
Package ‘dgpsi’
January 14, 2024

Type Package

Title Interface to 'dgpsi' for Deep and Linked Gaussian Process
Emulations

Version 2.4.0

Maintainer Deyu Ming <deyu.ming.16@ucl.ac.uk>

Description Interface to the 'python' package 'dgpsi' for Gaussian process, deep Gaussian process,
and linked deep Gaussian process emulations of computer models and networks using stochas-
tic imputation (SI).
The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and
Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and
Ming & Williamson (2023) <arXiv:2306.01212>. To get started with the package,
see <https://mingdeyu.github.io/dgpsi-R/>.

License MIT + file LICENSE

URL https://github.com/mingdeyu/dgpsi-R,

https://mingdeyu.github.io/dgpsi-R/

BugReports https://github.com/mingdeyu/dgpsi-R/issues

Encoding UTF-8

Depends R (>= 4.0)

Imports reticulate (>= 1.26), benchmarkme (>= 1.0.8), utils, ggplot2,
ggforce, reshape2, patchwork, lhs, methods, stats, bitops,
clhs, dplyr, uuid

Suggests knitr, rmarkdown, MASS, R.utils, spelling

VignetteBuilder knitr

RoxygenNote 7.2.1

Language en-US

NeedsCompilation no

Author Deyu Ming [aut, cre, cph],
Daniel Williamson [aut]

Repository CRAN

Date/Publication 2024-01-14 12:20:03 UTC

1

https://doi.org/10.1137/20M1323771
https://doi.org/10.1080/00401706.2022.2124311
https://arxiv.org/abs/2306.01212
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R/issues

2 alm

R topics documented:
alm . 2
combine . 6
continue . 7
design . 8
dgp . 17
draw . 25
gp . 26
Hetero . 31
init_py . 32
kernel . 33
lgp . 35
mice . 37
NegBin . 41
nllik . 42
pack . 43
pei . 45
plot . 48
Poisson . 51
predict . 52
prune . 56
read . 58
set_imp . 59
set_linked_idx . 60
set_seed . 61
summary . 61
trace_plot . 62
unpack . 63
update . 64
validate . 66
vigf . 70
window . 73
write . 74

Index 76

alm Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using ALM

Description

This function searches from a candidate set to locate the next design point(s) to be added to a
(D)GP emulator or a bundle of (D)GP emulators using the Active Learning MacKay (ALM), see
the reference below.

alm 3

Usage

alm(object, x_cand, ...)

S3 method for class 'gp'
alm(object, x_cand, batch_size = 1, workers = 1, ...)

S3 method for class 'dgp'
alm(
object,
x_cand,
batch_size = 1,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
alm(
object,
x_cand,
batch_size = 1,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design point(s) are deter-
mined. If object is an instance of the bundle class, x_cand could also be a list
with the length equal to the number of emulators contained in the object. Each
slot in x_cand is a matrix that gives a candidate set for each emulator included
in the bundle. See Note section below for further information.

... any arguments (with names different from those of arguments used in alm())
that are used by aggregate can be passed here.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

workers the number of workers/cores to be used for the criterion calculation. If set to
NULL, the number of workers is set to (max physical cores available - 1).
Defaults to 1.

4 alm

threading a bool indicating whether to use the multi-threading to accelerate the criterion
calculation for a DGP emulator. Turning this option on could improve the speed
of criterion calculations when the DGP emulator is built with a moderately large
number of training data points and the Matérn-2.5 kernel.

aggregate an R function that aggregates scores of the ALM across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

• the output should be a vector that gives aggregations of scores at different
design points.

Set to NULL to disable the aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class, a vector is returned with the length equal to batch_size,
giving the positions (i.e., row numbers) of next design points from x_cand.

• If object is an instance of the dgp class, a matrix is returned with row number equal to
batch_size and column number equal to one (if aggregate is not NULL) or the output di-
mension (if aggregate is NULL), giving positions (i.e., row numbers) of next design points
from x_cand to be added to the DGP emulator across different outputs. If object is a DGP
emulator with either Hetero or NegBin likelihood layer, the returned matrix has two columns
with the first column giving positions of next design points from x_cand that correspond to
the mean parameter of the normal or negative Binomial distribution, and the second column
giving positions of next design points from x_cand that correspond to the variance parameter
of the normal distribution or the dispersion parameter of the negative Binomial distribution.

• If object is an instance of the bundle class, a matrix is returned with row number equal
to batch_size and column number equal to the number of emulators in the bundle, giving
positions (i.e., row numbers) of next design points from x_cand to be added to individual
emulators.

Note

• The column order of the first argument of aggregate must be consistent with the order of em-
ulator output dimensions (if object is an instance of the dgp class), or the order of emulators
placed in object if object is an instance of the bundle class;

https://mingdeyu.github.io/dgpsi-R/

alm 5

• If x_cand is supplied as a list when object is an instance of bundle class and a aggregate
function is provided, the matrices in x_cand must have common rows (i.e., the candidate sets
of emulators in the bundle have common input locations) so the aggregate function can be
applied.

• Any R vector detected in x_cand will be treated as a column vector and automatically con-
verted into a single-column R matrix.

References

MacKay, D. J. (1992). Information-based objective functions for active data selection. Neural
Computation, 4(4), 590-604.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using ALM
next_point <- alm(m, x_cand = x_cand)
X_new <- x_cand[next_point,,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit with 500 training iterations
m <- update(m, X, Y, refit = TRUE, N = 500)

plot the LOO validation
plot(m)

6 combine

End(Not run)

combine Combine layers

Description

This function combines customized layers into a DGP or linked (D)GP structure.

Usage

combine(...)

Arguments

... a sequence of lists:

1. For DGP emulations, each list represents a DGP layer and contains GP
nodes (produced by kernel()), or likelihood nodes (produced by Poisson(),
Hetero(), or NegBin()).

2. For linked (D)GP emulations, each list represents a system layer and con-
tains emulators (produced by gp() or dgp()) in that layer.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A list defining a DGP structure (for struc of dgp()) or a linked (D)GP structure (for struc for
lgp()).

Examples

Not run:

See lgp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

continue 7

continue Continue the training of a DGP emulator

Description

This function implements additional training iterations for a DGP emulator.

Usage

continue(
object,
N = 500,
cores = 1,
ess_burn = 10,
verb = TRUE,
burnin = NULL,
B = NULL

)

Arguments

object an instance of the dgp class.

N additional number of iterations for the DGP emulator training. Defaults to 500.

cores the number of cores/workers to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of cores is set to
(max physical cores available - 1). Only use multiple cores when there
is a large number of GP components in different layers and optimization of GP
components is computationally expensive. Defaults to 1.

ess_burn number of burnin steps for the ESS-within-Gibbs at each I-step of the training.
Defaults to 10.

verb a bool indicating if the progress bar will be printed during the training:

1. FALSE: the training progress bar will not be displayed.
2. TRUE: the training progress bar will be displayed.

Defaults to TRUE.

burnin the number of training iterations to be discarded for point estimates calculation.
Must be smaller than the overall training iterations so-far implemented. If this is
not specified, only the last 25% of iterations are used. This overrides the value
of burnin set in dgp(). Defaults to NULL.

B the number of imputations to produce the predictions. Increase the value to
account for more imputation uncertainties. This overrides the value of B set in
dgp() if B is not NULL. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

8 design

Value

An updated object.

Note

• One can also use this function to fit an untrained DGP emulator constructed by dgp() with
training = FALSE.

• The following slots:

– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

Examples

Not run:

See dgp() for an example.

End(Not run)

design Sequential design of a (D)GP emulator or a bundle of (D)GP emula-
tors

Description

This function implements the sequential design of a (D)GP emulator or a bundle of (D)GP emula-
tors.

Usage

design(
object,
N,
x_cand,
y_cand,
n_cand,
limits,
int,
f,
reps,
freq,
x_test,
y_test,
reset,
target,
method,

design 9

eval,
verb,
autosave,
new_wave,
cores,
...

)

S3 method for class 'gp'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_cand = 200,
limits = NULL,
int = FALSE,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
cores = 1,
...

