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convert_time Reformat time.
Description
Functions perform interconversion between "HH:MM:SS" format and seconds.
Usage
convert_from_time(x)
convert_to_time(x)
Arguments
X either a character string of the form "HH:MM:SS" ("HH" is optional) or numeric
seconds values.
Value

seconds value(s) for from, and "HH:MM:SS" character string(s) for to.
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Examples

x <- c("00:21:05", "25:51", NA, "00:26:01.1", "01:05:02.0")
x <- convert_from_time(x)

print(x)

X <- convert_to_time(x)

print(x)

cycleRdata cycleRdata class

Description

A class for imported ride files intended to ease integration with package functionality. Produced by
invoking read_ride (or equivalent) with the argument format = TRUE. Fundamentally, cycleRdata
objects are a special type of data. frame; special in the sense that column names are predefined and
assumed to be present in the class’ associated methods. Modification of these column names will
lead to errors. See below for a description of the format.

Usage

is.cycleRdata(x)

as.cycleRdata(x)

Arguments

X an object to be tested/coerced.

Format

The columns of cycleRdata objects are structured as such:

timer.s an ongoing timer (seconds). Stoppages are not recorded per se, but rather represented as
breaks in the continuity of the timer.

timer.min as above, but in units of minutes.

timestamp "POSIXct" values, describing the actual time of day.

delta.t delta time values (seconds).

lat latitude values (degrees).

Ing longitude values (degrees).

distance.km cumulative distance (kilometres).

speed.kmh speed in kilometres per hour.

elevation.m altitude in metres.

delta.elev delta elevation (metres).

VAM 'vertical ascent metres per second".
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power.W power readings (Watts).

power.smooth.W an exponentially-weighted 25-second moving average of power values.
work.kJ cumulative work (kilojoules).

Wexp.kJ W’ expended in units of kilojoules. See ?Wbal and references therein.
cadence.rpm pedalling cadence (revolutions per minute).

hr.bpm Heart rate (beats per minute).

lap a numeric vector of lap "levels". Will only have values > 1 if lap data is available.

diff_section Section data according to breaks.

Description

Generates a vector of "section” values/levels according to differences in the supplied vector. The
function simply rolls over X, incrementing the return vector every time there is a significant break
(stop argument) in the pattern of differences between adjacent elements of x. In practical terms, if
x is a series of timestamp values (see example), every time there is a significant break in the timer
(e.g. >10 sec), the return vector is incremented by 1.

Usage

diff_section(x, br)

Arguments
X a numeric vector (e.g. a timer column) that increments uniformly. When there
is a significant break in this uniformity, a new section is created, and so forth.
br criterion for a significant break in terms of x.
Value

a vector of the same length as x.

Examples
t_sec <- c(1:10, 40:60, 100:150) # Discontinuous timer values.
pwr  <- runif(length(t_sec), 0, 400) # Some power values.
X <- data.frame(t_sec, pwr)

## Generate section levels.

x$section <- diff_section(x$t_sec, br = 10) # 10 second breaks.
print(x)

split(x, x$section)

## Using "intervaldata”, which has a large stop.
data(intervaldata)
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intervaldata$section <- diff_section(intervaldata$timer.s, br = 20)
sp <- split(intervaldata, intervaldata$section)

## Plot.

eplot <- function(x) cycleRtools:::elev_plot(x, "timer.min")
layout(matrix(c(1, 2, 1, 3), 2, 2))

eplot(cycleRtools: : :expand_stops(intervaldata))
eplot(spL[111)

eplot(sp[[2]]1)

download_elev_data Download geographical elevation data.

Description

Downloads elevation data files to the working directory for use with elevation_correct. Requires
package raster to be installed.

Usage

download_elev_data(country = "all")

Arguments
country character string; the ISO3 country code (see raster::getData("IS03")) for
which to download the data. If "all", then all available data is downloaded - this
may take some time.
Value

nothing, files are downloaded to the working directory.

See Also

elevation_correct.

elevation_correct Generate reliable elevation data.

Description

Using the latitude and longitude columns of the supplied formatted data, a vector of elevation values
is returned of the same length. If no elevation data files exist within the working directory, files
are first downloaded. Note that NAs in the data will return corresponding NAs in the corrected
elevation.



