop1Thetas, para2=PPcop$Cop2Thetas)

D <- simCOP(n=5000, cop=composite2COP, para=para, col=rgb(0,0,0,0.1), pch=16)
level.curvesCOP(cop=composite2COP, para=para, delt=.1, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para,

ploton=FALSE, f=seq(0.05, 0.95, by=0.05))
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE,

ploton=FALSE, f=seq(0.05, 0.95, by=0.05), col=c(3,2))
diag <- diagCOP(cop=composite2COP, para=para, ploton=FALSE, lwd=4)

image(gridCOP(cop=composite2COP, para=para), col=terrain.colors(20))
# One can inspect alternative solutions like this
# S <- PPcop$solutions$solutions[,1:16]
# B <- S[abs(S$t2.12res) < 0.02 & abs(S$t2.21res) < 0.02 &
# abs(S$t3.12res) < 0.02 & abs(S$t3.21res) < 0.02, ]
#print(B)
## End(Not run)

lcomoms2.ABKGcop2parameter

Convert L-comoments to Parameters of Alpha-Beta-Kappa-Gamma
Compositions of Two One-Parameter Copulas

Description

EXPERIMENTAL—This function converts the L-comoments of a bivariate sample to the four pa-
rameters of a composition of two one-parameter copulas. Critical inputs are of course the first three
dimensionless L-comoments: L-correlation, L-coskew, and L-cokurtosis. The most complex input
is the solutionenvir, which is an environment containing arbitrarily long, but individual tables,
of L-comoment and parameter pairings. These pairings could be computed from the examples in
simcompositeCOP.

The individual tables are prescanned for potentially acceptable solutions and the absolute addi-
tive error of both L-comoments for a given order is controlled by the tNeps arguments. The de-
fault values seem acceptable. The purpose of the prescanning is to reduce the computation space
from perhaps millions of solutions to a few orders of magnitude. The computation of the solution
error can be further controlled by X or u with respect to Y or v using the comptNerrXY argu-
ments, but experiments thus far indicate that the defaults are likely the most desired. A solution
“matching” the L-correlation is always sought; thus there is no uset2err argument. The arguments
uset3err and uset4err provide some level of granular control on addition error minimization;
the defaults seek to “match” L-coskew and ignore L-cokurtosis. The setreturn controls which
rank of computed solution is returned; users might want to manually inspect a few of the most fa-
vorable solutions, which can be done by the setreturn or inspection of the returned object from
the lcomoms2.ABKGcop2parameter function. The examples are detailed and self-contained to the
copBasic package; curious users are asked to test these.
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Usage

lcomoms2.ABKGcop2parameter(solutionenvir=NULL,
T2.12=NULL, T2.21=NULL,
T3.12=NULL, T3.21=NULL,
T4.12=NULL, T4.21=NULL,
t2eps=0.1, t3eps=0.1, t4eps=0.1,
compt2erruv=TRUE, compt2errvu=TRUE,
compt3erruv=TRUE, compt3errvu=TRUE,
compt4erruv=TRUE, compt4errvu=TRUE,
uset3err=TRUE, uset4err=FALSE,
setreturn=1, maxtokeep=1e5)

Arguments

solutionenvir The environment containing solutions;

T2.12 L-correlation τ [12]2 ;

T2.21 L-correlation τ [21]2 ;

T3.12 L-coskew τ
[12]
3 ;

T3.21 L-coskew τ
[21]
3 ;

T4.12 L-cokurtosis τ [12]4 ;

T4.21 L-cokurtosis τ [21]4 ;

t2eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

2 ;

t3eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

3 ;

t4eps An error term in which to pick a potential solution as close enough on prelimi-
nary processing for τ [1↔2]

4 ;

compt2erruv Compute an L-correlation error using the 1 with respect to 2 (or u wrt v);

compt2errvu Compute an L-correlation error using the 2 with respect to 1 (or v wrt u);

compt3erruv Compute an L-coskew error using the 1 with respect to 2 (or u wrt v);

compt3errvu Compute an L-coskew error using the 2 with respect to 1 (or v wrt u);

compt4erruv Compute an L-cokurtosis error using the 1 with respect to 2 (or u wrt v);

compt4errvu Compute an L-cokurtosis error using the 2 with respect to 1 (or v wrt u);

uset3err Use the L-coskew error in the determination of the solution. The L-correlation
error is always used;

uset4err Use the L-cokurtosis error in the determination of the solution. The L-correlation
error is always used;

setreturn Set (index) number of the solution to return. The default of 1 returns the pre-
ferred solutions based on the controls for the minimization; and
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maxtokeep The value presets the number of rows in the solution matrix. This matrix is
filled with potential solutions as the various subfiles of the solutionenvir are
scanned. The matrix is trimmed of NAs and error trapping is in place for too small
values of maxtokeep. The default value appears appropriate for the feeding of
massively large simulated parameter spaces.

Value

An R data.frame is returned.

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

simCOP, simcompositeCOP, composite3COP

Examples

## Not run:
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1gen=function() { return(10^runif(1, min=-5, max=5)) },
para2gen=function() { return(10^runif(1, min=-5, max=5)) })

nsim <- 1E4
sample.size.for.estimation <- 1000
PlackettPlackettABKGtest <-

simcomposite3COP(n=sample.size.for.estimation, nsim=nsim, parent=mainpara)
save(PlackettPlackettABKGtest,file="PlackettPlackettABKG.RData",compress="xz")

# Plackett-Plackett composited copula from the copBasic package
# Then create an environment to house the "table".
PlackettPlackettABKG <- new.env()
assign("NeedToCreateForDemo", PlackettPlackettABKGtest, envir=PlackettPlackettABKG)

# Now that the table is assigned into the environment, the parameter estimation
# function can be used. In reality a much much larger solution set is needed.
# Assume one had the following six L-comoments, extract a possible solution.
PPcop <- lcomoms2.ABKGcop2parameter(solutionenvir=PlackettPlackettABKG,

T2.12=-0.5059, T2.21=-0.5110,
T3.12= 0.1500, T3.21= 0.1700,
T4.12=-0.0500, T4.21= 0.0329,
uset3err=TRUE, uset4err=TRUE)

# Now take that solution and setup a parameter object.
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para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
alpha=PPcop$alpha, beta=PPcop$beta, kappa=PPcop$kappa, gamma=PPcop$gamma,
para1=PPcop$Cop1Thetas, para2=PPcop$Cop2Thetas)

# Example Plot Number 1
D <- simCOP(n=2000, cop=composite3COP, para=para, col=rgb(0,0,0,0.1), pch=16)
print(lmomco::lcomoms2(D, nmom=4)) # See the six extacted sample values for this seed.
T2.12 <- -0.4877171; T2.21 <- -0.4907403
T3.12 <- 0.1642508; T3.21 <- 0.1715944
T4.12 <- -0.0560310; T4.21 <- -0.0350028
PPcop <- lcomoms2.ABKGcop2parameter(solutionenvir=PlackettPlackettABKG,

T2.12=T2.12, T2.21=T2.21,
T3.12=T3.12, T3.21=T3.21,
T4.12=T4.12, T4.21=T4.21, uset4err=TRUE)

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
alpha=PPcop$alpha, beta=PPcop$beta, kappa=PPcop$kappa, gamma=PPcop$gamma,
para1=PPcop$Cop1Thetas, para2=PPcop$Cop2Thetas)

# Example Plot Number 2
D <- simCOP(n=1000, cop=composite3COP, para=para, col=rgb(0,0,0,0.1), pch=16)
level.curvesCOP(cop=composite3COP, para=para, delt=0.1, ploton=FALSE)
qua.regressCOP.draw(cop=composite3COP, para=para,

ploton=FALSE, f=c(seq(0.05, 0.95, by=0.05)))
qua.regressCOP.draw(cop=composite3COP, para=para, wrtV=TRUE,

ploton=FALSE, f=c(seq(0.05, 0.95, by=0.05)), col=c(3,2))
diag <- diagCOP(cop=composite3COP, para=para, ploton=FALSE, lwd=4)
# Compare plots 1 and 2, some generalized consistency between the two is evident.
# One can inspect alternative solutions like this
# S <- PPcop$solutions$solutions[,1:18]
# B <- S[abs(S$t2.12res) < 0.02 & abs(S$t2.21res) < 0.02 &
# abs(S$t3.12res) < 0.02 & abs(S$t3.21res) < 0.02, ]
#print(B)
## End(Not run)

level.curvesCOP Compute and Plot Level Curves of a Copula V with respect to U

Description

Compute and plot level curves or level sets of a copula for V with respect to U (Nelsen, 2006, pp.
12–13). The level curves at levels t 7→ [0 + ∆t, 1 − ∆t,∆t] are defined for U 7→ [0 + ∆u, 1 −
∆u,∆u] by

t 7→ C(u = U, v),

and solving for v. Plotting is provided by this function because level curves are such an impor-
tant visual attribute of a copula and highly useful for pedagogic purposes. The above equation is
implemented by the inverse of a copula using COPinv.
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Usage

level.curvesCOP(cop=NULL, para=NULL, ploton=TRUE, lines=TRUE,
plotMW=FALSE, ramp=TRUE, delu=0.001, delt=0.10,
getlevel=NULL, silent=TRUE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

ploton A logical to toggle on the plot;

lines A logical to toggle calls to the lines() function in R to draw the lines;

plotMW A logical to toggle to use the abline() function in R to plot cross lines for the
M (M) and W (W) copulas;

ramp A logical to toggle whether the level curves are ramped in thickness according
to the probability of the line;

delu The increment for ∆u. The default is 1 part in 1,000, which should often provide
enough smoothness for many copulas in practice;

delt The increment ∆t for the level curves to plot, defaults to 10-percent intervals. If
delt=0.5, then only the median plus the consequences of a defined getlevel
is used. If NULL, then a sequence of t values is not made and only getlevel is
used (if available);

getlevel If defined, then it is inserted into the sequence of levels t and that level t =
getlevel is returned in an R list data structure. If more than one level is
desired, then instead of repeated calls to this function, the joint.curvesCOP
function could be considered;

silent The argument of the same name given over to try() wrapping the try() oper-
ation on forming sequences of t for the curves (see sources); and

... Additional arguments to pass to the lines() function in R.

Value

Typically no values are returned because this function is used for its side effects, but the arguments
can be such that the {u, v} for C(u, v) = t are returned within an R list.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COPinv, level.curvesCOP2, level.setCOP, joint.curvesCOP
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Examples

## Not run:
level.curvesCOP(cop=M, para=NULL, delt=0.02) # Upper bounds copula
## End(Not run)
## Not run:
D <- level.curvesCOP(cop=P, getlevel=0.56)
str(D) # empty
D <- level.curvesCOP(cop=P, getlevel=0.5)
str(D) # contains stuff
D <- level.curvesCOP(cop=PSP, getlevel=0.8)
str(D) # contains stuff
## End(Not run)

level.curvesCOP2 Compute and Plot Level Curves of a Copula U with respect to V

Description

Compute and plot level curves or level sets of a copula for U with respect to V (Nelsen, 2006, pp.
12–13). The level curves at a levels t 7→ [0 + ∆t, 1 −∆t,∆t] are defined for V 7→ [0 + ∆v, 1 −
∆v,∆v] by

t = C(u, v = V ),

and solving for u. Plotting is provided by this function because level curves are such an impor-
tant visual attribute of a copula and highly useful for pedagogic purposes. The above equation is
implemented by the inverse of a copula using COPinv2.

Usage

level.curvesCOP2(cop=NULL, para=NULL, ploton=TRUE, lines=TRUE,
plotMW=FALSE, ramp=TRUE, delv=0.001, delt=0.10,
getlevel=NULL, silent=TRUE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

ploton A logical to toggle on the plot;

lines A logical to toggle calls to the lines() function in R to draw the lines;

plotMW A logical to toggle to use abline() function in R to plot cross lines for the M
(M) and W (W) copulas;

ramp A logical to toggle whether the level curves are ramped in thickness according
to the probability of the line;

delv The increment of ∆v. The default is 1 part in 1,000, which should often provide
enough smoothness for many copulas in practice;

delt The increment of ∆t for the level curves to plot, defaults to 10-percent intervals;
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getlevel If defined and level exists upon stepping through using delt, then the level curve
at the getlevel is returned in an R list data structure;

silent The argument of the same name given over to try() wrapping the try() oper-
ation on forming sequences of t for the curves (see sources); and

... Additional arguments to pass to the lines() function in R.

Value

Typically no values are returned because this function is used for its side effects, but the arguments
can be such that the {u, v} for C(u, v) = t are returned within an R list.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COPinv2, level.curvesCOP, level.setCOP2, joint.curvesCOP2

Examples

## Not run:
level.curvesCOP2(cop=M, para=NULL, delt=0.02) # Upper bounds copula
## End(Not run)

level.setCOP Compute a Level Set of a Copula V with respect to U

Description

Compute a level curve or level set of a copula for V with respect to U (Nelsen, 2006, pp. 12–13).
The level curve at level t is defined for U 7→ [0 + ∆u, 1−∆u,∆u] by

t 7→ C(u=U, v),

and solving for v. The function is largely a dispatcher to features implemented in level.curvesCOP.

Usage

level.setCOP(cop=NULL, para=NULL, getlevel=NULL, delu=0.001, lines=FALSE, ...)
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Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

getlevel The level set for t;

delu The increment for ∆u. The default is 1 part in 1,000, which should often in
practice provide enough smoothness for many copulas;

lines A logical that matches the argument of the same name in level.curvesCOP;
and

... Additional arguments to pass to the lines() function in R.

Value

The level set for t = getlevel is returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

level.setCOP2, level.curvesCOP

Examples

## Not run:
set <- level.setCOP(cop=PSP, getlevel=0.23, delu=0.005)
level.curvesCOP(cop=PSP)
lines(set$U, set$V, col=2, lwd=2) # manually draw the 23rd percentile
set <- level.setCOP(cop=PSP, para=3.1, getlevel=0.67, lines=TRUE, col=4, lwd=4)
# Notice the change in the lines argument and using levelsetCOP2 to draw.
mtext("Level Curves and Special Level Sets for PSP copula") #
## End(Not run)

level.setCOP2 Compute a Level Set of a Copula U with respect to V

Description

Compute a level curve or level set of a copula for U with respect to V (Nelsen, 2006, pp. 12–13).
The level curve at level t is defined for V 7→ [0 + ∆v, 1−∆v,∆v] by

t 7→ C(u, v=V ),

and solving for u. The function is largely a dispatcher to features of level.curvesCOP2.
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Usage

level.setCOP2(cop=NULL, para=NULL, getlevel=NULL, delv=0.001, lines=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

getlevel The level set for t;

delv The increment for ∆v. The default is 1 part in 1,000, which should often in
practice provide enough smoothness for many copulas;

lines A logical that matches the argument of the same name in level.curvesCOP2;
and

... Additional arguments to pass to the lines() function in R.

Value

The level set for t = getlevel is returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

level.setCOP, level.curvesCOP2

Examples

## Not run:
set <- level.setCOP2(cop=N4212cop, para=3.1, getlevel=0.23, delu=0.005)
level.curvesCOP2(cop=N4212cop, para=3.1, delv=0.001, delt=0.02)
lines(set$U, set$V, col=2, lwd=2) # manually draw the 23rd percentile
set <- level.setCOP2(cop=N4212cop, para=3.1, getlevel=0.17, lines=TRUE, col=4, lwd=4)
# Notice the change in the lines argument and using levelsetCOP2 to draw.
mtext("Level Curves and Special Level Sets for N4212 copula") #
## End(Not run)
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LzCOPpermsym Maximum Asymmetry Measure (or Vector) of a Copula by Exchanga-
bility

Description

Compute a measure of maximum exchangable asymmetry of a copula CΘ using exchangability
(permutation symmetry) according to De Baets and De Meyer (2017) by

µpermsym
∞C = µpermsym

∞ = 3×max
(
|CΘ(u, v)−CΘ(v, u) |

)
for (u, v) ∈ I2. De Baets and De Meyer comment that among many asymmetric metrics with
copulas that µpermsym

∞ is “by far the most interesting” (De Baets and De Meyer, 2017, p. 36).
The 3 multiplier in the definition ensures that µpermsym

∞ ∈ [0, 1]. Those authors also conclude that
exchangability of random variables, in general, is not a desired property in statistical models, and
they use the µ∞ notation in lieu of Lpermsym

∞ (see documentation related to LpCOPpermsym). The
term “Permutation-Mu” is used for this measure in copBasic-package and in similar contexts.

Usage

LzCOPpermsym(cop=NULL, para=NULL, n=5E4,
type=c("halton", "sobol", "torus", "runif"),
as.abs=TRUE, as.vec=FALSE, as.mat=FALSE, plot=FALSE, ...)

Arguments

cop A copula function;
para Vector of parameters, if and as needed, to pass to the copula;
n The simulation size. The default seems sufficient for many practical applications

but is suboptimal because the maximum operator in the definition is expected to
potentially underestimate the true maximum. When a vector is returned, the de-
fault simulation size appears sufficient for many parameter estimation schemes;

type The type of random number generator on I2 for computing the maximum (ap-
parent) (see argument n) or a vector of signed differences (see Details);

as.abs A logical controlling whether the absolute value operation in the µpermsym
∞ def-

inition is used. This feature permits flexibility retaining the sign of asymmetry;
as.vec A logical to disable the maximum operation but instead return the a vector of

signed differences in the exchanged variables. If this argument is set true, then
as.abs will be set false. The return of a vector of signed differences (still mul-
tiplied by 3) could be useful in parameter estimation schemes with a similar
vector from an empirical copula (EMPIRcop) (see Details);

as.mat A logical to disable the maximum operation (like as.vec), but instead return a
matrix of the I2 values with third column as the vector of signed differences. If
this argument is set true, then as.abs will be set false;

plot A logical to create a plot of the I2 domain used in the simulation with a plot
title showing the type argument setting;

... Additional arguments to pass to support flexible implementation.
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Details

EFFECT OF RANDOM NUMBER GENERATION—Package randtoolbox provides for random
number generation on forms different than simply simulating uniform independent random vari-
ables for I2. The Halton, Sobol, and Torus types are implemented. The plot argument is useful
for the user to see the differences in how these generators canvas the I2 domain.

The default is Halton, which visually appears to better canvas I2 without the clumping that simple
uniform random variables does and without the larger gaps of Sobol or Torus. Testing indicates that
Halton might generally require the smallest simulation size of the others with simple uniform ran-
dom variables potentially being the worst and hence such is not the default. Exceptions surely exist
depending on the style of the asymmetry. Nevertheless, Halton, Sobol, and Torus produce more
consistent estimation behavior with each having a monotone approach towards the true maximum
than simple uniform random variables.

The following example is a useful illustration of an asymmetrical Clayton copula (CL(u, v; Θ),
CLcop) by composition of a single copula (composite1COP) with the theorical µpermsym

∞ maxima
computed by large sample simulation. A user might explore the effect of the random number
generation by changing the type variable.

type <- "halton"
para <- list(cop=CLcop, para=20, alpha=0.3, beta=0.1) # asymmetrical Clayton
ti <- LzCOPpermsym(cop=composite1COP, para=para, n=2E6, type=type) # large
ns <- as.integer( 10^seq(1, 4, by=0.05) ) # sequence of simulation sizes
mi <- sapply(ns, function(n) { # produce vector of maxima for simulation size

LzCOPpermsym(cop=composite1COP, para=para, n=n, type=type) })
ylim <- range(c(0.06, mi, ti)) # vertical limits to ensure visibility
plot(ns, mi, log="x", pch=21, bg=grey(0.9), ylim=ylim, main=type,

xlab="Simulation size", ylab="Maximum asymmetry measure")
abline(h=ti, lwd=3, col="seagreen") # large sample size estimate in green

COPULA PARAMETER ESTIMATION—Parameter estimation using signed permutation asymme-
try vector can readily be accomplished. In the self-contained example below, we will assume a
parent of Gumbel–Hougaard (GH(u, v; Θ), GHcop) extended to asymmetry by using three param-
eters (Θ = (10, 0.8, 0.6). Imagine that we unfortunately have a very small sample size (n = 100)
as “hundred years of data.” The small sample size facilitates the use of the checkboard empirical
copula (EMPIRcop); the sample size is small enough that the checkerboard helps smooth through
ties. The simulation size for LzCOPpermsym is set “large” as presumed by the existing default.

para <- c(10, 0.8, 0.6) # parameters of the parent
nsam <- 100; seed <- 2; nsim <- 5000 # note a change from default
as.vec <- TRUE # set to FALSE to use just Permutation-Mu
rhoP <- rhoCOP(cop=GHcop, para=para) # parent Spearman Rho
UVsS <- simCOP(cop=GHcop, para=para, n=nsam, seed=seed) # simulate a sample
rhoS <- rhoCOP(as.sample=TRUE, para=UVsS) # sample Spearman Rho
infS <- LzCOPpermsym(cop=EMPIRcop, para=UVsS, n=nsim, type="halton",

as.vec=as.vec, ctype="checkerboard")
# empirical copula used and returning signed asymmetry vector
# transformation and re-transformation, GHcop paras >1; [0,1]; and [0,1]
tparf <- function(par) c(exp(par[1]) + 1, pnorm( par[2] ), pnorm( par[3] ))
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rparf <- function(par) c(log(par[1] - 1), qnorm( par[2] ), qnorm( par[3] ))

ofunc <- function(par, norho=FALSE) { # objective function
mypara <- tparf(par)
rhoT <- rhoCOP(cop=GHcop, para=mypara) # simulated Spearman Rho
infT <- LzCOPpermsym(cop=GHcop, para=mypara, n=nsim, type="halton",

as.vec=as.vec)
err <- mean( (infT - infS)^2 ) # mean squared errors
ifelse(norho, err, (rhoT - rhoS)^2 + err) # with Spearman Rho or not

}

init.par <- rparf(c(2, 0.5, 0.5)); rt <- NULL # initial parameter guess
try( rt <- optim(init.par, ofunc, norho=FALSE) ) # 3D optimization
if(is.null(rt)) stop("fatal, optim() returned NULL")
# construct GHcop parameters from optimization with re-transformation
sara <- tparf(rt$par)
rhoT <- rhoCOP(cop=GHcop, para=sara) # theoretical Spearman Rho
UVsT <- simCOP(cop=GHcop, para=sara, n=nsam, seed=seed, # same seed sim by

cex=0.3, pch=16, col="red", ploton=FALSE) # est. parameters

mara <- mleCOP(UVsS, cop=GHcop, init.para=init.par, parafn=tparf)$para

level.curvesCOP(cop=GHcop, para=para)
level.curvesCOP(cop=GHcop, para=sara, ploton=FALSE, col="red" ) # perm diffs
level.curvesCOP(cop=GHcop, para=mara, ploton=FALSE, col="blue") # mleCOP()

Comparison of level curves between the known parent, the parameter estimation using function
LzCOPpermsym, and the maximum likelihood by mleCOP shows that signed asymmetry differences
can be used for parameter estimation. One could use the maximum as in the definition, but for
purposes of high-dimensional optimization, using the vector might be better to prevent local minima
(less optimal solutions) being found if the µpermsym

∞ was used. Because vectors of differences
between empirical copula and the fitted copula are involved, measures of fit using such differences
are expected to be more favorable to optimization than using LzCOPpermsym than say maximum
likelihood. The measures of fit AIC (aicCOP), BIC (bicCOP), and RMSE (rmseCOP), for example,
are often, smaller for the sara fitted parameters than for the mara fitted (maximum likelihood).
Finally, setting as.vec <- FALSE, re-running, and thus using µpermsym

∞ , will likely show parameter
estimates, visible through the level curves, that are much less favorable.

RELATION TO ANOTHER DISTANCES—The documentation for LpCOPpermsym lists a supremum
definition Lpermsym

∞ , which is like µpermsym
∞ but lacks the multiplier of 3. However, that documen-

tation mentions a ratio of 1/3 being as upper bounds and hence the De Baets and De Meyer (2017)
reasoning for the 3 multiplier to rescale µpermsym

∞ ∈ (0, 1). The simple interrelations between the
two functions are explored in the following example:

para <- c(30, 0.2, 0.95); n <- 5E4
p <- 1
mean(abs(LzCOPpermsym(cop=GHcop, para=para, n=n,

as.vec=TRUE)/3)^p)^(1/p) # 0.01867929
LpCOPpermsym(cop=GHcop, para=para, p=p) # 0.01867940
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p <- 3
mean(abs(LzCOPpermsym(cop=GHcop, para=para, n=n,

as.vec=TRUE)/3)^p)^(1/p) # 0.02649376
LpCOPpermsym(cop=GHcop, para=para, p=p) # 0.02649317

The critical note is that LpCOPpermsym is the integral of the absolute differences in permuted dif-
ferences across I2. Hence, it is an expectation. The LzCOPpermsym is difference because of the
maximum of the differences. The computations in the example above show how the same informa-
tion can be extracted from the two functions. De Baets and De Meyer (2017) do not make reference
to raising and then rooting by the power p as shown. The examples here provide credence to the
default setting of n (simulation size) for several significant figures of similarity.

Value

A scalar value for the measure is returned or other as dictated by arguments.

Author(s)

W.H. Asquith

References

De Baets, B., and De Meyer, H., 2017, Chapter 3—A look at copulas in a curved mirror: New York,
Springer, ISBN 978–3–319–64221–5, pp. 33–47.

See Also

LpCOPpermsym, isCOP.permsym

Examples

LzCOPpermsym(cop=PSP) # 0, permutation symmetric
LzCOPpermsym(cop=GHcop, para=c(10, 0.9, 0.3)) # 0.17722861

# See also results of
# isCOP.permsym(cop=PSP) # TRUE
# isCOP.permsym(cop=GHcop, para=c(10, 0.9, 0.3)) # FALSE

## Not run:
sapply(1:4, function(r) { # Four rotations of a Galambos copula

Lz <- LzCOPpermsym(cop=COP, para=list(cop=GLcop, para=2, reflect=r))
UV <- simCOP(1000, cop=COP, para=list(cop=GLcop, para=2, reflect=r))
mtext(paste0("Reflection ", r, " : Permutation-Mu =", Lz)); Lz })

# [1] 0.00000000 0.00000000 0.07430326 0.07430326
## End(Not run)
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M The Fréchet–Hoeffding Upper-Bound Copula

Description

Compute the Fréchet–Hoeffding upper-bound copula (Nelsen, 2006, p. 11), which is defined as

M(u, v) = min(u, v).

This is the copula of perfect association (comonotonicity, perfectly positive dependence) between
U and V and is sometimes referred to as the comonotonicity copula. Its opposite is the W(u, v)
copula (countermonotonicity copula; W), and statistical independence is the Π(u, v) copula (P).

Usage

M(u, v, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

W, P

Examples

M(0.4,0.6)
M(0,0)
M(1,1)
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med.regressCOP Perform Median Regression using a Copula by Numerical Derivative
Method for V with respect to U

Description

Perform median regression (Nelsen, 2006, pp. 217–218) of a copula by inversion of numerical
derivatives of the copula (derCOPinv). The documentation for qua.regressCOP provides mathe-
matical details. The qua.regressCOP.draw supports so-called quantile regression along various
probability levels (see Examples).

Usage

med.regressCOP(u=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, level=NA, ...)

Arguments

u Nonexceedance probability u in the X direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

level The level of the prediction interval to compute. For example, level=0.95 will
compute the 95-percent prediction interval as will level=0.05 because inter-
nally a reflection check is made; and

... Additional arguments to pass such qua.regressCOP and derCOPinv that are
called in succession.

Value

An R data.frame of the median regressed probabilities of V and provided U values is returned.
Note: if level is used, then the column ordering of the returned data.frame changes—please
access the columns by the named idiom. The lower- and upper-prediction interval is contained
in the columns repectively titled Vlwr and Vupr to mimic nomenclature somewhat of function
predict.lm() in R.

Note

An extended demonstration is needed concerning prediction intervals by median regression and a
comparison to well-known linear regression. This also affords and opportunity to have copBasic
interact with the copula package to gain access to the Gaussian copula and a maximum pseudo-
likelihood estimation of the parameter.

First, a function NORMcop() is defined to form the interconnect between the two packages. It is
critically important that the user recognize that the so-called copula object as built by the copula
package is treated as the canonical para argument in copBasic calls herein.
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"NORMcop" <- # pCoupla() from package copula is analogous to COP()
function(u,v, para=NULL, ...) {
if(length(u) == 1) u <- rep(u, length(v)) # see asCOP() for reasoning of
if(length(v) == 1) v <- rep(v, length(u)) # this "vectorization" hack
return(copula::pCopula(matrix(c(u,v), ncol=2), para))

}

The parameter Θ ∈ [−1, 1] (Pearson R) and ρC(Θ) (Spearman Rho, rhoCOP) and τC(Θ) (Kendall
Tau, tauCOP) are according to Salvadori et al. (2007, p. 255) the values

ρC(Θ) =
2

π
arcsin(Θ)

and
τC(Θ) =

6

π
arcsin(Θ/2).

Second, a bivariate Gaussian copula is defined with a parameter Θ = 0.7 (thus ρC = 0.6829105,
rhoCOP(NORMcop, norm.cop)) and then n = 255 samples simulated from it. These are then cast
into standard normal variates to mimic the idea of bivariate data in nonprobability units and facili-
tation regression comparison.

norm.cop <- copula::normalCopula(c(0.7), dim = 2) # define a Gaussian copula
UVs <- copula::rCopula(255, norm.cop) # draw 255 samples
UVs <- as.data.frame(UVs); X <- qnorm(UVs[,1]); Y <- qnorm(UVs[,2])

Third, the Weibull plotting positions from the pp() function of package lmomco are used to estimate
the empirical probababilities of the data in UV that are casted into an R matrix because the copula
package expects the data as a matrix for the default parameter estimation. The code is completed
by the specification of the fitted Gaussian copula in fnorm.cop.

UV <- as.matrix(data.frame(U=lmomco::pp(X, sort=FALSE),
V=lmomco::pp(Y, sort=FALSE)))

para <- copula::fitCopula(copula::normalCopula(dim=2), UV)
para <- summary(para)$coefficients[1] # maximum pseudo-likelihood est.
fnorm.cop <- copula::normalCopula(para, dim=2)

Fourth, ordinary-least-squares (OLS) linear regression for Y | X and X | Y is computed, and the
results plotted on top of the data points. The 2/3rd-prediction limits are computed by predict.lm()
and also shown.

# Classical linear regressions from two perspectives.
LMyx <- lm(Y~X); LMxy <- lm(X~Y)
YonX <- summary(LMyx); XonY <- summary(LMyx)

QUorV <- seq(-3,3, by=0.05) # vector for graphical operations
plot(X, Y, col=8, pch=21)
lines(QUorV, YonX$coefficients[1]+YonX$coefficients[2]*QUorV, col=2, lwd=4)
tmp <- predict.lm(LMyx, list(X=X), level=2/3, interval="prediction")
lines(X, tmp[,2], col=2); lines(X, tmp[,3], col="red" )
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lines(XonY$coefficients[1]+XonY$coefficients[2]*QUorV, QUorV, col=3, lwd=4)
tmp <- predict.lm(LMxy, list(Y=Y), level=2/3, interval="prediction")
lines(tmp[,2], Y, col="green"); lines(tmp[,3], Y, col="green")

Finally, the demonstration ends with plotting of the median regression for the Gaussian copula
and drawing the regression lines. The two median regression lines are nearly coincident with the
OLS regression lines as anticipated with a reasonably large sample size albeit maximum pseudo-
likelihood was used to estimate the copula parameter. The mean of a uniform distributed variable
given say U = u (horizontal axis) is 1/2, which coincides with the median. The median regres-
sion lines thus are coincident with the OLS lines even though OLS and real-space (native units of
X and Y ) were not used for their computation. The 2/3-prediction intervals also are plotted for
comparison.