)

S3 method for class 'dgp'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_cand = 200,
limits = NULL,
int = FALSE,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,

10 design

target = NULL,
method = vigf,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
cores = 1,
train_N = 100,
refit_cores = 1,
pruning = TRUE,
control = list(),
...

)

S3 method for class 'bundle'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_cand = 200,
limits = NULL,
int = FALSE,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
cores = 1,
train_N = 100,
refit_cores = 1,
...

)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

N the number of steps for the sequential design.

design 11

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set in which the next design point is determined. If
x_cand = NULL, the candidate set will be generated using n_cand, limits, and
int. Defaults to NULL.

y_cand a matrix (with each row being a simulator evaluation and column being an output
dimension) that gives the realizations from the simulator at input positions in
x_cand. Defaults to NULL.

n_cand an integer that gives

• the size of the candidate set in which the next design point is determined, if
x_cand = NULL;

• the size of a sub-set to be sampled from the candidate set x_cand at each
step of the sequential design to determine the next design point, if x_cand
is not NULL.

Defaults to 200.

limits a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. Set limits = NULL if x_cand is
supplied. This argument is only used when x_cand is not supplied, i.e., x_cand
= NULL. Defaults to NULL.

int a bool or a vector of bools that indicates if an input dimension is an integer
type. If a bool is given, it will be applied to all input dimensions. If a vector
is provided, it should have a length equal to the input dimensions and will be
applied to individual input dimensions. Defaults to FALSE.

f an R function that represents the simulator. f needs to be specified with the
following basic rules:

• the first argument of the function should be a matrix with rows being dif-
ferent design points and columns being input dimensions.

• the output of the function can either
– a matrix with rows being different outputs (corresponding to the input

design points) and columns being output dimensions. If there is only
one output dimension, the matrix still needs to be returned with a single
column.

– a list with the first element being the output matrix described above
and, optionally, additional named elements which will update values of
any arguments with the same names passed via The list output can
be useful if some additional arguments of f and aggregate need to be
updated after each step of the sequential design.

See Note section below for further information. This argument is used when
y_cand = NULL. Defaults to NULL.

reps an integer that gives the number of repetitions of the located design points to be
created and used for evaluations of f. Set the argument to an integer greater than
1 if f is a stochastic function that can generate different responses given a same
input and the supplied emulator object can deal with stochastic responses, e.g.,

12 design

a (D)GP emulator with nugget_est = TRUE or a DGP emulator with a likelihood
layer. The argument is only used when f is supplied. Defaults to 1.

freq a vector of two integers with the first element giving the frequency (in number
of steps) to re-fit the emulator, and the second element giving the frequency to
implement the emulator validation (for RMSE). Defaults to c(1, 1).

x_test a matrix (with each row being an input testing data point and each column being
an input dimension) that gives the testing input data to evaluate the emulator
after each step of the sequential design. Set to NULL for the LOO-based emulator
validation. Defaults to NULL. This argument is only used if eval = NULL.

y_test the testing output data that correspond to x_test for the emulator validation
after each step of the sequential design:

• if object is an instance of the gp class, y_test is a matrix with only one
column and each row being an testing output data point.

• if object is an instance of the dgp class, y_test is a matrix with its rows
being testing output data points and columns being output dimensions.

Set to NULL for the LOO-based emulator validation. Defaults to NULL. This
argument is only used if eval = NULL.

reset a bool or a vector of bools indicating whether to reset hyperparameters of the
emulator to their initial values when it was initially constructed after the input-
output update and before the re-fit. If a bool is given, it will be applied to every
step of the sequential design. If a vector is provided, its length should be equal
to N and will be applied to individual steps of the sequential design. Defaults to
FALSE.

target a numeric or a vector that gives the target RMSEs at which the sequential design
is terminated. Defaults to NULL, in which case the sequential design stops after
N steps. See Note section below for further information about target.

method an R function that give indices of designs points in a candidate set. The function
must satisfy the following basic rules:

• the first argument is an emulator object that can be either an instance of
– the gp class (produced by gp());
– the dgp class (produced by dgp());
– the bundle class (produced by pack()).

• the second argument is a matrix with rows representing a set of different
design points.

• the output of the function
– is a vector of indices if the first argument is an instance of the gp class;
– is a matrix of indices if the first argument is an instance of the dgp class.

If there are different design points to be added with respect to different
outputs of the DGP emulator, the column number of the matrix should
equal to the number of the outputs. If design points are common to all
outputs of the DGP emulator, the matrix should be single-columned. If
more than one design points are determined for a given output or for all
outputs, the indices of these design points are placed in the matrix with
extra rows.

design 13

– is a matrix of indices if the first argument is an instance of the bundle
class. Each row of the matrix gives the indices of the design points to
be added to individual emulators in the bundle.

See alm(), mice(), pei(), and vigf() for examples on customizing method.
Defaults to vigf().

eval an R function that calculates the customized evaluating metric of the emulator.
The function must satisfy the following basic rules:

• the first argument is an emulator object that can be either an instance of
– the gp class (produced by gp());
– the dgp class (produced by dgp());
– the bundle class (produced by pack()).

• the output of the function can be
– a single metric value, if the first argument is an instance of the gp class;
– a single metric value or a vector of metric values with the length equal

to the number of output dimensions, if the first argument is an instance
of the dgp class;

– a single metric value metric or a vector of metric values with the length
equal to the number of emulators in the bundle, if the first argument is
an instance of the bundle class.

If no customized function is provided, the built-in evaluation metric, RMSE, will
be calculated. Defaults to NULL. See Note section below for further information.

verb a bool indicating if the trace information will be printed during the sequential
design. Defaults to TRUE.

autosave a list that contains configuration settings for the automatic saving of the emula-
tor:

• switch: a bool indicating whether to enable the automatic saving of the
emulator during the sequential design. When set to TRUE, the emulator in
the final iteration is always saved. Defaults to FALSE.

• directory: a string specifying the directory path where the emulators will
be stored. Emulators will be stored in a sub-directory of directory named
’emulator-id’. Defaults to ’./check_points’.

• fname: a string representing the base name for the saved emulator files.
Defaults to ’check_point’.

• freq: an integer indicating the frequency of automatic savings, measured
in the number of iterations. Defaults to 5.

• overwrite: a bool value controlling the file saving behavior. When set
to TRUE, each new automatic saving overwrites the previous one, keeping
only the latest version. If FALSE, each automatic saving creates a new file,
preserving all previous versions. Defaults to FALSE.

new_wave a bool indicating if the current execution of design() will create a new wave of
sequential designs or add the sequential designs to the last existing wave. This
argument is only used if there are waves existing in the emulator. By creating
new waves, one can better visualize the performance of the sequential designs
in different executions of design() in draw() and can specify a different eval-
uation frequency in freq. However, it can be beneficiary to turn this option off

14 design

to restrict a large number of waves to be visualized in draw() that could run out
of colors. Defaults to TRUE.

cores an integer that gives the number of cores to be used for emulator validations. If
set to NULL, the number of cores is set to (max physical cores available - 1).
Defaults to 1. This argument is only used if eval = NULL.

... any arguments (with names different from those of arguments used in design())
that are used by f, method, and eval can be passed here. design() will pass
relevant arguments to f, method, and eval based on the names of additional
arguments provided.

train_N an integer or a vector of integers that gives the number of training iterations to
be used to re-fit the DGP emulator at each step of the sequential design:

• If train_N is an integer, then at each step the DGP emulator will re-fitted
(based on the frequency of re-fit specified in freq) with train_N iterations.

• If train_N is a vector, then its size must be N even the re-fit frequency
specified in freq is not one.

Defaults to 100.

refit_cores the number of cores/workers to be used to re-fit GP components (in the same
layer of a DGP emulator) at each M-step during the re-fitting. If set to NULL, the
number of cores is set to (max physical cores available - 1). Only use
multiple cores when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

pruning a bool indicating if dynamic pruning of DGP structures will be implemented
during the sequential design after the total number of design points exceeds
min_size in control. The argument is only applicable to DGP emulators (i.e.,
object is an instance of dgp class) produced by dgp() with struc = NULL. De-
faults to TRUE.

control a list that can supply any of the following components to control the dynamic
pruning of the DGP emulator:

• min_size, the minimum number of design points required to trigger the
dynamic pruning. Defaults to 10 times of the input dimensions.

