Package 'covdepGE'

October 12, 2022
Title Covariate Dependent Graph Estimation
Version 1.0.1
Date 2022-09-16
Language en-US
BugReports https://github.com/JacobHelwig/covdepGE/issues
URL https://github.com/JacobHelwig/covdepGE
Description A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al. (2022). Employs a novel weighted pseudo-likelihood approach to model the conditional dependence structure of data as a continuous function of an extraneous covariate. The main function, covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence structure via a block mean-field variational approximation, while several auxiliary functions (inclusionCurve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.
License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.2.1
LinkingTo Rcpp, RcppArmadillo
Imports doParallel, foreach, ggplot2, glmnet, latex2exp, MASS, parallel, Rcpp, reshape 2 , stats

Suggests testthat (>= 3.0.0), covr, vdiffr
Config/testthat/edition 3
NeedsCompilation yes
Author Jacob Helwig [cre, aut], Sutanoy Dasgupta [aut],
Peng Zhao [aut],
Bani Mallick [aut],
Debdeep Pati [aut]
Maintainer Jacob Helwig jacob.a.helwig@tamu.edu
Repository CRAN
Date/Publication 2022-09-16 15:56:08 UTC

R topics documented:

covdepGE-package 2
covdepGE 3
generateData 8
inclusionCurve 11
matViz 13
plot.covdepGE 15
Index 17
covdepGE-package covdepGE: Covariate Dependent Graph Estimation

Description

A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al. (2022). Employs a novel weighted pseudo-likelihood approach to model the conditional dependence structure of data as a continuous function of an extraneous covariate. The main function, covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence structure via a block mean-field variational approximation, while several auxiliary functions (inclusionCurve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.

Author(s)

Maintainer: Jacob Helwig jacob.a.helwig@tamu.edu
Authors:

- Sutanoy Dasgupta sutanoy@stat.tamu.edu
- Peng Zhao pzhao@stat.tamu.edu
- Bani Mallick bmallick@stat.tamu.edu
- Debdeep Pati debdeep@stat.tamu.edu

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approximate Bayesian approach to covariate-dependent graphical modeling. pages 1-59, 2022.

See Also

Useful links:

- https://github.com/JacobHelwig/covdepGE
- Report bugs at https://github.com/JacobHelwig/covdepGE/issues

Description

Model the conditional dependence structure of X as a function of Z as described in (1)

Usage

```
    covdepGE(
        X,
        Z = NULL,
        hp_method = "hybrid",
        ssq = NULL,
        sbsq = NULL,
        pip = NULL,
        nssq = 5,
        nsbsq = 5,
        npip = 5,
        ssq_mult = 1.5,
        ssq_lower = 1e-05,
        snr_upper = 25,
        sbsq_lower = 1e-05,
        pip_lower = 1e-05,
        pip_upper = NULL,
        tau = NULL,
        norm = 2,
        center_X = TRUE,
        scale_Z = TRUE,
        alpha_tol = 1e-05,
        max_iter_grid = 10,
        max_iter = 100,
        edge_threshold = 0.5,
        sym_method = "mean",
        parallel = FALSE,
        num_workers = NULL,
        prog_bar = TRUE
    )
```


Arguments

$\mathrm{X} \quad n \times p$ numeric matrix; data matrix. For best results, n should be greater than p
Z
NULL OR $n \times q$ numeric matrix; extraneous covariates. If NULL, Z will be treated as constant for all observations, i.e.:

$$
Z<-\operatorname{rep}(0, \operatorname{nrow}(X))
$$

If Z is constant, the estimated graph will be homogeneous throughout the data. NULL by default
hp_method
ssq
sbsq \quad NULL OR numeric vector with positive entries; candidate values of the hyperparameter σ_{β}^{2} (prior slab variance). If NULL, sbsq will be generated for each variable X_{j} fixed as the response as:

```
sbsq <- seq(sbsq_lower, sbsq_upper, length.out = nsbsq)
```