UorV <- c(0.001, seq(.02,0.98, by=.02), 0.999)
MEDreg <- med.regressCOP( u=UorV, level=2/3, cop=NORMcop, para=fnorm.cop)
MEDreg2 <- med.regressCOP2(v=UorV, level=2/3, cop=NORMcop, para=fnorm.cop)
lines(qnorm(UorV), qnorm(MEDreg$V), col="blue", lty=2)
lines(qnorm(UorV), qnorm(MEDreg$Vlwr), col="blue", lty=2)
lines(qnorm(UorV), qnorm(MEDreg$Vupr), col="blue", lty=2)
lines(qnorm(MEDreg2$U), qnorm(UorV), col="magenta", lty=2)
lines(qnorm(MEDreg2$Ulwr), qnorm(UorV), col="magenta", lty=2)
lines(qnorm(MEDreg2$Uupr), qnorm(UorV), col="magenta", lty=2)

A curious aside (Joe, 2014, p. 164) about the Gaussian copula is that Blomqvist Beta (blomCOP) is
equal to Kendall Tau (tauCOP), which can be checked by

blomCOP(cop=NORMcop, para=norm.cop) # 0.4936334
tauCOP( cop=NORMcop, para=norm.cop) # 0.493633

and obviously the βC = τC are numerically the same.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

med.regressCOP2, qua.regressCOP, qua.regressCOP.draw
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Examples

## Not run:
# INDEPENDENCE YIELDS STRAIGHT LINES, RED IS THE MEDIAN REGRESSION
FF <- seq(0.1, 0.9, by=0.1)
plot(c(0,1),c(0,1), type="n", lwd=3,

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
# Draw the regression of V on U and then U on V (wrtV=TRUE)
qua.regressCOP.draw(f=FF, cop=P, para=NA, ploton=FALSE)
qua.regressCOP.draw(f=FF, cop=P, para=NA, ploton=FALSE, wrtV=TRUE, lty=2)#
## End(Not run)

## Not run:
# NEGATIVE PLACKETT THETA YIELDS CURVES DOWN TO RIGHT, RED IS THE MEDIAN REGRESSION
theta <- 0.5; FF <- seq(0.1, 0.9, by=0.1)
plot(c(0,1),c(0,1), type="n", lwd=3,

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
# Draw the regression of V on U and then U on V (wrtV=TRUE)
qua.regressCOP.draw(f=FF, cop=PLACKETTcop, ploton=FALSE, para=theta)
qua.regressCOP.draw(f=FF, cop=PLACKETTcop, ploton=FALSE, para=theta, wrtV=TRUE, lty=2)#
## End(Not run)

med.regressCOP2 Perform Median Regression using a Copula by Numerical Derivative
Method for U with respect to V

Description

Perform median regression of a copula (Nelsen, 2006, pp. 217–218) by inversion of numerical
derivatives of the copula (derCOPinv2). The documentation for qua.regressCOP2 provides math-
ematical details.

Usage

med.regressCOP2(v=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, level=NA, ...)

Arguments

v Nonexceedance probability v in the Y direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

level The level of the prediction interval to compute. For example, level=0.95 will
compute the 95-percent prediction interval as will level=0.05 because inter-
nally a reflection check is made; and

... Additional arguments to pass such qua.regressCOP2 and derCOPinv2 that are
called in succession.
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Value

An R data.frame of the median regressed probabilities of U and provided V values is returned.
Note: if level is used, the column ordering of the returned data.frame changes—please access
the columns by the named idiom. The lower- and upper-prediction interval bounds are contained
in the columns repectively titled Ulwr and Uupr to mimic nomenclature somewhat of function
predict.lm() in R.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

med.regressCOP, qua.regressCOP2, qua.regressCOP.draw

Examples

# See examples under med.regressCOP

mleCOP Maximum Pseudo-Log-Likelihood Estimation for Copula Parameter
Estimation

Description

Perform maximum pseudo-log-likelihood estimation (pMLE) for copula parameters by maximizing
the function:

L(Θp) =

n∑
i=1

log
[
c(Fx(xi), Fy(yi); Θp)

]
,

where L(Θp) is the log-likelihood for parameter vector Θp of dimension p, and c(u, v; Θp) is
the bivariate copula density. The u and v are estimated by the respective empirical cumulative
distribution functions u = Fx(· · · ) and v = Fy(· · · ) for each of the joint realizations of a sample
of size n. The c(u, v) is numerically estimated by the copula using the densityCOP function.

Usage

mleCOP(u, v=NULL, cop=NULL, parafn=function(k) return(k),
interval=NULL, init.para=NULL, verbose=FALSE, control=list(),
the.zero=.Machine$double.eps^0.25, s=0, ...)
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Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction and if NULL then u is treated as
a two column R data.frame;

cop A copula function;

parafn A function responsible for generating the parameters. This is often just a simple
return of a parameter vector as copBasic uses this style of parameterization, but
this function can take over parameter remapping to handle boundary conditions
to benefit the search or provide an interface into other copula packages in R (see
Examples);

interval The search interval for root finding, by stats::optimise(), if the parameter
dimension of the copula is p = 1. The interval is not used for p ≥ 2;

init.para The initial guesses for the parameters for the p-dimensional optimization for p ≥
2. The initial guess is used, by stats::optim(), if the parameter dimension of
the copula is p = 1 and interval is NULL (see Examples);

verbose A logical that internally is converted to integer to trigger 1 (sum of logs of
densityCOP shown), 2 (add reporting of the copula parameter on each itera-
tion), or more levels of verbose reporting scheme within the objective function.
This is independent from the control$trace of function optim();

control This argument is the argument of the same name for optim();

the.zero The value for “the zero” of the copula density function. This argument is the
argument of the same name for densityCOP. The default here is intended to
suggest that a tiny nonzero value for density will trap the numerical zero densi-
ties;

s A vector of at least two presumably uniformly distributed or regular sequence of
nonexceedance probabilities in U for simulation of V by simCOPv and plotting
of these U and V . This plotting is only made if the length of s is nonzero and
verbose is greater than or equal to 2. This plotting feature for the s is pedagog-
ical and intended for demonstration or teaching opportunities. This feature has
no utility for the optimization itself; and

... Additional arguments to pass, see source code for the internally used functions
that can pick these additional arguments up.

Value

The value(s) for the estimated parameters are returned within an R list where the elements listed
below are populated unique to this package. The other elements of the returned list are generated
from either the optimise() (1D, p = 1) or optim() (pD, p ≥ 2) functions of R.

para The parameter(s) in a canonical element after the one-dimensional root finding
(p = 1) or multi-dimensional optimization (p ≥ 2) solutions are passed through
parafn so that these are in the parameter units of the copula and not necessarily
those transformed for the optimization;

packagetext A helpful message unique to the copBasic package;
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loglik The maximum of the log-likelihood matching the name for the same quantity by
the function fitCopula in package copula though a separate implementation is
used in copBasic;

AIC Akaike information criterion (AIC) (see also aicCOP): AIC = 2p − 2L(Θp);
and

BIC Bayesian information criterion (BIC) (see also bicCOP): BIC = p log(n) −
2L(Θp).

Note

This section provides for a more thorough assessment of pMLE than shown in the Examples.

INTERFACE TO THE COPULA PACKAGE—A not uncommon question to the author is how can
copBasic support copulas from other packages? A copBasic pMLE implementation to the Gaussian
copula from the copula package is thus useful for instruction.

Two interface functions are required for the pMLE situation. First, interface the copula package in
a generic form for the copBasic package:

"cB2copula" <- # pCoupla() from package copula is analogous to COP()
function(u,v, para=NULL, ...) {
if(length(u) == 1) u <- rep(u, length(v)) # see asCOP() for reasoning of
if(length(v) == 1) v <- rep(v, length(u)) # this "vectorization" hack
return(copula::pCopula(matrix(c(u,v), ncol=2), para))

}

where the para argument above must be built by the features of the copula package. The following
function then provides for parameter setup specific to the Gaussian copula having parameter ρ:

copula2cBpara <- function(rho) return(copula::normalCopula(rho, dim = 2))

Now, let us perform a parameter estimate for a sample of size n = 900:

set.seed(162); UV <- simCOP(n=900, cop=cB2copula, para=copula2cBpara(0.45))
mleCOP(UV, cop=cB2copula, parafn=copula2cBpara, interval=c(-1,1))$para
# rho.1 = 0.4248822

The search interval for the Gaussian copula is ρ ∈ [−1, 1], and the final result is ρ = 0.4458822.

MULTI-DIMENSIONAL EXAMPLE OF pMLE—Consider a 2-parameter Gumbel–Hougaard cop-
ula (GH(Θ1,Θ2)) but now use the parafn argument to provide boundary condition assistance
through function GH2pfunc to the optim() function that performs the maximization.

set.seed(162); UV <- simCOP(n=890, cop=GHcop, para=c(2.4, .06))
GH2pfunc <- function(p) { return(c(exp(p[1])+1, exp(p[2]))) }
ML <- mleCOP(UV$U, UV$V, cop=GHcop, init.para=c(1,1), parafn=GH2pfunc)
print(ML$para) # [1] 2.2755018 0.1194788

and the result is Θ1,2 = (2.2755018, 0.1194788). Next, consider now a 3-parameter GH(Θ, π1, π2)
copula and again use the parafn argument through function GH3pfunc but notice that the 2nd and
3rd parameters are now mapped into 0 ≤ π1, π2 ≤ 1 domain using the pnorm() function.
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set.seed(162); UV <- simCOP(n=500, cop=GHcop, para=c(5.5, .6, .9))
GH3pfunc <- function(p) { return(c(exp(p[1])+1, pnorm(p[2]), pnorm(p[3]))) }
ML <- mleCOP(UV$U, UV$V, cop=GHcop, init.para=c(1, .5, .5), parafn=GH3pfunc)
print(ML$para) # [1] 5.3742229 0.6141652 0.9382638

and the result is Θ = 5.3742229 and π1,2 = (0.6141652, 0.9382638).

ANOTHER MULTI-DIMENSIONAL EXAMPLE OF pMLE—Finally, an experiment can be made
fitting a 3-parameter GH(Θ, π1, π2) to a simulation from a 2-parameter GH(β1, β2), where the
seed is just arbitrary and the Vuong Procedure (vuongCOP) is used to compare fits and make infer-
ence. The parameter functions GH2pfunc and GH3pfunc are as before.

set.seed(10); UV <- simCOP(n=500, cop=GHcop, para=c(1.7, 1.86))
GH2pfunc <- function(p) { return(c(exp(p[1])+1, exp(p[2]) )) }
GH3pfunc <- function(p) { return(c(exp(p[1])+1, pnorm(p[2]), pnorm(p[3]) )) }
para1 <- mleCOP(UV, cop=GHcop, init.para=c(1,1), parafn=GH2pfunc)$para
para2 <- mleCOP(UV, cop=GHcop, init.para=c(1,.5,.5), parafn=GH3pfunc)$para
vuongCOP(UV, cop1=GHcop, para1=para1, cop2=GHcop, para2=para2)$message
#[1] "Copula 1 has better fit than Copula 2 at 100 x (1-alpha) level"

The results show the 2-p GH is a better fit to the simulated data than the 3-p GH, which seems a
bit self evident? Plot some same-seeded simulations just to confirm.

set.seed(67) # First the estimated parameters but with the correct model.
UV <- simCOP(n=200, GHcop, para=para1, snv=TRUE, pch=16, col=2)
set.seed(67) # Second, the estimated incorrect model.
UV <- simCOP(n=200, GHcop, para=para2, snv=TRUE, ploton=FALSE)

Yes, differences in form are manifest in the produced graphic. Now, let us try another set of param-
eters and again an arbitrarily-chosen seed.

set.seed(10); UV <- simCOP(n=500, cop=GHcop, para=c(1.91, 0.16))
para1 <- mleCOP(UV, cop=GHcop, init.para=c(1,1), parafn=GH2pfunc)$para
para2 <- mleCOP(UV, cop=GHcop, init.para=c(1,.5,.5), parafn=GH3pfunc)$para
vuongCOP(UV, cop1=GHcop, para1=para1, cop2=GHcop, para2=para2)$message
#[1] "Copulas 1 and 2 are not significantly different at 100 x (1-alpha)"

The results show equivalence, let us now check a graphic.

set.seed(67); z <- simCOP(n=200, GHcop, para=para1, snv=TRUE, pch=16, col=2)
set.seed(67); z <- simCOP(n=200, GHcop, para=para2, snv=TRUE, ploton=FALSE)

The differences are small but the differences might be inflating into the lower left corner. What
sample size could conceivably begin to distinguish between the copula?

kullCOP(cop1=GHcop, cop2=GHcop, para1=para1, para2=para2) # 625 on this run

nsim <- 20; set.seed(67)
Results <- sapply(1:nsim, function(i) {
UV <- simCOP(n=625, cop=GHcop, para=c(1.91, .16), graphics=FALSE)
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p1 <- mleCOP(UV, cop=GHcop, init.para=c(1,1), parafn=GH2pfunc)$para
p2 <- mleCOP(UV, cop=GHcop, init.para=c(1,.5,.5), parafn=GH3pfunc)$para
vuongCOP(UV, cop1=GHcop, para1=p1, cop2=GHcop, para2=p2)$result })

sum(Results)

The summation yields 6 of 20 for which copula 1 has the better fit, but with n = 1,000 instead of
n = 625, the sum of the Results is 13 of 20 (so better than half the time). This seems to be in
conflict with what the nfg sample size from kullCOP should be telling. The author thinks it should
be 18 to 19 of 20 (95th percentile) based on what the kullCOP is reported to do (NEED TO LOOK
INTO THIS).

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

densityCOP

Examples

# See also extended code listings and discussion in the Note section

## Not run:
# Here, we study the trajectory of the objective function in a simple
# 1-dimensional optimization. See how we must provide the interval.
set.seed(162); UV <- simCOP(n=188, cop=PLcop, para=5.6)
ML <- mleCOP(UV$U, UV$V, cop=PLcop, interval=c(0.1, 40)) # 5.225459 estimated

Thetas <- 10^(seq(log10(0.001), log10(100), by=0.005))
MLs <- sapply(Thetas, function(k)

densityCOP(UV$U, UV$V, cop=PLcop, para=k, sumlogs=TRUE))
plot(Thetas, MLs, log="x", type="l", # draw the pMLE solution process

xlab="Plackett Theta", ylab="sum of log densities")
lines(rep(ML$para, 2), c(ML$objective, par()$usr[3]), col="red")
points(ML$para, ML$objective, pch=16, col="red") #

## End(Not run)

## Not run:
# Here, we study again 1-dimensional optimization but use the
# multidimensional version with an alert issued.
set.seed(149); UV <- simCOP(1000, cop=CLcop, para=pi)
# Warning messages about using optim() for 1D solution
mleCOP(UV, cop=CLcop, init.para=2)$para # 3.082031
# No warning message, optimise() called instead.
mleCOP(UV, cop=CLcop, interval=c(0,1E2))$para # 3.081699

## End(Not run)
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## Not run:
# Here, we evaluate a 2-dimensional problem using a Plackett again but with
# the addition of asymmetry towards high V outliers from the Plackett cloud.
# This example also adds the internal verbose and graphic diagnostics for
# the iterations of the optimizer. Here, we learn that we need on a time have
# some idea where the solution might lay so that we can provide a suitable
# set of initial parameters for the algorithm.
para <- list(beta=-0.1, cop=PLcop, para1=1000)
UV <- simCOP(2000, cop=breveCOP, para=para); abline(0, 1, col="red", lwd=3)
PL2pfunc <- function(p) { # see here example of parameter transform
list(beta=2*pnorm(p[1])-1, para=exp(p[2]), cop=PLcop) # [-1,+1], >=0

}
init.para <- c(0.2535, log(0.02)) # These will not find a solution with this
# guess of negative association, but the next works by using an external
# estimate of the Plackett parameters and here we test with a positive
# skewness (beta for breveCOP > 0) although we know the parent had negative.
init.para <- c(0.2535, log(PLACKETTpar(UV$U, UV$V, byrho=TRUE))) # beta=0.200
rt <- mleCOP(u=UV$U, v=UV$V, init.para=init.para, cop=breveCOP,

parafn=PL2pfunc, verbose=2, s=seq(0,1, by=0.005)) #
## End(Not run)

M_N5p12b Shuffles of Upper-Bound Copula, Example 5.12b of Nelsen’s Book

Description

Compute shuffles of Fréchet–Hoeffding upper-bound copula (Nelsen, 2006, p. 173), which is de-
fined by partitioning M within I2 into n subintervals:

Mn(u, v) = min

(
u− k − 1

n
, v − n− k

n

)
for points within the partitions

(u, v) ∈
[
k − 1

n
,
k

n

]
×
[
n− k

n
,
n− k + 1

n

]
, k = 1, 2, · · · , n

and for points otherwise out side the partitions

Mn(u, v) = max(u+ v − 1, 0).

The support of Mn consists of n line segments connecting coordinate pairs {(k−1)/n, (n−k)/n}
and {k/n, (n−k+1)/n} as stated by Nelsen (2006). It is useful that Nelsen stated such as this helps
to identify that Nelsen’s typesetting of the terms in the second square brackets—the V direction—
is reversed from that shown in this documentation. The Spearman Rho (rhoCOP) is defined by
ρC = (2/n2)− 1, and the Kendall Tau (tauCOP) by τC = (2/n)− 1.

Usage

M_N5p12b(u, v, para=1, ...)
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Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction;
para A positive integer n ∈ 1, 2, · · · ; and
... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, ORDSUMcop, W_N5p12a

Examples

M_N5p12b(0.4, 0.6, para=3)

## Not run:
# Nelsen (2006, exer. 5.12b, p. 173, fig. 5.3b)
UV <- simCOP(1000, cop=M_N5p12b, para=4) #

## End(Not run)

N4212cop The Copula of Equation 4.2.12 of Nelsen’s Book

Description

The N4212 copula (Nelsen, 2006, p. 91; eq. 4.2.12) is named by the author (Asquith) for the
copBasic package and is defined as

CN4212(u, v; Θ) =

(
1 +

[
(u−1 − 1)Θ + (v−1 − 1)Θ

]1/Θ)−1

.

The N4212(u, v) copula is not comprehensive because for Θ = 1 the copula becomes the so-called
PSP(u, v) copula (see PSP) and as Θ → ∞ the copula becomes M(u, v) (see M). The copula is
undefined for Θ < 1. The N4212 copula has respective lower- and upper-tail dependency (see
taildepCOP).

Although copBasic is intended to not implement or “store house” the enormous suite of copula
functions available in the literature, the N4212 copula is included to give the package another copula
to test or test in numerical examples.
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Usage

N4212cop(u, v, para=NULL, infis=100, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula;

infis What is infinity? Testing shows that infis = Θ > 100 is about right to consider
the copula as becoming M(u, v) (see M); and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Examples

N4212cop(0.4,0.6, para=1) == PSP(0.4,0.6) # TRUE
N4212cop(0.4,0.6, para=10) # 0.3999928
taildepCOP(cop=N4212cop, para=10) # LamL = 0.93303; LamU = 0.92823
## Not run:
D <- simCOP(n=400, cop=N4212cop, para=2)
D <- simCOP(n=400, cop=N4212cop, para=10, ploton=FALSE, col=2)
D <- simCOP(n=400, cop=N4212cop, para=100, ploton=FALSE, col=3)#
## End(Not run)

ORDSUMcop Ordinal Sums of M-Copula

Description

Compute ordinal sums of a copula (Nelsen, 2006, p. 63) or M-ordinal sum of the summands (Kle-
ment et al., 2017) within I2 into n partitions (possibly infinite) within I2. According to Nelsen,
letting J denote a partition of I2 and Ji = [ai, bi] be the ith partition that does not overlap with
others and letting also Ci be a copula for the ith partition, then the ordinal sum of these Ci with
parameters Θi with respect to Ji is the copula C given by
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C
(
u, v;Ji,Ci,Θi, i ∈ 1, 2, · · · , n

)
= ai + (bi − ai)Ci

(
u− ai
bi − ai

,
v − ai
bi − ai

; Θi

)
for (u, v) ∈ J 2,

for points within the partitions, and for points otherwise outside the partitions the coupla is given
by

C
(
u, v;Ji,Ci, i ∈ 1, 2, · · · , n

)
= M(u, v) for (u, v) ∋ J 2, and

let CJ (u, v) be a convenient abbreviation for the copula. Finally, Nelsen (2006, theorem 3.2.1)
states that a copula is an ordinal sum if and only if for a t if C(t, t) = t for t ∈ (0, 1). The diagonal
of a coupla can be useful for quick assessment (see Examples) of this theorem. (See ORDSUWcop,
W-ordinal sum of the summands.)

Usage

ORDSUMcop(u,v, para=list(cop=W, para=NA, part=c(0,1)), ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A list of sublists for the coupla, parameters, and partitions (see Examples) and
some attempt for intelligent in-fill of para is made within the sources (the default
para is an example for which cop and para elements are converted to lists). The
user is responsible that part element properly canvases by end-point alignment
all of I2; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Klement, E.P., Kolesárová, A., Mesiar, R., Saminger-Platz, S., 2017, Copula constructions using
ultramodularity (chap. 9) in Copulas and dependence models with applications—Contributions in
honor of Roger B. Nelsen, eds. Flores, U.M., Amo Artero, E., Durante, F., Sánchez, J.F.: Springer,
Cham, Switzerland, ISBN 978–3–319–64220–9, doi:10.1007/9783319642215.

See Also

copBasic-package, W_N5p12a, ORDSUWcop

https://doi.org/10.1007/978-3-319-64221-5
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Examples

## Not run:
para <- list(cop=c(CLcop, M, PLcop, GHcop), para=list(4, NA, 0.1, c(3,4)),

part=list(c(0,0.25), c(0.25,0.35), c(0.35,0.85), c(0.85,1)))
UV <- simCOP(n=100, cop=ORDSUMcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY", type="n",

ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions

a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(a,a,b,b,a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (a+b)/2, k, cex=3, col="blue") # numbered by partition

}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #

## End(Not run)

## Not run:
para <- list(cop=c(GHcop), para=list(c(2,3)), # internally replicated

part=list(c(0,0.2), c(0.2,0.3), c(0.3,0.5), c(0.5,0.7), c(0.7,1)))
UV <- simCOP(n=100, cop=ORDSUMcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY", type="n",

ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions

a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(a,a,b,b,a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (a+b)/2, k, cex=3, col="blue") # numbered by partition

}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #

## End(Not run)

## Not run:
# In this example, it is important that the delt is of the resolution
# matching the edges of the partitions.
para <- list(cop=P, para=list(NULL),

part=list(c(0,0.257), c(0.257,0.358), c(0.358,1)))
DI <- diagCOP(cop=ORDSUMcop, para=para, delt=0.001)
if(sum(DI$diagcop == DI$t) >= 1) {
message("The ORDSUMcop() operation is an ordinal sum if there exists\n",

"a t=(0,1) exists such that C(t,t)=t by Nelsen (2006, theorem 3.2.1).")
}
abline(0,1, col="red") #

## End(Not run)

ORDSUWcop Ordinal Sums of W-Copula

Description

Compute W-ordinal sum of the summands (Klement et al., 2017) within I2 into n partitions (possi-
bly infinite) within I2. Letting J denote a partition of I2 and Ji = [ai, bi] be the ith partition that
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does not overlap with others and letting also Ci be a copula for the ith partition, then the ordinal
sum of these Ci with parameters Θi with respect to Ji is the copula C given by

C
(
u, v;Ji,Ci,Θi, i ∈ 1, 2, · · · , n

)
= ai+(bi−ai)Ci

(
u− ai
bi − ai

,
v − 1 + bi
bi − ai

; Θi

)
for (u, v) ∈ J 2,

for points within the partitions, and for points otherwise outside the partitions the coupla is given
by

C
(
u, v;Ji,Ci, i ∈ 1, 2, · · · , n

)
= W(u, v) for (u, v) ∋ J 2, and

let CJ (u, v) be a convenient abbreviation for the copula. (See ORDSUMcop, M-ordinal sum of the
summands.)

Usage

ORDSUWcop(u,v, para=list(cop=M, para=NA, part=c(0,1)), ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A list of sublists for the coupla, parameters, and partitions (see Examples) and
some attempt for intelligent in-fill of para is made within the sources (the default
para is an example for which cop and para elements are converted to lists). The
user is responsible that part element properly canvases by end-point alignment
all of I2; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Klement, E.P., Kolesárová, A., Mesiar, R., Saminger-Platz, S., 2017, Copula constructions using
ultramodularity (chap. 9) in Copulas and dependence models with applications—Contributions in
honor of Roger B. Nelsen, eds. Flores, U.M., Amo Artero, E., Durante, F., Sánchez, J.F.: Springer,
Cham, Switzerland, ISBN 978–3–319–64220–9, doi:10.1007/9783319642215.

See Also

copBasic-package, W_N5p12a, ORDSUMcop

https://doi.org/10.1007/978-3-319-64221-5
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Examples

para <- list(cop=c(CLcop, GHcop), para=list(5, 2), part=c(0,0.25,1)) # break points
UV <- simCOP(n=100, cop=ORDSUMcop, seed=1, para=para, ploton=TRUE, pch=16)
UV <- simCOP(n=100, cop=ORDSUWcop, seed=1, para=para, ploton=FALSE)

## Not run:
para <- list(cop=c(CLcop, M, PLcop, GHcop), para=list(4, NA, 0.1, c(3,4)),

part=list(c(0,0.25), c(0.25,0.35), c(0.35,0.85), c(0.85,1)))
UV <- simCOP(n=100, cop=ORDSUWcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY", type="n",

ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions

a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(1-a,1-a,1-b,1-b,1-a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (1-a+1-b)/2, k, cex=3, col="blue") # numbered by partition

}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #

## End(Not run)

## Not run:
para = list(cop=c(GHcop), para=list(c(2,3)), # internally replicated

part=list(c(0,0.2), c(0.2,0.3), c(0.3,0.5), c(0.5,0.7), c(0.7,1)))
UV <- simCOP(n=100, cop=ORDSUWcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY",

ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions

a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(a,a,b,b,a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (a+b)/2, k, cex=3, col="blue") # numbered by partition

}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #

## End(Not run)

P The Product (Independence) Copula

Description

Compute the product copula (Nelsen, 2006, p. 12), which is defined as

Π(u, v) = uv.

This is the copula of statistical independence between U and V and is sometimes referred to as the
independence copula. The two extreme antithesis copulas are the Fréchet–Hoeffding upper-bound
(M) and Fréchet–Hoeffding lower-bound (W) copulas.

Usage

P(u, v, ...)



P 241

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, W, rhoCOP

Examples

P(c(0.4, 0, 1), c(0, 0.6, 1))

## Not run:
n <- 100000 # giant sample size, L-comoments are zero
# PERFECT INDEPENDENCE
UV <- simCOP(n=n, cop=P, graphics=FALSE)
lmomco::lcomoms2(UV, nmom=4)
# The following are Taus_r^{12} and Taus_r^{21}
# L-corr: 0.00265 and 0.00264 ---> ZERO
# L-coskew: -0.00121 and 0.00359 ---> ZERO
# L-cokurtosis: 0.00123 and 0.00262 ---> ZERO

# MODEST POSITIVE CORRELATION
rho <- 0.6; # Spearman Rho
theta <- PLACKETTpar(rho=rho) # Theta = 5.115658
UV <- simCOP(n=n, cop=PLACKETTcop, para=theta, graphics=FALSE)
lmomco::lcomoms2(UV, nmom=4)
# The following are Taus_r^{12} and Taus_r^{21}
# L-corr 0.50136 and 0.50138 ---> Pearson R == Spearman Rho
# L-coskews -0.00641 and -0.00347 ---> ZERO
# L-cokurtosis -0.00153 and 0.00046 ---> ZERO
## End(Not run)
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PARETOcop The Pareto Copula

Description

The Pareto copula (Nelsen, 2006, pp. 33) is

CΘ(u, v) = PA(u, v) =
[
(1− u)−Θ + (1− v)−Θ

]−1/Θ
,

where Θ ∈ [0,∞). As Θ → 0+, the copula limits to the Π copula (P) and the M copula (M).
The parameterization here has assocation increasing with increasing Θ, which differs from Nelsen
(2006), and also the Pareto copula is formed with right-tail increasing reflection of the Nelsen
(2006) presentation because it is anticipated that copBasic users are more likely to have right-tail
dependency situations (say large maxima [right tail] coupling in earth-system data but not small
maxima [left tail] coupling).

Usage

PARETOcop(u, v, para=NULL, ...)
PAcop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

The Pareto copula is used in a demonstration of Kendall Function L-moment ratio diagram con-
struction (see kfuncCOPlmoms).

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, P
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Examples

## Not run:
z <- seq(0.01,0.99, by=0.01) # Both copulas have Kendall Tau = 1/3
plot( z, kfuncCOP(z, cop=PAcop, para=1), lwd=2, col="black",

xlab="z <= Z", ylab="F_K(z)", type="l")
lines(z, kfuncCOP(z, cop=GHcop, para=1.5), lwd=2, col="red") # red line
# All extreme value copulas have the same Kendall Function [F_K(z)], the
# Gumbel-Hougaard is such a copula and the F_K(z) for the Pareto does not
# plot on top and thus is not an extreme value but shares a "closeness."
## End(Not run)

PLACKETTcop The Plackett Copula

Description

The Plackett copula (Nelsen, 2006, pp. 89–92) is

CΘ(u, v) = PL(u, v) =
[1 + (Θ− 1)(u+ v)]−

√
[1 + (Θ− 1)(u+ v)]2 − 4uvΘ(Θ− 1)

2(Θ− 1)
.

The Plackett copula (PL(u, v)) is comprehensive because as Θ → 0 the copula becomes W(u, v)
(see W, countermonotonicity), as Θ → ∞ the copula becomes M(u, v) (see M, comonotonicity) and
for Θ = 1 the copula is Π(u, v) (see P, independence).

Nelsen (2006, p. 90) shows that

Θ =
H(x, y)[1− F (x)−G(y) +H(x, y)]

[F (x)−H(x, y)][G(y)−H(x, y)]
,

where F (x) and G(y) are cumulative distribution function for random variables X and Y , respec-
tively, andH(x, y) is the joint distribution function. Only Plackett copulas have a constant Θ for any
pair {x, y}. Hence, Plackett copulas are also known as constant global cross ratio or contingency-
type distributions. The copula therefore is intimately tied to contingency tables and in particular the
bivariate Plackett defined herein is tied to a 2×2 contingency table. Consider the 2×2 contingency
table shown at the end of this section, then Θ is defined as

Θ =
a/c

b/d
=

a
a+c/

c
a+c

b
b+d/

d
b+d

and Θ =
a/b

c/d
=

a
a+b/

b
a+b

c
c+d/

d
c+d

,

where it is obvious that Θ = ad/bc and a, b, c, and d can be replaced by proporations for a sample
of size n by a/n, b/n, c/n, and d/n, respectively. Finally, this copula has been widely used in
modeling and as an alternative to bivariate distributions and has respective lower- and upper-tail
dependency parameters of λL = 0 and λU = 0 (taildepCOP).

−− Low High Sums
Low a b a+ b
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High c d c+ d
Sums a+ c b+ d −−

Usage

PLACKETTcop(u, v, para=NULL, ...)
PLcop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

The Plackett copula was the first (2008) copula implemented in copBasic as part of initial devel-
opment of the code base for instructional purposes. Thus, this particular copula has a separate
parameter estimation function in PLACKETTpar as a historical vestige of a class project.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

PLACKETTpar, PLpar, PLACKETTsim, W, M, densityCOP

Examples

PLACKETTcop(0.4, 0.6, para=1)
P(0.4, 0.6) # independence copula, same two values because Theta == 1
PLcop(0.4, 0.6, para=10.25) # joint probability through positive association

## Not run:
# Joe (2014, p. 164) shows the closed form copula density of the Plackett.
"dPLACKETTcop" <- function(u,v,para) {

eta <- para - 1; A <- para*(1 + eta*(u+v-2*u*v))
B <- ((1 + eta*(u+v))^2 - 4*para*eta*u*v)^(3/2); return(A/B)

}
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u <- 0.08; v <- 0.67 # Two probabilities to make numerical evaluations.
del <- 0.0001 # a 'small' differential value of probability
u1 <- u; u2 <- u+del; v1 <- v; v2 <- v+del
# Density following (Nelsen, 2006, p. 10)
dCrect <- (PLcop(u2, v2, para=10.25) - PLcop(u2, v1, para=10.25) -

PLcop(u1, v2, para=10.25) + PLcop(u1, v1, para=10.25)) / del^2
dCanal <- dPLACKETTcop(u, v, para=10.25)
dCfunc <- densityCOP(u, v, para=10.25, cop=PLcop, deluv = del)
R <- round(c(dCrect, dCanal, dCfunc), digits=6)
message("Density: ", R[1], "(manual), ", R[2], "(analytical), ", R[3], "(function)");
# Density: 0.255377(manual), 0.255373(analytical), 0.255377(function)

# Comparison of partial derivatives
dUr <- (PLcop(u2, v2, para=10.25) - PLcop(u1, v2, para=10.25)) / del
dVr <- (PLcop(u2, v2, para=10.25) - PLcop(u2, v1, para=10.25)) / del
dU <- derCOP( u, v, cop=PLcop, para=10.25)
dV <- derCOP2(u, v, cop=PLcop, para=10.25)
R <- round(c(dU, dV, dUr, dVr), digits=6)
message("Partial derivatives dU=", R[1], " and dUr=", R[3], "\n",

" dV=", R[2], " and dVr=", R[4]) #
## End(Not run)

PLACKETTpar Estimate the Parameter of the Plackett Copula

Description

The parameter Θ of the Plackett copula (Nelsen, 2006, pp. 89–92) (PLACKETTcop or PLcop) is
related to the Spearman Rho (ρS ̸= 1, see rhoCOP)

ρS(Θ) =
Θ+ 1

Θ− 1
− 2Θ log(Θ)

(Θ− 1)2
.