Usage

elevation_correct(data, country)

Arguments
data a dataset with longitude ("Ing") and lattitude ("lon") columns.
country character string; the country to which the data pertain, given as an ISO3 code
(see raster::getData("IS03"))
Value

a vector of elevation values. If there is an error at any stage, a vector of NAs is returned.

See Also

download_elev_data.

Examples

## Not run:
data(ridedata)

## When run the first time, geographical data will need to be downloaded.
ridedata$elevation.corrected <- elevation_correct(ridedata, "GBR")

## A Bland-Altman-type plot.

difference <- ridedata$elevation.m - ridedata$elevation.corrected
plot(difference ~ ridedata$timer.min, cex = 0.2, ylab = "raw minus corrected")
m <- mean(difference, na.rm = TRUE); stdev <- sd(difference, na.rm = TRUE)
abline(h = c¢(m + c(-stdev, 0, stdev)), 1ty = c(1, 2, 1), col = "red")

## End(Not run)

GC GoldenCheetah (>v3.3) interface.

Description

Functions for interfacing R with GoldenCheetah. Requires the RCurl package to be installed.

Usage

GC_activity(athlete.name, activity, port = 12021, format = TRUE)
GC_metrics(athlete.name, date.rng = NULL, port = 12021)

GC_mmvs(type = "watts”, date.rng = NULL, port = 12021)


https://github.com/GoldenCheetah/GoldenCheetah
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Arguments

athlete.name  character; athlete of interest in the GoldenCheetah data directory. Typically of
the form "First Last".

activity character; file path to a GoldenCheetah activity(.json) file. Typically located in
"~/.goldencheetah/Athlete Name/activities/".

port http server port number. 12021 unless deliberatley changed in the httpserver.ini
file.

format format activity data to an object of class "cycleRdata". Ensures compatibility
with other functions in this package — see read_ride.

date.rng a vector of length two that can be converted to an object of class "Date” via
as.Date. Must be specified for GC_mmvs; optional for GC_metrics.

type the type of maximal mean values to return. See details.

Details

As of GoldenCheetah (GC) version 3.3, the application is ran with a background restful web ser-
vice api to ease integration with external analysis software (such as R). When an instance of Gold-
enCheetah is running, or the application is initiated from the command line with the '—server’
option, these functions can be used to interface with athlete data. Relevant documentation can be
found here.

GC_activity behaves similarly to read_ride functions in this package, importing data from saved
GC json files.

GC_metrics returns summary metrics for either: all available rides if date.rng = NULL; or rides
within a specified date range if dates are given.
GC_mmvs retuns best maximal mean values for data specified in the type argument. Possible options

"non "non

for type are: "watts", "hr", "cad", "speed", "nm", "vam", "xPower", or "NP". See also mmv.

interval_detect Detect Intervals in a Ride.

Description

Section a ride file according to power output.

Usage
interval_detect(data, sections, plot = FALSE, ...)
Arguments
data a formatted dataset produced by readx().
sections how many sections should be identified? Includes stoppages.
plot logical; if TRUE, graphically displays the resultant sections.

graphical parameters to be passed to par (). Ignored if plot = FALSE.


https://github.com/GoldenCheetah/GoldenCheetah/wiki/UG_Special-Topics_REST-API-documentation
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Details

Often a ride will contain intervals/efforts that are not in any way marked in the device data (e.g. as
"laps"). Using changepoint analysis, it is possible to retrospectively identify these efforts. This is
contingent on supplying the number of changepoints to the underlying algorithm, simplified here as
a "sections” argument.

For example, if there are two efforts amidst a ride, this means we are looking to identify 5 sections
(i.e. neutral-effort-neutral-effort-neutral). See examples.

Depends on the package "changepoint”.

Value

if plot = TRUE nothing is returned. If plot = FALSE (default) a vector of section "levels" is returned.

Examples

data(intervaldata)

## "intervaldata” is a ride that includes two efforts (2 & 5 minutes) and a cafe
## stop. The efforts are marked in the lap column, which we can use as a
## criterion.

with(intervaldata, tapply(X = delta.t, INDEX = lap, sum)) / 60 # Minutes.