• threshold, the R2 value above which a GP node is considered redundant.
Defaults to 0.97.

• nexceed, the minimum number of consecutive iterations that the R2 value
of a GP node must exceed threshold to trigger the removal of that node
from the DGP structure. Defaults to 3.

The argument is only used when pruning = TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object is returned with a slot called design that contains:

https://mingdeyu.github.io/dgpsi-R/

design 15

• S slots, named wave1, wave2,..., waveS, that contain information of S waves of sequential
designs that have been applied to the emulator. Each slot contains the following elements:

– N, an integer that gives the numbers of steps implemented in the corresponding wave;
– rmse, a matrix that gives the RMSEs of emulators constructed during the corresponding

wave, if eval = NULL;
– metric, a matrix that gives the customized evaluating metric values of emulators con-

structed during the corresponding wave, if a customized function is supplied to eval;
– freq, an integer that gives the frequency that the emulator validations are implemented

during the corresponding wave.
– enrichment, a vector of size N that gives the number of new design points added after

each step of the sequential design (if object is an instance of the gp or dgp class), or a
matrix that gives the number of new design points added to emulators in a bundle after
each step of the sequential design (if object is an instance of the bundle class).

If target is not NULL, the following additional elements are also included:

– target, the target RMSE(s) to stop the sequential design.
– reached, a bool (if object is an instance of the gp or dgp class) or a vector of bools (if
object is an instance of the bundle class) that indicate if the target RMSEs are reached
at the end of the sequential design.

• a slot called type that gives the type of validations:

– either LOO (’loo’) or OOS (’oos’) if eval = NULL. See validate() for more information
about LOO and OOS.

– ’customized’ if a customized R function is provided to eval.

• two slots called x_test and y_test that contain the data points for the OOS validation if the
type slot is ’oos’.

• If y_cand = NULL and there are NAs returned from the supplied f during the sequential design,
a slot called exclusion is included that records the located design positions that produced NAs
via f. The sequential design will use this information to avoid re-visiting the same locations
(if x_cand is supplied) or their neighborhoods (if x_cand is NULL) in later runs of design().

See Note section below for further information.

Note

• The validation of an emulator is forced after the final step of a sequential design even N is not
multiples of the second element in freq.

• Any loo or oos slot that already exists in object will be cleaned, and a new slot called loo
or oos will be created in the returned object depending on whether x_test and y_test are
provided. The new slot gives the validation information of the emulator constructed in the
final step of the sequential design. See validate() for more information about the slots loo
and oos.

• If object has previously been used by design() for sequential designs, the information of
the current wave of the sequential design will replace those of old waves and be contained in
the returned object, unless

– the validation type (LOO or OOS depending on whether x_test and y_test are supplied
or not) of the current wave of the sequential design is the same as the validation types

16 design

(shown in the type of the design slot of object) in previous waves, and if the validation
type is OOS, x_test and y_test in the current wave must also be identical to those in
the previous waves;

– both the current and previous waves of the sequential design supply customized evalua-
tion functions to eval. Users need to ensure the customized evaluation functions are con-
sistent among different waves. Otherwise, the trace plot of RMSEs produced by draw()
will show values of different evaluation metrics in different waves.

In above two cases, the information of the current wave of the sequential design will be added
to the design slot of the returned object under the name waveS.

• If object is an instance of the gp class and eval = NULL, the matrix in the rmse slot is single-
columned. If object is an instance of the dgp or bundle class and eval = NULL, the matrix
in the rmse slot can have multiple columns that correspond to different output dimensions or
different emulators in the bundle.

• If object is an instance of the gp class and eval = NULL, target needs to be a single value
giving the RMSE threshold. If object is an instance of the dgp or bundle class and eval =
NULL, target can be a vector of values that gives the RMSE thresholds for different output
dimensions or different emulators. If a single value is provided, it will be used as the RMSE
threshold for all output dimensions (if object is an instance of the dgp) or all emulators (if
object is an instance of the bundle). If a customized function is supplied to eval, the user
needs to ensure that the length of target is equal to that of the output from eval.

• When defining f, it is important to ensure that:

– the column order of the first argument of f is consistent with the training input used for
the emulator;

– the column order of the output matrix of f is consistent with the order of emulator output
dimensions (if object is an instance of the dgp class), or the order of emulators placed
in object (if object is an instance of the bundle class).

• The output matrix produced by f may include NAs. This is especially beneficial as it allows
the sequential design process to continue without interruption, even if errors or NA outputs
are encountered from f at certain input locations identified by the sequential designs. Users
should ensure to handle any errors within f by appropriately returning NAs.

• When defining eval, the output metric needs to be positive if draw() is used with log = T.
And one needs to ensure that a lower metric value indicates a better emulation performance if
target is set.

• Any R vector detected in x_test and y_test will be treated as a column vector and automat-
ically converted into a single-column R matrix. Thus, if x_test or y_test is a single testing
data point with multiple dimensions, it must be given as a matrix.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 2D non-stationary function that takes a matrix as the input
f <- function(x) {

dgp 17

sin(1/((0.7*x[,1,drop=F]+0.3)*(0.7*x[,2,drop=F]+0.3)))
}

generate the initial design
X <- maximinLHS(5,2)
Y <- f(X)

generate the validation data
validate_x <- maximinLHS(30,2)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with the initial design
m <- dgp(X, Y)

specify the ranges of the input dimensions
lim_1 <- c(0, 1)
lim_2 <- c(0, 1)
lim <- rbind(lim_1, lim_2)

1st wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

2nd wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

3rd wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

draw the design created by the sequential design
draw(m,'design')

inspect the trace of RMSEs during the sequential design
draw(m,'rmse')

reduce the number of imputations for faster OOS
m_faster <- set_imp(m, 5)

plot the OOS validation with the faster DGP emulator
plot(m_faster, x_test = validate_x, y_test = validate_y)

End(Not run)

dgp Deep Gaussian process emulator construction

Description

This function builds and trains a DGP emulator.

18 dgp

Usage

dgp(
X,
Y,
struc = NULL,
depth = 2,
node = ncol(X),
name = "sexp",
lengthscale = 1,
bounds = NULL,
prior = "ga",
share = TRUE,
nugget_est = FALSE,
nugget = ifelse(all(nugget_est), 0.01, 1e-06),
scale_est = TRUE,
scale = 1,
connect = TRUE,
likelihood = NULL,
training = TRUE,
verb = TRUE,
check_rep = TRUE,
rff = FALSE,
M = NULL,
N = 500,
cores = 1,
blocked_gibbs = TRUE,
ess_burn = 10,
burnin = NULL,
B = 10,
internal_input_idx = NULL,
linked_idx = NULL,
id = NULL

)

Arguments

X a matrix where each row is an input training data point and each column is an
input dimension.

Y a matrix containing observed training output data. The matrix has its rows being
output data points and columns being output dimensions. When likelihood
(see below) is not NULL, Y must be a matrix with only one column.

struc a list that specifies a user-defined DGP structure. It should contain L (the number
of DGP layers) sub-lists, each of which represents a layer and contains a num-
ber of GP nodes (defined by kernel()) in the corresponding layer. The final
layer of the DGP structure (i.e., the final sub-list in struc) can be a likelihood
layer that contains a likelihood function (e.g., Poisson()). When struc = NULL,
the DGP structure is automatically generated and can be checked by applying
summary() to the output from dgp() with training = FALSE. If this argument is

dgp 19

used (i.e., user provides a customized DGP structure), arguments depth, node,
name, lengthscale, bounds, prior, share, nugget_est, nugget, scale_est,
scale, connect, likelihood, and internal_input_idx will NOT be used.
Defaults to NULL.

depth number of layers (including the likelihood layer) for a DGP structure. depth
must be at least 2. Defaults to 2. This argument is only used when struc =
NULL.

node number of GP nodes in each layer (except for the final layer or the layer feeding
the likelihood node) of the DGP. Defaults to ncol(X). This argument is only
used when struc = NULL.

name a character or a vector of characters that indicates the kernel functions (either
"sexp" for squared exponential kernel or "matern2.5" for Matérn-2.5 kernel)
used in the DGP emulator: 1. if a single character is supplied, the corresponding
kernel function will be used for all GP nodes in the DGP hierarchy. 2. if a
vector of characters is supplied, each character of the vector specifies the kernel
function that will be applied to all GP nodes in the corresponding layer.
Defaults to "sexp". This argument is only used when struc = NULL.

lengthscale initial lengthscales for GP nodes in the DGP emulator. It can be a single numeric
value or a vector:

1. if it is a single numeric value, the value will be applied as the initial length-
scales for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial lengthscales
that will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if likelihood = NULL or a length of depth
- 1 if likelihood is not NULL.