Alternatively, the parameter can be estimated using a median-split estimator, which is best shown
as an algorithm. First, compute the two medians:

medx <- median(x); medy <- median(y)

Second and third, compute the number of occurrences where both values are less than their medians
and express that as a probability:

k <- length(x[x < medx & y < medy]); m <- k / length(x)

Finally, the median-split estimator of Θ is computed by

Θ =
4m2

(1− 2m)2
.

Nelsen (2006, p. 92) and Salvadori et al. (2007, p. 247) provide further details. The input values x
and y are not used for the median-split estimator if Spearman Rho (see rhoCOP) is provided by rho.
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Usage

PLACKETTpar(x, y, rho=NULL, byrho=FALSE, cor=NULL, ...)
PLpar(x, y, rho=NULL, byrho=FALSE, cor=NULL, ...)

Arguments

x Vector of values for random variable X;

y Vector of values for random variable Y ;

rho Spearman Rho and byrho is set to TRUE automatically;

byrho Should Spearman Rho be used instead of the median-split estimator;

cor A copBasic syntax for “the correlation coefficient” suitable for the copula—a
synonym for rho; and

... Additional arguments to pass.

Value

A value for the Plackett copula Θ is returned.

Note

Evidently there “does not appear to be a closed form for τ(Θ)” (Fredricks and Nelsen, 2007, p.
2147), but given ρ(Θ), the equivalent τ(Θ) can be computed by either the tauCOP function or by
approximation. One of the Examples sweeps through ρ 7→ [0, 1;∆ρ=δ], fits the Plackett θ(ρ), and
then solves for Kendall Tau τ(θ) using tauCOP. A polynomial is then fit between τ and ρ to provide
rapid conversion between |ρ| and τ , where the residual standard error is 0.0005705, adjusted R-
squared is ≈ 1, the maximum residual is ϵ < 0.006. Because of symmetry, it is only necessary to
fit positive association and reflect the result by the sign of ρ. This polynomial is from the Examples
is

rho <- 0.920698
"getPLACKETTtau" <- function(rho) {

taupoly <- 0.6229945*abs(rho) + 1.1621854*abs(rho)^2 -
10.7424188*abs(rho)^3 + 48.9687845*abs(rho)^4 -
119.0640264*abs(rho)^5 + 160.0438496*abs(rho)^6 -
111.8403591*abs(rho)^7 + 31.8054602*abs(rho)^8

return(sign(rho)*taupoly)
}
getPLACKETTtau(rho) # 0.7777726

The following code might be useful in some applications for the inversion of the polynomial for the
ρ as a function of τ :

"fun" <- function(rho, tau=NULL) {tp <- getPLACKETTtau(rho); return(tau-tp)}
tau <- 0.78
rho <- uniroot(fun, interval=c(0, 1), tau=tau)$root # 0.9220636
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Author(s)

W.H. Asquith

References

Fredricks, G.A, and Nelsen, R.B., 2007, On the relationship between Spearman’s rho and Kendall’s
tau for pairs of continuous random variables: Journal of Statistical Planning and Inference, v. 137,
pp. 2143–2150.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

PLACKETTcop, PLcop, PLACKETTsim, rhoCOP

Examples

## Not run:
Q1 <- rnorm(1000); Q2 <- Q1 + rnorm(1000)
PLpar(Q1, Q2); PLpar(Q1, Q2, byrho=TRUE) # two estimates for same data
PLpar(rho= 0.76) # positive association
PLpar(rho=-0.76) # negative association
tauCOP(cop=PLcop, para=PLpar(rho=-0.15, by.rho=TRUE)) #
## End(Not run)

## Not run:
RHOS <- seq(0, 0.990, by=0.002); TAUS <- rep(NA, length(RHOS))
for(i in 1:length(RHOS)) {

#message("Spearman Rho: ", RHOS[i])
theta <- PLACKETTpar(rho=RHOS[i], by.rho=TRUE); tau <- NA
try(tau <- tauCOP(cop=PLACKETTcop, para=theta), silent=TRUE)
TAUS[i] <- ifelse(is.null(tau), NA, tau)

}
LM <- lm(TAUS~ RHOS + I(RHOS^2) + I(RHOS^3) + I(RHOS^4) +

I(RHOS^5) + I(RHOS^6) + I(RHOS^7) + I(RHOS^8) - 1)
plot(RHOS,TAUS, type="l", xlab="abs(Spearman Rho)", ylab="abs(Kendall Tau)")
lines(RHOS,fitted.values(LM), col=3)#
## End(Not run)

PLACKETTsim Direct Simulation of a Plackett Copula
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Description

Simulation of the Plackett copula (Nelsen, 2006, pp. 89–92) is made by this function using an-
alytical formula (Durante, 2007, p. 247; see source code). Thus the PLACKETTsim function can
be useful for comparison against the numerical derivative (conditional distribution method) meth-
ods (simCOP, simCOPmicro) otherwise used in copBasic. The documentation for PLACKETTcop
provides the mathematical formula of the Plackett copula.

Usage

PLACKETTsim(n, para=NULL, ...)

Arguments

n Sample size;

para The Θ parameter of the Plackett copula; and

... Additional arguments to pass.

Value

An R data.frame of the values U and V for the nonexceedance probabilities is returned.

Author(s)

W.H. Asquith

References

Durante, F., 2007, Families of copulas, Appendix C, in Salvadori, G., De Michele, C., Kottegoda,
N.T., and Rosso, R., 2007, Extremes in Nature—An approach using copulas: Springer, 289 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

PLACKETTcop, PLACKETTpar

Examples

PLACKETTsim(10, para= 1 ) # simulate P (independence) copula through a Plackett
PLACKETTsim(10, para=20.3) # simulate strong positive Plackett
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prod2COP The Product of Two Copulas

Description

Perform copula multiplication (so-called “∗-product” or Markov Product) (Darsow and others,
1992) is a continuous analog of matrix multiplication and yields another copula:

(
C1 ∗C2

)
(u, v) = C3(u, v) =

∫
I

δC1(u, t)

δv

δC2(t, v)

δu
dt,

for copulas C1(u, v) and C2(u, v) are copulas whose ∗-product yields copula C3(u, v) in terms
of partial derivatives (derCOP and derCOP2) of the other two. Nelsen (2006, p. 245) lists several
identities of the ∗-product involving the product (Π; P), lower bound (W; W), and upper bound (M;
M) copulas:

Π ∗C = C ∗Π = Π,

M ∗C = C ∗M = M,(
W ∗C

)
(u, v) = v −C(1− u, v) and

(
C ∗W

)
(u, v) = u−C(u, 1− v), and

W ∗W = M and W ∗C ∗W = Ĉ,

where Ĉ is the survival copula (surCOP). The ∗-product is associative:

A ∗ (B ∗C) = (A ∗B) ∗C,

but ∗-product is not commutative (order independent). Nelsen (2006, p. 245) reports that “if we
view ∗ as a binary operation on the set of copulas, then Π is the null element, and M is the identity.”
Copula mulitiplication is closely linked to Markov Processes (Nelsen, 2006, pp. 244–248).

For other descriptions and computations of copula combination are possible using the copBasic
package, see convexCOP, convex2COP, composite1COP, composite2COP, composite3COP, glueCOP,
and convexCOP.

Usage

prod2COP(u,v, cop1=NULL, para1=NULL, cop2=NULL, para2=NULL, para=NULL,
pinterval=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

cop1 The C1(u, v; Θ1) copula function with vectorization as in asCOP;

para1 Vector of parameters or other data structures for Θ1, if needed, to pass to copula
C1(u, v; Θ1);

cop2 The C2(u, v; Θ2) copula function with vectorization as in asCOP;
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para2 Vector of parameters or other data structures for Θ2, if needed, to pass to copula
C2(u, v; Θ2);

para An R list that can take the place of the cop1, para1, cop2, and para2 argu-
ments. These four will be populated from same named elements of the list,
and if the other four arguments were specified through the function interface,
these are silently ignored;

pinterval An optional interval for the above integral. The default is I = [0, 1] but the
option of the user to replace exact end points with “small” numbers is possible
(e.g. interval=c(lo, 1-lo) for say lo=.Machine$double.eps). This interval
is uniquely picked up for the interval in the above definition of prod2COP. The
pinterval can also be set within the para and the function will pick it up from
there; and

... Additional arguments to pass to the copulas.

Value

Value(s) for the copula are returned.

Note

The Farlie–Gumbel–Morgenstern copula (FGM(u, v; Θ); FGMcop) is

FGM(u, v; Θ) = uv[1 + Θ(1− u)(1− v)],

where −1 ≤ Θ ≤ 1. Nelsen (2006, exer. 6.12, p. 249) asserts that for FGM(Θ=α) and FGM(Θ=β)

with ∗-product as FGMα ∗ FGMβ that a closed-form solution exists and is

FGMα ∗ FGMβ = FGM(αβ)/3.

This assertion is numerically true as readily verified using the prod2COP function:

u <- c(0.41, 0.87); v <- c(0.13,0.35); A <- -0.532; B <- 0.235
FGMcop( u,v, para= A*B / 3)
# 0.0521598638574___ 0.3034277347150___
prod2COP(u,v, cop1=FGMcop, para1=A, cop2=FGMcop, para2=B)
# 0.0521598638312605 0.3034277344807909

Author(s)

W.H. Asquith

References

Darsow, W.F., Nguyen, B., and Olsen, E.T., 1992, Copulas and Markov processes: Illinois Journal
of Mathematics, v. 26, pp. 600–624, doi:10.1215/IJM/1255987328.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, composite1COP, composite2COP, composite3COP, convexCOP, convex2COP, glueCOP

https://doi.org/10.1215/IJM/1255987328
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Examples

## Not run:
# Product P * N4212 ---> P (by identity)
u <- c(0.41, 0.87); v <- c(0.13, 0.35)
prod2COP(u,v, cop1=P, cop2=N4212cop, para1=NA, para2=2.12) # 0.0533 and 0.3045
COP(u,v, cop=P) # 0.0533 and 0.3045
## End(Not run)

## Not run:
para <- list(cop1=PLcop, para1=0.19, cop2=PLcop, para2=34.5)
UV <- simCOP(n=1000, cop=prod2COP, para=para, resamv01=FALSE, showresamv01=FALSE)
# This is large simulation run (with a lot of numerical operations) is expected
# at least for the Placketts and chosen parameters to trigger one or more NAs
# from derCOPinv(). The simCOP() function simply continues on with ignoring the
# solution or lack thereof for certain combinations, and simCOP() will report how
# many of the simulated values for sample of size n were computed. For example,
# for one n=1000, some 965 simulated values were returned. The defaults require
# that NAs, empty simulations, remain intact. We can try resampling:
UV <- simCOP(n=1000, cop=prod2COP, para=para, resamv01=TRUE, showresamv01=TRUE)
rhoCOP(cop=prod2COP, para=para) # -0.4271195 (theoretical)
rhoCOP(para=UV, as.sample=TRUE) # -0.4274703 #
## End(Not run)

## Not run:
para <- list(cop1=PLcop, para1=0.19, cop2=PLcop, para2=34.5)
# The prod2COP() might be one of the more sensitive to NAs in simulation because
# of the two partial numerical derivatives involved.
para$pinterval <- c(0.4, 0.6) # totally inappropriate interval for the integral
# for the prod2COP() definition. Because the ... are used so extensively, we have
# the "pinterval" for this function so that interval itself can be passed also.
UV <- simCOP(n=1000, cop=prod2COP, para=para, resamv01=TRUE, showresamv01=TRUE,

pinterval=c(0, 1 ))
UV <- simCOP(n=1000, cop=prod2COP, para=para, resamv01=TRUE, showresamv01=TRUE,

pinterval=c(0.4, 0.6)) #
## End(Not run)

psepolar Pseudo-Polar Representation of Bivariate Data

Description

Kiriliouk et al. (2016, pp. 358–360) describe a pseudo-polar representation of bivariate data as a
means to explore right-tail extremal dependency between the variables. Let (Xi, Yi) (real values)
or (Ui, Vi) (as probabilities) for i = 1, . . . , n be a bivariate sample of size n. When such data are
transformed into a “unit-Pareto” scale by

X̂⋆
i = n/(n+ 1−RX,i) and Ŷ ⋆

i = n/(n+ 1−RY,i),

where R is rank(), then letting each component sum or pseudo-polar radius be defined as

Ŝi = X̂⋆
i + Ŷ ⋆

i ,
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and each respective pseudo-polar angle be defined as

Ŵi = X̂⋆
i /(X̂

⋆
i + Ŷ ⋆

i ) = X̂⋆
i /Ŝi,

a pseudo-polar representation is available for study.

A scatter plot of Ŵi (horizontal) versus Ŝi (vertical) will depict a pseudo-polar plot of the data.
Kiriliouk et al. (2016) approach the pseudo-polar concept as a means to study extremal dependency
in the sense of what are the contributions of the X and Y to their sum conditional on the sum
being large. The largeness of Ŝi is assessed by its empirical cumulative distribution function and a
threshold Sf stemming from f as a nonexceedance probability f ∈ [0, 1].

A density plot of the Ŵi is a representation of extremal dependence. If the density plot shows low
density for pseudo-polar angles away from 0 and 1 or bimodality on the edges then weak extremal
dependency is present. If the density is substantial and uniform away from the the angles 0 and 1 or
if the density peaks near Ŵ ≈ 0.5 then extremal dependency is strong.

Usage

psepolar(u, v=NULL, f=0.90, ...)

Arguments

u Nonexceedance probability u in the X direction (actually the ranks are used so
this can be a real-value argument as well);

v Nonexceedance probability v in the Y direction (actually the ranks are used so
this can be a real-value argument as well) and if NULL then u is treated as a two
column R data.frame;

f The nonexceedance probability of the distal Ŝ to flag in Shat_ge_Sf column of
the output; and

... Additional arguments to pass to the dat2bernqua() function of the lmomco
package.

Value

An R data.frame is returned in the table element and the Sf is in the Sf element.

U An echo of the u input;

V An echo of the v input;

Xstar The X̂⋆
i (Kiriliouk et al., 2016, eq. 17.8, p. 359);

Ystar The Ŷ ⋆
i (Kiriliouk et al., 2016, eq. 17.8, p. 359);

FXhat1 The FX,i = 1 − 1/X⋆
i , which is the inverse of Kiriliouk et al. (2016, eq. 17.1,

p. 354);

FYhat1 The FY,i = 1 − 1/Y ⋆
i , which is the inverse of Kiriliouk et al. (2016, eq. 17.1,

p. 354);

FXhat3 The F3,X,i = (RX,i − 0.5)/n corresponding to the “3” alternative identified by
Kiriliouk et al. (2016, p. 365);
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FYhat3 The F3,Y,i = (RY,i − 0.5)/n corresponding to the “3” alternative identified by
Kiriliouk et al. (2016, p. 365);

What The Ŵi (Kiriliouk et al., 2016, eq. 17.9, p. 359);

Shat The Ŝi (Kiriliouk et al., 2016, eq. 17.9, p. 359); and

Shat_ge_Sf A logical on whether the Ŝi are larger than Sf .

Note

The default of f=0.90 means that the upper 90th percentile of the component sum will be identified
in the output. This percentile is computed by the Bernstein empirical distribution function provided
by the lmomco package through the dat2bernqua() function. Suggested arguments for ... are
poly.type="Bernstein" and bound.type="Carv" though the former is redundant because it is
the default of dat2bernqua().

Author(s)

William Asquith <william.asquith@ttu.edu>

References

Kiriliouk, Anna, Segers, Johan, Warchoł, Michał, 2016, Nonparameteric estimation of extremal
dependence: in Extreme Value Modeling and Risk Analysis, D.K. Dey and Jun Yan eds., Boca
Raton, FL, CRC Press, ISBN 978–1–4987–0129–7.

See Also

spectralmeas, stabtaildepf

Examples

## Not run:
pse <- psepolar(simCOP(n=799, cop=PARETOcop, para=4.3,graphics=FALSE),bound.type="Carv")
pse <- pse$table # The Pareto copula has right-tail extreme dependency
plot(1/(1-pse$U), 1/(1-pse$V), col=pse$Shat_ge_Sf+1, lwd=0.8, cex=0.5, log="xy", pch=16)
plot(pse$What, pse$Shat, log="y", col=pse$Shat_ge_Sf+1, lwd=0.8, cex=0.5, pch=16)
plot(density(pse$What[pse$Shat_ge_Sf]), pch=16, xlim=c(0,1)) # then try the
# non-right tail extremal copula PSP as cop=PSP in the above psepolar() call.
## End(Not run)

PSP The Ratio of the Product Copula to Summation minus Product Copula
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Description

Compute PSP copula (Nelsen, 2006, p. 23) is named by the author (Asquith) for the copBasic
package and is

PSP(u, v) =
Π

Σ−Π
=

uv

u+ v − uv
,

where Π is the indpendence or product copula (P) and Σ is the sum Σ = u + v. The PSP(u, v)
copula is a special case of the N4212(u, v) copula (N4212cop). The PSP is included in copBasic
because of its simplicity and for pedagogical purposes. The name “PSP” comes from “Product,
Summation, Product” to loosely reflect the mathematical formula shown. Nelsen (2006, p. 114)
notes that the PSP copula shows up in several families and designates it as “Π/(Σ−Π).” The PSP
is undefined for u = v = 0 but no internal trapping is made; calling functions will have to intercept
the NaN so produced for {0, 0}. The PSP is left internally untrapping NaN so as to be available to
stress other copula utility functions within the copBasic package.

Usage

PSP(u, v, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction; and

... Additional arguments to pass, which for this copula are not needed, but given
here to support flexible implementation.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

P, N4212cop

Examples

PSP(0.4,0.6)
PSP(0,0)
PSP(1,1)
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qua.regressCOP Perform Quantile Regression using a Copula by Numerical Derivative
Method for V with respect to U

Description

Perform quantile regression (Nelsen, 2006, pp. 217–218) using a copula by numerical derivatives of
the copula (derCOPinv). IfX and Y are random variables having quantile functions x(F ) and y(G)
and letting y = ỹ(x) denote a solution to Pr[Y ≤ y | X = x] = F , where F is a nonexceedance
probability. Then the curve y = ỹ(x) is the quantile regression curve of V or Y with respect to
U or X , respectively. If F = 1/2, then median regression is performed (med.regressCOP). Using
copulas, the quantile regression is expressed as

Pr[Y ≤ y | X = x] = Pr[V ≤ G(y) | U = F (x)] = Pr[V ≤ v | U = v] =
δC(u, v)

δu
,

where v = G(y) and u = F (x). The general algorithm is

1. Set δC(u, v)/δu = F ,

2. Solve the regression curve v = ṽ(u) (provided by derCOPinv), and

3. Replace u by x(u) and v by y(v).

The last step is optional as step two produces the regression in probability space, which might be
desired, and step 3 actually transforms the probability regressions into the quantiles of the respective
random variables.

Usage

qua.regressCOP(f=0.5, u=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, ...)

Arguments

f A single value of nonexceedance probability F to perform regression at and
defaults to median regression F = 1/2;

u Nonexceedance probability u in the X direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula; and

... Additional arguments to pass.

Value

An R data.frame of the regressed probabilities of V and provided U = u values is returned.

Author(s)

W.H. Asquith
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References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

med.regressCOP, derCOPinv, qua.regressCOP.draw

Examples

## Not run:
# Use a positively associated Plackett copula and perform quantile regression
theta <- 10
R <- qua.regressCOP(cop=PLACKETTcop, para=theta) # 50th percentile regression

plot(R$U,R$V, type="l", lwd=6, xlim=c(0,1), ylim=c(0,1), col=8)
lines(R$U,(1+(theta-1)*R$U)/(theta+1), col=4, lwd=1) # theoretical for Plackett, see
# (Nelsen, 2006, p. 218)
R <- qua.regressCOP(f=0.90, cop=PLACKETTcop, para=theta) # 90th-percentile regression
lines(R$U,R$V, col=2, lwd=2)
R <- qua.regressCOP(f=0.10, cop=PLACKETTcop, para=theta) # 10th-percentile regression
lines(R$U,R$V, col=3, lty=2)
mtext("Quantile Regression V wrt U for Plackett copula")#
## End(Not run)

## Not run:
# Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.04, para2=5, alpha=0.9, beta=0.6)
plot(c(0,1),c(0,1), type="n", lwd=3,

xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
# Draw the regression of V on U and then U on V (wrtV=TRUE)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
mtext("Composition of Two Plackett Copulas and Quantile Regression")#
## End(Not run)

## Not run:
# Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.34, para2=50, alpha=0.63, beta=0.47)
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, # Note the singularity
para1=0, para2=500, alpha=0.63, beta=0.47)

D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
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mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")

pdf("quantile_regression_test.pdf")
for(i in 1:10) {

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=runif(1), beta=runif(1),
para1=10^runif(1,min=-4,max=0), para2=10^runif(1,min=0,max=4))

txts <- c("Alpha=", round(para$alpha, digits=4),
"; Beta=", round(para$beta, digits=4),
"; Theta1=", round(para$para1[1], digits=5),
"; Theta2=", round(para$para2[1], digits=2))

D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5, col=3)
mtext(paste(txts, collapse=""))
qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),

cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),

cop=composite2COP, para=para, wrtV=TRUE, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)

}
dev.off() # done
## End(Not run)

qua.regressCOP.draw Draw Quantile Regressions using a Copula by Numerical Derivative
Method for V with respect to U or U with respect to V

Description

Draw a suite of lines for specified nonexceedance probabilities representing the quantile regression
(Nelsen, 2006, pp. 217–218) of either V with respect to U or U with respect to V depending upon
an argument setting.

Usage

qua.regressCOP.draw(f=seq(0.1, 0.9, by=0.1), fs=0.5, cop=NULL, para=NULL,
ploton=TRUE, wrtV=FALSE, col=c(4,2), lwd=c(1,2), lty=1,...)

Arguments

f Nonexceedance probability F to perform quantile regression at and defaults to
a 10-percent-interval sequence. This vectorization of f for this function differs
from that in qua.regressCOP and qua.regressCOP2;

fs A special value of nonexceedance probability to draw with second values to
arguments col and lwd and defaults to the median (F = 1/2);

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

ploton A logical to toggle on the plot;
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wrtV If wrtV=FALSE call qua.regressCOP and perform quantile regression of V with
respect to U and if wrtV=TRUE call qua.regressCOP2 and perform regression
of U with respect to V ;

col A vector of two values for the color of the line to draw, where the first value is
used for the f probabilities and the second value is used for the fs probability;

lwd A vector of two values for the line width of the line to draw, where the first value
is used for the f probabilities and the second value is used for the fs probability;

lty The line type to draw; and

... Additional arguments to pass.

Value

No values are returned, this function is used for its side effects.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

qua.regressCOP, qua.regressCOP2

Examples

# See example in qua.regressCOP documentation

qua.regressCOP2 Perform Quantile Regression using a Copula by Numerical Derivative
Method for U with respect to V

Description

Perform quantile regression (Nelsen, 2006, pp. 217–218) using a copula by numerical derivatives
of the copula (derCOPinv2). If X and Y are random variables having quantile functions x(F )
and y(G) and letting x = x̃(y) denote a solution to Pr[X ≤ x | Y = y] = F , where F is
a nonexceedance probability. Then the curve x = x̃(y) is the quantile regression curve of U
or X with respect to V or Y , respectively. If F = 1/2, then median regression is performed
(med.regressCOP2). Using copulas, the quantile regression is expressed as

Pr[X ≤ x | Y = y] = Pr[U ≤ F (x) | V = F ] = Pr[U ≤ u | V = F ] =
δC(u, v)

δv
,

where v = G(y) and u = F (x). The general algorithm is
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1. Set δC(u, v)/δv = F ,

2. Solve the regression curve u = ũ(v) (provided by derCOPinv2), and

3. Replace u by x(u) and v by y(v).

The last step is optional as step two produces the regression in probability space, which might be
desired, and step 3 actually transforms the probability regressions into the quantiles of the respective
random variables.

Usage

qua.regressCOP2(f=0.5, v=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, ...)

Arguments

f A single value of nonexceedance probability F to perform regression at and
defaults to median regression F = 1/2;

v Nonexceedance probability v in the Y direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula; and

... Additional arguments to pass.

Value

An R data.frame of the regressed probabilities of U and V = v is returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

med.regressCOP2, derCOPinv2

Examples

## Not run:
# Use a positively associated Plackett copula and perform quantile regression
theta <- 0.10
R <- qua.regressCOP2(cop=PLACKETTcop, para=theta) # 50th percentile regression
plot(R$U,R$V, type="l", lwd=6, xlim=c(0,1), ylim=c(0,1), col=8)
lines((1+(theta-1)*R$V)/(theta+1),R$V, col=4, lwd=1) # theoretical for Plackett,
# compare the theoretical form to that in qua.regressCOP---just switch terms around
# because of symmetry
R <- qua.regressCOP2(f=0.90, cop=PLACKETTcop, para=theta) # 90th-percentile regression
lines(R$U,R$V, col=2, lwd=2)
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R <- qua.regressCOP2(f=0.10, cop=PLACKETTcop, para=theta) # 10th-percentile regression
lines(R$U,R$V, col=2, lty=2)
mtext("Quantile Regression U wrt V for Plackett copula")#
## End(Not run)

RAYcop The Rayleigh Copula

Description

The Rayleigh copula (Boškoskia and others, 2018) is

CΘ(u, v) = RAY(u, v; Θ) = 1 +A−B,

A = eΘa2−a2

(
e−a1

∫ Θa2

0

e−sI0
(
2
√
a1s

)
ds− 1

)
ds,

B = e−a1

∫ a2

0

e−sI0
(
2
√
Θa1s

)
ds,

where a1 = − log(1 − u)/(1 − Θ), a2 = − log(1 − v)/(1 − Θ), Iν(x) is the modified Bessel
function of the first kind of order ν (see base::besselI()), and Θ ∈ (0, 1]. The copula, as Θ →
0+ limits, to the independence coupla (Π(u, v); P) and as Θ → 1− limits to the comonotonicity
copula (M(u, v); M). Finally, there are formulations of the Rayleigh copula using the Marcum-
Q function, but the copBasic developer has not been able to make such work. If the Marcum-Q
function could be used, then only one integration and not the two involving the modified Bessel
function are possible. Infinite integrations begin occurring in the upper right corner for about Θ >
0.995 at which point the M(u, v) copula is called in the source code.

Usage

RAYcop(u, v, para=NULL, rho=NULL, method=c("default"),
rel.tol=.Machine$double.eps^0.5, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula;

rho Value for Spearman Rho from which parameter Θ is computed by polynomial
approximation and returned. The estimation appears sufficient for most pratical
applications (see Examples);

method The computational method of integrals associated with the definition of the cop-
ula; this is designed for the ability to switch eventually in sources to Marcum-Q
function implementation. The definition in January 2023 and default is to call
the two Bessel function integrals shown for the definition in this documentation;

rel.tol Argument of the same name for integrate() call; and

... Additional arguments to pass.
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Value

Value(s) for the copula are returned.

Note

The documentation in Zeng and other [Part II] appear to have corrected the Marcum-Q function
solution to the copula. The essence of that solution is with a Chi-distribution computation the
Marcum-Q. Testing indictates that this is a correct solution, but the derivative for the conditional
simulation as built into the design of copBasic has difficulties. Perhaps this is related to numerical
precision of the Marcum-Q?

sapply(seq_len(length((u))), function(i) {
a1 <- -log(1-u[i])
if(is.infinite(a1)) return(v[i])
a2 <- -log(1-v[i])
if(is.infinite(a2)) return(u[i])
a1 <- exp(log(a1) - log(1-p))
a2 <- exp(log(a2) - log(1-p))
a3 <- marcumq.chi(sqrt(2* a1), sqrt(2*p*a2)) # Zeng and others (Part II)
a4 <- marcumq.chi(sqrt(2*p*a1), sqrt(2* a2)) # Zeng and others (Part II)
zz <- 1 + (1-v[i])*a3 - (1-u[i])*(1-a4) # Zeng and others (Part II)
zz[zz < 0] <- 0
zz[zz > 1] <- 1
return(zz)

})

Author(s)

W.H. Asquith

References

Boškoskia, P., Debenjaka, A., Boshkoskab, B.M., 2018, Rayleigh copula for describing impedance
data with application to condition monitoring of proton exchange membrane fuel cells: European
Journal of Operational Research, v. 266, pp. 269–277, doi:10.1016/j.ejor.2017.08.058.

Zeng, X., Ren, J., Wang, Z., Marshall, S., and Durrani, T., [undated], Copulas for statistical signal
processing (Part I)—Extensions and generalization, accessed January 14, 2024, at https://pure.
strath.ac.uk/ws/portalfiles/portal/34078849/Copulas_Part1_v2_6.pdf.

Zeng, X., Ren, J., Sun, M., Marshall, S., and Durrani, T., [undated], Copulas for statistical signal
processing (Part II)—Simulation, optimal selection and practical applications, accessed January 14,
2024, at https://strathprints.strath.ac.uk/48371/1/Copulas_Part2s_v2_5_2.pdf

See Also

M, P

https://doi.org/10.1016/j.ejor.2017.08.058
https://pure.strath.ac.uk/ws/portalfiles/portal/34078849/Copulas_Part1_v2_6.pdf
https://pure.strath.ac.uk/ws/portalfiles/portal/34078849/Copulas_Part1_v2_6.pdf
https://strathprints.strath.ac.uk/48371/1/Copulas_Part2s_v2_5_2.pdf
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Examples

RAYcop(0.2, 0.8, para=0.8) # [1] 0.1994658 (by the dual Bessel functions)

RAYcop(0.8, 0.2, para=RAYcop(rho=rhoCOP(cop=RAYcop, para=0.8)))
# [1] 0.1994651 from polynomial conversion of Rho to Theta

## Not run:
# Recipe for assembling the Spearman Rho to Theta polynomial in sources.
Thetas <- seq(0, 0.999, by=0.001); RHOs <- NULL
for(p in Thetas) RHOs <- c(RHOs, rhoCOP(cop=RAYcop, para=p))
LM <- lm(Thetas ~ RHOs + I(RHOs^2) + I(RHOs^4) + I(RHOs^6) - 1 )
Rho2Theta <- function(rho) {

coes <- c(1.32682824, -0.38876290, 0.09072305, -0.02921836)
sapply(rho, function(r) coes[1]*r^1 + coes[2]*r^2 + coes[3]*r^4 + coes[4]*r^6 )

}
plot(RHOs, Thetas, type="l", col=grey(0.8), lwd=12, lend=1,

xlab="Spearman Rho", ylab="Rayleigh Copula Parameter Theta")
lines(RHOs, Rho2Theta(RHOs), col="red", lwd=2) #
## End(Not run)

ReineckeWell266 Porosity and Permeability Data for Well-266 of the Reinecke Oil Field,
Horseshoe Atoll, Texas

Description

These data represent porosity and permeability data from laboratory analysis for Well-266 Reinecke
Oil Field, Horseshoe Atoll, Texas as used for the outstanding article by Saller and Dickson (2011).
Dr. A.H. Saller shared a CSV file with the author of the copBasic package sometime in 2011.
These data are included in this package because of the instruction potential of the bivariate relation
between the geologic properties of permeability and porosity.

Usage

data(ReineckeWell266)

Format

An R data.frame with

WELLNO The number of the well, no. 266;

DEPTH The depth in feet to the center of the incremental spacings of the data;

FRACDOLOMITE The fraction of the core sample that is dolomite, 0 is 100 percent limestone;

Kmax The maximum permeability without respect to orientation in millidarcies;

POROSITY The porosity of the core sample; and

DOLOMITE Is the interval treated as dolomite (1) or limestone (0).
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References

Saller, A.H., Dickson, J.A., 2011, Partial dolomitization of a Pennsylvanian limestone buildup by
hydrothermal fluids and its effect on reservoir quality and performance: AAPG Bulletin, v. 95, no.
10, pp. 1745–1762.

Examples

## Not run:
data(ReineckeWell266)
summary(ReineckeWell266) # show summary statistics
## End(Not run)

ReineckeWells Porosity and Permeability Data for the Reinecke Oil Field, Horseshoe
Atoll, Texas

Description

These data represent porosity and permeability data from laboratory analysis for the Reinecke Oil
Field, Horseshoe Atoll, Texas as used for the outstanding article by Saller and Dickson (2011).
Dr. A.H. Art Saller shared a CSV file with the author of the copBasic package sometime in 2011.
These data are included in this package because of the instruction potential of the bivariate relation
between the geologic properties of permeability and porosity.