## The above shows the efforts were laps two and four. What was the power?
with(intervaldata, tapply(X = power.W, INDEX = lap, mean))[c(2, 4)]

## And for the sake of example, some other summary metrics...
1 <- split(intervaldata, intervaldata$lap)
names(1l) <- paste(”Lap”, names(l)) # Pretty names.
vapply(1l, FUN.VALUE = numeric(3), FUN = function(x)
c(t.min = ride_time(x$timer.s) / 60, NP = NP(x), TSS = TSS(x)))

## Could we have gotten the same information without the lap column?
## Two efforts and a cafe stop == 7 sections.
interval_detect(intervaldata, sections = 7, plot = TRUE)

## An overzealous start to the first effort is being treated as a seperate section,
## so let's allow for an extra section...
interval_detect(intervaldata, sections = 8, plot = TRUE)

## Looks okay, so save the output and combine the second and third sections.
intervaldata$intv <- interval_detect(intervaldata, sections = 8, plot = FALSE)

intervaldata$intv[intervaldata$intv == 3] <- 2

## Are the timings as expected?
with(intervaldata, tapply(X = delta.t, INDEX = intv, sum)) / 6@ # Minutes.

## Close enough!

i <- split(intervaldata, intervaldata$intv)
names(i) <- paste("”Interval”, seq_along(i)) # Pretty names.
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toplot <- vapply(i, FUN.VALUE = numeric(3), FUN = function(x)
c(t.min = ride_time(x$timer.s) / 60, NP = NP(x), TSS = TSS(x)))

print(toplot)

par(mfrow = c(3, 1))

mapply(function(r, ylab) barplot(
toplot[r, c(1:3, 5:7)]1, names.arg = seq_along(toplot[r, c(1:3, 5:7)1),
xlab = "Section”, ylab = ylab),
r =1:3, ylab = c("Ride time (minutes)", "NP", "TSS"))

LT Lactate Thresholds

Description
Model lactate threshold markers from work rate (power) and blood lactate values. Requires package
"pspline".

Usage
LT(WR, La, sig_rise = 1.5, plots = TRUE)

Arguments
WR a numeric vector of work rate values. Typically these would be the work rates
associated with stages in an incremental exercise test.
La a numeric vector of blood lactate values (mmol/L) associated with the stages
described in WR.
sig_rise numeric; a rise in blood [Lactate] that is deemed significant. Default is 1.5
mmol/L.
plots should outputs be plotted?
Details

This function is a slightly modified version of that written by Newell et al. (2007) and published in
the Journal of Sport Sciences (see references). The original source code, which also includes other
functions for lactate analysis, can be found here.

Value

a data frame of model outputs, and optionally a matrix of plots.

References

John Newell , David Higgins , Niall Madden , James Cruickshank , Jochen Einbeck , Kenny McMil-
lan & Roddy McDonald (2007) Software for calculating blood lactate endurance markers, Journal
of Sports Sciences, 25:12, 1403-1409, DOI.


http://www.nuigalway.ie/maths/jn/Lactate/html/lactate-r.html
http://dx.doi.org/10.1080/02640410601128922
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See Also

Newell et al.’s Shiny app.

Examples

# This data is included with Newell et al's source code.
WR <- c(50, 75, 100, 125, 150, 175, 200, 225, 250)

La <- c(2.8, 2.4, 2.4, 2.9, 3.1, 4.0, 5.8, 9.3, 12.2)
LT(WR, La, 1.5, TRUE)

mmv Maximal mean values.

Description

Calculate maximal mean values for specified time periods.

Usage

mmv(data, column, windows, deltat = NULL, character.only = FALSE)

Arguments
data a formatted dataset produced by read*().
column column in data giving the values of interest. Needn’t be quoted.
windows window size(s) for which to generate best averages, given in seconds.
deltat the sampling frequency of data in seconds per sample; typically 0.5 or 1. If

NULL, this is estimated.

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation. Mainly for internal use.
Value
a matrix object with two rows: 1) best mean values and 2) the time at which those values were
recorded
See Also

For a more generic and efficient version of this function, see mmv2


https://orreco.shinyapps.io/lactate/
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Examples

data(ridedata)

## Best power for 5 and 20 minutes.
tsec <- c(5, 20) * 60
mmv(ridedata, power.W, tsec)

## Generate a simple critical power estimate.

tsec <- 2:20 * 60

pwrs <- mmv(ridedata, power.W, tsec)

m <- Ilm(pwrs[1, 1 ~ {1 / tsec}) # Simple inverse model.
coef(m)[1] # Intercept = critical power.