Defaults to a numeric value of 1.0. This argument is only used when struc =
NULL.

bounds the lower and upper bounds of lengthscales in GP nodes. It can be a vector or a
matrix:

1. if it is a vector, the lower bound (the first element of the vector) and upper
bound (the second element of the vector) will be applied to lengthscales for
all GP nodes in the DGP hierarchy.

2. if it is a matrix, each row of the matrix specifies the lower and upper bounds
of lengthscales for all GP nodes in the corresponding layer. The matrix
should have its row number equal to depth if likelihood = NULL or to
depth - 1 if likelihood is not NULL.

Defaults to NULL where no bounds are specified for the lengthscales. This argu-
ment is only used when struc = NULL.

prior prior to be used for Maximum a Posterior for lengthscales and nuggets of all GP
nodes in the DGP hierarchy:

• gamma prior ("ga"),
• inverse gamma prior ("inv_ga"), or
• jointly robust prior ("ref").

Defaults to "ga". This argument is only used when struc = NULL.

20 dgp

share a bool indicating if all input dimensions of a GP node share a common length-
scale. Defaults to TRUE. This argument is only used when struc = NULL.

nugget_est a bool or a bool vector that indicates if the nuggets of GP nodes (if any) in the
final layer are to be estimated. If a single bool is provided, it will be applied
to all GP nodes (if any) in the final layer. If a bool vector (which must have a
length of ncol(Y)) is provided, each bool element in the vector will be applied
to the corresponding GP node (if any) in the final layer. The value of a bool has
following effects:

• FALSE: the nugget of the corresponding GP in the final layer is fixed to the
corresponding value defined in nugget (see below).

• TRUE: the nugget of the corresponding GP in the final layer will be estimated
with the initial value given by the correspondence in nugget (see below).

Defaults to FALSE. This argument is only used when struc = NULL.

nugget the initial nugget value(s) of GP nodes (if any) in each layer:

1. if it is a single numeric value, the value will be applied as the initial nugget
for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial nugget that
will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if likelihood = NULL or a length of depth
- 1 if likelihood is not NULL.

Set nugget to a small value and the bools in nugget_est to FASLE for deter-
ministic emulations where the emulator interpolates the training data points. Set
nugget to a reasonable larger value and the bools in nugget_est to TRUE for
stochastic emulations where the computer model outputs are assumed to fol-
low a homogeneous Gaussian distribution. Defaults to 1e-6 if nugget_est =
FALSE and 0.01 if nugget_est = TRUE. This argument is only used when struc
= NULL.

scale_est a bool or a bool vector that indicates if variance of GP nodes (if any) in the
final layer are to be estimated. If a single bool is provided, it will be applied
to all GP nodes (if any) in the final layer. If a bool vector (which must have a
length of ncol(Y)) is provided, each bool element in the vector will be applied
to the corresponding GP node (if any) in the final layer. The value of a bool has
following effects:

• FALSE: the variance of the corresponding GP in the final layer is fixed to the
corresponding value defined in scale (see below).

• TRUE: the variance of the corresponding GP in the final layer will be es-
timated with the initial value given by the correspondence in scale (see
below).

Defaults to TRUE. This argument is only used when struc = NULL.

scale the initial variance value(s) of GP nodes (if any) in the final layer. If it is a single
numeric value, it will be applied to all GP nodes (if any) in the final layer. If it
is a vector (which must have a length of ncol(Y)), each numeric in the vector
will be applied to the corresponding GP node (if any) in the final layer. Defaults
to 1. This argument is only used when struc = NULL.

dgp 21

connect a bool indicating whether to implement global input connection to the DGP
structure. Setting it to FALSE may produce a better emulator in some cases at
the cost of slower training. Defaults to TRUE. This argument is only used when
struc = NULL.

likelihood the likelihood type of a DGP emulator:
1. NULL: no likelihood layer is included in the emulator.
2. "Hetero": a heteroskedastic Gaussian likelihood layer is added for stochas-

tic emulation where the computer model outputs are assumed to follow
a heteroskedastic Gaussian distribution (i.e., the computer model outputs
have varying noises).

3. "Poisson": a Poisson likelihood layer is added for stochastic emulation
where the computer model outputs are assumed to a Poisson distribution.

4. "NegBin": a negative Binomial likelihood layer is added for stochastic em-
ulation where the computer model outputs are assumed to follow a negative
Binomial distribution.

When likelihood is not NULL, the value of nugget_est is overridden by FALSE.
Defaults to NULL. This argument is only used when struc = NULL.

training a bool indicating if the initialized DGP emulator will be trained. When set
to FALSE, dgp() returns an untrained DGP emulator, to which one can apply
summary() to inspect its specifications (especially when a customized struc is
provided) or apply predict() to check its emulation performance before the
training. Defaults to TRUE.

verb a bool indicating if the trace information on DGP emulator construction and
training will be printed during the function execution. Defaults to TRUE.

check_rep a bool indicating whether to check the repetitions in the dataset, i.e., if one input
position has multiple outputs. Defaults to TRUE.

rff a bool indicating whether to use random Fourier features to approximate the
correlation matrices in training. Turning on this option could help accelerate the
training when the training data is relatively large but may reduce the quality of
the resulting emulator. Defaults to FALSE.

M the number of features to be used by random Fourier approximation. It is only
used when rff is set to TRUE. Defaults to NULL. If it is NULL, M is automatically
set to max(100, ceiling(sqrt(nrow(X))*log(nrow(X)))).

N number of iterations for the training. Defaults to 500. This argument is only
used when training = TRUE.

cores the number of cores/workers to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of cores is set to
(max physical cores available - 1). Only use multiple cores when there
is a large number of GP components in different layers and optimization of GP
components is computationally expensive. Defaults to 1.

blocked_gibbs a bool indicating if the latent variables are imputed layer-wise using ESS-within-
Blocked-Gibbs. ESS-within-Blocked-Gibbs would be faster and more efficient
than ESS-within-Gibbs that imputes latent variables node-wise because it re-
duces the number of components to be sampled during the Gibbs, especially
when there is a large number of GP nodes in layers due to higher input dimen-
sions. Default to TRUE.

22 dgp

ess_burn number of burnin steps for the ESS-within-Gibbs at each I-step of the training.
Defaults to 10. This argument is only used when training = TRUE.

burnin the number of training iterations to be discarded for point estimates of model
parameters. Must be smaller than the training iterations N. If this is not specified,
only the last 25% of iterations are used. Defaults to NULL. This argument is only
used when training = TRUE.

B the number of imputations to produce the later predictions. Increase the value
to account for more imputation uncertainties with slower predictions. Decrease
the value for lower imputation uncertainties but faster predictions. Defaults to
10.

internal_input_idx

column indices of X that are generated by the linked emulators in the preceding
layers. Set internal_input_idx = NULL if the DGP emulator is in the first
layer of a system or all columns in X are generated by the linked emulators in
the preceding layers. Defaults to NULL. This argument is only used when struc
= NULL.

linked_idx either a vector or a list of vectors:

• If linked_idx is a vector, it gives indices of columns in the pooled output
matrix (formed by column-combined outputs of all emulators in the feeding
layer) that feed into the DGP emulator. The length of the vector shall equal
to the length of internal_input_idx when internal_input_idx is not
NULL. If the DGP emulator is in the first layer of a linked emulator system,
the vector gives the column indices of the global input (formed by column-
combining all input matrices of emulators in the first layer) that the DGP
emulator will use. If the DGP emulator is to be used in both the first and
subsequent layers, one should initially set linked_idx to the appropriate
values for the situation where the emulator is not in the first layer. Then,
use the function set_linked_idx() to reset the linking information when
the emulator is in the first layer.