Usage

data(ReineckeWells)

Format

An R data.frame with

DOLOMITE The fraction of the core sample that is dolomite, 0 is 100 percent limestone;

Kmax The maximum permeability without respect to orientation in millidarcies;

K90 The horizontal (with respect to 90 degrees of the borehole) permeability in millidarcies;

Kvert The vertical permeability in millidarcies; and

POROSITY The porosity of the core sample.

References

Saller, A.H., Dickson, J.A., 2011, Partial dolomitization of a Pennsylvanian limestone buildup by
hydrothermal fluids and its effect on reservoir quality and performance: AAPG Bulletin, v. 95, no.
10, pp. 1745–1762.
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Examples

## Not run:
data(ReineckeWells)
summary(ReineckeWells) # show summary statistics
## End(Not run)

RFcop The Raftery Copula

Description

The Raftery copula (Nelsen, 2006, p. 172) is

CΘ(u, v) = RF(u, v) = M(u, v) +
1−Θ

1 +Θ

(
uv

)1/(1−Θ)[
1− (max{u, v})−(1+Θ)/(1−Θ)

]
,

where Θ ∈ (0, 1). The copula, as Θ → 0+ limits, to the independence coupla (P(u, v); P), and as
Θ → 1−, limits to the comonotonicity copula (M(u, v); M). The parameter Θ is readily computed
from Spearman Rho (rhoCOP) by ρC = Θ(4 − 3Θ)/(2 − Θ)2 or from Kendall Tau (tauCOP)
by τC = 2Θ/(3 − Θ). However, this copula like others within the copBasic package can be
reflected (rotated) at will with the COP abstraction layer to acquire negative or inverse dependency
(countermonotonicity) (see the Examples).

Usage

RFcop(u, v, para=NULL, rho=NULL, tau=NULL, fit=c("rho", "tau"), ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (single element) of parameters—the Θ parameter of the copula;

rho Optional Spearman Rho from which the parameter will be estimated and pres-
ence of rho trumps tau;

tau Optional Kendall Tau from which the parameter will be estimated;

fit If para, rho, and tau are all NULL, then the u and v represent the sample. The
measure of association by the fit declaration will be computed and the param-
eter estimated subsequently. The fit has no other utility than to trigger which
measure of association is computed internally by the cor function in R; and

... Additional arguments to pass.
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Value

Value(s) for the copula are returned. Otherwise if either rho or tau is given, then the Θ is computed
and a list having

para The parameter Θ;

rho Spearman Rho if the rho is given; and

tau Kendall Tau if the tau is given but also if both rho and tau are NULL as men-
tioned next.

and if para=NULL and rho and tau=NULL, then the values within u and v are used to compute
Kendall Tau and then compute the parameter, and these are returned in the aforementioned list.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, P

Examples

# Lower tail dependency of Theta = 0.5 --> 2*(0.5)/(1+0.5) = 2/3 (Nelsen, 2006, p. 214)
taildepCOP(cop=RFcop, para=0.5)$lambdaL # 0.66667

## Not run:
# Simulate for a Spearman Rho of 0.7, then extract estimated Theta that internally
# is based on Kendall Tau of U and V, then convert estimate to equivalent Rho.
set.seed(1)
UV <- simCOP(1000, cop=RFcop, RFcop(rho=0.7)$para)
Theta <- RFcop(UV$U, UV$V, fit="tau")$para # 0.607544
Rho <- Theta*(4-3*Theta)/(2-Theta)^2 # 0.682255 (nearly 0.7) #
## End(Not run)

## Not run:
set.seed(1)
UV <- simCOP(1000, cop=COP, para=list(cop=RFcop, para=RFcop(rho=0.5)$para, reflect=3))
cor(UV$U, UV$V, method="spearman") # -0.492677 as expected with reversal of V #
## End(Not run)
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rhobevCOP A Dependence Measure for a Bivariate Extreme Value Copula based
on the Expectation of the Product of Negated Log-Transformed Ran-
dom Variables U and V

Description

Compute a dependence measure based on the expectation of the product of transformed random
variables U and V , which unnamed by Joe (2014, pp. 383–384) but symbolically is ρE , having a
bivariate extreme value copula CBEV (u, v) by

ρE = E
[
(− logU)× (− log V )

]
− 1 =

∫ 1

0

[
B(w)

]−2
dw − 1,

where B(w) = A(w, 1 − w), B(0) = B(1) = 1, B(w) ≥ 1/2, and 0 ≤ w ≤ 1, and where only
bivariate extreme value copulas can be written as

CBEV (u, v) = exp[−A(− log u,− log v)],

and thus in terms of the coupla

B(w) = − log
[
CBEV (exp[−w], exp[w − 1])

]
.

Joe (2014, p. 383) states that ρE is the correlation of the “survival function of a bivariate min-stable
exponential distribution,” which can be assembled as a function of B(w). Joe (2014, p. 383) also
shows the following expression for Spearman Rho

ρS = 12

∫ 1

0

[
1 +B(w)

]−2
dw − 3,

in terms of B(w). This expression, in conjunction with rhoCOP, was used to confirm the prior
expression shown here for B(w) in terms of CBEV (u, v). Lastly, for independence (uv = Π; P),
ρE = 0 and for the Fréchet–Hoeffding upper-bound copula (perfect positive association), ρE = 1.

Usage

rhobevCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)

Arguments

cop A bivariate extreme value copula function—the function rhobevCOP makes no
provision for verifying whether the copula in cop is actually an extreme value
copula;

para Vector of parameters or other data structure, if needed, to pass to the copula;
as.sample A logical controlling whether an optional R data.frame in para is used to

compute a ρ̂E by mean() of the product of negated log()’s in R. The user is
required to cast para into estimated probabilities (see Examples);

brute Should brute force be used instead of two nested integrate() functions in R
to perform the double integration;

delta The dw for the brute force (brute=TRUE) integration; and
... Additional arguments to pass.
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Value

The value for ρE is returned.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

rhoCOP, tauCOP

Examples

Theta <- GHcop(tau=1/3)$para # Gumbel-Hougaard copula with Kendall Tau = 1/3
rhobevCOP(cop=GHcop, para=Theta) # 0.3689268 (RhoE after Joe [2014])
rhoCOP( cop=GHcop, para=Theta) # 0.4766613 (Spearman Rho)

## Not run:
set.seed(394)
Theta <- GHcop(tau=1/3)$para # Gumbel-Hougaard copula with Kendall Tau = 1/3
simUV <- simCOP(n=30000, cop=GHcop, para=Theta, graphics=FALSE) # large simulation
samUV <- simUV * 150; n <- length(samUV[,1]) # convert to fake unit system
samUV[,1] <- rank(simUV[,1]-0.5)/n; samUV[,2] <- rank(simUV[,2]-0.5)/n # hazen
rhobevCOP(para=samUV, as.sample=TRUE) # 0.3708275
## End(Not run)

rhoCOP The Spearman Rho of a Copula

Description

Compute the measure of association known as the Spearman Rho ρC of a copula according to
Nelsen (2006, pp. 167–170, 189, 208) by

ρC = 12

∫ ∫
I2

C(u, v) dudv − 3,

or
ρC = 12

∫ ∫
I2

[C(u, v)− uv] dudv,

where the later equation is implemented by rhoCOP as the default method (method="default").
This equation, here having p = 1 and kp(1) = 12, is generalized under hoefCOP. The absence of
the 12 in the above equation makes it equal to the covariance defined by the Hoeffding Identity (Joe,
2014, p. 54):

cov(U, V ) =

∫ ∫
I2

[C(u, v)− uv] dudv or
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cov(U, V ) =

∫ ∫
I2

[Ĉ(u, v)− uv] dudv, which is

cov(U, V ) =

∫ ∫
I2

[u+ v − 1 +C(1− u, 1− v)− uv] dudv.

Depending on copula family (Joe, 2014, pp. 56 and 267), the alternative formulation for ρC could
be used

ρC = 3− 12

∫ ∫
I2

u
δC(u, v)

δu
dudv = 3− 12

∫ ∫
I2

v
δC(u, v)

δv
dudv,

where the first integral form corresponds to Joe (2014, eq. 248, p. 56) and is the method="joe21",
and the second integral form is the method="joe12".

The integral ∫ ∫
I2

C(u, v) dudv,

represents the “volume under the graph of the copula and over the unit square” (Nelsen, 2006,
p. 170) and therefore ρC is simple a rescaled volume under the copula. The second equation
for ρC expresses the “average distance” between the joint distribution and statistical independence
Π = uv. Nelsen (2006, pp. 175–176) shows that the following relation between ρC and τC
(tauCOP) exists

−1 ≤ 3τ − 2ρ ≤ 1.

Usage

rhoCOP(cop=NULL, para=NULL, method=c("default", "joe21", "joe12"),
as.sample=FALSE, brute=FALSE, delta=0.002, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

method The form of integration used to compute (see above);

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the ρ̂ by dispatch to cor() function in R with method = "spearman";

brute Should brute force be used instead of two nested integrate() functions in R
to perform the double integration;

delta The du and dv for the brute force integration using brute; and

... Additional arguments to pass.

Value

The value for ρC is returned.
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Note

Technically, Nelsen (2006) also shows that these definitions are a form of call to a concordance
function Q(C1,C2) of two copulas that involve C1=C(u, v) and C2=Π. As such in order to keep
rhoCOP a small function when brute=TRUE, ρC is computed by a special call to tauCOP, which by
itself and although titled for computation of Kendall Tau, does support the concordance function
Q(C1,C2) [see Nelsen (2006, pp. 158–159)] when given two different copulas and respective
parameters as arguments. The well-known Pearson correlation coefficient equals Spearman rho
value if random variables X and Y are both uniformly distributed on [0, 1].

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

blomCOP, footCOP, giniCOP, hoefCOP, tauCOP, wolfCOP, joeskewCOP, uvlmoms

Examples

rhoCOP(cop=PSP) # 0.4784176
## Not run:
rhoCOP(cop=PSP, brute=TRUE) # 0.4684063
# CPU heavy example showing that the dual-integration (fast) results in
# a Spearman Rho that mimics a sample version
do_rho <- function(n) {

uv <- simCOP(n=n, cop=PSP, ploton=FALSE, points=FALSE)
return(cor(uv$U, uv$V, method="spearman"))

}
rhos <- replicate(100, do_rho(1000))
rho_sample <- mean(rhos); print(rho_sample) # 0.472661
## End(Not run)

## Not run:
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.00395, para2=4.67, alpha=0.9392, beta=0.5699)
rhoCOP(cop=composite2COP, para=para) # -0.5924796

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.14147, para2=20.96, alpha=0.0411, beta=0.6873)

rhoCOP(cop=composite2COP, para=para) # 0.2818874

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.10137, para2=4492.87, alpha=0.0063, beta=0.0167)

rhoCOP(cop=composite2COP, para=para) # 0.9812919
rhoCOP(cop=composite2COP, para=para, brute=TRUE) # 0.9752155
## End(Not run)
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## Not run:
# This is the same composited copula used in a highly asymmetric multi-modal
# plotting example under densityCOPplot(). Let us use that copula as a means to
# check on the Spearman Rho from the alternative formulations from Joe (2014).
para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96,

cop1=GHcop, cop2=PLACKETTcop, para1=5.5, para2=0.07)
"rhoCOPbyJoe21" <- function(cop=NULL, para=NULL, ...) { # Joe (2014, eq. 2.48)

myint <- NULL
try(myint <- integrate(function(u) {

sapply(u,function(u) { integrate(function(v) {
u * derCOP( u, v, cop=cop, para=para, ...)}, 0, 1)$value })}, 0, 1))

ifelse(is.null(myint), return(NA), return(3 - 12*myint$value))
}
"rhoCOPbyJoe12" <- function(cop=NULL, para=NULL, ...) { # Not in Joe (2014)

myint <- NULL
try(myint <- integrate(function(u) {

sapply(u,function(u) { integrate(function(v) {
v * derCOP2( u, v, cop=cop, para=para, ...)}, 0, 1)$value })}, 0, 1))

ifelse(is.null(myint), return(NA), return(3 - 12*myint$value))
}
rhoCOP( cop=composite2COP, para=para) # 0.1031758
rhoCOPbyJoe21(cop=composite2COP, para=para) # 0.1031803
rhoCOPbyJoe12(cop=composite2COP, para=para) # 0.1031532
## End(Not run)

rmseCOP Root Mean Square Error between a Fitted Copula and an Empirical
Copula

Description

Compute the root mean square error RMSEC (Chen and Guo, 2019, p. 29), which is computed
using mean square error MSE as

MSEC =
1

n

n∑
i=1

(
Cn(ui, vi)−CΘm(ui, vi)

)2
and

RMSEC =
√
MSEC,

where Cn(ui, vi) is the empirical copula (empirical joint probability) for the ith observation,
CΘm

(ui, vi) is the fitted copula having m parameters in Θ. The Cn(ui, vi) comes from EMPIRcop.
The RMSEC is in effect saying that the best copula will have its joint probabilities plotting on a
1:1 line with the empirical joint probabilities, which is an RMSEC = 0. From the MSEC shown
above, the Akaike information criterion (AIC) aicCOP and Bayesian information criterion (BIC)
bicCOP can be computed, which add a penalty for m parameters. These goodness-of-fits can as-
sist in deciding one copula favorability over another, and another goodness-of-fit using the absolute
differences between Cn(u, v) and CΘm

(u, v) is found under statTn.
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Usage

rmseCOP(u, v=NULL, cop=NULL, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction; If not given, then a second
column from argument u is attempted;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula; and

... Additional arguments to pass to either copula (likely most commonly to the
empirical copula).

Value

The value for RMSEC is returned.

Author(s)

W.H. Asquith

References

Chen, Lu, and Guo, Shenglian, 2019, Copulas and its application in hydrology and water resources:
Springer Nature, Singapore, ISBN 978–981–13–0574–0.

See Also

EMPIRcop, aicCOP, bicCOP

Examples

## Not run:
S <- simCOP(80, cop=GHcop, para=5) # Simulate some probabilities, but we
# must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
# The parent distribution is Gumbel-Hougaard extreme value copula.
# But in practical application we do not know that but say we speculate that
# perhaps the Galambos extreme value might be the parent. Then maximum
# likelihood is used to fit the single parameter.
pGL <- mleCOP(U,V, cop=GLcop, interval=c(0,20))$par

rmses <- c(rmseCOP(U,V, cop=GLcop, para=pGL),
rmseCOP(U,V, cop=P),
rmseCOP(U,V, cop=PSP))

names(rmses) <- c("GLcop", "P", "PSP")
print(rmses) # We will see that the first RMSE is the smallest as the
# Galambos has the nearest overall behavior than the P and PSP copulas.
## End(Not run)
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sectionCOP The Sections or Derivative of the Sections of a Copula

Description

Compute the copula sections or the (partial) derivatives of copula sections of a copula (Nelsen,
2006, pp. 12–14). The horizontal section at V = a (a constant) is

t 7→ C(t, a), and

the vertical section at U = a (a constant, with respect to V or wrtV=TRUE) is

t 7→ C(a, t).

The partial derivatives of the copula sections are conditional cumulative distribution functions (see
derCOP and derCOP2). The derivatives are constrained as

0 ≤ δ

δu
C(u, v) ≤ 1, and

0 ≤ δ

δv
C(u, v) ≤ 1.

Usage

sectionCOP(f, cop=NULL, para=NULL, wrtV=FALSE, dercop=FALSE, delt=0.005,
ploton=TRUE, lines=TRUE, xlab="NONEXCEEDANCE PROBABILITY", ...)

Arguments

f A single value of nonexceedance probability u or v along the horizontal U axis
or vertical V axis of the unit square I2;

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

wrtV A logical to toggle between with respect to v or u (default). The default provides
the vertical section whereas the horizontal comes from wrtV = TRUE;

dercop A logical that triggers the derivative of the section;

delt The increment of the level curves to plot, defaults to 5-percent intervals;

ploton A logical to toggle on the plot;

lines Draw the lines of diagonal to the current device;

xlab A label for the x-axis title passed to plot() in R; and

... Additional arguments to pass to the plot() and lines() functions in R.
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Value

An R list is returned.

t The nonexceedance probability along the section. The nomenclature t mimics
Nelsen (2006) and is not the same as the u or v;

seccop The section of the copula or its derivative;

wrt A text string declaring what the setting for wrtV was;

fvalue The provided value of nonexceedance probability; and

isderivative A logical stating whether the derivative of the section is seccop.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, diagCOP

Examples

## Not run:
# EXAMPLE 1, plot the v=0.55 section and then u=0.55 section, which will overlay
# the other because the PSP is a symmetrical copula
tmp <- sectionCOP(0.55, cop=PSP, ylab="COPULA SECTIONS", lwd=5, col=2)
tmp <- sectionCOP(0.55, cop=PSP, wrtV=TRUE, ploton=FALSE, lwd=2, col=3)
# now add the v=0.85 section and the u=0.85, again overlay each other
tmp <- sectionCOP(0.85, cop=PSP, ploton=FALSE, lwd=5, col=2, lty=2)
tmp <- sectionCOP(0.85, cop=PSP, wrtV=TRUE, ploton=FALSE, lwd=2, col=3, lty=2)#
## End(Not run)

## Not run:
# EXAMPLE 2, v=0.35 section and derivative (the conditional distribution) function
tmp <- sectionCOP(0.35, cop=PSP, ylab="COPULA SECTIONS OR DERIV.", lwd=5, col=3)
tmp <- sectionCOP(0.35, cop=PSP, dercop=TRUE, ploton=FALSE, col=3)
# The thin green line represents the cumulative distribution function conditional
# on u = 0.35 from the derCOP function. Then see Example 3
## End(Not run)

## Not run:
# EXAMPLE 3 (random selection commented out)
#para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=runif(1), beta=runif(1),
# para1=10^runif(1,min=-4, max=0), para2=10^runif(1,min= 0, max=4))
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=0.7, beta=0.22,

para1=0.0155, para2=214.4)
txts <- c("Alpha=", round(para$alpha, digits=4),

"; Beta=", round(para$beta, digits=4),
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"; Theta1=", round(para$para1[1], digits=5),
"; Theta2=", round(para$para2[1], digits=2))

layout(matrix(1:2,byrow=TRUE))
D <- simCOP(n=1000, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
mtext(paste(txts,collapse=""))
#f <- c(runif(1),runif(1))
f <- c(0.2,0.9) # RED is the horizontal section and BLACK is the vertical section
segments(f[1],0,f[1],1, col=2, lwd=2); segments(0,f[2],1,f[2], lwd=2)
ftxt <- c("Sections (thick) and derivatives (thin) at ", f, " nonexceed. prob.")
tmp <- sectionCOP(f[1],cop=composite2COP,para=para, col=2, lwd=4)
tmp <- sectionCOP(f[1],cop=composite2COP,para=para, dercop=TRUE, ploton=FALSE, col=2)
tmp <- sectionCOP(f[2],cop=composite2COP,para=para,wrtV=TRUE,ploton=FALSE,lwd=4)
tmp <- sectionCOP(f[2],cop=composite2COP,para=para,wrtV=TRUE,ploton=FALSE,dercop=TRUE)
mtext(paste(ftxt, collapse=""))
# The thin lines are the CDFs conditional on the respective values of "f". Carefully
# compare the point densities along and near the sections in the top plot to the
# respective shapes of the CDFs in the bottom plot. If the bottom plot were rotated
# 90 degrees clockwise and then reflected top to bottom, the conditional quantile
# function QDF results. Reflection is needed because, by convention, QDFs are monotonic
# increasing to right---functions derCOPinv() and derCOPinv2() provide the CDF inversion.
## End(Not run)

semicorCOP Lower and Upper Semi-Correlations of a Copula

Description

Compute the lower semi-correlations (bottom-left)

ρN−−
C (u, v; a) = ρ−−

N (a) and

compute the upper semi-correlations (top-right)

ρN++
C (u, v; a) = ρ++

N (a)

of a copula C(u, v) (Joe, 2014, p. 73) using numerical simulation. The semi-correlations are
defined as

ρ−−
N (a) = cor[Z1, Z2 | Z1 < −a, Z2 < −a],

ρ++
N (a) = cor[Z1, Z2 | Z1 > +a, Z2 > +a], and

ρN (a > −∞) = cor[Z1, Z2],

where cor[z1, z2] is the familiar Pearson correlation function, which is in R the syntax cor(...,
method="pearson"), parameter a ≥ 0 is a truncation point that identifies truncated tail regions
(Joe, 2014, p. 73), and lastly (Z1, Z2) ∼ C(Φ,Φ) and thus from the standard normal distribution
(Z1, Z2) = (Φ−1(u),Φ−1(v)) where the random variables (U, V ) ∼ C.

The semi-correlations are extended for the copBasic package into bottom right and top left versions
as well by

ρ+−
N (a) = cor[Z1, Z2 | Z1 > +a, Z2 < −a], and
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ρ−+
N (a) = cor[Z1, Z2 | Z1 < −a, Z2 > +a].

As a result, the notations −−, ++, +−, and −+ can be used to represent each of the respective
corners bottom-left, top-right, bottom-right, and top-left of the (u, v) domain with the respective
truncation. These words are used in the variable names of the returned list from the function.

Usage

semicorCOP(cop=NULL, para=NULL, truncation=0, n=0, as.sample=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

truncation The truncation value for a, which is in standard normal variates, and the default
of zero is the origin (medians);

n The sample size n for simulation estimates of the ρN ;

as.sample A logical controlling whether an optional data.frame in para is used to com-
pute the ρ̂N (see Note); and

... Additional arguments to pass to the copula.

Value

The value(s) for ρN , ρ−−
N , ρ++

N , ρ+−
N , and ρ−+

N are returned.

Note

The sample semi-correlations can be computed from a two-column table that is passed into the
function using the para argument. Although the truncation point a ≥ 0, as a increases and focus
is increasingly made into one or the other truncated tail regions, the sample version with data be-
comes decreasing well estimated because the available sample size diminishes. The para argument
can contain probabilities or raw data because internally the function computes the Hazen plotting
positions (e.g. ui = (i − 0.5)/n for rank i and sample size n) because Joe (2014, pp. 9, 17, 245,
247–248) repeatedly emphasizes this form of plotting position when normal scores are involved.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

giniCOP, rhoCOP, tauCOP, COP
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Examples

## Not run:
# Gumbel-Hougaard copula with Pearson rhoN = 0.4 (by definition)
run <- sapply(1:50, function(i) semicorCOP(cop=GHcop, para=1.350, n=600))
mean(unlist(run[1,])) # cor.normal.scores
mean(unlist(run[2,])) # botleft.semicor
mean(unlist(run[3,])) # topright.semicor
sd( unlist(run[1,])) # cor.normal.scores (These are our sampling variations
sd( unlist(run[2,])) # botleft.semicor for the n=600 used as a Monte
sd( unlist(run[3,])) # topright.semicor Carlo simulation.)
# The function returns: rhoN = 0.392112, rhoN--= 0.117674, rhoN++= 0.404733
# standard deviations (0.038883) (0.073392) (0.073942)
# Joe (2014, p. 72) shows: rhoN = 0.4_____, rhoN--= 0.132___, rhoN++= 0.415___
# standard deviations (not avail) (0.08____) (0.07____)
# We see alignment with the results of Joe with his n=600. #
## End(Not run)

## Not run:
p <- 0.5 # Reasonable strong positive association for the Raftery copula,
# but then we are going to be reflecting and rotating the copula.
# See similar Example under COP() function.
"RFcop1" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="1")
"RFcop2" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="2")
"RFcop3" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="3")
"RFcop4" <- function(u,v, para) COP(u,v, cop=RFcop, para=para, reflect="4")
RF <- NULL; n <- 10000
RF <- rbind(RF, as.data.frame(semicorCOP(cop=RFcop1, para=p, n=n))[,1:5])
RF <- rbind(RF, as.data.frame(semicorCOP(cop=RFcop2, para=p, n=n))[,1:5])
RF <- rbind(RF, as.data.frame(semicorCOP(cop=RFcop3, para=p, n=n))[,1:5])
RF <- rbind(RF, as.data.frame(semicorCOP(cop=RFcop4, para=p, n=n))[,1:5])
print(RF[,1:3]) # total sample and lower and upper semi-correlations
# cor.normal.scores botleft.semicor topright.semicor
# 1 0.5587837 0.74124686 0.10027641
# 2 0.5567889 0.10302772 0.73729702
# 3 -0.5807201 -0.04683536 -0.01714573 # see near zeros --,++
# 4 -0.5698139 0.03040520 0.05125916 # see near zeros --,++
print(RF[,2:5]) # now look at all four corners
# botleft.semicor topright.semicor topleft.semicor botright.semicor
# 1 0.74124686 0.10027641 0.01529508 0.02046530
# 2 0.10302772 0.73729702 -0.05195628 0.01747874
# 3 -0.04683536 -0.01714573 -0.11106842 -0.74077321
# 4 0.03040520 0.05125916 -0.74516061 -0.07636233
# Notice how the tight tail of the copula, being reflected and rotated
# into each of the four corners, shows semi-correlation magnitude of 0.74.
# See the copula density plots of COP() Examples section.
## End(Not run)

simcomposite3COP Compute the L-comoments of a Four-Value Composited Copula by
Simulation
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Description

Simulate copula parameters and compute L-comoments and provision for plotting features for a
composited copula using four compositing parameters (see composite3COP). The compositing pa-
rameters are each independent and uniformly distributed:

α ∼ U[0, 1]; β ∼ U[0, 1]; κ ∼ U[0, 1]; γ ∼ U[0, 1].

L-comoment estimation is provided by the lcomCOP.

Usage

simcomposite3COP(nsim=100, compositor=composite3COP,
parents=NULL, ploton=FALSE, points=FALSE,
showpar=FALSE, showresults=FALSE, digits=6, ...)

Arguments

nsim Number of simulations to perform;

compositor The compositing function that could be either composite1COP, composite2COP,
and composite3COP;

parents A special parameter list (see Note);

ploton A logical to toggle on intermediate plotting;

points A logical to actually draw the simulations on the ploton by the points() func-
tion in R;

showpar Print the simulated parameter set with each iteration;

showresults Print the results (useful if harvest results from a batch operation in R);

digits The number digits to pass to round if showresults is true; and

... Additional arguments to pass.

Value

An R matrix of results is returned. Each row represents a single simulation run. The first four
columns are the α, β, κ, and γ compositing parameters and are labeled as such. The next two
columns are the opposing diagonals, by first row and then second, of the L-comoment correla-
tion. The following two columns are the opposing diagonals, by row and then second, of the
L-coskew. The following two columns are the opposing diagonals, by row and then second, of
the L-cokurtosis. The L-comoment columns are labeled to reflect the L-comoment matrix: T2.21
means the L-comoment correlation row 2 column 1 and T3.12 mean the L-coskew row 1 column 2.
The remaining columns represent the Θn parameters for copula 1, the Θm parameters for copula 2.
The columns are labeled Cop1Thetas or Cop2Thetas.

Note

The following descriptions list in detail the parents argument structure and content of the para
argument:

cop1 — Function of the first copula;
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cop2 — Function of the second copula;

para1gen — Function to generate random parameters for the first copula; and

para2gen — Function to generate random parameters for the second copula.

The para argument of this function are passed to the function contained in compositor and are
therefore subject to further constraints in items should such constraints exist.

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

See Also

lcomCOP, simcompositeCOP

Examples

## Not run:
# EXAMPLE 1: Make a single simulation result.
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1gen=function() { return(c(10^runif(1, min=-5, max=0))) },
para2gen=function() { return(c(10^runif(1, min= 0, max=5))) })

v <- simcompositeCOP(nsim=1, parent=mainpara, showresults=TRUE)
print(v)

# EXAMPLE 2: Make 1000 "results" and plot two columns.
mainpara <- list(cop1=PLACKETTcop, cop2=N4212cop,

para1gen=function() { return(c(10^runif(1, min=-5, max=5))) },
para2gen=function() { return(c(10^runif(1, min= 0, max=2))) })

v <- simcomposite3COP(nsim=100, parent=mainpara); labs <- colnames(v)
plot(v[,5], v[,7], # open circles are 1 with respect to 2

xlab=paste(c(labs[5], "and", labs[6]), collapse=" "),
ylab=paste(c(labs[6], "and", labs[8]), collapse=" "))

points(v[,6], v[,8], pch=16) # black dots are 2 with respect to 1
## End(Not run)

simcompositeCOP Compute the L-comoments of a Two-Value Composited Copula by Sim-
ulation
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Description

Simulate copula parameters and compute L-comoments and provision for plotting features for
a composited copula using using two compositing parameters (see composite1COP as well as
composite2COP). The compositing parameters are each independent and uniformly distributed:

α ∼ U[0, 1]; β ∼ U[0, 1].

L-comoment estimation is provided by the lcomCOP.

Usage

simcompositeCOP(nsim=100, compositor=composite2COP,
parents=NULL, ploton=FALSE, points=FALSE,
showpar=FALSE, showresults=FALSE, digits=6, ...)

Arguments

nsim Number of simulations to perform;

compositor The compositing function, could be either composite1COP or composite2COP.
Each of these is acceptable because two compositing parameters are used;

parents A special parameter list (see Note);

ploton A logical to toggle on intermediate plotting;

points A logical to actually draw the simulations on the ploton by points() function
in R;

showpar Print the simulated parameter set with each iteration;

showresults Print the results (useful if harvest results from a batch operation in R);

digits The number digits to pass to round if showresults is true; and

... Additional arguments to pass.

Value

An R matrix of results is returned. Each row represents a single simulation run. The first two
columns are the α and β compositing parameters and are labeled as such. The next two columns
are the opposing diagonals, by first row and then second, of the L-comoment correlation. The
following two columns are the opposing diagonals, by row and then second, of the L-coskew. The
following two columns are the opposing diagonals, by row and then second, of the L-cokurtosis. The
L-comoment columns are labeled to reflect the L-comoment matrix: T2.21 means the L-comoment
correlation row 2 column 1 and T3.12 mean the L-coskew row 1 column 2. The remaining columns
represent the Θn parameters for copula 1, the Θm parameters for copula 2. The columns are labeled
Cop1Thetas or Cop2Thetas.

Note

The following descriptions list in detail the parents argument structure and content of the para
argument:

cop1 — Function of the first copula;



280 simCOP

cop2 — Function of the second copula;

para1gen — Function to generate random parameters for the first copula; and

para2gen — Function to generate random parameters for the second copula.

The para argument of this function are passed to the function contained in compositor and are
therefore subject to further constraints in items should such constraints exist.

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

See Also

lcomCOP, simcomposite3COP

Examples

## Not run:
# A single simulation result.
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1gen=function() { return(c(10^runif(1,min=-5,max=0))) },
para2gen=function() { return(c(10^runif(1,min= 0,max=5))) })

v <- simcompositeCOP(nsim=1, parent=mainpara, showresults=TRUE)
print(v) # for review
## End(Not run)

simCOP Simulate a Copula by Numerical Derivative Method

Description

Perform a simulation and visualization of a copula using numerical partial derivatives of the copula
(Nelsen, 2006, p. 32). The method is more broadly known as conditional simulation method.
Because a focus of copBasic is on copula theory for pedagogic purposes, the coupling between
simulation and subsequent visualization is emphasized by this function by it providing for both
simulation and plotting operations by default.

The simCOP function is based on a uniformly simulating nonexceedance probability u and then con-
ditioning the v from the inverse of the sectional derivative for V with respect to U (see derCOPinv).
The function for speed will only report a warning if at least one of the requested simulations in
n could not be made because of uniroot’ing problems in derCOPinv. The returned data.frame
will be shortened automatically, but this can be controlled by na.rm. Failure of a simulation is
purely dependent failure of the derivative inversion. In general, inversion should be quite robust for
continuous or near continuous copulas and even copulas with singularities should be more or less
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okay. Lastly, the logical combination na.rm=FALSE and keept=TRUE could be used to isolate those
combinations giving derCOPinv problems. The implemented simulation method in the copBasic
package is known as the conditional distribution method (Nelsen, 2006; pp. 40–41), conditional
method, or Rosenblatt transform (Joe, 2014, p. 270).

Usage

simCOP(n=100, cop=NULL, para=NULL, na.rm=TRUE, seed=NULL, keept=FALSE,
graphics=TRUE, ploton=TRUE, points=TRUE, snv=FALSE,
infsnv.rm=TRUE, trapinfsnv=.Machine$double.eps,
resamv01=FALSE, showresamv01=FALSE, ...)

rCOP(n, cop=NULL, para=NULL, na.rm=TRUE, seed=NULL,
resamv01=FALSE, showresamv01=FALSE, ...)