NULL by default
NULL OR numeric vector with entries in $(0,1)$; candidate values of the hyperparameter π (prior inclusion probability). If NULL, pip will be generated for each variable X_{j} fixed as the response as:
pip <- seq(pip_lower, pi_upper, length. out = npip)
NULL by default
positive integer; number of points to generate for ssq if ssq is NULL. 5 by default positive integer; number of points to generate for sbsq if sbsq is NULL. 5 by default positive integer; number of points to generate for pip if pip is NULL. 5 by default positive numeric; if ssq is NULL, then for each variable X_{j} fixed as the response:

```
ssq_upper <- ssq_mult * stats::var(X_j)
```

Then, ssq_upper will be the greatest value in ssq for variable $X_{j} .1 .5$ by default

ssq_lower	positive numeric; if ssq is NULL, then ssq_lower will be the least value in ssq. 1e-5 by default		
snr_upper	positive numeric; upper bound on the signal-to-noise ratio. If sbsq is NULL, then for each variable X_{j} fixed as the response:		
	s2_sum <- sum(apply (X, 2, stats: :var))		
sbsq_upper <- snr_upper / (pip_upper * s2_sum)		\quad	Then, sbsq_upper will be the greatest value in sbsq. 25 by default
:---			
sbsq_lower			
positive numeric; if sbsq is NULL, then sbsq_lower will be the least value in			
sbsq. 1e-5 by default			

sym_method	character in c("mean", "max", "min"); to symmetrize the posterior inclusion probability matrix for each observation, the (i, j) and (j, i) entries will be postprocessed as sym_method applied to the (i, j) and (j, i) entries. "mean" by default
parallel	logical; if TRUE, hyperparameter selection and CAVI for each of the p variables will be performed in parallel using foreach. Parallel backend may be registered prior to making a call to covdepGE. If no active parallel backend can be detected, then parallel backend will be automatically registered using:
	doParallel::registerDoParallel (num_workers)
	FALSE by default
num_workers	NULL OR positive integer less than or equal to parallel: : detectCores(); argument to doParallel::registerDoParallel if parallel = TRUE and no parallel backend is detected. If NULL, then:
	num_workers <- floor(parallel::detectCores() / 2)
	NULL by default
prog_bar	logical; if TRUE, then a progress bar will be displayed denoting the number of remaining variables to fix as the response and perform CAVI. If parallel, no progress bar will be displayed. TRUE by default

Value

Returns object of class covdepGE with the following values:
graphs list with the following values:

- graphs: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the adjacency matrix for the l-th observation
- unique_graphs: list; the l-th element is a list containing the l-th unique graph and the indices of the observation(s) corresponding to this graph
- inclusion_probs_sym: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the symmetrized posterior inclusion probability matrix for the l-th observation
- inclusion_probs_asym: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the posterior inclusion probability matrix for the l-th observation prior to symmetrization
variational_params
list with the following values:
- alpha: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior inclusion probability of the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i
- mu: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior slab mean for the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i
- ssq_var: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior slab variance for the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i
hyperparameters
list of p lists; the j-th list has the following values for variable j fixed as the response:
- grid: matrix of candidate hyperparameter values, corresponding ELBO, and iterations to converge
- final: the final hyperparameters chosen by grid search and the ELBO and iterations to converge for these hyperparameters
model_details list with the following values:
- elapsed: amount of time to fit the model
- n : number of observations
- p : number of variables
- ELBO: ELBO summed across all observations and variables. If hp_method is "model_average" or "hybrid", this ELBO is averaged across the hyperparameter grid using the model averaging weights for each variable
- num_unique: number of unique graphs
- grid_size: number of points in the hyperparameter grid
- args: list containing all passed arguments of length 1
weights list with the following values:
- weights: $n \times n$ numeric matrix. The (i, j) entry is the similarity weight of the i-th observation with respect to the j-th observation using the j-th observation's bandwidth
- bandwidths: numeric vector of length n. The i-th entry is the bandwidth for the i-th observation

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approximate Bayesian approach to covariate-dependent graphical modeling. pages 1-59, 2022.
(2) Sutanoy Dasgupta, Debdeep Pati, and Anuj Srivastava. A Two-Step Geometric Framework For Density Modeling. Statistica Sinica, 30(4):2155-2177, 2020.