• When the DGP emulator is not in the first layer of a linked emulator system,
linked_idx can be a list that gives the information on connections between
the DGP emulator and emulators in all preceding layers. The length of the
list should equal to the number of layers before the DGP emulator. Each
element of the list is a vector that gives indices of columns in the pooled
output matrix (formed by column-combined outputs of all emulators) in
the corresponding layer that feed into the DGP emulator. If the DGP em-
ulator has no connections to any emulator in a certain layer, set NULL in
the corresponding position of the list. The order of input dimensions in
X[,internal_input_idx] should be consistent with linked_idx. For ex-
ample, a DGP emulator in the 4th-layer that is fed by the output dimension
2 and 4 of emulators in layer 2 and all output dimension 1 to 3 of emula-
tors in layer 3 should have linked_idx = list(NULL, c(2,4), c(1,2,3)
). In addition, the first and second columns of X[,internal_input_idx]
should correspond to the output dimensions 2 and 4 from layer 2, and the
third to fifth columns of X[,internal_input_idx] should correspond to
the output dimensions 1 to 3 from layer 3.

dgp 23

Set linked_idx = NULL if the DGP emulator will not be used for linked emula-
tions. However, if this is no longer the case, one can use set_linked_idx() to
add linking information to the DGP emulator. Defaults to NULL.

id an ID to be assigned to the DGP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/ and learn how to
customize a DGP structure.

Value

An S3 class named dgp that contains five slots:

• id: A number or character string assigned through the id argument.

• data: a list that contains two elements: X and Y which are the training input and output data
respectively.

• specs: a list that contains

1. L (i.e., the number of layers in the DGP hierarchy) sub-lists named layer1, layer2,..., layerL.
Each sub-list contains D (i.e., the number of GP/likelihood nodes in the corresponding
layer) sub-lists named node1, node2,..., nodeD. If a sub-list corresponds to a likeli-
hood node, it contains one element called type that gives the name (Hetero, Poisson, or
NegBin) of the likelihood node. If a sub-list corresponds to a GP node, it contains four
elements:

– kernel: the type of the kernel function used for the GP node.
– lengthscales: a vector of lengthscales in the kernel function.
– scale: the variance value in the kernel function.
– nugget: the nugget value in the kernel function.

2. internal_dims: the column indices of X that correspond to the linked emulators in the
preceding layers of a linked system.

3. external_dims: the column indices of X that correspond to global inputs to the linked
system of emulators. It is shown as FALSE if internal_input_idx = NULL.

4. linked_idx: the value passed to argument linked_idx. It is shown as FALSE if the
argument linked_idx is NULL.

5. seed: the random seed generated to produce the imputations. This information is stored
for the reproducibility when the DGP emulator (that was saved by write() with the light
option light = TRUE) is loaded back to R by read().

6. B: the number of imputations used to generate the emulator.

internal_dims and external_dims are generated only when struc = NULL.

• constructor_obj: a ’python’ object that stores the information of the constructed DGP em-
ulator.

• container_obj: a ’python’ object that stores the information for the linked emulation.

• emulator_obj: a ’python’ object that stores the information for the predictions from the DGP
emulator.

https://mingdeyu.github.io/dgpsi-R/

24 dgp

The returned dgp object can be used by

• predict() for DGP predictions.

• continue() for additional DGP training iterations.

• validate() for LOO and OOS validations.

• plot() for validation plots.

• lgp() for linked (D)GP emulator constructions.

• window() for model parameter trimming.

• summary() to summarize the trained DGP emulator.

• write() to save the DGP emulator to a .pkl file.

• set_imp() to change the number of imputations.

• set_linked_idx() to add the linking information to the DGP emulator for linked emulations.

• design() for sequential designs.

• update() to update the DGP emulator with new inputs and outputs.

• alm(), mice(), pei(), and vigf() to locate next design points.

Note

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

Examples

Not run:

load the package and the Python env
library(dgpsi)

construct a step function
f <- function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)
}

generate training data
X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

set a random seed
set_seed(999)

training a DGP emulator
m <- dgp(X, Y)

continue for further training iterations
m <- continue(m)

draw 25

summarizing
summary(m)

trace plot
trace_plot(m)

trim the traces of model parameters
m <- window(m, 800)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(0, 1, length = 200)
m <- predict(m, x = test_x)

OOS validation
validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_dgp')
m <- read('step_dgp')

End(Not run)

draw Validation plots of a sequential design

Description

This function draws validation plots of the sequential design of a (D)GP emulator or a bundle of
(D)GP emulators.

Usage

draw(object, ...)

S3 method for class 'gp'
draw(object, type = "rmse", log = FALSE, ...)

S3 method for class 'dgp'
draw(object, type = "rmse", log = FALSE, ...)

S3 method for class 'bundle'
draw(object, emulator = 1, type = "rmse", log = FALSE, ...)

26 gp

Arguments

object can be one of the following emulator classes:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

... N/A.

type either "rmse", for the trace plot of RMSEs or customized evaluating metrics of
emulators constructed during the sequential designs, or "design", for visualiza-
tions of input designs created by the sequential design procedure. Defaults to
"rmse".

log a bool that indicates whether to plot RMSEs or customized evaluating metrics
in log-scale if type = "rmse". Defaults to FALSE.

emulator the index of the emulator packed in object if object is an instance of the
bundle class.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Note

If a customized evaluating function is provided to design() and the function returns a single eval-
uating metric value when object is an instance of the bundle class, the value of emulator has no
effects on the plot when type = "rmse".

Examples

Not run:

See design() for an example.

End(Not run)

gp Gaussian process emulator construction

Description

This function builds and trains a GP emulator.

https://mingdeyu.github.io/dgpsi-R/

gp 27

Usage

gp(
X,
Y,
struc = NULL,
name = "sexp",
lengthscale = rep(0.1, ncol(X)),
bounds = NULL,
prior = "ref",
nugget_est = FALSE,
nugget = ifelse(nugget_est, 0.01, 1e-08),
scale_est = TRUE,
scale = 1,
training = TRUE,
verb = TRUE,
internal_input_idx = NULL,
linked_idx = NULL,
id = NULL

)

Arguments

X a matrix where each row is an input data point and each column is an input
dimension.

Y a matrix with only one column and each row being an output data point.

struc an object produced by kernel() that gives a user-defined GP specifications.
When struc = NULL, the GP specifications are automatically generated using
information provided in name, lengthscale, nugget_est, nugget, scale_est,
scale,and internal_input_idx. Defaults to NULL.

name kernel function to be used. Either "sexp" for squared exponential kernel or
"matern2.5" for Matérn-2.5 kernel. Defaults to "sexp". This argument is only
used when struc = NULL.

lengthscale initial values of lengthscales in the kernel function. It can be a single numeric
value or a vector:

• if it is a single numeric value, it is assumed that kernel functions across
input dimensions share the same lengthscale;

• if it is a vector (which must have a length of ncol(X)), it is assumed that
kernel functions across input dimensions have different lengthscales.