Arguments

n A sample size, default is n = 100;

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

na.rm A logical to toggle the removal of NA entries should they form on the returned
data.frame. A well implemented copula should accommodate and not return
NA but because this package relies on numerical derivation, it was decided to
have a mechanism to handle this;

seed The integer seed to pass immediately to set.seed();

keept Keep the t uniform random variable for the simulation as the last column in the
returned data.frame;

graphics A logical that will disable graphics by setting ploton and points to FALSE and
overriding whatever their settings were;

ploton A logical to toggle on the plot (see Examples in vuongCOP);

points A logical to actually draw the simulations by the points() function in R;

snv A logical to convert the {u, v} to standard normal scores (variates) both for
the optional graphics and the returned R data.frame. Curiously, Joe (2014)
advocates extensively for use of normal scores, which is in contrast to Nelsen
(2006) who does not;

infsnv.rm A logical that will quietly strip out any occurrences of u = {0, 1} or v = {0, 1}
from the simulations because these are infinity in magnitude when converted to
standard normal variates has been selected. Thus, this logical only impacts logic
flow when snv is TRUE. The infsnv.rm is mutually exclusive from trapinfsnv;

trapinfsnv If TRUE and presumably small, the numerical value of this argument (η) is used to
replace u = {0, 1} and v = {0, 1} with u(0) = v(0) = η or u(1) = v(1) = 1−
η as appropriate when conversion to standard normal variates has been selected.
The setting of trapinfsnv only is used if snv is TRUE and infsnv.rm is FALSE;

resamv01 A logical triggering resampling for the elements of v = 0 and v = 1 (see
Examples). This is a relatively late addition to copBasic logic and hence is
disabled by default. If this is set to true, then the operations related to infsnv.rm
and trapinfsnv are never to be involved later down in the functions’ logic;
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showresamv01 A logical providing a trigger to display a message() within the resampling loops
for v <= 0, v >= 1; and

... Additional arguments to pass to the points() function in R.

Value

An R data.frame of the simulated values is returned.

Note

Function rCOP is a light-weight implementation for bivariate copula random variates that dispatches
to simCOPmicro and bypasses the graphical and other features of simCOP. Finally, an experimental
parallel for the empirical copula is EMPIRsim. Note, the equivalent of a resamv01 is not imple-
mented at the level of simCOPmicro because it is better to do such at the abstraction level of rCOP
and simCOP.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

derCOPinv, simCOPmicro

Examples

simCOP(n=5, cop=PARETOcop, para=2.4)

# We can find some unusual simulation combinations for which V == 0 or 1 and might have
# downstream operations simply not able to handle infinite quantiles (say) at the edges.
# We can readily offload the issue back to the rCOP() or simCOP() with resamv01 argument.
nsim <- 800; para <- list(cop=PLcop, para=150, alpha=0.8, beta=0.3)
JK <- rCOP(nsim, cop=composite1COP, para=para, seed=1, resamv01=FALSE)
print(JK[JK[,2] == 1,]) # 189 0.9437248 1. So, row 189 in this example has V=1, and
UV <- rCOP(nsim, cop=composite1COP, para=para, seed=1, resamv01=TRUE ) # changing the
# resamv01 argument to TRUE, we get this message and no V=1 in the returned data frame.
# rCOP() has some v >= 1, resampling those <---- This is the message output.

## Not run:
# The simCOP function is oft used in other Examples sections through this package.
simCOP(n=10, cop=W) # Frechet lower-bound copula
simCOP(n=10, cop=P) # Independence copula
simCOP(n=10, cop=M, col=2) # Frechet upper-bound copula
simCOP(n=10, cop=PSP) # The PSP copula
## End(Not run)
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## Not run:
# Now simulate the PSP copula, add the level curves of the copula, and demonstrate
# the uniform distribution of marginals on the correct axes (U [top] and V [left]).
D <- simCOP(n=400, cop=PSP) # store simulated values in D
level.curvesCOP(cop=PSP, ploton=FALSE)
rug(D$U, side=3, col=2); rug(D$V, side=4, col=2)

# Now let us get more complicated and mix two Plackett copulas together using the
# composite2COP as a "compositor." The parameter argument becomes more complex, but
# is passed as shown into composite2COP.
para <- list(cop1=PLACKETTcop,cop2=PLACKETTcop, alpha=0.3,beta=0.5, para1=0.1,para2=50)
D <- simCOP(n=950, cop=composite2COP, para=para, col=grey(0, 0.2), pch=16, snv=TRUE) #
## End(Not run)

simCOPmicro Simulate V from U through a Copula by Numerical Derivative Method

Description

Perform bivariate simulation of random but coupled variables V from U through a copula (Nelsen,
2006, p. 32) by inversion of the numerical derivatives of the copula (derCOPinv, derCOPinv2).
The method is more broadly known as conditional simulation method. An elaborate implemen-
tation is available in simCOP, which unlike simCOPmicro, has provisions (default) for graphical
support. The simCOPmicro function is intended to be a minimalist version for copula simulation,
and such a version is useful for pedagogic purposes including conditional distributions, conditional
quantile functions, and copula reflection (see Note and COP). An extended educational discussion
of simulation using the conditional method is available in the Note section of derCOPinv.

Some definitions are needed. The copula of (1 − U, 1 − V ) is the survival copula (surCOP) and is
defined as

Ĉ(u, v) = u+ v − 1 +C(1− u, 1− v),

whereas, following the notation of Joe (2014, pp. 271–272), the copula of (1− U, V ) is defined as

Ć(u, v) = v −C(1− u, v), and

the copula of (U, 1− V ) is defined as

C̀(u, v) = u−C(u, 1− v).

Careful consideration of the nomenclature is necessary as confusion with the occurrences of 1− u
and 1 − v easily conflate meaning. The nomenclature for the survival copula is more elaborately
shown under surCOP. The difficulty is that the bivariate arguments to the survival copula are ex-
ceedance probabilities.

For simulation, again following the nomenclature of Joe (2014, p. 272), the conditional distribution
functions (numerical derivatives; derCOP≡C2|1(v | u) and derCOP2≡C1|2(u | v)) can be written
in terms of C(u | v) = C2|1(v | u) as

Ĉ2|1(v | u) = 1−C2|1(1− v | 1− u),
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Ć2|1(v | u) = C2|1(v | 1− u), and

C̀2|1(v | u) = 1−C2|1(1− v | u),

where the respective "surv", "acute", and "grave" are inverses (conditional quantile functions;
inverses of numerical derivatives; derCOPinv ≡ C

(−1)
2|1 (v | u) and derCOPinv2 ≡ C

(−1)
1|2 (u | v))

are
Ĉ

(−1)
2|1 (t | u) = 1−C

(−1)
2|1 (1− t | 1− u) → "sur",

Ć
(−1)
2|1 (t | u) = C

(−1)
2|1 (t | 1− u) → "acute", and

C̀
(−1)
2|1 (t | u) = 1−C

(−1)
2|1 (1− t | u) → "grave",

where t is a uniformly distributed variable.

To clarify the seemingly clunky nomenclature—Joe (2014) does not provide “names” for Ć(u, v)

or C̀(u, v)—the following guidance is informative:
(1) "surv" or Ĉ(u, v) is a reflection of U and V on the horizontal and vertical axes, respectively
(2) "acute" or Ć(u, v) is a reflection of U on the horizontal axis, and
(3) "grave" or C̀(u, v) is a reflection of V on the verical axis.

The names "acute" and "grave" match those used in the Rd-format math typesetting instructions.

Usage

simCOPmicro(u, cop=NULL, para=NULL, seed=NULL,
reflect=c("cop", "surv", "acute", "grave",

"1", "2", "3", "4"), ...)
simCOPv(u, cop=NULL, para=NULL,

reflect=c("cop", "surv", "acute", "grave",
"1", "2", "3", "4"), ...)

Arguments

u Nonexceedance probability u in the X direction. The runif() function in R
can be used to drive conditional simulation using the simCOPmicro function
(see Examples);

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

seed The integer seed to pass immediately to set.seed() and setting it for the simCOPv
version will dispatch through the triple dots down to simCOPmicro;

reflect The reflection of the copula (see above) and the default "cop" or "1" is the usual
copula definition. The numbered values correspond, respectively, to the named
values; and

... Additional arguments to pass should they be needed.

Value

Simulated value(s) of nonexceedance probability v are returned based on the nonexceedance prob-
abilities u in argument u.
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Note

The advanced features of simCOPmicro permit simulation of the three permutations of variable re-
flection. The first code simply produce four different “copulas” based on the Gumbel–Hougaard
copula (GH(u, v; Θ); GHcop), which has substantial upper tail dependency but no lower tail depen-
dency for Θ = 2.512 as quantified by the taildepCOP function call.

U <- runif(1500); G <- 2.512; u <- 0.1; up <- 1-u; v <- 0.2; vp <- 1-v
UV <- data.frame(U, simCOPmicro(U, cop=GHcop, para=G ))
sUsV <- data.frame(U, simCOPmicro(U, cop=GHcop, para=G, reflect="surv" ))
sUV <- data.frame(U, simCOPmicro(U, cop=GHcop, para=G, reflect="acute"))
UsV <- data.frame(U, simCOPmicro(U, cop=GHcop, para=G, reflect="grave"))
taildepCOP(cop=GHcop, para=G) # lambdaL = 2e-05; lambdaU = 0.68224

The following code example will verify that the simulations produce values of U and V that are
consistent with the empirical copula (EMPIRcop) results as well as consistent with the variable
reflections provided through the COP interface. Notice the combinations of nonexceedance and
exceedance probabilities blended so that the two returned values for the four different copulas are
numerically congruent.

c(EMPIRcop(u, v, para=UV ), COP(u, v, cop=GHcop, para=G, reflect="cop" ))
c(EMPIRcop(up,vp, para=sUsV), COP(up,vp, cop=GHcop, para=G, reflect="surv" ))
c(EMPIRcop(up,v, para=sUV ), COP(up,v, cop=GHcop, para=G, reflect="acute"))
c(EMPIRcop(u, vp, para=UsV ), COP(u, vp, cop=GHcop, para=G, reflect="grave"))

The user can verify the reflections graphically using code such as this

xlab <- "PROBABILITY IN U"; ylab <- "PROBABILITY IN V"
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE));
plot(UV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=1)
mtext("no reflection")

plot(sUV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=3)
mtext("horizontal reflection")

plot(UsV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=4)
mtext("vertical reflection")

plot(sUsV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=2)
mtext("double reflection")

in which inspection of tails exhibiting the dependency is readily seen on the four plots: upper right
tail dependency (no reflection), upper left tail dependency (horizontal reflection), lower right tail
dependency (vertical reflection), and lower left tail dependency (double reflection). It is important
to stress that these descriptions and graphical depictions of single tail dependency are specific to the
GH(u, v; Θ) copula chosen for the demonstration.

Author(s)

W.H. Asquith
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References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

simCOP

Examples

simCOPmicro(runif(1), cop=W ) # Frechet lower-bound copula
simCOPmicro(runif(1), cop=P ) # Independence copula
simCOPmicro(runif(1), cop=M ) # Frechet upper-bound copula
simCOPmicro(runif(1), cop=PSP) # The PSP copula

## Not run:
# Now let us get more complicated and mix two Plackett copulas together using the
# composite2COP as a "compositor." The parameter argument becomes more complex, but is
# passed as shown into composite2COP.
para <- list(cop1=PLACKETTcop,cop2=PLACKETTcop, alpha=0.3,beta=0.5, para1=0.1,para2=50)
simCOPmicro(runif(5), cop=composite2COP, para=para) #
## End(Not run)

## Not run:
# Now let us implement "our" own version of features of simCOP() but using
# the micro version to manually create just the simulation vector of V.
U <- runif(1500)
UV <- data.frame(U, simCOPmicro(U, cop=N4212cop, para=4))
plot(UV, xlab="PROBABILITY IN U", ylab="PROBABILITY IN V", pch=3, col=2) #
## End(Not run)

spectralmeas Estimation of the Spectral Measure

Description

Kiriliouk et al. (2016, pp. 360–364) describe estimation of the spectral measure of bivariate data.
Standardize the bivariate data as X⋆ and Y ⋆ as in psepolar and select a “large” value for the
pseudo-polar radius Sf for nonexceedance probability f . Estimate the spectral measure H(w),
which is the limiting distribution of the pseudo-polar angle component W given that the corre-
sponding radial component S is large:

Pr[W ∈ ·|S > Sf ] → H(w) as Sf → ∞.

So, H(w) is the cumulative distribution function of the spectral measure for angle w ∈ (0, 1). The
Sf can be specified by a nonexceedance probability F for Sf (F ).

The estimation proceeds as follows:
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Step 1: Convert the bivariate data (Xi, Yi) into (Ŝi, Ŵi) by psepolar and set the threshold Sf

according to “n/k” (this part involving k does not make sense in Kiriliouk et al. (2016)) where
for present implementation in copBasic the Sf given the f by the user is based on the empirical
distribution of the Ŝi. The empirical distribution is estimated by the Bernstein empirical distribution
function from the lmomco package.

Step 2: Let In denote the set of indices that correspond to the observations when Ŝi ≥ Sf and
compute Nn as the cardinality of Nn = |In|, which simply means the length of the vector In.

Step 3: Use the maximum Euclidean likelihood estimator, which is the third of three methods
mentioned by Kiriliouk et al. (2016):

Ĥ3(w) =
∑
i∈In

p̂3,i × 1[Ŵi ≤ w],

where 1[·] is an indicator function that is only triggered if smooth=FALSE, and following the notation
of Kiriliouk et al. (2016), the “3” represents maximum Euclidean likelihood estimation. The p̂3,i
are are the weights

p̂3,i =
1

Nn

[
1− (W − 1/2)S−2

W (Ŵi −W )
]
,

where W is the sample mean and S2
W is the sample variance of Ŵi

W =
1

Nn

∑
i∈In

Ŵi and S2
W =

1

Nn − 1

∑
i∈In

(Ŵi −W )2,

where Kiriliouk et al. (2016, p. 363) do not show the Nn − 1 in the denominator for the variance
but copBasic uses it because those authors state that the sample variance is used.

Step 4: A smoothed version of Ĥ3(w) is optionally available by

H̃3(w) =
∑
i∈In

p̂3,i × B(w; Ŵiν, (1− Ŵi)ν),

where B(x; p, q) is the cumulative distribution function of the Beta distribution for p, q > 0 and
where ν > 0 is a smoothing parameter that can be optimized by cross validation.

Step 5: The spectral density lastly can be computed optionally as

h̃3(w) =
∑
i∈In

p̂3,i × β(w; Ŵiν, (1− Ŵi)ν)

where β(x; p, q) is the probability density function (pdf) of the Beta distribution. Readers are alerted
to the absence of the 1[·] indicator function in the definitions of H̃3(w) and h̃3(w). This is correct
and matches Kiriliouk et al. (2016, eqs. 17.21 and 17.22) though this author was confused for a day
or so by the indicator function in what is purported to be the core definition of Ĥl(w) where l = 3
in Kiriliouk et al. (2016, eq. 17.21 and 17.17).

Usage

spectralmeas(u, v=NULL, w=NULL, f=0.90, snv=FALSE,
smooth=FALSE, nu=100, pdf=FALSE, ...)
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Arguments

u Nonexceedance probability u in the X direction (actually the ranks are used so
this can be a real-value argument as well);

v Nonexceedance probability v in the Y direction (actually the ranks are used so
this can be a real-value argument as well) and if NULL then u is treated as a two
column R data.frame;

w A vector of polar angle values W ∈ [0, 1] on which to compute the H(w);

f The nonexceedance probability F (Sf ) of the pseudo-polar radius in psepolar;

snv Return the standard normal variate of theH by the well-known transform through
the quantile function of the standard normal, qnorm();

smooth A logical to return H̃3(w) instead of H3(w);

nu The ν > 0 smoothing parameter;

pdf A logical to return the smoothed probability density h̃3(w). If pdf=TRUE, then
internally smooth=TRUE will be set; and

... Additional arguments to pass to the psepolar function.

Value

An R vector of H3(w), H̃3(w), or h̃3(w) is returned.

Note

The purpose of this section is to describe a CPU-intensive study of goodness-of-fit between a
Gumbel–Hougaard copula (GHcop, GH(u, v; Θ1)) parent and a fitted Hüsler–Reiss copula (HRcop,
HR(u, v; Θ2)). Both of these copulas are extreme values and are somewhat similar to each other,
so sample sizes necessary for detection of differences should be large. A two-sided Kolmogorov–
Smirnov tests (KS test, ks.test()) is used to measure significance in the differences between the
estimated spectral measure distributions at f = 0.90 (the 90th percentile, F (Sf )) into the right tail.

The true copula will be the GH(Θ1) having parameter Θ1 = 3.3. The number of simulations
per sample size n ∈ seq(50,1000, by=25) is nsim = 500. For each sample size, a sample from
the true parent is drawn, and a HR(Θ2) fit by maximum likelihood (mleCOP). The two spectral
measure distributions (ĤGH(w), Htru and ĤHR(w), Hfit) are estimated for a uniform variate of
the angle W having length equal to the applicable sample size. The Kolmogorov–Smirnov (KS)
test is made between Htru and Hfit, and number of p-values less than the β = 0.05 (Type II error
because alternative hypothesis is rigged as true) and simulation count are returned and written in file
Results.txt. The sample sizes initially are small and traps of NaN (abandonment of a simulation
run) are made. These traps are needed when the empirical distribution of Htru or Hfit degenerates.

Results <- NULL
true.par <- 3.3; true.cop <- GHcop; fit.cop <- HRcop; search <- c(0,100)
nsim <- 20000; first_time <- TRUE; f <- 0.90; beta <- 0.05
ns <- c(seq(100,1000, by=50), 1250, 1500, 1750, 2000)
for(n in ns) {
W <- sort(runif(n)); PV <- vector(mode="numeric")
for(i in 1:(nsim/(n/2))) {
UV <- simCOP(n=n, cop=true.cop, para=true.par, graphics=FALSE)
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fit.par <- mleCOP(UV, cop= fit.cop, interval=search)$para
UVfit <- simCOP(n=n, cop= fit.cop, para=fit.par, graphics=FALSE)
Htru <- spectralmeas(UV, w=W, bound.type="Carv", f=f)
Hfit <- spectralmeas(UVfit, w=W, bound.type="Carv", f=f)
if(length(Htru[! is.nan(Htru)]) != length(Hfit[! is.nan(Hfit)]) |

length(Htru[! is.nan(Htru)]) == 0 |
length(Hfit[! is.nan(Hfit)]) == 0) {
PV[i] <- NA; next

} # suppressWarnings() to silence ties warnings from ks.test()
KS <- suppressWarnings( stats::ks.test(Htru, Hfit)$p.value )
#plot(FF, H, type="l"); lines(FF, Hfit, col=2); mtext(KS)
message("-",i, appendLF=FALSE)
PV[i] <- KS

}
message(":",n)
zz <- data.frame(SampleSize=n, NumPVle0p05=sum(PV[! is.na(PV)] <= beta),

SimulationCount=length(PV[! is.na(PV)]))
if(first_time) { Results <- zz; first_time <- FALSE; next }
Results <- rbind(Results, zz)

}

plot(Results$SampleSize, 100*Results$NumPVle0p05/Results$SimulationCount,
type="b", cex=1.1, xlab="Sample size",
ylab="Percent simulations with p-value < 0.05")

The Results show a general increase in the counts of p-value ≤ 0.05 as sample size increases.
There is variation of course and increasing nsim would smooth that considerably. The results show
for n ≈ 1,000 that the detection of statistically significant differences for extremal F (Sf ) = 0.90
dependency between the GH(Θ1=3.3) and HR(Θ2) are detected at the error rate implied by the
specified β = 0.05.

This range in sample size can be compared to the Kullback–Leibler sample size (nfg):

UV <- simCOP(n=10000, cop=true.cop, para=true.par, graphics=FALSE)
fit.par <- mleCOP(UV, cop= fit.cop, interval=search)$para
kullCOP(cop1=true.cop, para1=true.par,

cop2=fit.cop, para2=fit.par)$KL.sample.size
# The Kullback-Leibler (integer) sample size for detection of differences at
# alpha=0.05 are n_fg = (742, 809, 815, 826, 915, 973, 1203) for seven runs
# Do more to see variation.

where the Kullback–Leilber approach is to measure density departures across the whole I2 domain
as opposed to extremal dependency in the right tail as does the spectral measure.

Different runs of the above code will result in different nfg in part because of simulation differences
internal to kullCOP but also because the Θ2 has its own slight variation in its fit to the large sample
simulation (n = 10,000) of the parent. However, it seems that nfg ≈ 900 will be on the order of
the n for which the KS test on the spectral measure determines statistical significance with similar
error rate.

Now if the aforementioned simulation run is repeated for F (Sf ) = 0.95 or f=0.95, the nfg ob-
viously remains unchanged at about 900 but the n for which the error rate is about β = 0.05 is
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n ≈ 600. This sample size is clearly smaller than before and smaller than nfg , therefore, the anal-
ysis of the empirical spectral measure deeper into the tail F (Sf ) = 0.95 requires a smaller sample
size to distinguish between the two copula. Though the analysis does not address the question as
to whether one or both copula are adequate for the problem at hand. For a final comparison, if the
aforementioned simulation run is repeated for F (Sf ) = 0.80 or f=0.80, then the n for which the
error rate is about β = 0.05 is n ≈ 1,700. Thus as analysis is made further away from the tail
into the center of the distribution, the sample size to distinguish between these two similar copula
increases substantially.

Author(s)

William Asquith <william.asquith@ttu.edu>

References

Kiriliouk, Anna, Segers, Johan, Warchoł, Michał, 2016, Nonparameteric estimation of extremal
dependence: in Extreme Value Modeling and Risk Analysis, D.K. Dey and Jun Yan eds., Boca
Raton, FL, CRC Press, ISBN 978–1–4987–0129–7.

See Also

psepolar, stabtaildepf

Examples

## Not run:
UV <- simCOP(n=500, cop=HRcop, para=1.3, graphics=FALSE)
W <- seq(0,1,by=0.005)
Hu <- spectralmeas(UV, w=W)
Hs <- spectralmeas(UV, w=W, smooth=TRUE, nu=100)
plot(W,Hu, type="l", ylab="Spectral Measure H", xlab="Angle")
lines(W, Hs, col=2) #
## End(Not run)

## Not run:
"GAUScop" <- function(u,v, para=NULL, ...) {

if(length(u)==1) u<-rep(u,length(v)); if(length(v)==1) v<-rep(v,length(u))
return(copula::pCopula(matrix(c(u,v), ncol=2), para))

}
GAUSparfn <- function(rho) return(copula::normalCopula(rho, dim = 2))
n <- 2000 # The PSP parent has no upper tail dependency
uv <- simCOP(n=n, cop=PSP, para=NULL, graphics=FALSE)
PLpar <- mleCOP(uv, cop=PLcop, interval=c(0,100))$para
PLuv <- simCOP(n=n, cop=PLcop, para=PLpar, graphics=FALSE)
GApar <- mleCOP(uv, cop=GAUScop, parafn=GAUSparfn, interval=c(-1,1))$para
GAuv <- simCOP(n=n, cop=GAUScop, para=GApar, graphics=FALSE)
GLpar <- mleCOP(uv, cop=GLcop, interval=c(0,100))$para
GLuv <- simCOP(n=n, cop=GLcop, para=GLpar, graphics=FALSE)
FF <- c(0.001,seq(0.005,0.995, by=0.005),0.999); qFF <- qnorm(FF)
f <- 0.90 # Seeking beyond the 90th percentile pseudo-polar radius
PSPh <- spectralmeas( uv, w=FF, f=f, smooth=TRUE, snv=TRUE)
PLh <- spectralmeas(PLuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
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GAh <- spectralmeas(GAuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
GLh <- spectralmeas(GLuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
plot(qFF, PSPh, type="l", lwd=2, xlim=c(-3,3), ylim=c(-2,2),

xlab="STANDARD NORMAL VARIATE OF PSEUDO-POLAR ANGLE",
ylab="STANDARD NORMAL VARIATE OF SPECTRAL MEASURE PROBABILITY")

lines(qFF, PLh, col=2) # red line is the Plackett copula
lines(qFF, GAh, col=3) # green line is the Gaussian copula
lines(qFF, GLh, col=4) # blue line is the Galambos copula
# Notice the flat spot and less steep nature of the PSP (black line), which is
# indicative of no to even spreading tail dependency. The Plackett and Gaussian
# copulas show no specific steepening near the middle, which remains indicative
# of no tail dependency with the Plackett being less steep because it has a more
# dispersed copula density at the right tail is approached than the Gaussian.
# The Galambos copula has upper tail dependency, which is seen by
# the mass concentration and steepening of the curve on the plot.
## End(Not run)

stabtaildepf Estimation of the Stable Tail Dependence Function

Description

Kiriliouk et al. (2016, pp. 364–366) describe a technique for estimation of a empirical stable tail
dependence function for a random sample. The function is defined as

l̂(x, y) =
1

k

n∑
i=1

1
[
Ri,x,n > n+ 1− kx or Ri,y,n > n+ 1− ky

]
,

where 1[·] is an indicator function, R denotes the rank() of the elements and k ∈ [1, . . . , n] and k
is intended to be “large enough” that l̂(x, y) has converged to a limit.

The “Capéraà–Fougères smooth” of the empirical stable tail dependence function is defined for a
coordinate pair (x, y) as

l̂CF (x, y) = 2
∑
i∈In

p̂3,i ×max
[
Ŵix, (1− Ŵi)y

]
,

where p̂3,i are the weights for the maximum Euclidean likelihood estimator (see spectralmeas)
and Ŵi are the pseudo-polar angles (see spectralmeas) for the index set In defined by In =
{i = 1, . . . , n : Ŝi > Ŝ(k+1)}, where Ŝ(k+1) denotes the (k+1)-th largest observation of the
pseudo-polar radii Ŝi where the cardinality of In is exactly k elements long. (Tentatively, then this
definition of In is ever so slightly different than in spectralmeas.) Lastly, see the multiplier of 2
on the smooth form, and this multiplier is missing in Kiriliouk et al. (2016, p. 365) but shown in
Kiriliouk et al. (2016, eq. 17.14, p. 360). Numerical experiments indicate that the 2 is needed for
l̂CF (x, y) but evidently not in l̂(x, y).

The visualization of l(x, y) commences by setting a constant (c > 0) as ci ∈ 0.2, 0.4, 0.6, 0.8
(say). The y are solved for x ∈ [0, . . . , ci] through the l(x, y) for each of the ci. Each solution set
constitutes a level set for the stable tail dependence function. If the bivariate data have asymptotic
independence (to the right), then a level set or the level sets for all the c are equal to the lines
x+y = c. Conversely, if the bivariate data have asymptotic dependence (to the right), then the level
sets will make 90-degree bends for max(x, y) = c.
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Usage

stabtaildepf(uv=NULL, xy=NULL, k=function(n) as.integer(0.5*n), levelset=TRUE,
ploton=TRUE, title=TRUE, delu=0.01, smooth=FALSE, ...)

Arguments

uv An R data.frame of u and v nonexceedance probabilities in the respective X
(horizontal) and Y (vertical) directions. Note, rank()s are called on these so
strictly speaking this need not be as nonexceedance probabilities. This is not an
optional argument;

xy A vector of the scalar coordinates (x, y), which are “the relative distances to the
upper endpoints of [these respective] variables” (Kiriliouk et al., 2016, p. 356).
This is a major point of nomenclature confusion. If these are in probability
units, they are exceedance probabilities. Though tested for NULL and a warning
issued, these can be NULL only if levelset=TRUE but can be set to xy=NA if
levelset=FALSE and smooth=TRUE (see discussion in Note);

k The k for both the l̂(x, y) and l̂CF , though the effect of k might not quite be the
same for each. The default seems to work fairly well;

levelset A logical triggering the construction of the level sets for c = seq(0.1, 1,
by=0.1);

ploton A logical to call the plot() function;

title A logical to trigger a title for the plot if ploton=TRUE;

delu The ∆x for a sequence of x = seq(0,c,by=delu);

smooth A logical controlling whether l̂(x, y) or the Capéraà–Fougères smooth function
l̂CF (x, y) is used; and

... Additional arguments to pass.

Value

Varies according to argument settings. In particular, the levelset=TRUE will cause an R list to
be returned with the elements having the character string of the respective c values and the each
holding a data.frame of the (x, y) coordinates.

Note

This function is also called in a secondary recursion mode. The default levelset=TRUE makes a
secondary call with levelset=FALSE to compute the l̂(x, y) for the benefit of the looping on the
one-dimensional root to solve for a single y in l̂(x, y) = c given a single x. If levelset=TRUE
and smooth=TRUE, then a secondary call with smooth=TRUE and levelset=FALSE is made to in-
ternally return an R list containing scalar Nn and vectors Ŵn and p̂3,i for similar looping and
one-dimensional rooting for l̂CF (x, y).

If levelset=FALSE, then xy is required to hold the (x, y) coordinate pair of interest. A demonstra-
tion follows and shows the limiting behavior of a random sample from the N4212cop copula.
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n <- 2000 # very CPU intensive this and the next code snippet
UV <- simCOP(n=n, cop=N4212cop, para=pi); k <- 1:n
lhat <- sapply(k, function(j)

stabtaildepf(xy=c(0.1, 0.1), uv=UV, levelset=FALSE, k=j))
plot(k, lhat, xlab="k in [1,n]", cex=0.8, lwd=0.8, type="b",

ylab="Empirical Stable Tail Dependence Function")
mtext("Empirical function in the 0.10 x 0.10 Pr square (upper left corner)")

The R list that can be used to compute l̂CF (x, y) is retrievable by

x <- 0.1; y <- 0.1; k <- 1:(n-1)
lhatCF <- sapply(k, function(j) {

Hlis <- stabtaildepf(xy=NA, uv=UV, levelset=FALSE, smooth=TRUE, k=j)
2*sum(Hlis$p3 * sapply(1:Hlis$Nn, function(i) {

max(c(Hlis$Wn[i]*x, (1-Hlis$Wn[i])*y)) }))
})
lines(k, lhatCF, col="red")

The smooth line (red) of lhatCF is somewhat closer to the limiting behavior of lhat, but it is
problematic to determine computational consistency. Mathematical consistency with Kiriliouk et
al. (2016) appears to be achieved. The Examples section TODO.

Author(s)

William Asquith <william.asquith@ttu.edu>

References

Beirlant, J., Escobar-Bach, M., Goegebeur, Y., Guillou, A., 2016, Bias-corrected estimation of
stable tail dependence function: Journal Multivariate Analysis, v. 143, pp. 453–466, doi:10.1016/
j.jmva.2015.10.006.

Kiriliouk, Anna, Segers, Johan, Warchoł, Michał, 2016, Nonparameteric estimation of extremal
dependence: in Extreme Value Modeling and Risk Analysis, D.K. Dey and Jun Yan eds., Boca
Raton, FL, CRC Press, ISBN 978–1–4987–0129–7.

See Also

psepolar, spectralmeas

Examples

## Not run:
UV <- simCOP(n=1200, cop=GLcop, para=2.1) # Galambos copula
tmp1 <- stabtaildepf(UV) # the lines are curves (strong tail dependence)
tmp2 <- stabtaildepf(UV, smooth=TRUE, ploton=FALSE, col="red") #
## End(Not run)

https://doi.org/10.1016/j.jmva.2015.10.006
https://doi.org/10.1016/j.jmva.2015.10.006
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statTn The Tn Statistic of a Fitted Copula to an Empirical Copula

Description

Compute the Tn(p) statistic of Genest et al. (2011) that is defined as

Tn(p) =

n∑
i=1

∣∣Cn(ui, vi)−CΘn(ui, vi)
∣∣p,

where Cn(u, v) is the empirical copula, CΘn
(u, v) is the fitted copula with estimated parameters

Θn from the sample of size n. The Tn for p = 2 is reported by those authors to be of general
purpose and overall performance in large scale simulation studies. The extension here for arbitary
exponent p is made for flexibility. Alternatively the definition could be associated with the statistic
Tn(p)

1/p in terms of a root 1/p of the summation as shown above.

The Tn statistic is obviously a form of deviation between the empirical (nonparametric) and para-
metric fitted copula. The distribution of this statistic through Monte Carlo simulation could be used
for inference. The inference is based on that a chosen parametric model is suitably close to the
empirical copula. The Tn(p) statistic has an advantage of being relatively straightforward to un-
derstand and explain to stakeholders and decision makers, is attractive for being suitable in a wide
variety of circumstances, but intuitively might have limited statistical power in some situations for
it looks at whole copula structure and not say at tail dependency. Finally, other goodness-of-fits
using the squared differences between Cn(u, v) and CΘm

(u, v) are aicCOP, bicCOP, and rmseCOP.