## More complex models...

m <- Pt_model(pwrs[1, 1, tsec)

print(m)

## Extract the asymptote of the exponential model.
coef(m)$exp["CP"]

mmy 2 Efficient maximal mean values.

Description

A more efficient implementation of mmv. Simply takes a vector (x) of values and rolls over them
element wise by windows. Returns a vector of maximum mean values for each window. NAs are not
ignored.

Usage

mmv2(x, windows)

Arguments

X a numeric vector of values.

windows window size(s) (in element units) for which to generate maximum mean values.
Value

a vector of length(windows).

Examples

X <= rnorm(100, 500, 200)
mmv2(x, windows = c(5, 10, 20))
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plot.cycleRdata Plot cycling data.

Description

Generate plots to effectively summarise a cycling dataset.

Usage
## S3 method for class 'cycleRdata’
plot(x, y = 1:3, xvar = "timer.s"”, xlab = NULL,
xlim = NULL, CP = attr(x, "CP"), laps = FALSE, breaks = TRUE, ...)
Arguments
X a "cycleRdata” object produced by read=().
y numeric; plots to be created (see details).
xvar character; name of the column to be plotted as the xvariable.
xlab character; x axis label for bottom plot.
x1lim given in terms of x.
CP a value for critical power annotation.
laps logical; should laps be seperately coloured?
breaks logical; should plot lines be broken when stationary? Will only show when xvar
represents time values.
graphical parameters, and/or arguments to be passed to or from other methods.
Details

The y argument describes plot options such that:

1. plots W’ balance (kJ).
2. plots power data (W).

3. plots an elevation profile (m).

These options can be combined to produce a stack of plots as desired.

Value

a variable number of plots.
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Examples
## Not run:
data(ridedata)
plot(ridedata, xvar = "timer.min")
plot(ridedata, xvar = "distance.km")

## With only two plots.
plot(ridedata, y = c(2, 1))

## Using xlim, note that title metrics adjust.
plot(ridedata, xvar = "timer.min"”, xlim = c(100, 150))

## Lap colouring.
data(intervaldata)

plot(intervaldata, xvar = "timer.min", laps = TRUE)

## End(Not run)

predict.Ptmodels Predict Power or Time

Description

Given a Ptmodels object, the predict.Ptmodels will produce a named numeric vector of either time
(seconds) or power (watts) values according to the x and y arguments

Usage
## S3 method for class 'Ptmodels’
predict(object, x, xtype = c("pwr”, "time"), ...)
Arguments
object an object of class "Ptmodels".
X the value for which to make a prediction.
xtype what is x? A power or a time value?

further arguments passed to or from other methods.

Value

a named numeric vector of predicted values. Names correspond to their respective models.
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Examples

data(Pt_prof) # Example power-time profile.

P <- Pt_prof$pwr
tsec <- Pt_prof$time

mdls <- Pt_model(P, tsec) ## Model.
print(mdls)

## What is the best predicted 20 minute power?
predict(mdls, x = 60 *x 20, xtype = "time")

## How sustainable is 500 Watts?
predict(mdls, x = 500, xtype = "P") / 60 # Minutes.

## Create some plots of the models.
par(mfrow = c(2, 2), mar = c(3.1, 3.1, 1.1, 1.1))
plotargs <- alist(x = tsec, y = P, cex = 0.2, ann = FALSE, bty = "1")
mapply (function(f, m) {

do.call(plot, plotargs)

curve(f(x), col = "red"”, add = TRUE)

title(main = paste@(rownames(m),"”; RSE = ", round(m$RSE, 2)))
legend("topleft”, legend = m$formula, bty = "n")
return()

}, f = mdls$Pfn, m = split(mdls$table, seq_len(nrow(mdls$table))))

Pt_model Power-time modelling.