Defaults to a vector of 0.1. This argument is only used when struc = NULL.

bounds the lower and upper bounds of lengthscales in the kernel function. It is a vector
of length two where the first element is the lower bound and the second element
is the upper bound. The bounds will be applied to all lengthscales in the kernel
function. Defaults to NULL where no bounds are specified for the lengthscales.
This argument is only used when struc = NULL.

prior prior to be used for Maximum a Posterior for lengthscales and nugget of the
GP: gamma prior ("ga"), inverse gamma prior ("inv_ga"), or jointly robust

28 gp

prior ("ref"). Defaults to "ref". This argument is only used when struc =
NULL. See the reference below for the jointly robust prior.

nugget_est a bool indicating if the nugget term is to be estimated:

1. FALSE: the nugget term is fixed to nugget.
2. TRUE: the nugget term will be estimated.

Defaults to FALSE. This argument is only used when struc = NULL.

nugget the initial nugget value. If nugget_est = FALSE, the assigned value is fixed dur-
ing the training. Set nugget to a small value (e.g., 1e-8) and the corresponding
bool in nugget_est to FASLE for deterministic emulations where the emulator
interpolates the training data points. Set nugget to a reasonable larger value and
the corresponding bool in nugget_est to TRUE for stochastic emulations where
the computer model outputs are assumed to follow a homogeneous Gaussian
distribution. Defaults to 1e-8 if nugget_est = FALSE and 0.01 if nugget_est
= TRUE. This argument is only used when struc = NULL.

scale_est a bool indicating if the variance is to be estimated:

1. FALSE: the variance is fixed to scale.
2. TRUE: the variance term will be estimated.

Defaults to TRUE. This argument is only used when struc = NULL.

scale the initial variance value. If scale_est = FALSE, the assigned value is fixed
during the training. Defaults to 1. This argument is only used when struc =
NULL.

training a bool indicating if the initialized GP emulator will be trained. When set to
FALSE, gp() returns an untrained GP emulator, to which one can apply summary()
to inspect its specifications (especially when a customized struc is provided) or
apply predict() to check its emulation performance before the training. De-
faults to TRUE.

verb a bool indicating if the trace information on GP emulator construction and train-
ing will be printed during the function execution. Defaults to TRUE.

internal_input_idx

the column indices of X that are generated by the linked emulators in the preced-
ing layers. Set internal_input_idx = NULL if the GP emulator is in the first
layer of a system or all columns in X are generated by the linked emulators in
the preceding layers. Defaults to NULL. This argument is only used when struc
= NULL.

linked_idx either a vector or a list of vectors:

• If linked_idx is a vector, it gives indices of columns in the pooled output
matrix (formed by column-combined outputs of all emulators in the feeding
layer) that feed into the GP emulator. The length of the vector shall equal
to the length of internal_input_idx when internal_input_idx is not
NULL. If the GP emulator is in the first layer of a linked emulator system,
the vector gives the column indices of the global input (formed by column-
combining all input matrices of emulators in the first layer) that the GP
emulator will use. If the GP emulator is to be used in both the first and
subsequent layers, one should initially set linked_idx to the appropriate

gp 29

values for the situation where the emulator is not in the first layer. Then,
use the function set_linked_idx() to reset the linking information when
the emulator is in the first layer.

• When the GP emulator is not in the first layer of a linked emulator sys-
tem, linked_idx can be a list that gives the information on connections
between the GP emulator and emulators in all preceding layers. The length
of the list should equal to the number of layers before the GP emulator.
Each element of the list is a vector that gives indices of columns in the
pooled output matrix (formed by column-combined outputs of all emula-
tors) in the corresponding layer that feed into the GP emulator. If the GP
emulator has no connections to any emulator in a certain layer, set NULL
in the corresponding position of the list. The order of input dimensions in
X[,internal_input_idx] should be consistent with linked_idx. For ex-
ample, a GP emulator in the second layer that is fed by the output dimension
1 and 3 of emulators in layer 1 should have linked_idx = list(c(1,3)
). In addition, the first and second columns of X[,internal_input_idx]
should correspond to the output dimensions 1 and 3 from layer 1.

Set linked_idx = NULL if the GP emulator will not be used for linked emula-
tions. However, if this is no longer the case, one can use set_linked_idx() to
add linking information to the GP emulator. Defaults to NULL.

id an ID to be assigned to the GP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named gp that contains five slots:

• id: A number or character string assigned through the id argument.

• data: a list that contains two elements: X and Y which are the training input and output data
respectively.

• specs: a list that contains seven elements:

1. kernel: the type of the kernel function used. Either "sexp" for squared exponential
kernel or "matern2.5" for Matérn-2.5 kernel.

2. lengthscales: a vector of lengthscales in the kernel function.
3. scale: the variance value in the kernel function.
4. nugget: the nugget value in the kernel function.
5. internal_dims: the column indices of X that correspond to the linked emulators in the

preceding layers of a linked system.
6. external_dims: the column indices of X that correspond to global inputs to the linked

system of emulators. It is shown as FALSE if internal_input_idx = NULL.
7. linked_idx: the value passed to argument linked_idx. It is shown as FALSE if the

argument linked_idx is NULL.

https://mingdeyu.github.io/dgpsi-R/

30 gp

internal_dims and external_dims are generated only when struc = NULL.

• constructor_obj: a ’python’ object that stores the information of the constructed GP emu-
lator.

• container_obj: a ’python’ object that stores the information for the linked emulation.

• emulator_obj: a ’python’ object that stores the information for the predictions from the GP
emulator.

The returned gp object can be used by

• predict() for GP predictions.

• validate() for LOO and OOS validations.

• plot() for validation plots.

• lgp() for linked (D)GP emulator constructions.

• summary() to summarize the trained GP emulator.

• write() to save the GP emulator to a .pkl file.

• set_linked_idx() to add the linking information to the GP emulator for linked emulations.

• design() for sequential designs.

• update() to update the GP emulator with new inputs and outputs.

• alm(), mice(), pei(), and vigf() to locate next design points.

Note

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

References

Gu, M. (2019). Jointly robust prior for Gaussian stochastic process in emulation, calibration and
variable selection. Bayesian Analysis, 14(3), 857-885.

Examples

Not run:
load the package and the Python env
library(dgpsi)

construct a step function
f <- function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)
}

generate training data
X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

Hetero 31

training
m <- gp(X, Y)

summarizing
summary(m)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(0, 1, length = 200)
m <- predict(m, x = test_x)

OOS validation
validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_gp')
m <- read('step_gp')

End(Not run)

Hetero Initialize a heteroskedastic Gaussian likelihood node

Description

This function constructs a likelihood object to represent a heteroskedastic Gaussian likelihood node.

Usage

Hetero(input_dim = NULL)

Arguments

input_dim a vector of length two that contains the indices of two GP nodes in the feeding
layer whose outputs feed into this likelihood node. When set to NULL, all outputs
from GP nodes in the feeding layer feed into this likelihood node, and in such
a case one needs to ensure that only two GP nodes are specified in the feeding
layer. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

32 init_py

Value

A ’python’ object to represent a heteroskedastic Gaussian likelihood node.

Note

The heteroskedastic Gaussian likelihood node can only be linked to two feeding GP nodes.

Examples

Not run:

Check https://mingdeyu.github.io/dgpsi-R/ for examples
on how to customize DGP structures using Hetero().

End(Not run)

init_py ’python’ environment initialization

Description

This function initializes the ’python’ environment for the package.

Usage

init_py(
py_ver = NULL,
dgpsi_ver = NULL,
reinstall = FALSE,
uninstall = FALSE,
verb = TRUE

)

Arguments

py_ver a string that gives the ’python’ version to be installed. If py_ver = NULL, the
default ’python’ version ’3.9.13’ will be installed.

dgpsi_ver a string that gives the ’python’ version of ’dgpsi’ to be used. If dgpsi_ver =
NULL,

• the latest ’python’ version of ’dgpsi’ will be used, if the package is installed
from CRAN;

• the development ’python’ version of ’dgpsi’ will be used, if the package is
installed from GitHub.

reinstall a bool that indicates whether to reinstall the ’python’ version of ’dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
development version of the R package is installed and one may want to regularly
update the development ’python’ version of ’dgpsi’. Defaults to FALSE.

kernel 33

uninstall a bool that indicates whether to uninstall the ’python’ version of ’dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
’python’ environment is corrupted and one wants to completely uninstall and
reinstall it. Defaults to FALSE.

verb a bool indicating if the trace information will be printed during the function
execution. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value, called to install required ’python’ environment.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

kernel Initialize a Gaussian process node

Description

This function constructs a kernel object to represent properties of a Gaussian process node.