Usage

statTn(u, v=NULL, cop=NULL, para=NULL, p=2, proot=FALSE, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction. If not given, then a second
column from argument u is attempted;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

p The value for p, and the default follows that of Genest et al. (2011);

proot A logical controling whether the Tn returned be rooted by 1/p, and the default
follows that of Genest et al. (2011); and

... Additional arguments to pass to the copula function and (or) the empirical cop-
ula.

Value

The value for Tn is returned dependent on the specification of p and whether rooting of the result is
desired.
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Note

The Examples section shows a simple computation of the T̂n statistic for a sample and a fitted
copula to that sample. Ideally statTn would be wrapped in a Monte Carlo process of fitting the
apparent “parent” distribution from the sample data, then for some large replication count, generate
N samples of size n from the parent and from these samples compute the empirical copula and also
fit parameter(s) of the chosen copula and repeatedly solve for Tn. Given a total of N values of Tn,
then the sample Tn or T̂n can be compared to the distribution, and if T̂n is greater than say the 95th
percentile, then the assumed form of the copula could be rejected.

The distTn defined below and is dependent on the copBasic.fitpara.beta function can be used
to demonstrate concepts. (The process is complex enough that user-level implementation of distTn
in copBasic is not presently (2019) thought appropriate.)

"distTn" <- function(n, N=1000, statf=NULL,
cop=NULL, para=para, interval=NULL, ...) {

opts <- options(warn=-1)
message("Estimating Tn distribution: ", appendLF=FALSE)
Tn <- vector(mode="numeric", N)
for(i in 1:N) {

showi <- as.logical(length(grep("0+$", i, perl=TRUE)))
if(showi) message(i, "-", appendLF=FALSE)
ruv <- simCOP(n=n, cop=cop, para=para, graphics=FALSE, ...)
rpara <- copBasic.fitpara.beta(ruv, statf=statf,

interval=interval, cop=cop)
Tn[i] <- ifelse(is.na(rpara), NA, statTn(ruv, cop=cop, para=rpara))

}
numNA <- length(Tn[is.na(Tn)])
message("done: Number of failed parameter estimates=", numNA)
options(opts)
return(Tn[! is.na(Tn)])

}

Let us imagine an n = 400 sample size of a Galambos copula (GL(u, v); GLcop) and then treat
the Plackett copula (PL(u, v); PLACKETTcop) as the proper (chosen) model. The estimated param-
eter by the sample Blomqvist Beta of β̂C = 0.64 using the blomCOP function called from within
copBasic.fitpara.beta is then placed in variable para. The β̂C is not the most efficient esti-
mator but for purposes here, but it is fast. The parameter for the given seed is estimated as about
PL(Θ̂=20.75).

n <- 400 # sample size
correctCopula <- GLcop; set.seed(1596)
sampleUV <- simCOP(n=n, cop=correctCopula, para=1.9) # a random sample
para.correctCopula <- copBasic.fitpara.beta(uv=sampleUV, statf=blomCOP,

interval=c(1,5), cop=correctCopula)
chosenCopula <- PLACKETTcop
para <- copBasic.fitpara.beta(uv=sampleUV, statf=blomCOP,

interval=c(.001,200), cop=chosenCopula )

Next, compute the sample T̂n = 0.063 from sampleUV. The distribution of the Tn is estimated using
the distTn function, and an estimate of the T̂n p-value is in turn estimated. A large simulation run
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N = 1,000 for a sample of size of n = 400 is selected. The distTn function internally will
simulated for N-replicates from the assumed parent and estimate the parameter. A computation run
yields a p-value of approximately 0.01 (depending upon the seed) and is statistically significant at
an alpha of 0.05, and therefore, the PL(Θ=20.75) should be rejected for fitting to these data.

sampleTn <- statTn(sampleUV, cop=chosenCopula, para=para)
Tns <- distTn(n=n, cop=chosenCopula, para=para,

interval=c(0.001, 100), statf=blomCOP)
Tns_pvalue <- 1 - sum(Tns <= sampleTn) / length(Tns) # estimate p-value

The demonstration is furthered with a check on the Kullback–Leibler sample size nfg at the 5-
percent significance level (alpha = 0.05) by the kullCOP function, which yields 100. Given the
parent copula as GL(Θ=1.9), therefore, it would take approximately 100 samples to distinguish
between that copula and a PL(Θ=20.75) where in this case the fit was through the β̂C = 0.64.

kullCOP(cop1=correctCopula, para1=1.9,
cop2=chosenCopula, para2=para)$KL.sample.size # KL sample size = 100

vuongCOP(sampleUV, cop1=correctCopula, para1=para.correctCopula,
cop2=chosenCopula, para2=para)$message

# [1] "Copula 1 has better fit than Copula 2 at 100x(1-alpha) level"

The available sample size n = 400 is then about four times larger than nfg so the sample size n
should be sufficient to judge goodness-of-fit. This is a large value but with the sample variability
of β̂C, it seems that other measures of association such as Spearman Rho (rhoCOP) or Kendall Tau
(tauCOP) and others cross-referenced therein might be preferable.

The prior conclusion is supported by the p-value of the T̂n being about 0.01, which suggests that
the PL(u, v) is not a good model of the available sample data in sampleUV. Lastly, these judgments
are consistent with the Vuoug Procedure performed by the vuongCOP function, which reports at the
5-percent significance level that “copula number 1”—in this case, the GL(u, v)—has the better fit,
and this is obviously consistent with the problem setup because the random sample for investigation
was drawn from the Galambos coupla (the parent form).

Author(s)

W.H. Asquith

References

Genest, C., Kojadinovic, I., Nešlehová, J., and Yan, J., 2011, A goodness-of-fit test for bivariate
extreme-value copulas: Bernoulli, v. 17, no. 1, pp. 253–275.

See Also

aicCOP, bicCOP, rmseCOP, vuongCOP, kullCOP

Examples

## Not run:
# Example here is just for Tn. For the example below, the PSP copula is quite different
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# from the Gumbel-Hougaard copula and thus, the hatTn would be expected to be different
# from those of the Gumbel-Hougaard and certainly not too near to zero.
samUV <- simCOP(n=60, cop=PSP, graphics=FALSE, seed=1) # random sample
hatTau <- cor(samUV$U, samUV$V, method="kendall") # Kendall Tau
hatTn <- statTn(samUV, cop=GHcop, para=GHcop(tau=hatTau)$para,

ctype="bernstein", bernprogress=TRUE) # 0.03328789
# hatTn in this case is by itself is somewhat uninformative and requires
# Monte Carlo to put an individual value into context.
## End(Not run)

surCOP The Survival Copula

Description

Compute the survival copula from a copula (Nelsen, 2006, pp. 32–34), which is defined as

Ĉ(1− u, 1− v) = Ĉ(u′, v′) = Pr[U > u, V > v] = u′ + v′ − 1 +C(1− u′, 1− v′),

where u′ and v′ are exceedance probabilities and C(u, v) is the copula (COP). The survivial copula
is a reflection of both U and V .
The survival copula is an expression of the joint probability that both U > v and U > v when the
arguments a and b to Ĉ(a, b) are exceedance probabilities as shown. This is unlike a copula that
has U ≤ u and V ≤ v for nonexceedance probabilities u and v. Alternatively, the joint probability
that both U > u and V > v can be solved using just the copula 1 − u − v + C(u, v), as shown
below where the arguments to C(u, v) are nonexceedance probabilities. The later formula is the
joint survival function C(u, v) (surfuncCOP) defined for a copula (Nelsen, 2006, p. 33) as

C(u, v) = Pr[U > u, V > v] = 1− u− v +C(u, v).

Users are directed to the collective documentation in COP and simCOPmicro for more details on
copula reflection.

Usage

surCOP(u, v, cop=NULL, para=NULL, exceedance=TRUE, ...)

Arguments

u Exceedance probability u′ = 1−u (u nonexceedance based on exceedance) in
the X direction;

v Exceedance probability v′ = 1− v (v nonexceedance based on exceedance) in
the Y direction;

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
exceedance A logical affirming whether u and v are really in exceedance probability or not?

If FALSE, then the complements of the two are made internally and the nonex-
ceedances can thus be passed; and

... Additional arguments to pass (such as parameters, if needed, for the copula in
the form of an R list).
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Value

Value(s) for the survival copula are returned.

Note

The author (Asquith) finds the use of exceedance probabilities delicate in regards to Nelsen’s no-
tation. This function and coCOP have the exceedance argument to serve as a reminder that the
survival copula as usually defined uses exceedance probabilities as its arguments.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

COP, coCOP, duCOP, surfuncCOP, simCOPmicro

Examples

u <- 0.26; v <- 0.55 # nonexceedance probabilities
up <- 1 - u; vp <- 1 - v # exceedance probabilities
surCOP(up, vp, cop=PSP, exceedance=TRUE) # 0.4043928
surCOP(u, v, cop=PSP, exceedance=FALSE) # 0.4043928 (same because of symmetry)
surfuncCOP(u, v, cop=PSP) # 0.4043928
# All three examples show joint prob. that U > u and V > v.

## Not run:
# A survival copula is a copula so it increases to the upper right with increasing
# exceedance probabilities. Let us show that by hacking the surCOP function into
# a copula for feeding back into the algorithmic framework of copBasic.
UsersCop <- function(u,v, para=NULL) {

afunc <- function(u,v, theta=para) { surCOP(u, v, cop=N4212cop, para=theta)}
return(asCOP(u,v, f=afunc)) }

image(gridCOP(cop=UsersCop, para=1.15), col=terrain.colors(20),
xlab="U, EXCEEDANCE PROBABILITY", ylab="V, EXCEEDANCE PROBABILITY") #

## End(Not run)

surfuncCOP The Joint Survival Function
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Description

Compute the joint survival function for a copula (Nelsen, 2006, p. 33), which is defined as

C(u, v) = Pr[U > u, V > v] = 1− u− v +C(u, v) = Ĉ(1− u, 1− v),

where Ĉ(u′, v′) is the survival copula (surCOP), which is defined by

Ĉ(u′, v′) = Pr[U > u, V > v] = u′ + v′ − 1 +C(1− u′, 1− v′).

Although the joint survival function is an expression of the probability that both U > v and U > v,
C(u, v) is not a copula.

Usage

surfuncCOP(u, v, cop=NULL, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula; and

... Additional arguments to pass (such as parameters, if needed, for the copula in
the form of a list.

Value

Value(s) for the joint survival function are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

surCOP

Examples

"MOcop.formula" <- function(u,v, para=para, ...) {
alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))

}
"MOcop" <- function(u,v, ...) { asCOP(u,v, f=MOcop.formula, ...) }
u <- 0.2; v <- 0.75; ab <- c(1.5, 0.3)
# U **and** V are less than or equal to a threshold +
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# U **or** V are less than or equal to a threshold
surCOP(1-u,1-v, cop=MOcop, para=ab) + duCOP(u,v, cop=MOcop, para=ab) # UNITY
surfuncCOP(u,v, cop=MOcop, para=ab) + duCOP(u,v, cop=MOcop, para=ab) # UNITY

## Not run:
# The joint survival function is not a copula. So, it does not increases to the upper
# right with increasing exceedance probabilities. Let us show that by hacking the surCOP
# function into a copula for feeding back into the algorithmic framework of copBasic.
UsersCop <- function(u,v, para=NULL) {

afunc <- function(u,v, theta=para) { surfuncCOP(u, v, cop=N4212cop, para=theta) }
return(asCOP(u,v, f=afunc)) }

image(gridCOP(cop=UsersCop, para=1.15), col=terrain.colors(20),
xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY") #

## End(Not run)

## Not run:
# Conditional return period (Salvadori et al., 2007, p. 159)
UV <- simCOP(n=100000, cop=PLACKETTcop, para=5, graphics=FALSE)
u <- 0.5; v <- 0.99; cd <- UV$V[UV$U > u]
by.counting <- length(cd[cd > v]) / length(cd) # 0.0172
by.theo <- surfuncCOP(u,v, cop=PLACKETTcop, para=5) / (1-u) # 0.0166
by.ec <- surfuncCOP(u,v, cop=EMPIRcop, para=UV) / (1-u) # 0.0189
print(1/by.theo) # conditional return period for V > 0.99 given U > 0.5
## End(Not run)

tailconCOP The Tail Concentration Function of a Copula

Description

Compute the tail concentration function (qC) of a copula C(u, v) (COP) or diagnonal (diagCOP) of
a copula δC(t) = C(t, t) according to Durante and Semp (2015, p. 74):

qC(t) =
C(t, t)

t
· 1[0,0.5) +

1− 2t+C(t, t)

1− t
· 1[0.5,1] or

qC(t) =
δC(t)

t
· 1[0,0.5) +

1− 2t+ δC(t)

1− t
· 1[0.5,1],

where t is a nonexceedance probability on the margins and 1(.) is an indicator function scoring
1 if condition is true otherwise zero on what interval t resides: t ∈ [0, 0.5) or t ∈ [0.5, 1]. The
qC(t;M) = 1 for all t for the M copula and qC(t;W) = 0 for all t for the W copula. Lastly, the
function is related to the Blomqvist Beta (βC; blomCOP) by

qC(0.5) = (1 + βC)/2,

where βC = 4C(0.5, 0.5)− 1. Lastly, the qC(t) for 0, 1 = t is NaN and no provision for alternative
return is made. Readers are asked to note some of the mathematical similarity in this function to
Blomqvist Betas in blomCOPss in regards to tail dependency.
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Usage

tailconCOP(t, cop=NULL, para=NULL, ...)

Arguments

t Nonexceedance probabilities t;

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula; and

... Additional arguments to pass to the copula function.

Value

Value(s) for qC are returned.

Author(s)

W.H. Asquith

References

Durante, F., and Sempi, C., 2015, Principles of copula theory: Boca Raton, CRC Press, 315 p.

See Also

taildepCOP, tailordCOP

Examples

tailconCOP(0.5, cop=PSP) == (1 + blomCOP(cop=PSP)) / 2 # TRUE

taildepCOP The Lower- and Upper-Tail Dependency Parameters of a Copula

Description

Compute the lower- and upper-tail dependency parameters (if they exist), respectively, of a copula
according to Nelsen (2006, pp. 214–215). Graphical confirmation of the computations is important,
and therefore, the function can also generate a plot. The dependency parameters are expressions of
conditional probability that Y is greater than the 100×th percentile of its distribution G given that
X is greater than the 100×t-th percentile of its distribution F as t approaches unity. Specifics in
terms of quantile functions G(−1)(t) = y(t) and F (−1)(t) = x(t) follow.

The lower-tail dependence parameter λLC is defined as

λLC = lim
t→0+

Pr[Y ≤ y(t) | X ≤ x(t)], and
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the upper-tail dependence parameter λUC with reversed inequalities is defined as

λUC = lim
t→1−

Pr[Y > y(t) | X > x(t)].

Nelsen (2006, p. 214) also notes that both λLC and λUC are nonparametric and depend only on the
copula ofX and Y , and Nelsen shows that each can be computed if the above limits exist as follows:

λLC = lim
t→0+

C(t, t)

t
= δ′C(0

+) and

λUC = lim
t→1−

1− 2t−C(t, t)

1− t
= 2− lim

t→1−

1−C(t, t)

1− t
= 2− δ′C(1

−),

where δ′C(t) is the derivative of the diagonal of the copula. Multiple presentations are shown be-
cause algebraic variants are shown across the literature.

If λLC ∈ (0, 1], then C has lower-tail dependence but if λLC = 0, then C has no lower-tail depen-
dence. Likewise, if λUC ∈ (0, 1], then C has upper-tail dependence but if λUC = 0, then C has no
upper-tail dependence.

Usage

taildepCOP(cop=NULL, para=NULL, tol=1e-6, divisor=2, plot=FALSE, ylim=NULL,
verbose=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

tol A tolerance on convergence;

divisor The divisor on the incremental reductions towards 0+ and 0− by the algorithm;

plot A logical plotting a diagnostic plot of the diagonal derivatives and label the
limits;

ylim Optional vertical limits if the plot is turned on. Although the dependence pa-
rameters are bounded as described above, numerical stability can be a problem.
Stability is especially a problem if an empirical copula is being used; theefore,
the bounds of the plot are left open unless the user locks them down with this
argument;

verbose Show incremental progress; and

... Additional arguments to pass to the copula function.

Value

An R list is returned.

lambdaL The rounded value of λLC;

lambdaU The rounded value of λUC;

source An attribute identifying the computational source: “taildepCOP”.
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Note

IMPLEMENTED ALGORITHM—The algorithm implemented for taildepCOP is based on halves
(or alternatives by the setting of divisor argument) and uses the copula function (not an analytical
or even numeric derivative of the diagonal, δ′C(t)). Starting from the median or t = 0.5, each limit
is respectively computed by successive halving (or the setting of argument divisor) of the distance
towards 0+ and 1− and checking the change in computed value against the tolerance tol argument.
After the change becomes less than the tolerance, convergence is assumed. Other tests are made for
NaN to aid in breaking the successive halvings. The rounding for the numerical results for λUC and
λLC is an order of magnitude larger than the tolerance.

Users are encouraged to plot the results and further verify whether the convergence makes sense.
The plot produced when plot=TRUE shows the probability t transformed into standard normal vari-
ates by the qnorm() function in R so that the distal reaches of each tail and thus limit are readily
seen. The terminal points of each limit computation are shown by a small dot and the letter “L” and
“U” also are plotted at the terminal points.

Joe (2014, p. 63) reports that “the empirical measure of tail dependence [λ̂LC or λ̂UC] for data does
not really exist because of the limit.” Joe (2014) suggests that other sources in the literature are
the “best that can be done” (Dobrić and Schmid, 2005; Frahm et al., 2005). Another source of
discussion is by Schmidt and Stadtmüller (2006). The results therein are not yet followed up for
the copBasic package. Picking up the simulation dealt with extensively in the Note section of
vuongCOP, a user might try this:

set.seed(385); n <- 390
UV <- simCOP(cop=PSP, n=n, col=8, pch=16, graphics=FALSE)
taildepCOP(cop=EMPIRcop, para=UV, plot=TRUE, divisor=8, ylim=c(0,1))
taildepCOP(cop=PSP) # lower=0.5, upper=0

The returned tail dependency parameters are numerically of little importance and in strict terms
likely misleading. What should be of interest are the plotted trajectories of the lower and upper
lines. Note: the lower tail wobbles but seems to show stability towards near λ̂LC = 0.5 and upper-
tail line wobbles downward towards λ̂UC = 0. These values are, respectively, the tail dependencies
of the PSP copula (PSP). A user might try increasing the sample size by an order of magnitude and
rerunning the above code. Lastly, Salvadori et al. (2006, pp. 173–175) caution on the difficulties of
nonparametric tail dependency estimation. Given objectives of the copBasic package, estimation
of λ̂LC and λ̂UC, therefore, is an open development opportunity.

DEMONSTRATION (Tail Dependence)—The following example shows a comparison between early
code examples by Charpentier (2012) concerning copulas and tail dependence using real-world data.
Consider the lossalae data set and the following code requiring the evd package:

library(evd); X <- lossalae # Charpentier (2012)
library(copBasic)
fakeU <- lmomco::pp(X[,1],sort=FALSE,a=0) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(X[,2],sort=FALSE,a=0) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # parameter "object" for Empirical copula
plot(uv)
TD <- taildepCOP(cop=EMPIRcop, para=uv, divisor=25,

plot=TRUE, ylim=c(0, 7/10))
U <- rank(X[,1])/(nrow(X)+1); V <- rank(X[,2])/(nrow(X)+1)# Charpentier(2012)
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Lemp <- function(z) sum((U<=z) & (V<=z)) / sum(U<=z )# Charpentier(2012)
Remp <- function(z) sum((U>=1-z) & (V>=1-z)) / sum(U>=1-z)# Charpentier(2012)
u <- seq(0.001, 0.5, by=.001) # Charpentier(2012)
L <- Vectorize(Lemp)(u); R <- Vectorize(Remp)(rev(u)) # Charpentier(2012)
lines(qnorm(c(u, u + 0.5 - u[1])), c(L,R)) # modified after Charpentier(2012)
legend("bottomright", c("Lower-tail dependency by taildepCOP()",

"Upper-tail dependency by taildepCOP()",
"Charpentier (2012)"), bty="n", cex=0.9,
lwd=1, lty=1, col=c("red", "blue", "black"))

The figure that will have been generated shows considerably similarity to that from the algorithms
of Charpentier. Now, let us extend the discussion by using the Blomqvist (Schmid–Schmidt) Betas
(blomCOPss) that have a formulation permitting lower- and upper-tail dependency parameters in a
different manner than the definitions of this documentation for taildepCOP.

edge <- 30 * 1 / (1+nrow(X)) # as few as 30 samples into the tails
psl <- pnorm(seq(0, qnorm( edge), by=-0.005))
psu <- pnorm(seq(0, qnorm(1-edge), by= 0.005))
lines(qnorm(psl),

sapply(psl, function(p) { blomCOPss(as.sample=TRUE, para=uv,
ctype="checkerboard", uu=rep(p, 2), vv=c(1,1)) }),
col="darkgreen", lty=1, lwd=2)

lines(qnorm(psu),
sapply(psu, function(p) { blomCOPss(as.sample=TRUE, para=uv,

ctype="checkerboard", uu=c(0,0), vv=rep(p, 2)) }),
col="darkgreen", lty=1, lwd=2)

points(0, blomCOP(as.sample=TRUE, para=uv), pch=16, col="magenta", cex=2)
legend("topleft", c("Tail dependency by Blomqvist (Schmid-Schmidt) Betas",

"Blomqvist Beta C(1/2, 1/2)"),
bty="n", cex=0.9, lwd=2, lty=c(1,NA), pch=c(NA,16),
pt.cex=c(NA,2), col=c("darkgreen", "magenta"))

The thick green lines show that the dependency parameters to the left and right are approached
along a different trajectory using the definitions in blomCOPss. It seems at some stage in analysis
that the practioner will need to decide how deep into the tail the sample will permit for a reliable
estimate of the dependency parameters. Blomqvist Beta (β̂C) (blomCOP is shown as the magenta dot
at the median and henceforth from do the trajectories of λ̂Lβ⋄

C
and λ̂Uβ⋄

C
extend as their limp → 0+.

Ultimately, for the data shown in the figure, perhaps the λ̂LC = 0.1 and the λ̂UC = 0.3 and a
parametric copula fitted in part to such values.

Author(s)

W.H. Asquith

References

Charpentier, A., 2012, Copulas and tail dependence, part 1: R-bloggers, dated Sept. 17, 2012,
accessed on February 2, 2019 at
https://www.r-bloggers.com/2012/09/copulas-and-tail-dependence-part-1/

https://www.r-bloggers.com/2012/09/copulas-and-tail-dependence-part-1/
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See Also

COP, tailconCOP, tailordCOP, blomCOPss

Examples

# Plot the tail dependencies by nonexceedance probability for a
# for a positive association Plackett copula and see that both are zero.
taildepCOP(cop=PLACKETTcop, para=3, plot=TRUE)
# So, Plackett has no tail dependency, as Nelsen (2006, p. 215) shows.

## Not run:
"MOcop" <- function(u,v, para=NULL) { # Marshall-Olkin copula

alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
} # The results that follow match those reported by Nelsen (2006, p. 215).
taildepCOP(cop=MOcop, para=c(0.4, 0.9)) # LambL = 0, LambU = 0.4 [min(alpha,beta)]
## End(Not run)

## Not run:
# Analytical solution to Gumbel-Hougaard copula from the copula package:
copula::lambda(copula::gumbelCopula(3))
# lower upper
# 0.000000 0.740079
# Numerical approximation (see copBasic::GHcop for analytical formula):
as.data.frame(taildepCOP(GHcop, para=3))
# lambdaL lambdaU source
#1 0.00012 0.74008 taildepCOP
## End(Not run)

## Not run:
# Plot the tail dependencies by nonexceedance probability
# for the PSP copula, which has lower but no upper-tail dependence.
taildepCOP(cop=PSP, para=NULL, plot=TRUE) # LambL=0.5, LambU=0
# which is readily confirmed by simCOP(1000, cop=PSP)
# Nelsen (2006, p. 216) reports that this copula has LambL=1/2 and LambU=0,
# and we get the same results here.

# How about some composited Plackett-Plackett copulas?
# Each has upper- and lower-tail dependence parameters equal to zero.
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para <- list( cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=0.9392,
para1=0.00395, para2=4.67, beta=0.5699)

taildepCOP(cop=composite2COP, para=para, plot=TRUE, verbose=TRUE) #
## End(Not run)

## Not run:
# This next Plackett-Plackett is interesting because at its core it looks
# like it should be both tail dependent like M() but the shapes of the curves
# are quite different from those of M(). This example shows numerical
# instability for the upper tail but not the lower tail. So, we extend the
# example to shown the tail dependency trajectories by blomCOPss(). And again
# it is seen that the lower tail as a stable solution but the upper tail
# has instability at 6 standard deviations into the upper tail.
para <- list( cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=0.0063,

para1=0.101, para2=4493, beta=0.0167)
taildepCOP(cop=composite2COP, para=para, plot=TRUE)
lsu <- pnorm(seq(-7, 0, by=.01))
psu <- pnorm(seq( 0, 7, by=.01))
lines(qnorm(lsu), sapply(lsu, function(p) {

blomCOPss(cop=composite2COP, para=para, vv=c(1,1), uu=rep(p, 2)) }),
col="darkgreen", lty=2, lwd=1)

lines(qnorm(psu), sapply(psu, function(p) {
blomCOPss(cop=composite2COP, para=para, uu=c(0,0), vv=rep(p, 2)) }),

col="darkgreen", lty=2, lwd=1) #
## End(Not run)

tailordCOP The Lower- and Upper-Tail Orders of a Copula

Description

Compute the lower- and upper-tail orders (if they exist), respectively, of a copula C(u, v) according
to Joe (2014, pp. 67–70). The tail order is a concept for the strength of dependence in the joint
tails of a multivariate distribution. The opposing tails can be compared to assess tail order or
reflection symmetry (term by Joe (2014) for Nelsen’s (2006, p. 36) term radial symmetry). Joe
(2014) provides extensively analytical details but sufficient for the copBasic package, the tail orders
can be numerically explored.

The lower-tail order maybe numerically approximated by

κLC =
log[C(t, t)]

log(t)
,

for some small positive values of t, and similarly the upper-tail order maybe numerically approxi-
mated by

κUC =
log[Ĉ(t, t)]

log(t)
,

where Ĉ(u, v) is the survival copula (surCOP). Joe (2014) has potentially(?) conflicting notation in
the context of the upper-tail order; the term “reflection” is used (p. 67) and “lower tail order of the
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reflected copula is the same as the upper tail order of the original copula” (p. 69), but Joe (2014, p.
67) only uses the joint survival function (surfuncCOP) in the definition of κUC.

As a note, the author of this package was not able to get tailordCOP to function properly for the
upper-tail order using the joint survival function as implied on the bottom of Joe (2014, p. 67) and
fortunately the fact that “reflection” is used in other contexts and used in analytical examples, the
tailordCOP function uses the lower-tail order of the reflection (survival copula). Joe (2014) also
defines tail order parameter Ψ but that seems to be a result of analytics and not implemented in
this package. Lastly, the tail orders are extendable into d dimensions, but only a bivariate (d = 2)
is provided in copBasic. The tail orders have various classifications for κ = κL = κU :

• Intermediate tail dependence for 1 < κ < d or κ = 1,Ψ = 0;

• Strong tail dependence for κ = 1 with Ψ > 0; and

• Tail orthant independence or tail quadrant independence for κ = d.

Joe (2014) provides additional properties:

• κL = κU = d for the d-dimensional independence copula (P; e.g. tailordCOP(cop=P));

• It is not possible for κL < 1 or κU < 1 but each can be > 1 for a C(u, v) having some negative
dependence (e.g. tailordCOP(cop=PLACKETTcop, para=0.2); see PLACKETTcop); and

• For the bivariate Fréchet–Hoeffding lower-bound copula (W; countermonotonicity copula) the
κL = κU and can be considered +∞. (A special trap in the tailordCOP provides consistency
on W but does not test that the copula is actually that function itself.)

Usage

tailordCOP(cop=NULL, para=NULL, tol=1e-6, plot=FALSE, verbose=FALSE, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

tol A tolerance on convergence;

plot A logical plotting a diagnostic plot of the diagonal derivatives and label the
limits;

verbose Show incremental progress; and

... Additional arguments to pass to the copula function.

Value

An R list is returned.

kappaL The rounded value of κLC;

kappaU The rounded value of κUC;

source An attribute identifying the computational source: “tailordCOP”.
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Note

The algorithm implemented for tailordCOP is based on halves (or alternatives by the setting of the
divisor argument) and uses the copula function (not an analytical or even numerical derivative of
the diagonal, δ′C(t)). Starting from the median or t = 0.5, each limit is respectively computed by
successive halving of the distance towards 0+ and checking the change in computed value against
the tolerance tol argument. After the change becomes less than the the tolerance, convergence is
assumed. Other tests are made for NaN to aid in breaking the successive halvings. The rounding for
the numerical results for κUC and κLC is an order of magnitude larger than the tolerance.

Users are encouraged to plot the results and further verify whether the convergence makes sense.
The plot produced when plot=TRUE shows the probability t transformed into standard normal vari-
ates by the qnorm() function in R so that the distal reaches of each tail and thus limit are readily
seen. The terminal points of each limit computation are shown by a small dot, and the letter “L”
and “U” also are plotted at the terminal points.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

COP, tailconCOP, taildepCOP

Examples

## Not run:
# Joe (2014, p. 5) names MTCJ = Mardia-Takahasi-Cook-Johnson copula
"MTCJ" <- function(u,v, para) { (u^(-para) + v^(-para) - 1)^(-1/para) }
# The results that follow match those reported by Joe (2014, p. 69) who
# analytically derives KappaL = 1 and KappaU = 2.
# TAIL ORDER:
tailordCOP(cop=MTCJ, para=3, plot=TRUE) # kappaL = 1.00667, kappaU = 1.96296
# TAIL DEPENDENCY:
taildepCOP(cop=MTCJ, para=3, plot=TRUE) # lambdaL = 0, lambdaU = 0.7937
# Joe (2014) reports lambdaL = 2^(-1/para) = 2^(-1/3) = 0.7937005
## End(Not run)

tauCOP The Kendall Tau and Concordance Function of a Copula
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Description

Compute the measure of association known as the Kendall Tau (τC) of a copula (τC) according to
Nelsen (2006, sec. 5.1.1 and p. 161) by

τC = Q(C,C) = 4

∫ ∫
I2

C(u, v) dC(u, v)− 1,

where Q(C,C) is a concordance function (concordCOP) of a copula with itself. Nelsen (2006, p.
164) reports however that this form is often not amenable to computation when there is a singular
component to the copula and that the expression

τC = 1− 4

∫ ∫
I2

δC(u, v)

δu

δC(u, v)

δv
dudv

is to be preferred. Such an expression hence relies on the partial numerical derivatives of the copula
provided by derCOP and derCOP2. The Nelsen (2006) preferred expression is used by the tauCOP
function. Nelsen (2006, pp. 175–176) reports that the relation between τC and ρC (rhoCOP) is
−1 ≤ 3τ − 2ρ ≤ 1 (see rhoCOP for more details).

Nelsen (2006, pp. 160–161) lists some special identities involving Q(C1,C2):

Q(M,M) = 4

∫ 1

0

udu− 1 = 1,

Q(M,Π) = 4

∫ 1

0

u2 du− 1 = 1/3,

Q(M,W) = 4

∫ 1

1/2

(2u− 1) du− 1 = 0,

Q(W,Π) = 4

∫ 1

0

u(1− u) du− 1 = −1/3,

Q(W,W) = 4

∫ 1

0

0 du− 1 = −1, and

Q(Π,Π) = 4

∫ ∫
I2

uv dudv − 1 = 0.

Kendall Tau also can be expressed in terms of the Kendall Function (FK(z); kfuncCOP):

τC = 3− 4

∫ 1

0

FK(t) dt,

which is readily verified by code shown in Examples. This definition might be useful if integration
errors are encountered for some arbitrary copula and arbitrary parameter set. In fact, should two
attempts (see source code) at dual integration of the partial derivatives occur, the implementation
switches over to integration of the Kendall Function (e.g. tauCOP(cop=N4212cop, para=2)). Note,
Durante and Sempi have erroneously dropped the multiplication by “4” as shown above in their
definition of τC as a function of FK(t) (Durante and Sempi, 2015, eq. 3.9.4, p. 121).
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Usage

tauCOP( cop=NULL, para=NULL,
cop2=NULL, para2=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)

concordCOP(cop=NULL, para=NULL, cop2=NULL, para2=NULL, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

cop2 A second copula function;

para2 Vector of parameters or other data structure, if needed, to pass to the second
copula;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the τ̂ by dispatch to cor() function in R with method = "kendall";

brute Should brute force be used instead of two nested integrate() functions in R
to perform the double integration;

delta The du and dv for the brute force integration using brute; and

... Additional arguments to pass on to derCOP and derCOP2.