Examples

```
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
```

```
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
    ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
                            n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)
```

generateData

Description

Generate a 1-dimensional extraneous covariate and p-dimensional Gaussian data with a precision matrix that varies as a continuous function of the extraneous covariate. This data is distributed similar to that used in the simulation study from (1)

Usage

```
generateData( \(\mathrm{p}=5, \mathrm{n} 1=60, \mathrm{n} 2=60, \mathrm{n} 3=60, \mathrm{Z}=\) NULL, true_precision \(=\) NULL)
```


Arguments

$p \quad$ positive integer; number of variables in the data matrix. 5 by default
n1 positive integer; number of observations in the first interval. 60 by default
n2 positive integer; number of observations in the second interval. 60 by default
n3 positive integer; number of observations in the third interval. 60 by default
Z NULL or numeric vector; extraneous covariate values for each observation. If NULL, Z will be generated from a uniform distribution on each of the intervals
true_precision NULL OR list of matrices of dimension $p \times p$; true precision matrix for each observation. If NULL, the true precision matrices will be generated dependent on Z. NULL by default

Value

Returns list with the following values:
$\mathrm{X} \quad \mathrm{a}(\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3) \times p$ numeric matrix, where the i-th row is drawn from a p dimensional Gaussian with mean 0 and precision matrix true_precision[[i]]
Z a $(\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3) \times 1$ numeric matrix, where the i-th entry is the extraneous covariate z_{i} for observation i
true_precision list of $\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3$ matrices of dimension $p \times p$; the i-th matrix is the precision matrix for the i-th observation
interval vector of length $n 1+n 2+n 3$; interval assignments for each of the observations, where the i-th entry is the interval assignment for the i-th observation

Extraneous Covariate

If $Z=N U L L$, then the generation of Z is as follows:
The first n 1 observations have z_{i} from from a uniform distribution on the interval $(-3,-1)$ (the first interval).
Observations $\mathrm{n} 1+1$ to $\mathrm{n} 1+\mathrm{n} 2$ have z_{i} from from a uniform distribution on the interval $(-1,1)$ (the second interval).

Observations $\mathrm{n} 1+\mathrm{n} 2+1$ to $\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3$ have z_{i} from a uniform distribution on the interval $(1,3)$ (the third interval).

Precision Matrices

If true_precision = NULL, then the generation of the true precision matrices is as follows:
All precision matrices have 2 on the diagonal and 1 in the $(2,3) /(3,2)$ positions.
Observations in the first interval have a 1 in the $(1,2) /(1,2)$ positions, while observations in the third interval have a 1 in the $(1,3) /(3,1)$ positions.

Observations in the second interval have 2 entries that vary as a linear function of their extraneous covariate. Let $\beta=1 / 2$. Then, the $(1,2) /(2,1)$ positions for the i-th observation in the second interval are $\beta \cdot\left(1-z_{i}\right)$, while the $(1,3) /(3,1)$ entries are $\beta \cdot\left(1+z_{i}\right)$.
Thus, as z_{i} approaches -1 from the right, the associated precision matrix becomes more similar to the matrix for observations in the first interval. Similarly, as z_{i} approaches 1 from the left, the matrix becomes more similar to the matrix for observations in the third interval.