Usage

kernel(
length,
scale = 1,
nugget = 1e-06,
name = "sexp",
prior_name = "ga",
prior_coef = NULL,
bounds = NULL,
nugget_est = FALSE,
scale_est = FALSE,
input_dim = NULL,
connect = NULL

)

https://mingdeyu.github.io/dgpsi-R/

34 kernel

Arguments

length a vector of lengthscales. The length of the vector equals to:

1. either one if the lengthscales in the kernel function are assumed same across
input dimensions; or

2. the total number of input dimensions, which is the sum of the number of
feeding GP nodes in the last layer (defined by the argument input_dim) and
the number of connected global input dimensions (defined by the argument
connect), if the lengthscales in the kernel function are assumed different
across input dimensions.

scale the variance of a GP node. Defaults to 1.

nugget the nugget term of a GP node. Defaults to 1e-6.

name kernel function to be used. Either "sexp" for squared exponential kernel or
"matern2.5" for Matérn-2.5 kernel. Defaults to "sexp".

prior_name prior options for the lengthscales and nugget term: gamma prior ("ga"), inverse
gamma prior ("inv_ga"), or jointly robust prior ("ref") for the lengthscales
and nugget term. Set NULL to disable the prior. Defaults to "ga".

prior_coef a vector that contains the coefficients for different priors:

• for the gamma prior, it is a vector of two values specifying the shape and
rate parameters of the gamma distribution. Set to NULL for the default value
c(1.6,0.3).

• for the inverse gamma prior, it is a vector of two values specifying the shape
and scale parameters of the inverse gamma distribution. Set to NULL for the
default value c(1.6,0.3).

• for the jointly robust prior, it is a vector of a single value specifying the a
parameter in the prior. Set to NULL for the default value c(0.2). See the
reference below for the jointly robust prior.

Defaults to NULL.

bounds a vector of length two that gives the lower bound (the first element of the vector)
and the upper bound (the second element of the vector) of all lengthscales of the
GP node. Defaults to NULL where no bounds are specified for the lengthscales.

nugget_est set to TRUE to estimate the nugget term or to FALSE to fix the nugget term as
specified by the argument nugget. If set to TRUE, the value set to the argument
nugget is used as the initial value. Defaults to FALSE.

scale_est set to TRUE to estimate the variance (i.e., scale) or to FALSE to fix the variance
(i.e., scale) as specified by the argument scale. Defaults to FALSE.

input_dim a vector that contains either

1. the indices of GP nodes in the feeding layer whose outputs feed into this
GP node; or

2. the indices of global input dimensions that are linked to the outputs of some
feeding emulators, if this GP node is in the first layer of a GP or DGP, which
will be used for the linked emulation.

When set to NULL,

lgp 35

1. all outputs from the GP nodes in the feeding layer feed into this GP node;
or

2. all global input dimensions feed into this GP node.

Defaults to NULL.

connect a vector that contains the indices of dimensions in the global input connecting
to this GP node as additional input dimensions. When set to NULL, no global
input connection is implemented. Defaults to NULL. When this GP node is in the
first layer of a GP or DGP emulator, which will consequently be used for linked
emulation, connect gives the indices of global input dimensions that are not
connected to some feeding emulators. In such a case, set input_dim to a vector
of indices of the remaining input dimensions that are connected to the feeding
emulators.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A ’python’ object to represent a GP node.

References

Gu, M. (2019). Jointly robust prior for Gaussian stochastic process in emulation, calibration and
variable selection. Bayesian Analysis, 14(3), 857-885.

Examples

Not run:

Check https://mingdeyu.github.io/dgpsi-R/ for examples
on how to customize DGP structures using kernel().

End(Not run)

lgp Linked (D)GP emulator construction

Description

This function constructs a linked (D)GP emulator.

Usage

lgp(struc, B = 10, id = NULL)

https://mingdeyu.github.io/dgpsi-R/

36 lgp

Arguments

struc a list contains L (the number of layers in a systems of computer models) sub-
lists, each of which represents a layer and contains (D)GP emulators (repre-
sented by instances of S3 class gp or dgp) of computer models. The sub-lists
are placed in the list in the same order of the specified computer model system’s
hierarchy.

B the number of imputations to produce the predictions. Increase the value to
account for more imputation uncertainties. Decrease the value for lower im-
putation uncertainties but faster predictions. If the system consists only GP
emulators, B is set to 1 automatically. Defaults to 10.

id an ID to be assigned to the linked (D)GP emulator. If an ID is not provided
(i.e., id = NULL), a UUID (Universally Unique Identifier) will be automatically
generated and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named lgp that contains three slots:

• id: A number or character string assigned through the id argument.

• constructor_obj: a list of ’python’ objects that stores the information of the constructed
linked emulator.

• emulator_obj, a ’python’ object that stores the information for predictions from the linked
emulator.

• specs: a list that contains

1. seed: the random seed generated to produce the imputations. This information is stored
for the reproducibility when the linked (D)GP emulator (that was saved by write() with
the light option light = TRUE) is loaded back to R by read().

2. B: the number of imputations used to generate the linked (D)GP emulator.

The returned lgp object can be used by

• predict() for linked (D)GP predictions.

• validate() for the OOS validation.

• plot() for the validation plots.

• summary() to summarize the constructed linked (D)GP emulator.

• write() to save the linked (D)GP emulator to a .pkl file.

Examples

Not run:

load the package and the Python env
library(dgpsi)

https://mingdeyu.github.io/dgpsi-R/

mice 37

model 1
f1 <- function(x) {

(sin(7.5*x)+1)/2
}
model 2
f2 <- function(x) {

2/3*sin(2*(2*x - 1))+4/3*exp(-30*(2*(2*x-1))^2)-1/3
}
linked model
f12 <- function(x) {

f2(f1(x))
}

training data for Model 1
X1 <- seq(0, 1, length = 9)
Y1 <- sapply(X1, f1)
training data for Model 2
X2 <- seq(0, 1, length = 13)
Y2 <- sapply(X2, f2)

emulation of model 1
m1 <- gp(X1, Y1, name = "matern2.5", linked_idx = c(1))
emulation of model 2
m2 <- dgp(X2, Y2, depth = 2, name = "matern2.5")
assign linking information after the emulation construction
m2 <- set_linked_idx(m2, c(1))

emulation of the linked model
struc <- combine(list(m1), list(m2))
m_link <- lgp(struc)

summarizing
summary(m_link)

prediction
test_x <- seq(0, 1, length = 300)
m_link <- predict(m_link, x = test_x)

OOS validation
validate_x <- sample(test_x, 20)
validate_y <- sapply(validate_x, f12)
plot(m_link, validate_x, validate_y, style = 2)

write and read the constructed linked emulator
write(m_link, 'linked_emulator')
m_link <- read('linked_emulator')

End(Not run)

38 mice

mice Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using MICE

Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Mutual Information for Computer Experiments
(MICE), see the reference below.

Usage

mice(object, x_cand, ...)

S3 method for class 'gp'
mice(object, x_cand, batch_size = 1, nugget_s = 1e-06, workers = 1, ...)

S3 method for class 'dgp'
mice(
object,
x_cand,
batch_size = 1,
nugget_s = 1e-06,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
mice(
object,
x_cand,
batch_size = 1,
nugget_s = 1e-06,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

mice 39

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design point(s) are deter-
mined. If object is an instance of the bundle class, x_cand could also be a list
with the length equal to the number of emulators contained in the object. Each
slot in x_cand is a matrix that gives a candidate set for each emulator included
in the bundle. See Note section below for further information.

... any arguments (with names different from those of arguments used in mice())
that are used by aggregate can be passed here.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

nugget_s the value of the smoothing nugget term used by MICE. Defaults to 1e-6.

workers the number of workers/cores to be used for the criterion calculation. If set to
NULL, the number of workers is set to (max physical cores available - 1).
Defaults to 1.

threading a bool indicating whether to use the multi-threading to accelerate the criterion
calculation for a DGP emulator. Turning this option on could improve the speed
of criterion calculations when the DGP emulator is built with a moderately large
number of training data points and the Matérn-2.5 kernel.

aggregate an R function that aggregates scores of the MICE across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

• the output should be a vector that gives aggregations of scores at different
design points.