Value

The value for τC is returned.

Note

Although titled for computation of the Kendall Tau, the tauCOP function also is the implementation
of the concordance function Q(C1,C2) (see Nelsen (2006, pp. 158–159) when given two differ-
ent copulas and respective parameters as arguments. The function concordCOP just dispatches to
tauCOP. A useful relation is∫ ∫

I2

C1(u, v) dC2(u, v) =
1

2
−
∫ ∫

I2

δ

δu
C1(u, v)

δ

δv
C2(u, v) dudv,

where C1(u, v) is the first copula and C2(u, v) is the second copula.

Nelsen et al. (2001, p. 281) lists several measures of association defined by the concordance
function:
1. τC = Q(C,C) : (Kendall Tau; tauCOP);
2. ρC = 3 · Q(C,Π) : (Spearman Rho; rhoCOP);
3. γC = 2 · Q(C, [M+W]/2) : (Gini Gamma; giniCOP); and
4. ψC = 3

2 · Q(C,M)− 1
2 : (Spearman Footrule; footCOP).

Author(s)

W.H. Asquith
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References
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See Also

blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, wolfCOP, joeskewCOP, uvlmoms, derCOP, derCOP2,
kfuncCOP

Examples

## Not run:
tauCOP(cop=PSP) # 1/3
# Now compute Kendall Tau via integration of the Kendall Function.
# 3 - 4*integrate(function(t) kfuncCOP(t, cop=PSP), 0, 1)$value # 0.3333314
## End(Not run)

## Not run:
tauCOP(cop=PSP, brute=TRUE) # 0.3306625
# CPU heavy example showing that the dual-integration (fast) results in
# a Kendall Tau that matches a sample version
dotau <- function(n) {

uv <- simCOP(n=n, cop=PSP, ploton=FALSE, points=FALSE)
return(cor(uv$U, uv$V, method="kendall"))

}
set.seed(817600)
taus <- replicate(100, dotau(100))
tau.sample <- mean(taus); print(tau.sample) # 0.3342034
## End(Not run)

## Not run:
# Nelsen (2006, pp. 160-161, numeric results shown thereine)
# The rational values or integers may be derived analytically.
tauCOP(cop=M, cop2=M) # 1, correct
tauCOP(cop=M, cop2=P) # 1/3, correct
tauCOP(cop=P, cop2=M) # 1/3, correct
tauCOP(cop=M, cop2=W) # 0, correct
tauCOP(cop=W, cop2=M) # throws warning, swaps copulas, == tauCOP(M,W)
tauCOP(cop=W, cop2=P) # throws warning, swaps copulas, approx. -1/3
tauCOP(cop=P, cop2=W) # -1/3, correct
tauCOP(cop=P, cop2=P) # 0, correct
tauCOP(cop=M, cop2=W, brute=TRUE) # 0, correct
## End(Not run)

## Not run:
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,

para1=0.00395, para2=4.67, alpha=0.9392, beta=0.5699)
tauCOP(cop=composite2COP, para=para) # -0.4671213
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para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.14147, para2=20.96, alpha=0.0411, beta=0.6873)

tauCOP(cop=composite2COP, para=para) # +0.1950727

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.10137, para2=4492.87, alpha=0.0063, beta=0.0167)

# Theoretical attempt fails because para2 is large and thus a singularity
# is emerging and internal copula swapping does not help.
tauCOP(cop=composite2COP, para=para) # fails (0.94+-.01)
tauCOP(cop=composite2COP, para=para, brute=TRUE) # about 0.94+-.01
## End(Not run)

tEVcop The t-EV (Extreme Value) Copula

Description

The t-EV copula (Joe, 2014, p. 189) is a limiting form of the t-copula (multivariate t-distribution):

Cρ,ν(u, v) = tEV(u, v; ρ, ν) = exp
(
−(x+ y)×B(x/(x+ y); ρ, ν)

)
,

where x = − log(u), y = − log(v), and letting η =
√

(ν + 1)/(1− ρ2) define

B(w; ρ, ν) = wTν+1

(
η[(w/[1− w])1/ν − ρ]

)
+ (1− w)Tν+1

(
η[([1− w]/w)1/ν − ρ]

)
,

where Tν+1 is the cumulative distribution function of the univariate t-distribution with ν−1 degrees
of freedom. As ν → ∞, the copula weakly converges to the Hüsler–Reiss copula (HRcop) because
the t-distribution converges to the normal (see Examples for a study of this copula).

The tEV(u, v; ρ, ν) copula is a two-parameter option when working with extreme-value copula.
There is a caveat though. Demarta and McNeil (2004) conclude that “the parameter of the Gumbel
[GHcop] or Galambos [GLcop] A-functions [the Pickend dependence function and B-function by
association] can always be chosen so that the curve is extremely close to that of the t-EV A-function
for any values of ν and ρ. The implication is that in all situations where the t-EV copula might be
deemed an appropriate model then the practitioner can work instead with the simpler Gumbel or
Galambos copulas.”

Usage

tEVcop(u, v, para=NULL, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A vector (two element) of parameters in ρ and ν order; and

... Additional arguments to pass.
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Value

Value(s) for the copula are returned.

Note

Note, Joe (2014) shows x = log(u) (note absence of the minus sign). This is not correct.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Demarta, S., and McNeil, A.J., 2004, The t copula and related copulas: International Statistical
Review, v. 33, no. 1, pp. 111–129, doi:10.1111/j.17515823.2005.tb00254.x

See Also

GHcop, GLcop, HRcop

Examples

## Not run:
tau <- 1/3 # Example from copula::evCopula.Rd
tev.cop <- copula::tevCopula(copula::iTau(copula::tevCopula(), tau))
copula::pCopula(c(0.1,.5), copula=tev.cop) # 0.07811367
tEVcop(0.1, 0.5, para=slot(tev.cop, "parameters")) # 0.07811367
## End(Not run)

## Not run:
nsim <- 2000; pargh <- c(5, 0.5, 0.5)
UV <- simCOP(nsim, cop=GHcop, para=pargh)
U <- lmomco::pp(UV[,1], sort=FALSE)
V <- lmomco::pp(UV[,2], sort=FALSE)
RT <- mleCOP(u=U, v=V, cop=tEVcop, init.para=c(0.5,log(4)),

parafn=function(k) return(c(k[1], exp(k[2]))))
partev <- RT$para

FT <- simCOP(nsim, cop=tEVcop, para=RT$para)

tauCOP(cop=GHcop, para=pargh )
tauCOP(cop=tEVcop, para=partev)

tauCOP(cop=GHcop, para=pargh ) # [1] 0.3003678
tauCOP(cop=tEVcop, para=partev) # [1] 0.3178904

densityCOPplot(cop=GHcop, para=pargh)
densityCOPplot(cop=tEVcop, para=partev, ploton=FALSE, contour.col="red") #
## End(Not run)

https://doi.org/10.1111/j.1751-5823.2005.tb00254.x
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## Not run:
# A demonstration Joe (2014, p. 190) for which tEvcop() has
# upper tail dependence parameter as
para <- c(0.8, 10)
lamU <- 2*pt(-sqrt((para[2]+1)*(1-para[1])/(1+para[1])), para[2]+1)
"tEVcop.copula" <- function(u,v, para=NULL, ...) {

if(length(u)==1) u<-rep(u,length(v)); if(length(v)==1) v<-rep(v,length(u))
return(copula::pCopula(matrix(c(u,v), ncol=2),

tevCopula(param=para[1], df=para[2])))
}
lamU.copBasic <- taildepCOP(cop=tEVcop, para)$lambdaU
lamU.copula <- taildepCOP(cop=tEVcop.copula, para)$lambdaU
print(c(lamU, lamU.copBasic, lamU.copula))
#[1] 0.2925185 0.2925200 0.2925200 # So, we see that they all match.
## End(Not run)

## Not run:
# Convergence of tEVcop to HRcop as nu goes to infinity.
nu <- 10^(seq(-4, 2, by=0.1)) # nu right end point rho dependent
rho <- 0.7 # otherwise, expect to see 'zeros' errors on the plot()
# Compute Blomqvist Beta (fast computation is reason for choice)
btEV <- sapply(nu, function(n) blomCOP(tEVcop, para=c(rho, n)))
limit.thetas <- sqrt(2 / (nu*(1-rho))) # for nu --> infinity HRcop
thetas <- sapply(btEV, function(b) {

uniroot(function(l, blom=NA) { blom - blomCOP(HRcop, para=l) },
interval=c(0,10), blom=b)$root })

plot(limit.thetas, thetas, log="xy", type="b",
xlab="Theta of HRcop via limit nu --> infinity",
ylab="Theta from Blomqvist Beta equivalent HRcop to tEVcop")

abline(0,1)
mtext(paste0("Notice the 'weak' convergence to lower left, and \n",

"convergence increasing with rho"))
# Another reference of note
# https://mediatum.ub.tum.de/doc/1145695/1145695.pdf (p.39) #
## End(Not run)

uvlmoms Bivariate Skewness after Joe (2014) or the Univariate L-moments of
Combined U and V

Description

Joe (2014, pp. 65–66) suggests two quantile-based measures of bivariate skewness defined for
uniform random variables U and V combined as either ψu+v−1 = u+ v − 1 or ψu−v = u− v for
which the E[u] = E[v] = 0. The bivariate skewness is the quantity η:

η(p;ψ) =
x(1− p)− 2x( 12 ) + x(p)

x(1− p)− x(p)
,
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where 0 < p < 1
2 , x(F ) is the quantile function for nonexceedance probability F for either the

quantities X = ψu+v−1 or X = ψu−v using either the empirical quantile function or a fitted
distribution. Joe (2014, p. 66) reports that p = 0.05 to “achieve some sensitivity to the tails.” How
these might be related (intuitively) to L-coskew (see function lcomoms2() of the lmomco package)
of the L-comoments or bivariate L-moments (bilmoms) is unknown, but see the Examples section
of joeskewCOP.

Structurally the above definition for η based on quantiles is oft shown in comparative literature
concerning L-moments. But why stop there? Why not compute the L-moments themselves to
arbitrary order for η by either definition (the uvlmoms variation)? Why not fit a distribution to the
computed L-moments for estimation of x(F )? Or simply compute “skewness” according to the
definition above (the uvskew variation).

Usage

uvlmoms(u,v=NULL, umv=TRUE, p=NA, type="gno", getlmoms=TRUE, ...)

uvskew( u,v=NULL, umv=TRUE, p=0.05, type=6, getlmoms=FALSE, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction and if NULL then u is treated as
a two column R data.frame;

umv A logical controlling the computation of ψ: ψ = u − v (umv = TRUE) or ψ =
u+ v − 1 (umv = FALSE). The "m" is to read “minus”;

p A suggested p value is p = 0.05. If is.na(NA), then getlmoms is set to TRUE
(see below);

type The type argument is mutable, and is a syntax match to the canoncial use in
package lmomco. Variation from that package however is permitted. Either
type is an integer between 1 and 9 selecting one of the nine quantile algorithms
described for the quantile function in R. The default 6 uses the Weibull plot-
ting positions and differs from the R default of 7. Otherwise type must be
a valid distribution abbreviation for the lmomco package as in the abbreviation
list dist.list function of that package. The gno shown as a default for the gen-
eralized normal distribution (see distribution type "gno" in package lmomco);

getlmoms A logical triggering whether the L-moments of either ψu+v−1 or ψu−v are re-
turned instead computing the above definition of “skewness;” and

... Additional arguments to pass to the lmomco function lmoms, such as the number
of L-moments nmoms.

Value

An R list of the univariate L-moments of η is returned (see documentation for lmoms in the
lmomco package). Or the skewness of η can be either (1) based on the empirical distribution based
on plotting positions by the quantile function in R using the type as described, or (2) based on
the fitted quantile function for the parameters of a distribution for the lmomco package.
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Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for
statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

COP

Examples

## Not run:
set.seed(234)
UV <- simCOP(n=100, cop=GHcop, para=1.5, graphics=FALSE)
lmr <- uvlmoms(UV); print(lmr) # L-kurtosis = 0.16568268
uvskew(UV, p=0.10) # -0.1271723
uvskew(UV, p=0.10, type="gno") # -0.1467011
## End(Not run)

## Not run:
pss <- seq(0.01,0.49, by=0.01)
ETA <- sapply(1:length(pss), function(i) uvskew(UV, p=pss[i], type=5, uvm1=FALSE) )
plot(pss, ETA, type="l", xlab="P FACTOR", ylab="BIVARIATE SKEWNESS") #
## End(Not run)

vuongCOP The Vuong Procedure for Parametric Copula Comparison

Description

Perform the Vuong Procedure following Joe (2014, pp. 257–258). Consider two copula densities
f1 = c1(u, v; Θ1) and f2 = c2(u, v; Θ2) for two different bivariate copulas C1(Θ1) and C2(Θ2)
having respective parameters Θ1 and Θ2 that provide the “closest” Kullback–Leibler Divergence
from the true copula density g(u, v).

The difference of the Kullback–Leibler Divergence (kullCOP) of the two copulas from the true
copula density can be measured for a sample of size n and bivariate sample realizations {ui, vi} by

D̂12 = n−1
n∑

i=1

Di,

where D̂12 is referred to in the copBasic package as the “Vuong D” and Di is defined as

Di = log

[
f1(ui, vi; Θ2)

f2(ui, vi; Θ1)

]
.
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The variance of D̂12 can be estimated by

σ̂2
12 = (n− 1)−1

n∑
i=1

(Di − D̂12)
2.

The sample estimate and variance are readily turned into the 100×(1− α) confidence interval by

D̂
(lo)
12 < D̂12 < D̂

(hi)
12 ,

where, using the quantile (inverse) function of the t-distribution ∼ T (−1)(F ; df=(n−2)) for nonex-
ceedance probability F and n − 2 degrees of freedom for n being the sample size, the confidence
interval is

D̂12 − T (−1)(1− α/2)×σ̂12/
√
n < D̂12 < D̂12 + T (−1)(1− α/2)×σ̂12/

√
n.

Joe (2014, p. 258) reports other interval forms based (1) on the Akaike (AIC) correction and (2) on
the Schwarz (BIC) correction, which are defined for AIC as

AIC = D̂12 − (2n)−1 log(n)

[
dim(Θ2)− dim(Θ1)

]
± T (−1)(1− α/2)×σ̂12/

√
n,

and for BIC as

BIC = D̂12 − (2n)−1 log(n)

[
dim(Θ2)− dim(Θ1)

]
± T (−1)(1− α/2)×σ̂12/

√
n.

The AIC and BIC corrections incorporate the number of parameters in the copula and for all else
being equal the copula with the fewer parameters is preferable. If the two copulas being compared
have equal number of parameters than the AIC and BIC equate to D̂12 and the same confidence
interval because the difference [dim(Θ2)− dim(Θ1)] is zero.

Joe (2014, p. 258) reports that these three intervals can be used for diagnostic inference as follows.
If an interval contains 0 (zero), then copulas C1(Θ1) and C2(Θ2) are not considered significantly
different. If the interval does not contain 0, then copula C1(Θ1) or C2(Θ2) is the better fit depend-
ing on whether the interval is completely below 0 (thus C1(Θ1) better fit) or above 0 (thus C2(Θ2)
better fit), respectively. Joe (2014) goes on the emphasize that “the procedure compares different
[copulas] and assesses whether they provide similar fits to the data. [The procedure] does not assess
whether [either copula] is a good enough fit.”

Usage

vuongCOP(u, v=NULL, cop1=NULL, cop2=NULL, para1=NULL, para2=NULL,
alpha=0.05, method=c("D12", "AIC", "BIC"),
the.zero=.Machine$double.eps^0.25, ...)

Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction and if NULL then u is treated as
a two column R data.frame;

cop1 A copula function corresponding to copula f1 in the Vuong Procedure;
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para1 Vector of parameters or other data structure, if needed, to pass to the copula f1;

cop2 A copula function corresponding to copula f2 in the the Vuong Procedure;

para2 Vector of parameters or other data structure, if needed, to pass to the copula f2;

alpha The α in the Vuong Procedure, which results in the 100×(1 − α) confidence
interval (two sided);

method The interval to evaluate as to position of the respective statistic form the com-
parison of the two copulas;

the.zero The value for “the zero” of the copula density function. This argument is the
argument of the same name for densityCOP. The default here is intended to
suggest that a tiny nonzero value for density will trap the numerical zero densi-
ties; and

... Additional arguments to pass to the densityCOP function.

Value

An R list is returned having the following components:

title A descriptive title of the procedure;

method A textual description of the method setting;

result.text A textual description of the result of the Vuong Procedure;

result A value 1 if C1(Θ1) is better fit, 2 if copula C2(Θ2) is better fit, and 0 if
neither is better (D̂12 = 0), and NA including the likely(?) erroneous situation of
C1(Θ1) ≡ C2(Θ2);

p.value The two-sided p-values of the Vuong Procedure inclusive of AIC and BIC;

D12 A named vector of the lower and upper bounds of Vuong D at the respective
confidence interval percentage along with D̂12 and σ2

12;

AIC A named vector of the lower and upper bounds of Vuong AIC at the respective
confidence interval percentage;

BIC A named vector of the lower and upper bounds of Vuong BIC at the respective
confidence interval percentage; and

parameters A named vector of the alpha, sample size, value for the t-distribution quantile
qt(1-alpha/2, df=n), and σ̂12.

Note

The vuongCOP function along with kullCOP and features of function densityCOPplot represent
collective milestones towards copula inference and diagnostics post fitting of copulas to the usual
measures of association such as the Kendall Tau (τK) and Spearman Rho (ρS) and their copula
counterparts τC (tauCOP) and ρC (rhoCOP).

For an example application, imagine a problem of say low springflow risk at “nearby springs” that
jointly should converge in the lower tail because drought usually has a strong regional impact. First,
it is necessary to form a reflection of the Gumbel–Hougaard copula (GH(u, v; ΘGH); GHcop) but
parameter estimation using τC is the same because sample τ̂K is invariant to reflection.



vuongCOP 319

"rGHcop" <- function(u,v, ...) { u + v - 1 + GHcop(1-u, 1-v, ...) }
set.seed(385) # setting so that reported quantities here are reproducible

The prior code also sets a seed on the pseudo-random number generator so that reported values here
are reproducible. The reflected GH(u, v; ΘGH) is denoted rGH(u, v; ΘrGH).

Second, the PSP(u, v) copula (PSP) is chosen as the parent distribution, and this copula has no
parameter. The PSP has lower-tail dependency, which will be important as discussion unfolds. The
following two lines of code establish a sample size to be drawn from the PSP and then simulates a
sample from that copula. The color grey is used for the simulated values on the figure produced by
simCOP, which forms a background example of the joint structure of the PSP copula.

n <- 390
UV <- simCOP(cop=PSP, n=n, col=8, pch=16) # simulate and form the base image

By inspection of the so-produced graphic, it is obvious that there is contraction in the lower-left cor-
ner of the plot, which is a geometric representation of tail dependency. The lower-tail dependency
thus phenomenalogically says that there is joint interconnect during low springflow conditions—
both springs are likely to be at low flow simultaneously. The variable UV contains the bivariate data
as uniform variables (nonexceedance probabilities u and v).

The Plackett copula (PL(u, v; ΘPL); PLACKETTcop) and the rGH(u, v; ΘrGH) copula are chosen
as candidate models of the “unknown” parent. Both PL and rGH copulas use different “measures
of association” for their parameter estimation. Next, sample estimates of the copula parameters
using Schweizer and Wolff Sigma σ̂C. The sample value computations and parameter estimates also
are set as shown in the following code:

Wolf <- wolfCOP(para=UV, as.sample=TRUE) # 0.496943
paraPL <- uniroot(function(p)

Wolf - wolfCOP(cop=PLACKETTcop, para=p), c(1,30))$root
paraGH <- uniroot(function(p)

Wolf - wolfCOP(cop=rGHcop, para=p), c(1,30))$root

STEP 1—Compute Kullback–Leibler sample size: The Kullback–Leibler Divergences (KL(f |g)
and KL(g|f)) are computed (kullCOP) for the evaluation of the sample size as appropriate for dis-
tinguishing between the two candidate copulas 95 percent of the time. The Kullback–Leibler sample
size (nfg) also is computed as the following code illustrates and provides additional commentary.

KL <- replicate(20, kullCOP(cop1=PLcop, para1=paraPL, # CPU intensive
cop2=rGHcop, para2=paraGH, n=1E5)$KL.sample.size)

print(round(mean(KL))) # n_{fg} = 221 sample size
print( range(KL)) # 204 <-- n_{fg} --> 252 sample size range

Depending on the sample σ̂C coming from the simulation of the parent PSP copula, the call to
kullCOP will likely report different nfg values because nfg(C1(Θ1),C1(Θ1). These sample sizes
have a range for 20 replications of about nfg = 204−252. The result here is nfg = 221 and thus
the sample size n = 390 should be more than large enough to generally distinguish between
the PL and rGH copulas at the respective sample measure of association.
STEP 2—Perform the Vuong Procedure: The Vuong Procedure can now be completed. Now watch
the copula and parameter order in the next code for mistakes, the author has purposefully switched
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order here to draw attention to the need to make sure argument cop1 has the correct parameter(s) for
copula 1 (the PL). The two calls to simCOP are made to graphically superimpose these simulations
on top of the parent PSP.

VD <- vuongCOP(UV, cop2=rGHcop, para2=paraGH, cop1=PLcop, para1=paraPL)
print(VD) # "Copula 2 better" or rGHcop (Gumbel-Hougaard is better)
set.seed(385) # seems harmless enough to reuse the seed to emphasize "fit"
TMP <-simCOP(cop=PLcop, para=paraPL,n=n,plot=FALSE,col="red", pch=16,cex=0.5)
set.seed(385) # seems harmless enough to reuse the seed to emphasize "fit"
TMP <-simCOP(cop=rGHcop,para=paraGH,n=n,plot=FALSE,col="green",pch=16,cex=0.5)
rm(TMP) # just cleaning up the workspace.

Further discussion of the Vuong Procedure is informative. Simply speaking, the result is that the
rGH (copula 2) has better fit than PL (copula 1). The 95-percent confident limits from the
procedure for D̂12 = 0.049 with p-value 0.0012, σ̂12 = 0.297, and n = 390 are 0.0194 < D̂12 <
0.0786. This interval does not contain zero and is greater than zero and therefore a conclusion may
be drawn that copula 2 has the better fit.

STEP 3—Comparison of lower-tail dependency parameters: What does the tail dependency do
for inference? This can be checked by computing the lower-tail dependency parameters (λLC;
taildepCOP) in the code that follows for each of the three copulas and the empirical copula with
acknowledgment that true sample estimators do not quite exist. Numeric focus need only be on the
lower tail, but the four graphics are informative.

taildepCOP(cop=PSP, plot=TRUE)$lambdaL # = 1/2
taildepCOP(cop=PLcop, para=paraPL, plot=TRUE)$lambdaL # = ZERO
taildepCOP(cop=rGHcop, para=paraGH, plot=TRUE)$lambdaL # = 0.429
taildepCOP(cop=EMPIRcop, para=UV, plot=TRUE)$lambdaL # = 0.328

The important aspect of the graphics by taildepCOP is that the rGH has lower-tail dependency
whereas the PL does not. So, based on inspection rGH is superior given that we known PSP was
the true parent. The empirical estimate of the λ̂LC = 0.328 through the EMPIRcop copula indicates
that its lower-tail dependency is closer to that of the rGH relative to PL and thus quantitatively
by lower-tail dependency the rGH has a superior fit.
Therefore the rGH has a tail dependency more similar to the true model compared to the PL.
Hence for this example, the rGH is clearly a superior fitting model in terms of the Vuong Procedure
(fit alone) and the λLC then is used as a follow up to shown that the rGH might be “good enough”
an approximation to the PSP. The efficacy of reflecting the GH copula into a “new” form as
rGH is demonstrated. Users are strongly encouraged to review the so-produced graphic from the
simCOP call several listings back for n = 390, and lastly, this example is one for which absence of
the argument snv (standard normal variate [scores]) by simCOP makes the tail dependency issue for
the sample size more prominent in the graphic.

STEP 4—Qualitatively compare using copula density plots: Graphical depiction of copula density
contours by the densityCOPplot function supports the conclusion that the rGH is the superior
model relative to the PL. The so-produced graphic obviously shows that the rGH strongly mimics
the shape of the parent PSP.

densityCOPplot(cop=PSP, contour.col=8) # grey is the parent bivariate density
densityCOPplot(cop=PLcop, para=paraPL, contour.col="green", ploton=FALSE)
densityCOPplot(cop=rGHcop, para=paraGH, contour.col="red", ploton=FALSE)
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STEP 5—Compute L-comoments of the data via simulation and estimate the sampling distributions:
An open research problem is the what if any role that L-comoments might play in either copula
estimation or inference. (There being very little literature on the topic?) Because a measure of
association was used for parameter estimation, the L-correlation is uniformative, but a comparison
is conceptually useful. The σ̂C = 0.4969 and Spearman Rho of the data ρ̂S and the L-correlations
ρ̂S ≈ τ

[12]
2 ≈ τ

[21]
2 ≈ 0.497 are all similar as mandated by the mathematics.

Inference using L-coskew and L-cokurtosis seems possible. The following code listing is CPU
intensive. First, the L-correlation, L-coskew, and L-cokurtosis values are computed from the simu-
lated sample by the lcomoms2() function of the lmomco package. Second and third, the respective
sampling distributions of these L-comoments (lcomCOPpv) for the two copulas are estimated.

UVlmr <- lmomco::lcomoms2(UV, nmom=4) # The sample L-comoments
# This execution will result in nonrejection of rGH copula.
GHlmr <- lcomCOPpv(n, UVlmr, cop=rGHcop, para=paraGH) # NONREJECTION
# LcomType n Mean Lscale Lskew Lkurt sample.est p.value signif
# Tau3[12] 390 -0.06952 0.01819 0.04505 0.12024 -0.11188 0.08795 .
# Tau3[21] 390 -0.06739 0.02084 0.04104 0.12917 -0.10673 0.14162 -
# Tau3[12:21] 390 -0.06845 0.01713 0.04930 0.11696 -0.10931 0.08161 .
# Tau4[12] 390 0.04970 0.01682 -0.01635 0.10150 0.04183 0.38996 -
# Tau4[21] 390 0.05129 0.01606 -0.06833 0.13798 0.07804 0.17470 -
# Tau4[12:21] 390 0.05049 0.01329 -0.02045 0.12001 0.05994 0.35069 -

# This execution will result in rejection of Plackett copula.
PLlmr <- lcomCOPpv(n, UVlmr, cop=PLACKETTcop, para=paraPL) # REJECT PLACKETT
# LcomType n Mean Lscale Lskew Lkurt sample.est p.value signif
# Tau3[12] 390 -0.00267 0.02133 0.01556 0.09581 -0.11188 0.00129 **
# Tau3[21] 390 -0.00112 0.02022 -0.00663 0.13338 -0.10673 0.00189 **
# Tau3[12:21] 390 -0.00189 0.01757 0.00906 0.10226 -0.10931 0.00019 ***
# Tau4[12] 390 0.00153 0.01652 -0.03320 0.12468 0.04183 0.07924 .
# Tau4[21] 390 0.00361 0.01851 -0.01869 0.12052 0.07804 0.00929 **
# Tau4[12:21] 390 0.00257 0.01362 -0.01194 0.10796 0.05994 0.00744 **

Because each copula was fit to a measure of association, the p-values for the L-correlations are all
nonsignificant (noninformative because of how the copulas were fit), and therefore p-values quite
near to the 50th percentile should be produced. So here, the L-correlation is noninformative on fit
even though it might have some role because it is asymmetrical unlike that statistics τK and ρS .
The results in variable GHlmr show no statistically significant entries (all p-values >0.05 = (α =
0.1)/2)) for L-coskew and L-cokurtosis—the rGH copula is not rejected. The results in PLlmr
show many p-values<0.05 = (α = 0.1)/2 for both L-coskew and L-cokurtosis—the PL copula is
rejected. The experimental L-comoment inference shown is consistent with results with the Vuong
Procedure.

The Vuong Procedure, however, does not address adequacy of fit—it just evaluates which copula fits
better. The inspection of the lower tail dependency results previously shown (λLPSP = 1/2 ≈ λUrGH

= 0.429) along with the L-coskew and L-cokurtosis of the sample being well within the sample
distribution suggests that the rGH is a adequate mimic of the PSP copula.

Some open research questions concern the numerical performance of the L-comoments as simula-
tion sample size becomes large and whether or not the L-comoments should be computed on the
probabilities {u, v}. Also should conversion to normal scores be made and if so, should adjustment
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by the Hazen plotting positions (ui = (ri − 0.5)/n for rank ri) be made that Joe (2014) repeatedly
advocates when standard normal variates (scores) [zi = Φ(−1)(ui) for quantile function of standard
normal distribution Φ(0, 1)]? Collectively, Nelsen (2006) and Salvadori et al. (2007) are both silent
on the matter of normal score conversion, and in conclusion Nelsen (2006), Salvadori et al. (2007),
and Joe (2014) also are all silent on L-comoment applications with copulas.

Author(s)

W.H. Asquith

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An
approach using copulas: Springer, 289 p.

See Also

densityCOP, kullCOP, simCOP, statTn, mleCOP

Examples

# See extended code listings and discussion in the Note section
# See Examples in mleCOP() (Last example therein might suggest a problem in the
# implied 95th percentile associated with n_fg above.

W The Fréchet–Hoeffding Lower-Bound Copula

Description

Compute the Fréchet–Hoeffding lower-bound copula (Nelsen, 2006, p. 11), which is defined as

W(u, v) = max(u+ v − 1, 0).

This is the copula of perfect anti-association (countermonotonicity, perfectly negative dependence)
between U and V and is sometimes referred to as the countermonotonicity copula. Its opposite is
the M(u, v) copula (comonotonicity copula; M), and statistical independence is the Π(u, v) copula
(P).

Usage

W(u, v, ...)
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Arguments

u Nonexceedance probability u in the X direction;
v Nonexceedance probability v in the Y direction; and
... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

M, P

Examples

W(0.41, 0.60) # just barely touching the support, so small, 0.01
W(0.25, 0.45) # no contact with the support, so 0
W(1, 1 ) # total consumption of the support, so 1

wolfCOP The Schweizer and Wolff Sigma of a Copula

Description

Compute the measure of association known as Schweizer–Wolff Sigma σC of a copula according to
Nelsen (2006, p. 209) by

σC = 12

∫ ∫
I2

|C(u, v)− uv|dudv,

which is 0 ≤ σC ≤ 1. It is obvious that this measure of association, without the positive sign
restriction, is similar to the following form of Spearman Rho (rhoCOP) of a copula:

ρC = 12

∫ ∫
I2

[C(u, v)− uv] dudv.

If a copula is positively quadrant dependent (PQD, see isCOP.PQD) then σC = ρC and conversely if
a copula is negatively quadrant dependent (NQD) then σC = −ρC. However, a feature making σC
especially attractive is that for random variables X and Y , which are not PQD or NQD—copulas
that are neither larger nor smaller than Π—is that “σC is often a better measure of [dependency]
than ρC” (Nelsen, 2006, p. 209).
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Usage

wolfCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)

Arguments

cop A copula function;

para Vector of parameters or other data structure, if needed, to pass to the copula;

as.sample A logical controlling whether an optional R data.frame in para is used to
compute the σ̂C (see Note). If set to -1, then the message concerning CPU
effort will be surpressed;

brute Should brute force be used instead of two nested integrate() functions in R
to perform the double integration;

delta The du and dv for the brute force (brute=TRUE) integration; and

... Additional arguments to pass.

Value

The value for σC is returned.

Note

A natural estimator for σC is through the empirical copula (Póczos et al., 2015) and can be com-
puted as

σ̂C =
12

n2 − 1

n∑
i=1

n∑
j=1

∣∣∣∣Ĉn

(
i

n
,
j

n

)
− i

n
× j

n

∣∣∣∣,
where Ĉn is the simplest empirical copula of

Ĉn

(
i

n
,
j

n

)
=

1

n
{# of (Uk ≤ Ui, Vk ≤ Vj)}

An extended example is informative. First declare a composite of two different Plackett copulas
(PLcop) and simulate a few hundred values:

para <- list(cop1 =PLcop, cop2=PLcop,
para1=0.145, para2=21.9, alpha=0.81, beta=0.22)

D <- simCOP(n=300, cop=composite2COP, para=para,
cex=0.5, col=rgb(0,0,0,0.2), pch=16)

Second, show that this copula is globally PQD (isCOP.PQD), but there is a significant local NQD
part of I2 space that clearly is NQD.