Examples

```
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
            ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
                n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
```

```
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)
```

inclusionCurve Plot PIP as a Function of Index

Description

Plot the posterior inclusion probability of an edge between two variables as a function of observation index

Usage

inclusionCurve(out,
col_idx1,
col_idx2,
line_type = "solid",
line_size = 0.5,
line_color = "black",
point_shape = 21,
point_size = 1.5,
point_color = "\#500000",
point_fill = "white"
)

Arguments

out object of class covdepGE; return of covdepGE function
col_idx1 integer in $[1, p]$; column index of the first variable
col_idx2 integer in $[1, p]$; column index of the second variable
line_type linetype; ggplot2 line type to interpolate the probabilities. "solid" by default
line_size positive numeric; thickness of the interpolating line. 0.5 by default
line_color color; color of interpolating line. "black" by default
point_shape shape; shape of the points denoting observation-specific inclusion probabilities; 21 by default
point_size positive numeric; size of probability points. 1.5 by default
point_color color; color of probability points. "\#500000" by default
point_fill color; fill of probability points. Only applies to select shapes. "white" by default

Value

Returns ggplot2 visualization of inclusion probability curve

Examples

```
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
    # visualize the true precision matrices in each of the intervals
    # interval 1
    matViz(prec[[1]], incl_val = TRUE) +
        ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
    # interval 2 (varies continuously with Z)
    cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
    int2_mats <- prec[interval == 2]
    int2_inds <- c(5, n2 %/% 2, n2 - 5)
    lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
            ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
    # interval 3
    matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
        n1 + n2 + 1, ",...,", n1 + n2 + n3))
    # fit the model and visualize the estimated graphs
    (out <- covdepGE(X, Z))
    plot(out)
    # visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
    inclusionCurve(out, 1, 2)
    inclusionCurve(out, 1, 3)
```

matViz

```
    ## End(Not run)
```

matViz Visualize a matrix

Description

Create a visualization of a matrix

```
Usage
    matViz(
        x,
        color1 = "white",
        color2 = "#500000",
        grid_color = "black",
        incl_val = FALSE,
        prec = 2,
        font_size = 3,
        font_color1 = "black",
        font_color2 = "white",
        font_thres = mean(x)
    )
```


Arguments

x
color1 color; color for low entries. "white" by default
color2 color; color for high entries. "\#500000" by default
grid_color color; color of grid lines. "black" by default
incl_val logical; if TRUE, the value for each entry will be displayed. FALSE by default
prec positive integer; number of decimal places to round entries to if incl_val is TRUE. 2 by default
font_size positive numeric; size of font if incl_val is TRUE. 3 by default
font_color1 color; color of font for low entries if incl_val is TRUE. "black" by default
font_color2 color; color of font for high entries if incl_val is TRUE. "white" by default
font_thres numeric; values less than font_thres will be displayed in font_color1 if incl_val is TRUE. mean(x) by default

Value

Returns ggplot2 visualization of matrix

Examples

```
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,\ldots.,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
    ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
ggtitle(paste0("True precision matrix, interval 3, observations ",
    n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)
```

```
plot.covdepGE
```

Plot the Graphs Estimated by covdepGE

Description

Create a list of the unique graphs estimated by covdepGE

Usage

```
    ## S3 method for class 'covdepGE'
    plot(x, graph_colors = NULL, title_sum = TRUE, ...)
```


Arguments

x	object of class covdepGE; return of covdepGE function		
graph_colors	NULL OR vector; the j-th element is the color for the j-th graph. If NULL, all graphs will be colored with "\# $\# 00000^{\prime}$.		
title_suLL by default		\quad	logical; if TRUE the indices of the observations corresponding to the graph will
:---			
be included in the title. TRUE by default			

... additional arguments will be ignored

Value

Returns list of ggplot2 visualizations of unique graphs estimated by covdepGE

Examples

```
## Not run:
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
```

```
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
    ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
        n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
## End(Not run)
```


Index

_PACKAGE (covdepGE-package), 2
covdepGE, 3
covdepGE-method (covdepGE), 3
covdepGE-package, 2
generateData, 8
inclusionCurve, 11
matViz, 13
plot. covdepGE, 15