Description

Model the Power-time (Pt) relationship for a set of data. This is done via nonlinear least squares
regression of four models: an inverse model; an exponential model; a bivariate power function
model; and a three parameter inverse model. An S3 object of class "Ptmodels" is returned, which
currently has methods for print, coef, summary, and predict. If inputs do not conform well to the
models, a warning message is generated. This function will make use of minpack.1lm::nlsLM if
available.

Usage

Pt_model (P, tsec)

Arguments

P a numeric vector of maximal mean power values for time periods given in the
tsec argument.

tsec a numeric vector of time values that (positionally) correspond to elements in P.
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Value

returns an S3 object of class "Ptmodels".

References

R. Hugh Morton (1996) A 3-parameter critical power model, Ergonomics, 39:4, 611-619, DOL.

See Also

predict.Ptmodels

Examples

data(Pt_prof) # Example power-time profile.

P <- Pt_prof$pwr
tsec <- Pt_prof$time

mdls <- Pt_model(P, tsec) # Model.
print(mdls)

coef(mdls)
summary (mdls)

Pt_prof Power-time profile.

Description

An example power profile; i.e. best mean powers for periods of 30 seconds through to 1 hour, in
increments of 10 seconds.

Usage

Pt_prof

Format

a data. frame with two columns: time (seconds) and power (Watts), respectively.


http://dx.doi.org/10.1080/00140139608964484
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read_ride Read cycling device data.

Description

Read data from a cycling head unit into the R environment; optionally formatting it for use with
other functions in this package. Critical power and session RPE metrics can also be associated with
the data and used by other functions (e.g. summary.cycleRdata).

Usage

read_ride(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL)

read_fit(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL)
read_pwx(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL)
read_srm(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL)
read_tcx(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL)
Arguments
file character; path to the file.
format logical; should data be formatted?
CP, sRPE optional; critical power and session RPE values to be associated with the data.
Ignored if format = FALSE.
Details

Note that most functions within this package depend on imported data being formatted; i.e. read*("file_path”,
format = TRUE). Hence, unless the raw data is of particular interest and/or the user wants to pro-

cess it manually, the format argument should be TRUE (default). When working with a formatted

dataset, do not change existing column names. The formatted data structure is described in detail in

ridedata.

Garmin fit file data is parsed with the java command line tool provided in the FIT SDK. The latest
source code and licensing information can be found at the previous link.

SRM device files (.srm) are also parsed at the command line, provided Rainer Clasen’s srmio library
is installed and available. The associated GitHub repo’ can be found here.

Value

a data frame object.


http://www.thisisant.com/resources/fit
http://www.zuto.de/project/srmio/
https://github.com/rclasen/srmio
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Functions

* read_ride: A wrapper for read_* functions that chooses the appropriate function based on
file extension.

e read_fit: Read a Garmin (Ltd) device .fit file. This invokes system2 to execute the FitCSV-
Tool.jar command line tool (see FIT SDK). Hence, this function requires that Java (JRE/JDK)
binaries be on the system path.

* read_pwx: Read a Training Peaks .pwx file. Requires the "xml2" package to be installed.

* read_srm: Read an SRM (.srm) file. This requires Rainer Clasen’s srmio library to be installed
and on the system path.

* read_tcx: Read a Garmin .tcx file. Requires the "xml2" package to be installed.

Examples

## Not run:

fl <- system.file("extdata/example_files.tar.gz",
package = "cycleRtools")

fls <- untar(fl, list = TRUE)

untar(fl) # Extract to working directory.

dat <- lapply(fls, read_ride, format = TRUE, CP = 300, sRPE = 5)
file.remove(fls)

## End(Not run)

reset Reset a dataset or vector.

Description
if x is a "cycleRdata" object, all columns are reset as appropriate. This can be useful after subset-
ting a ride dataset, for example. Otherwise, this is a wrapper for x - x[[1]].

Usage

reset(x)

Arguments

X a numeric vector or formatted cycling dataset (i.e. class "cycleRdata").

Value

either a data frame or vector, depending on the class of x.


http://www.thisisant.com/resources/fit
http://www.zuto.de/project/srmio/
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Examples
data(ridedata)
# Remove first minute of data and reset.

data_raw <- ridedatal[ridedata$timer.s > 60, ]
data_reset <- reset(data_raw)

ride_examples Example cycling data.