PQD <- isCOP.PQD(cop=composite2COP, para=para, uv=D)
message(PQD$global.PQD) # TRUE
points(D, col=PQD$local.PQD+2, lwd=2)

This composited copula intersects, that is, passes through, the P copula. Hence by the logic of
Nelsen (2006), then the σC should be larger than ρC as shown below
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wolfCOP(cop=composite2COP, para=para) # 0.08373378 (theoretical)
rhoCOP(cop=composite2COP, para=para) # 0.02845131 (theoretical)
hoefCOP(cop=composite2COP, para=para) # 0.08563823 (theoretical)

In fact, the output above also shows Schweizer–Wolff Sigma to be larger than Blomqvist Beta
(blomCOP), Gini Gamma (giniCOP), and Kendall Tau (tauCOP). The Schweizer–Wolff Sigma has
captured the fact that although the symbols plot near randomly on the figure, the symbol coloring
for PQD and NQD clearly shows local dependency differences. The sample version is triggered by

wolfCOP(para=D, as.sample=TRUE) # 0.09278467 (an example sample)

Author(s)

W.H. Asquith

References

Póczos, Barnabás, Krishner, Sergey, Pál, Szepesvári, Csaba, and Schneider, Jeff, 2015, Robust
nonparametric copula based dependence estimators, accessed on August 11, 2015, at https://
www.cs.cmu.edu/~bapoczos/articles/poczos11nipscopula.pdf.

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, joeskewCOP, uvlmoms

Examples

## Not run:
wolfCOP(cop=PSP) # 0.4784176
## End(Not run)

## Not run:
n <- 1000; UV <- simCOP(n=n, cop=N4212cop, para=7.53, graphics=FALSE)
wolfCOP(cop=N4212cop, para=7.53) # 0.9884666 (theoretical)
wolfCOP(para=UV, as.sample=TRUE) # 0.9884174 (sample)
## End(Not run)

## Not run:
# Redo D from Note section above
para <- list(cop1 =PLcop, cop2=PLcop,

para1=0.145, para2=21.9, alpha=0.81, beta=0.22)
D <- simCOP(n=300, cop=composite2COP, para=para,

cex=0.5, col=rgb(0, 0, 0, 0.2), pch=16)

the.grid <- EMPIRgrid(para=D)
the.persp <- persp(the.grid$empcop, theta=-25, phi=20, shade=TRUE,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
empcop <- EMPIRcopdf(para=D) # data.frame of all points
points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp), cex=0.7,

col=rgb(0, 1-sqrt(empcop$empcop), 1, sqrt(empcop$empcop)), pch=16)

https://www.cs.cmu.edu/~bapoczos/articles/poczos11nipscopula.pdf
https://www.cs.cmu.edu/~bapoczos/articles/poczos11nipscopula.pdf
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points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
col=PQD$local.PQD+1, pch=1)

layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE), respect = TRUE)
PQD.NQD.cop <- gridCOP(cop=composite2COP, para=para)
Pi <- gridCOP(cop=P)
RHO <- PQD.NQD.cop - Pi; SIG <- abs(RHO)
the.persp <- persp(PQD.NQD.cop, theta=-25, phi=20, shade=TRUE, cex=0.5,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("The Copula that has local PQD and NQD", cex=0.5)
the.persp <- persp(Pi, theta=-25, phi=20, shade=TRUE, cex=0.5,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("Independence (Pi)", cex=0.5)
the.persp <- persp(RHO, theta=-25, phi=20, shade=TRUE, cex=0.5,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("Copula delta: Integrand of Spearman Rho", cex=0.5)
the.persp <- persp(SIG, theta=-25, phi=20, shade=TRUE, cex=0.5,

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
mtext("abs(Copula delta): Integrand of Schweizer-Wolff Sigma", cex=0.5) #
## End(Not run)

W_N5p12a Ordinal Sums of Lower-Bound Copula, Example 5.12a of Nelsen’s
Book

Description

Compute shuffles of Fréchet–Hoeffding lower-bound copula (Nelsen, 2006, p. 173), which is de-
fined by partitioning W within I2 into n subintervals:

Wn(u, v) = max

(
k − 1

n
, u+ v − k

n

)
for points within the partitions

(u, v) ∈
[
k − 1

n
,
k

n

]
×

[
k − 1

n
,
k

n

]
, k = 1, 2, · · · , n

and for points otherwise out side the partitions

Wn(u, v) = min(u, v).

The support of Wn consists of n line segments connecting coordinate pairs {(k − 1)/n, k/n}
and {k/n, (k − 1)/n} as stated by Nelsen (2006). The Spearman Rho (rhoCOP) is defined by
ρC = 1− (2/n2), and the Kendall Tau (tauCOP) by τC = 1− (2/n).

Usage

W_N5p12a(u, v, para=1, ...)
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Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A positive integer n ∈ 1, 2, · · · ; and

... Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.

See Also

W, ORDSUMcop, ORDSUWcop, M_N5p12b

Examples

W_N5p12a(0.4, 0.6, para=5)

## Not run:
# Nelsen (2006, exer. 5.12a, p. 172, fig. 5.3a)
UV <- simCOP(1000, cop=W_N5p12a, para=4) # which is the same as
para <- list(cop=c(W, W, W, W), para=NULL, part=c(0,0.25,0.50,0.75,1))
UV <- simCOP(1000, cop=ORDSUMcop, para=para)

## End(Not run)
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∗ Shuffle of Frechet lower bound
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∗ Shuffle of Frechet lower-bound copula
W_N5p12a, 326

∗ Shuffle of Frechet upper bounds
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W_N5p12a, 326
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∗ Shuffle of Frechet-Hoeffding lower-bound
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∗ Sobol sequence (Monte Carlo integration)
bilmoms, 28
kullCOP, 197

∗ Spearman Rho
bilmoms, 28
gEVcop, 134
lcomCOP, 202
rhoCOP, 267

∗ Table of Copulas
copBasic-package, 4

∗ Table of Expectations
copBasic-package, 4

∗ Table of Probabilities and Expectations
copBasic-package, 4

∗ Table of Probabilities
copBasic-package, 4

∗ Vuong Procedure
mleCOP, 229

vuongCOP, 316
∗ Vuong

mleCOP, 229
vuongCOP, 316

∗ W-ordinal sum of the summands
ORDSUWcop, 238

∗ Weibull copula
EMPIRcop, 93

∗ Weibull empirical copula
EMPIRcop, 93

∗ Zhang and Singh (2019) Examples and
Exercises

derCOPinv, 81
∗ asymmetric Gumbel copula

GHcop, 136
∗ asymmetric Gumbel–Hougaard copula

GHcop, 136
∗ asymmetric Gumbel-Hougaard copula

GHcop, 136
∗ asymmetric logistic copula

GHcop, 136
∗ bivariate L-correlation

bilmoms, 28
lcomCOP, 202

∗ bivariate L-kurtosis
bilmoms, 28
lcomCOP, 202

∗ bivariate L-moments
bilmoms, 28
lcomCOP, 202

∗ bivariate L-skew
bilmoms, 28
lcomCOP, 202

∗ bivariate asymmetry (measures)
bilmoms, 28
lcomCOP, 202
uvlmoms, 314

∗ bivariate prediction
bicoploc, 22

∗ bivariate skewness
bilmoms, 28
joeskewCOP, 169
lcomCOP, 202
uvlmoms, 314

∗ cicular copula
CIRCcop, 47

∗ comprehensive copula
FRECHETcop, 132
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PLACKETTcop, 243
∗ concordance function

tauCOP, 308
∗ conditional approach

simCOP, 280
∗ conditional cumulative distribution

function
derCOP, 77
derCOP2, 79

∗ conditional expectation
EuvCOP, 122
EvuCOP, 124

∗ conditional quantile function
derCOPinv, 81
derCOPinv2, 85

∗ conditional return period
surfuncCOP, 298

∗ copula (characteristics)
blomatrixCOP, 34
blomCOP, 38
blomCOPss, 41
diagCOP, 86
diagCOPatf, 88
footCOP, 129
giniCOP, 142
hoefCOP, 152
isCOP.LTD, 157
isCOP.permsym, 159
isCOP.PQD, 160
isCOP.radsym, 162
isCOP.RTI, 165
joeskewCOP, 169
kfuncCOP, 185
kfuncCOPinv, 192
kfuncCOPlmoms, 194
lcomCOPpv, 205
LzCOPpermsym, 220
rhobevCOP, 266
rhoCOP, 267
semicorCOP, 274
tailconCOP, 300
taildepCOP, 301
tailordCOP, 306
tauCOP, 308
wolfCOP, 323

∗ copula (comprehensive)
FRECHETcop, 132
PLACKETTcop, 243

∗ copula (conditional distribution)
COP, 62
derCOP, 77
derCOP2, 79
EuvCOP, 122
EvuCOP, 124
simCOPmicro, 283

∗ copula (conditional quantile function)
COP, 62
derCOPinv, 81
derCOPinv2, 85
simCOPmicro, 283

∗ copula (density)
densityCOP, 72
densityCOPplot, 74
kullCOP, 197
PLACKETTcop, 243
vuongCOP, 316

∗ copula (derivative inverse)
derCOPinv, 81
derCOPinv2, 85

∗ copula (derivative)
derCOP, 77
derCOP2, 79

∗ copula (diagonal inversion)
bicoploc, 22
diagCOPatf, 88

∗ copula (diagonal)
bicoploc, 22
diagCOP, 86
diagCOPatf, 88

∗ copula (empirical)
EMPIRcop, 93

∗ copula (estimation)
PLACKETTpar, 245

∗ copula (extreme value)
gEVcop, 134
GHcop, 136
GLcop, 146
HRcop, 156
tEVcop, 312

∗ copula (fitting)
copBasic.fitpara, 67
LzCOPpermsym, 220
mleCOP, 229

∗ copula (formulas)
AMHcop, 15
asCOP, 18
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CIRCcop, 47
CLcop, 49
COP, 62
FGMcop, 127
FRECHETcop, 132
gEVcop, 134
GHcop, 136
GLcop, 146
glueCOP, 149
HRcop, 156
JOcopB5, 168
M, 224
M_N5p12b, 234
N4212cop, 235
ORDSUMcop, 236
ORDSUWcop, 238
P, 240
PARETOcop, 242
PLACKETTcop, 243
PSP, 253
RAYcop, 260
RFcop, 264
tEVcop, 312
W, 322
W_N5p12a, 326

∗ copula (goodness-of-fit)
aicCOP, 13
bicCOP, 20
copBasic.fitpara, 67
psepolar, 251
rmseCOP, 270
spectralmeas, 286
statTn, 294
vuongCOP, 316

∗ copula (inference)
aicCOP, 13
bicCOP, 20
copBasic.fitpara, 67
kullCOP, 197
lcomCOPpv, 205
psepolar, 251
rmseCOP, 270
spectralmeas, 286
statTn, 294
vuongCOP, 316

∗ copula (inverse)
COPinv, 70
COPinv2, 71

∗ copula (limits/bounds)
M, 224
M_N5p12b, 234
W, 322
W_N5p12a, 326

∗ copula (properties for extreme value)
rhobevCOP, 266

∗ copula (properties)
blomatrixCOP, 34
blomCOP, 38
blomCOPss, 41
footCOP, 129
giniCOP, 142
hoefCOP, 152
isCOP.LTD, 157
isCOP.permsym, 159
isCOP.PQD, 160
isCOP.radsym, 162
isCOP.RTI, 165
isfuncCOP, 167
joeskewCOP, 169
kfuncCOP, 185
kfuncCOPinv, 192
LzCOPpermsym, 220
rhobevCOP, 266
rhoCOP, 267
semicorCOP, 274
tailconCOP, 300
taildepCOP, 301
tailordCOP, 306
tauCOP, 308
wolfCOP, 323

∗ copula (reflection)
COP, 62
simCOPmicro, 283
surCOP, 297

∗ copula (simulation)
PLACKETTsim, 247
simcomposite3COP, 276
simcompositeCOP, 278
simCOP, 280
simCOPmicro, 283

∗ copula (symmetry)
isCOP.permsym, 159
isCOP.radsym, 162
LzCOPpermsym, 220

∗ copula (tail characteristics)
blomCOPss, 41
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semicorCOP, 274
tailconCOP, 300
taildepCOP, 301
tailordCOP, 306

∗ copula (tail properties)
blomCOPss, 41
semicorCOP, 274
tailconCOP, 300
taildepCOP, 301
tailordCOP, 306

∗ copula (utilities)
asCOP, 18

∗ copula (utility)
COPinv, 70
COPinv2, 71
derCOP, 77
derCOP2, 79
derCOPinv, 81
derCOPinv2, 85
EuvCOP, 122
EvuCOP, 124

∗ copula L-cokurtosis
bilmoms, 28
lcomCOP, 202

∗ copula L-comoments
bilmoms, 28
lcomCOP, 202

∗ copula L-correlation
bilmoms, 28
lcomCOP, 202

∗ copula L-coskew
bilmoms, 28
lcomCOP, 202

∗ copula composition (convex combination)
convex2COP, 59
convexCOP, 61

∗ copula composition (four compositing
parameters)

composite3COP, 57
∗ copula composition (permutation

asymmetric)
breveCOP, 44

∗ copula composition (two compositing
parameters)

composite1COP, 52
composite2COP, 55

∗ copula composition
breveCOP, 44

composite1COP, 52
composite2COP, 55
composite3COP, 57
convex2COP, 59
convexCOP, 61
glueCOP, 149
lcomoms2.ABcop2parameter, 208
lcomoms2.ABKGcop2parameter, 211
simcomposite3COP, 276
simcompositeCOP, 278

∗ copula divergence
kullCOP, 197

∗ copula gluing
glueCOP, 149

∗ copula multiplication
prod2COP, 249

∗ copula operator
coCOP, 51
COP, 62
COPinv, 70
COPinv2, 71
derCOP, 77
derCOP2, 79
derCOPinv, 81
derCOPinv2, 85
duCOP, 90
EuvCOP, 122
EvuCOP, 124
prod2COP, 249
surCOP, 297
surfuncCOP, 298

∗ copula product
prod2COP, 249

∗ copula section
sectionCOP, 272

∗ copula skew
joeskewCOP, 169

∗ copula theory
copBasic-package, 4

∗ copula utility
gridCOP, 151

∗ copulatic surface
EMPIRgrid, 99
gridCOP, 151

∗ copula
AMHcop, 15
CIRCcop, 47
CLcop, 49
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EMPIRcop, 93
FGMcop, 127
FRECHETcop, 132
gEVcop, 134
GHcop, 136
GLcop, 146
HRcop, 156
JOcopB5, 168
M, 224
M_N5p12b, 234
N4212cop, 235
ORDSUMcop, 236
ORDSUWcop, 238
P, 240
PARETOcop, 242
PLACKETTcop, 243
PSP, 253
RAYcop, 260
RFcop, 264
tEVcop, 312
W, 322
W_N5p12a, 326

∗ cumulative distribution
kfuncCOPlmoms, 194

∗ datasets
ReineckeWell266, 262
ReineckeWells, 263

∗ decomposition of Kendall Tau
kfuncCOP, 185

∗ dependence index
hoefCOP, 152

∗ derivative
derCOP, 77
derCOP2, 79
derCOPinv, 81
derCOPinv2, 85
EMPIRgridder, 103
EMPIRgridder2, 105
EMPIRgridderinv, 106
EMPIRgridderinv2, 108

∗ diagnostics
diagCOP, 86
diagCOPatf, 88
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218
sectionCOP, 272

∗ diagonal inversion
diagCOPatf, 88

∗ empirical copula (derivative inverses)
EMPIRgridderinv, 106
EMPIRgridderinv2, 108

∗ empirical copula (derivatives)
EMPIRgridder, 103
EMPIRgridder2, 105

∗ empirical copula (median regression)
EMPIRmed.regress, 109
EMPIRmed.regress2, 110

∗ empirical copula (quantile regression)
EMPIRmed.regress, 109
EMPIRmed.regress2, 110
EMPIRqua.regress, 111
EMPIRqua.regress2, 117

∗ empirical copula (simulation)
EMPIRsim, 118
EMPIRsimv, 120

∗ empirical copula (utility)
EMPIRcopdf, 98
EMPIRgrid, 99

∗ empirical copula
EMPIRcop, 93
EMPIRcopdf, 98
EMPIRgrid, 99
EMPIRgridder, 103
EMPIRgridder2, 105
EMPIRgridderinv, 106
EMPIRgridderinv2, 108
EMPIRmed.regress, 109
EMPIRmed.regress2, 110
EMPIRqua.regress, 111
EMPIRqua.regress2, 117
EMPIRsim, 118
EMPIRsimv, 120

∗ exclusive or
duCOP, 90

∗ expectation
EuvCOP, 122
EvuCOP, 124

∗ extreme value copula
gEVcop, 134
GHcop, 136
GLcop, 146
HRcop, 156
tEVcop, 312

∗ g-EV copula
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gEVcop, 134
∗ generalized Farlie-Gumbel-Morgenstern

copula
FGMcop, 127

∗ goodness-of-fit
aicCOP, 13
bicCOP, 20
copBasic.fitpara, 67
psepolar, 251
rmseCOP, 270
spectralmeas, 286
statTn, 294
vuongCOP, 316

∗ hypothesis testing
lcomCOPpv, 205

∗ independence copula
P, 240

∗ inference
aicCOP, 13
bicCOP, 20
copBasic.fitpara, 67
kullCOP, 197
lcomCOPpv, 205
psepolar, 251
rmseCOP, 270
spectralmeas, 286
statTn, 294
vuongCOP, 316

∗ iterated Farlie-Gumbel-Morgenstern
copula

FGMcop, 127
∗ joint probability (exclusive or)

duCOP, 90
∗ joint probability

coCOP, 51
COP, 62
duCOP, 90
joint.curvesCOP, 175
joint.curvesCOP2, 178
jointCOP, 180
surCOP, 297
surfuncCOP, 298

∗ level contours
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ level contour

level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ level curves
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ level curve
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ level sets
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ level set
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218

∗ line of organic correlation
bicoploc, 22

∗ literature errors and inconsistencies
GHcop, 136
kfuncCOP, 185
stabtaildepf, 291
tauCOP, 308

∗ maximum likelihood
mleCOP, 229

∗ mean U given V
EuvCOP, 122

∗ mean V given U
EvuCOP, 124

∗ medial correlation coefficient
blomCOP, 38

∗ medial correlation
blomCOP, 38

∗ median regression
med.regressCOP, 225
med.regressCOP2, 228

∗ multivariate
copBasic-package, 4

∗ mutually exclusive or condition
duCOP, 90
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∗ mutually exclusive or
duCOP, 90

∗ ordinal sums
ORDSUMcop, 236
ORDSUWcop, 238

∗ organic correlation
bicoploc, 22

∗ package copula (comparison to)
AMHcop, 15
gEVcop, 134
GHcop, 136
med.regressCOP, 225
mleCOP, 229
spectralmeas, 286
taildepCOP, 301
tEVcop, 312

∗ permutation asymmetry
breveCOP, 44
joeskewCOP, 169

∗ polar
psepolar, 251
spectralmeas, 286

∗ product copula
P, 240

∗ pseudo-polar representation
psepolar, 251

∗ quantile regression
med.regressCOP, 225
med.regressCOP2, 228
qua.regressCOP, 255
qua.regressCOP.draw, 257
qua.regressCOP2, 258

∗ radial asymmetry
joeskewCOP, 169

∗ reduced major axis
bicoploc, 22

∗ relative entropy
kullCOP, 197

∗ return period (conditional)
copBasic-package, 4

∗ return period (secondary)
copBasic-package, 4
kfuncCOP, 185

∗ semi-correlation coefficient
semicorCOP, 274

∗ semi-correlation
semicorCOP, 274

∗ shuffle (in Examples)

asCOP, 18
∗ shuffle

asCOP, 18
M_N5p12b, 234
W_N5p12a, 326

∗ spectral measure
spectralmeas, 286

∗ stable tail dependence function
stabtaildepf, 291

∗ summands
ORDSUMcop, 236
ORDSUWcop, 238

∗ symmetric Gumbel copula
GHcop, 136

∗ symmetric Gumbel–Hougaard copula
GHcop, 136

∗ symmetric Gumbel-Hougaard copula
GHcop, 136

∗ t-EV copula
tEVcop, 312

∗ tail dependence
blomCOPss, 41
stabtaildepf, 291
taildepCOP, 301

∗ triangle (in Examples)
asCOP, 18

∗ visualization
densityCOP, 72
densityCOPplot, 74
diagCOP, 86
diagCOPatf, 88
level.curvesCOP, 214
level.curvesCOP2, 216
level.setCOP, 217
level.setCOP2, 218
qua.regressCOP.draw, 257
sectionCOP, 272
simcomposite3COP, 276
simcompositeCOP, 278
simCOP, 280

aicCOP, 7, 13, 20, 21, 222, 231, 270, 271, 294,
296

AMHcop, 5, 15
asCOP, 18, 30, 173

bicCOP, 7, 14, 20, 222, 231, 270, 271, 294, 296
bicoploc, 22
bilmoms, 6, 7, 28, 173, 204, 206, 315
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blomatrixCOP, 34, 43
blomatrixCOPdec, 39
blomatrixCOPdec (blomatrixCOP), 34
blomatrixCOPiqr, 39
blomatrixCOPiqr (blomatrixCOP), 34
blomCOP, 6, 7, 34, 35, 38, 41–43, 95, 96, 131,

144, 155, 160, 162, 171, 173, 227,
269, 295, 300, 304, 311, 325

blomCOPss, 34, 35, 38, 39, 41, 300, 304, 305
breveCOP, 9, 10, 44, 54, 56, 58, 60, 62, 150

CIRCcop, 5, 47
CLcop, 5, 49, 221
coCOP, 6, 9, 10, 51, 65, 90, 93, 177, 298
composite1COP, 9, 10, 44, 45, 52, 53, 55, 56,

58, 60, 62–64, 68, 150, 221, 249,
250, 277, 279

composite2COP, 9, 10, 44, 45, 53, 54, 55, 57,
58, 60, 62, 63, 150, 151, 176, 210,
249, 250, 277, 279

composite3COP, 9, 10, 44, 45, 53–56, 57, 60,
62, 63, 150, 213, 249, 250, 277

concordCOP, 130, 143
concordCOP (tauCOP), 308
convex2COP, 9, 10, 45, 59, 62, 63, 133, 143,

249, 250
convexCOP, 9, 10, 45, 54, 56, 58–60, 61, 63,

150, 249, 250
COP, 6, 9–11, 19, 41, 45, 52–54, 56, 58, 60, 62,

62, 71, 72, 87, 93, 150, 162, 182,
207, 250, 264, 273, 275, 283, 285,
297, 298, 300, 305, 308, 316

copBasic-package, 4
copBasic.fitpara, 67
copBasic.fitpara.beta, 295
COPinv, 7, 62, 70, 72, 186, 214, 215
COPinv2, 8, 62, 71, 71, 216, 217

densityCOP, 6, 30, 72, 75, 76, 168, 198–200,
203, 229, 230, 233, 244, 318, 322

densityCOPplot, 6, 72, 73, 74, 318, 320
derCOP, 7–9, 77, 80, 81, 84, 103, 125, 126,

137, 186, 192, 249, 272, 283,
309–311

derCOP2, 7–9, 78, 79, 79, 86, 105, 122, 123,
137, 192, 249, 272, 283, 309–311

derCOPinv, 7, 8, 78, 79, 81, 106, 125, 192,
225, 255, 256, 280–284

derCOPinv2, 7, 8, 80, 81, 85, 108, 122, 192,
228, 258, 259, 283, 284

diagCOP, 6, 86, 89, 96, 130, 143, 273, 300
diagCOPatf, 6, 26, 87, 88, 178–181, 184
diagCOPinv (diagCOPatf), 88
duCOP, 6, 9–11, 51, 52, 65, 88, 90, 176,

178–180, 182, 184, 298

EMPIRcop, 6, 14, 20, 21, 23, 35, 38, 39, 42, 93,
99, 100, 103–106, 109, 154, 161,
187, 220, 221, 270, 271, 285, 320

EMPIRcopdf, 98, 100, 104–106, 109, 151
EMPIRgrid, 6, 99, 103–106, 108, 109, 118–121
EMPIRgridder, 103, 105, 106
EMPIRgridder2, 104, 105, 106, 109
EMPIRgridderinv, 106, 109–111, 117–120
EMPIRgridderinv2, 8, 108, 109, 110, 117
EMPIRmed.regress, 109, 110, 111, 117
EMPIRmed.regress2, 110, 110, 111, 117
EMPIRqua.regress, 109, 110, 111, 117
EMPIRqua.regress2, 110, 111, 116
EMPIRsim, 6, 118, 120, 121, 282
EMPIRsimv, 6, 118, 119, 120
EuvCOP, 9, 122, 126
EvuCOP, 9, 123, 124, 125

FGMcop, 5, 82, 127, 250
FGMicop (FGMcop), 127
footCOP, 6, 7, 39, 96, 129, 144, 155, 171, 173,

269, 310, 311, 325
FRECHETcop, 5, 45, 60, 132

gEVcop, 5, 134
GHcop, 5, 7, 11, 64, 67, 136, 148, 157, 170,

176, 181, 185, 189, 190, 221, 285,
288, 312, 313, 318

giniCOP, 6, 7, 39, 67, 68, 96, 131, 142, 155,
160–162, 171, 173, 269, 275, 310,
311, 325

GLcop, 5, 141, 146, 157, 185, 295, 312, 313
GLEVcop (GLcop), 146
GLPMcop (GLcop), 146
glueCOP, 9, 10, 45, 54, 56, 58, 60, 62, 63, 149,

249, 250
gridCOP, 6, 151

hoefCOP, 6, 7, 39, 67, 96, 130, 131, 144, 152,
171, 173, 267, 269, 311, 325

HRcop, 5, 68, 141, 148, 156, 185, 288, 312, 313
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isCOP.LTD, 8, 157, 162, 166
isCOP.permsym, 8, 29, 44, 136, 153, 159, 164,

171, 203, 223
isCOP.PQD, 8, 157, 158, 160, 165, 166, 323,

324
isCOP.radsym, 8, 136, 159, 162, 171
isCOP.RTI, 8, 158, 162, 165
isfuncCOP, 73, 167

JOcopB5, 5, 168
JOcopBB4 (GLcop), 146
joeskewCOP, 7, 39, 96, 137, 144, 155, 169,

269, 311, 315, 325
joint.curvesCOP, 8, 88, 89, 93, 175, 179,

184, 215
joint.curvesCOP2, 8, 178, 178, 217
jointCOP, 6, 9, 88, 89, 93, 178, 179, 180

kfuncCOP, 6, 10, 185, 192, 193, 196, 309, 311
kfuncCOPinv, 6, 185, 187, 192, 192, 193
kfuncCOPlmom, 6, 193
kfuncCOPlmom (kfuncCOPlmoms), 194
kfuncCOPlmoms, 6, 193, 194, 242
kmeasCOP, 6
kmeasCOP (kfuncCOP), 185
kullCOP, 8, 73, 197, 207, 233, 289, 296, 316,

318, 319, 322
kullCOPint (kullCOP), 197

lcomCOP, 6, 7, 29, 33, 202, 207, 277–280
lcomCOPpv, 9, 204, 205, 321
lcomoms2.ABcop2parameter, 208
lcomoms2.ABKGcop2parameter, 211
level.curvesCOP, 8, 70–72, 95, 96, 175, 177,

178, 184, 214, 217, 218
level.curvesCOP2, 8, 70–72, 178, 179, 215,

216, 218, 219
level.setCOP, 8, 215, 217, 219
level.setCOP2, 8, 217, 218, 218
LpCOP, 6
LpCOP (hoefCOP), 152
LpCOPpermsym, 220, 222, 223
LpCOPpermsym (hoefCOP), 152
LpCOPradsym (hoefCOP), 152
LzCOPpermsym, 6, 153, 155, 159, 220

M, 5, 10, 41, 50, 130, 132, 134, 137, 141, 143,
146, 148, 152, 168–170, 181, 185,
188, 215, 216, 224, 235, 236,

240–244, 249, 260, 261, 264, 265,
300, 322, 323

M_N5p12b, 234, 327
med.regressCOP, 8, 11, 38, 125, 225, 229,

255, 256
med.regressCOP2, 8, 227, 228, 258, 259
mleCOP, 7, 11, 73, 128, 222, 229, 288, 322

N4212cop, 5, 188, 189, 235, 254, 292
nuskewCOP, 6, 7, 68, 139, 153, 176
nuskewCOP (joeskewCOP), 169
nustarCOP, 6, 7, 68, 153
nustarCOP (joeskewCOP), 169

ORDSUMcop, 5, 9, 10, 235, 236, 239, 327
ORDSUWcop, 9, 10, 237, 238, 327

P, 5, 7, 15, 17, 34, 41, 50, 53, 55, 87, 127, 128,
131, 132, 134, 144, 146, 148, 152,
156, 157, 160, 168–170, 183, 185,
188, 192, 224, 240, 242, 243, 249,
254, 260, 261, 264–266, 307,
322–324

PAcop (PARETOcop), 242
PARETOcop, 242
PLACKETTcop, 163, 188, 189, 243, 245, 247,

248, 295, 307, 319
PLACKETTpar, 244, 245, 248
PLACKETTsim, 244, 247, 247
PLcop, 5, 170, 245, 247, 324
PLcop (PLACKETTcop), 243
PLpar, 244
PLpar (PLACKETTpar), 245
prod2COP, 9, 10, 63, 249
psepolar, 8, 251, 286–288, 290, 293
PSP, 5, 10, 42, 91, 125, 126, 163, 235, 253,

303, 319

qua.regressCOP, 8, 225, 227, 255, 257, 258
qua.regressCOP.draw, 225, 227, 229, 256,

257
qua.regressCOP2, 8, 228, 229, 257, 258, 258

RAYcop, 5, 260
rCOP, 7
rCOP (simCOP), 280
ReineckeWell266, 262
ReineckeWells, 263
RFcop, 5, 63, 264
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rhobevCOP, 136, 141, 266
rhoCOP, 6, 7, 15, 17, 29–32, 38, 39, 96, 127,

131–133, 137, 144, 154, 155,
160–163, 171–173, 203, 226, 234,
241, 245, 247, 264, 266, 267, 267,
275, 296, 309–311, 318, 323, 325,
326

rmseCOP, 7, 14, 20, 21, 222, 270, 294, 296

sectionCOP, 8, 87, 272
semicorCOP, 6, 7, 274
simcomposite2COP (simcompositeCOP), 278
simcomposite3COP, 58, 276, 280
simcompositeCOP, 208, 210, 211, 213, 278,

278
simCOP, 7, 9, 58, 68, 69, 73, 75, 76, 96, 118,

120, 176, 210, 213, 248, 280, 283,
286, 319, 320, 322

simCOPmicro, 7, 63, 64, 120, 248, 282, 283,
297, 298

simCOPv, 230
simCOPv (simCOPmicro), 283
spectralmeas, 8, 253, 286, 291, 293
stabtaildepf, 9, 253, 290, 291
statTn, 7, 14, 20, 270, 294, 322
surCOP, 5, 6, 9, 10, 52, 63, 65, 90, 93, 152,

162, 249, 283, 297, 299, 306
surfuncCOP, 6, 10, 41, 65, 297, 298, 298, 307

tailconCOP, 8, 300, 305, 308
taildepCOP, 7, 8, 42, 43, 132, 137, 185, 189,

235, 243, 285, 301, 301, 308, 320
tailordCOP, 8, 301, 305, 306
tauCOP, 6, 7, 11, 15, 18, 38, 39, 50, 96, 131,

132, 144, 155, 160–162, 168, 171,
173, 176, 185, 190, 192, 226, 227,
234, 246, 264, 267–269, 275, 296,
308, 318, 325, 326

tEVcop, 5, 135, 141, 148, 157, 312

uvlmoms, 7, 33, 39, 96, 144, 153, 155, 170,
204, 269, 311, 314, 325

uvskew, 7, 8, 173
uvskew (uvlmoms), 314

vuongCOP, 8, 200, 207, 232, 281, 296, 303, 316

W, 5, 10, 41, 50, 132, 134, 143, 152, 170, 185,
188, 215, 216, 224, 240, 241, 243,
244, 249, 300, 307, 322, 327

W_N5p12a, 235, 237, 239, 326
wolfCOP, 6, 7, 39, 96, 131, 144, 155, 160, 171,

173, 269, 311, 323
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