Description

Formatted cycling data from a Garmin head-unit. Imported via read_fit("file_path"”, format
=TRUE, CP =310, sRPE = 7).

"ridedata” is a typical group ride. "intervaldata” is a session (of sorts) that included two efforts
and a cafe stop. The latter is included to demonstrate the use of interval_detect.

Usage

ridedata

intervaldata

Format

An object of class c("cycleRdata”, "data.frame”), and additional attributes of CP = 300 & sRPE
= 7. The latter are used by several methods in this package. See cycleRdata for a description of
columns.

See Also

cycleRdata.

rollmean_ Rolling average smoothing.

Description

Smooth data with a right-aligned (zero-padded) rolling average.

Usage

rollmean_(x, window, ema, narm)

rollmean_smth(data, column, smth.pd, deltat = NULL, ema = FALSE,
character.only = FALSE)
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Arguments
X numeric; values to be rolled over.
window numeric; size of the rolling window in terms of elements in x.
ema logical; should the moving average be exponentially weighted?
narm logical; should NAs be removed?
data a dataset of class cycleRdata.
column the column name of the data to be smoothed, needn’t be quoted.
smth.pd numeric; the time period over which to smooth (seconds).
deltat the sampling frequency of data in seconds per sample; typically 0.5 or 1. If

NULL, this is estimated.

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation.

Details

rollmean_ is the core Rcpp function, which rolls over elements in x by a window given in window;
optionally applying exponential weights and/or removing NAs. rollmean_smth is a wrapper for
rollmean_ that only has a method for cycleRdata objects. The latter will pre-process the data and
permits what is effectively the window argument being given in time units.

Value

a vector of the same length as the datal, column].

Examples

## Not run:
data(ridedata)

## Smooth power data with a 3@ second moving average.
rollmean_smth(ridedata, power.W, 30)

## Or use an exponentially weighted moving average.
rollmean_smth(ridedata, power.W, 30, ema = TRUE)

## End(Not run)

rollmean_nunif Rolling mean for nonuniform data.

Description

Produce a rolling average for data sampled at non-uniform time intervals.
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Usage

rollmean_nunif(x, t, window)

Arguments
X numeric vector of values to be rolled.
t numeric vector of time values corresponding to elements in x.
window size of the window in terms of t. E.g. 30 (seconds).
smth_plot Smoothed data plot.
Description

Create a plot with both raw and smoothed data lines.

Usage
smth_plot(data, x = "timer.s"”, yraw = "power.W", ysmth = "power.smooth.W",
colour = "lap”, ..., character.only = FALSE)
Arguments
data the dataset to be used.
X column identifier for the x axis data.
yraw column identifier for the (underlying) raw data.
ysmth column identifier for the smoothed data.
colour level identifier in data by which to colour lines. Or a colour name.

further arguments to be passed to plot().

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation.

Examples

data(ridedata)

## Plot with a single blue line (default arguments):
smth_plot(ridedata, colour = "blue”, main = "Single Colour”,
xlab = "Time (seconds)”, ylab = "Power (watts)")

## Create some laps.
ridedata$lap <- ceiling(seq(from = 1.1, to = 5, length.out = nrow(ridedata)))
## Plot with lap colours.
smth_plot(ridedata, timer.min, power.W, power.smooth.W, colour = "lap",
xlab = "Time (mins)", ylab = "Power (watts)"”, main = "Lap Colours")
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summary.cycleRdata Summary method for cycleRdata class.

Description

Relevant summary metrics for cycling data (method for class "cycleRdata").

Usage

## S3 method for class 'cycleRdata'
summary(object, sRPE = attr(object, "sRPE"),

CP = attr(object, "CP"), .smoothpwr = "power.smooth.W", ...)
Arguments
object object for which a summary is desired.
SRPE optional; session Rating of Percieved Exertion (value between 1 and 10; Foster
1998).
CP optional; Critical Power value (Watts).
. smoothpwr character string; column name of smoothed power values. Used for xP metric.

further arguments passed to or from other methods.

Value

a list object of class "cyclesummary", which has an associated print method.

References

Foster C. Monitoring training in athletes with reference to overtraining syndrome. Medicine &
Science in Sports & Exercise 30: 1164-1168, 1998.

Examples

data(intervaldata)
summary (intervaldata)
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summary_metrics Summary metrics.

Description

Common summary measures of interest to cyclists.

Usage

ride_time(x, deltat = NULL)

xPower (data)

NP (data)

pwr_TRIMP(data, CP = attr(data, "CP"))

TSS(data, CP = attr(data, "CP"))

Arguments
X a vector of time values.
deltat numeric; the typical interval between time values, if NULL a best estimate is used.
data a "cycleRdata" object, produced from a read_ride function.
CP a Critical Power value - e.g. CP or FTP.
Details

NP calculates a Normalised Power value. "Normalised Power" is a registered trademark of Peak-
sware Inc.

xPower; Dr. Philip Skiba/Golden Cheetah’s answer to NP.

pwr_TRIMP: Power-Based TRaining IMPulse. Calculates a normalised TRIMP value using power
data. This is a power-based adaptation of Bannister’s TRIMP, whereby critical power (CP) is as-
sumed to represent 90 to the score associated with one-hour’s riding at CP, to aid interpretation.

ride_time is a simple function for calculating ride time, as opposed to elapsed time.

TSS calculates a Training Stress Score (TSS). TSS is a registered trademark of Peaksware Inc.

Value

a single numeric value.

References

Morton, R.H., Fitz-Clarke, J.R., Banister, E.-W., 1990. Modeling human performance in running.
Journal of Applied Physiology 69, 1171-1177.



Whbal_ 23

Examples
data(ridedata)

## Display all summary metrics with an xapply call.
fns <~ list("ride_time"”, "xPower”, "NP", "pwr_TRIMP", "TSS")
argl <- list(data = ridedata, x = ridedata$timer.s, CP = 300)
metrs <- vapply(fns, function(f) {

do.call(f, argllnames(argl) %in% names(formals(f))])
}, numeric(1))

names(metrs) <- fns
print(metrs)

Wbal_ W’ balance.

Description

Generate a vector of W’ balance values from time and power data. The underlying algorithm is
published in Skiba er al. (2012). Wbal is a wrapper for the Rcpp function Wbal_.

Usage

Wbal_(t, P, CP)

Wbal(data, time = "timer.s"”, pwr = "power.smooth.W”, CP = attr(data,
"CP"), noisy = TRUE, character.only = FALSE)

Arguments
t, P numeric vectors of time and power, respectively.
CP a critical power value for use in the calculation.
data a data.frame/matrix object with time and power columns.
time character; name of the time (seconds) column in data.
pwr character; name of the power (watts) column in data.
noisy logical; create smoother data by pooling power data into sub- and supra-CP

sections.

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation.
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Details

The algorithm used here, while based on Dr Phil Skiba’s model, differs in that values are posi-
tive as opposed to negative. The original published model expressed W’ balance as W’ minus W’
expended, the latter recovering with an exponential time course when P < CP. An issue with this ap-
proach is that an athlete might be seen to go into negative W’ balance. Hence, to avoid assumptions
regarding available W’, this algorithm returns W’ expended (and its recovery) as positive values;
i.e. aride is begun at 0 W’ expended, and it will increase in response to supra-CP efforts.

It is advisable on physiological grounds to enter smoothed power values to the function, hence this
is the default behaviour. If nothing else, this prevents an unrealistic inflation of W’ values that are
inconsistent with estimates derived from power-time modelling.

The essence of the algorithm can be seen in the function test file.

Note that if there are NA values in the power column, these are ignored and the correspoding W’
expended value assumes that of the last available power value. NA values are not allowed in the time
column.

Value

A numeric vector of W’ balance values, in kilojoules or joules for Wbal or Wbal_ respectively.

References

Skiba, P. F., W. Chidnok, A. Vanhatalo, and A. M. Jones. Modeling the Expenditure and Recon-
stitution of Work Capacity above Critical Power. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp.
1526-1532, 2012. PubMed link.

See Also

plot.cycleRdata.

Examples

## Not run:
data(ridedata)

## Basic usage.
ridedata$Wexp.kJ <- Wbal(ridedata, timer.s, power.W, 310)

## Data can be noisy or "smooth"”; e.g.
Wbal_noisy <- Wbal(ridedata, timer.s, power.W, 310, noisy = TRUE)
Wbal_smth <- Wbal(ridedata, timer.s, power.W, 310, noisy = FALSE)

## Plot:
ylim <- rev(extendrange(Wbal_noisy)) # Reverse axes.

plot(ridedata$timer.min, Wbal_noisy, type = "1", ylim = ylim,
main = "NOISY")

plot(ridedata$timer.min, Wbal_smth, type = "1", ylim = ylim,
main = "Smooooth")


https://github.com/jmackie4/cycleRtools/blob/master/tests/testthat/test_Wbal.R
http://www.ncbi.nlm.nih.gov/pubmed/22382171
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## Example of NA handling.

d <- data.frame(t = seq_len(20), pwr = rnorm(20, 300, 50), Wexp.J = NA)
d[14:16, "pwr"] <- NA

d[, "Wexp.J"1 <- Wbal(d, "t"”, "pwr", CP = 290)

print(d)

## Using underlying Rcpp function:
Wbal_(t = 1:20, P = rnorm(20, 300, 50), CP = 300) # Values are in joules.

## End(Not run)

zdist_plot Zone-time distribution plot.

Description

Display the time distribution of values within a dataset. The distribution can also be partitioned into
zones if the zbounds argument is not NULL.

Usage
zdist_plot(data, column = "power.W", binwidth = 10, zbounds = NULL,
character.only = FALSE, ...)
Arguments
data a "cycleRdata" object, produced from a read_ride function.
column column in data giving the values of interest. Needn’t be quoted.
binwidth how should values in column be binned? E.g. bindiwdth = 10 will create 10

watt bins if column is power data.
zbounds optional; a numeric vector of zone boundaries.

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation.

arguments to be passed to barplot() and/or graphical parameters (par).

Value

nothing; a plot is sent to the current graphics device.

Examples
data(ridedata)
## Using power.

zdist_plot(
data = ridedata, column = power.W,
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binwidth = 10, # 10 watt bins.

zbounds = c(100, 200, 300),

xlim = c(110, 500), xlab = "Power (Watts)”,

main = "Power distribution” # Argument passed to barplot.

)

## Using speed.

zdist_plot(
data = ridedata, column = speed.kmh,
binwidth = 2, # 2 km/hr bins.
zbounds = c(10, 20, 30),
xlab = "Speed (km/hr)",
main = "Speed distribution”

)

## Without zone colouring (produces a warning).
zdist_plot(

data = ridedata, column = speed.kmh,

binwidth = 5, # 2 km/hr bins.

xlab = "Speed (km/hr)", main = "Dull”
)

zone_index Index zones.

Description

Generate a vector of zone "levels" from an input vector and defined boundaries.

Usage

zone_index(x, zbounds)

Arguments
X numeric; values to be "zoned".
zbounds numeric; values for zone boundaries.
Value

a numeric vector of zone values of the same length as x. The number of zone levels will be
length(zbounds) + 1.
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Examples

data(ridedata)

## Best used to append to existing data.
ridedata$zone <- zone_index(ridedata$power.W, c(100, 200, 300))

## How much distance was covered in each zone?
ridedata$delta.dist <- c(@, diff(ridedata$distance.km))
with(ridedata, tapply(delta.dist, zone, sum, na.rm = TRUE)) # Km.

zone_time Calculate time in zones.

Description

Given a vector of zone boundaries, sums the time spent in each zone.

Usage

zone_time(data, column = "power.W", zbounds, pct = FALSE,
character.only = FALSE)

Arguments
data a "cycleRdata" object, produced from a read_ride function.
column the column name of the data to which the zone boundaries relate.
zbounds numeric; zone boundaries.
pct should percentage values be returned?

character.only are column name arguments given as character strings? A backdoor around
non-standard evaluation. Mainly for internal use.

Value

a data frame of zone times.
Examples
data(ridedata)

## Time spent above and below critical power...
zone_time(ridedata, "power.W", zbounds = 300) / 60 # Minutes.

## Or with more zones...
zone_time(ridedata, "power.W", zbounds = c(100, 200, 300)) / 60

## Or given as a percentage...
zone_time(ridedata, "power.W", zbounds = c(100, 200, 300), pct = TRUE)
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