Set to NULL to disable the aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class, a vector is returned with the length equal to batch_size,
giving the positions (i.e., row numbers) of next design points from x_cand.

• If object is an instance of the dgp class, a matrix is returned with row number equal to
batch_size and column number equal to one (if aggregate is not NULL) or the output di-
mension (if aggregate is NULL), giving positions (i.e., row numbers) of next design points
from x_cand to be added to the DGP emulator across different outputs. If object is a DGP
emulator with either Hetero or NegBin likelihood layer, the returned matrix has two columns
with the first column giving positions of next design points from x_cand that correspond to

https://mingdeyu.github.io/dgpsi-R/

40 mice

the mean parameter of the normal or negative Binomial distribution, and the second column
giving positions of next design points from x_cand that correspond to the variance parameter
of the normal distribution or the dispersion parameter of the negative Binomial distribution.

• If object is an instance of the bundle class, a matrix is returned with row number equal
to batch_size and column number equal to the number of emulators in the bundle, giving
positions (i.e., row numbers) of next design points from x_cand to be added to individual
emulators.

Note

• The column order of the first argument of aggregate must be consistent with the order of em-
ulator output dimensions (if object is an instance of the dgp class), or the order of emulators
placed in object if object is an instance of the bundle class;

• If x_cand is supplied as a list when object is an instance of bundle class and a aggregate
function is provided, the matrices in x_cand must have common rows (i.e., the candidate sets
of emulators in the bundle have common input locations) so the aggregate function can be
applied.

• Any R vector detected in x_cand will be treated as a column vector and automatically con-
verted into a single-column R matrix.

References

Beck, J., & Guillas, S. (2016). Sequential design with mutual information for computer experiments
(MICE): emulation of a tsunami model. SIAM/ASA Journal on Uncertainty Quantification, 4(1),
739-766.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using MICE

NegBin 41

next_point <- mice(m, x_cand = x_cand)
X_new <- x_cand[next_point,,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit with 500 training iterations
m <- update(m, X, Y, refit = TRUE, N = 500)

plot the LOO validation
plot(m)

End(Not run)

NegBin Initialize a negative Binomial likelihood node

Description

This function constructs a likelihood object to represent a negative Binomial likelihood node.

Usage

NegBin(input_dim = NULL)

Arguments

input_dim a vector of length two that contains the indices of two GP nodes in the feeding
layer whose outputs feed into this likelihood node. When set to NULL, all outputs
from GP nodes in the feeding layer feed into this likelihood node, and in such
a case one needs to ensure that only two GP nodes are specified in the feeding
layer. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A ’python’ object to represent a negative Binomial likelihood node.

Note

The negative Binomial likelihood node can only be linked to two feeding GP nodes.

https://mingdeyu.github.io/dgpsi-R/

42 nllik

Examples

Not run:

Check https://mingdeyu.github.io/dgpsi-R/ for examples
on how to customize DGP structures using NegBin().

End(Not run)

nllik Calculate negative predicted log-likelihood

Description

This function computes the negative predicted log-likelihood from a DGP emulator with a likeli-
hood layer.

Usage

nllik(object, x, y)

Arguments

object an instance of the dgp class and it should be produced by dgp() with one of the
following two settings:

1. if struc = NULL, likelihood is not NULL;
2. if a customized structure is provided to struc, the final layer must be like-

lihood layer containing only one likelihood node produced by Poisson(),
Hetero(), or NegBin().

x a matrix where each row is an input testing data point and each column is an
input dimension.

y a matrix with only one column where each row is a scalar-valued testing output
data point.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object is returned with an additional slot named NLL that contains two elements. The
first one, named meanNLL, is a scalar that gives the average negative predicted log-likelihood across
all testing data points. The second one, named allNLL, is a vector that gives the negative predicted
log-likelihood for each testing data point.

https://mingdeyu.github.io/dgpsi-R/

pack 43

Note

Any R vector detected in x and y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if x is a single testing data point with multiple dimensions, it
must be given as a matrix.

Examples

Not run:

Check https://mingdeyu.github.io/dgpsi-R/ for examples
on how to compute the negative predicted log-likelihood
using nllik().

End(Not run)

pack Pack GP and DGP emulators into a bundle

Description

This function packs GP emulators and DGP emulators into a bundle class for sequential designs if
each emulator emulates one output dimension of the underlying simulator.

Usage

pack(..., id = NULL)

Arguments

... a sequence or a list of emulators produced by gp() or dgp().

id an ID to be assigned to the bundle emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named bundle to be used by design() for sequential designs. It has:

• a slot called id that is assigned through the id argument.

• N slots named emulator1,...,emulatorN, each of which contains a GP or DGP emulator,
where N is the number of emulators that are provided to the function.

• a slot called data which contains two elements X and Y. X contains N matrices named emulator1,...,emulatorN
that are training input data for different emulators. Y contains N single-column matrices named
emulator1,...,emulatorN that are training output data for different emulators.

https://mingdeyu.github.io/dgpsi-R/

44 pack

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a function with a two-dimensional output
f <- function(x) {
y1 = sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))
y2 = 1/3*sin(2*(2*x - 1))+2/3*exp(-30*(2*(2*x-1))^2)+1/3
return(cbind(y1,y2))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

generate the validation data
validate_x <- maximinLHS(30,1)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with respect to each output with the global connection off
m1 <- dgp(X, Y[,1], connect=F)
m2 <- dgp(X, Y[,2], connect=F)

specify the range of the input dimension
lim <- c(0, 1)

pack emulators to form an emulator bundle
m <- pack(m1, m2)

1st wave of the sequential design with 10 steps with target RMSE 0.01
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y, target = 0.01)

2rd wave of the sequential design with 10 steps, the same target, and the aggregation
function that takes the average of the criterion scores across the two outputs
g <- function(x){

return(rowMeans(x))
}
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x,

y_test = validate_y, aggregate = g, target = 0.01)

draw sequential designs of the two packed emulators
draw(m, emulator = 1, type = 'design')
draw(m, emulator = 2, type = 'design')

inspect the traces of RMSEs of the two packed emulators
draw(m, emulator = 1, type = 'rmse')
draw(m, emulator = 2, type = 'rmse')

write and read the constructed emulator bundle

pei 45

write(m, 'bundle_dgp')
m <- read('bundle_dgp')

unpack the bundle into individual emulators
m_unpacked <- unpack(m)

plot OOS validations of individual emulators
plot(m_unpacked[[1]], x_test = validate_x, y_test = validate_y[,1])
plot(m_unpacked[[2]], x_test = validate_x, y_test = validate_y[,2])

End(Not run)

pei Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using PEI

Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Pseudo Expected Improvement (PEI), see the
reference below.

Usage

pei(object, x_cand, ...)

S3 method for class 'gp'
pei(object, x_cand, pseudo_points = NULL, batch_size = 1, ...)

S3 method for class 'dgp'
pei(
object,
x_cand,
pseudo_points = NULL,
batch_size = 1,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
pei(
object,
x_cand,
pseudo_points = NULL,
batch_size = 1,
workers = 1,

46 pei

threading = FALSE,
aggregate = NULL,
...

)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design point(s) are deter-
mined. If object is an instance of the bundle class, x_cand could also be a list
with the length equal to the number of emulators contained in the object. Each
slot in x_cand is a matrix that gives a candidate set for each emulator included
in the bundle. See Note section below for further information.

... any arguments (with names different from those of arguments used in pei())
that are used by aggregate or gp() (for emulating the ES-LOO errors) can be
passed here.

pseudo_points an optional matrix (with columns being input dimensions) that gives the pseudo
input points for PEI calculations. See the reference below for further details
about the pseudo points. When object is an instance of the bundle class,
pseudo_points can also be a list with the length equal to the number of em-
ulators in the bundle. Each element in the list is a matrix that gives the the
pseudo input points for the corresponding emulator in the bundle. Defaults to
NULL. When pei() is used in design(), pseudo_points will be automatically
generated by design().

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

workers the number of workers/cores to be used for the criterion calculation. If set to
NULL, the number of workers is set to (max physical cores available - 1).
Defaults to 1.

threading a bool indicating whether to use the multi-threading to accelerate the criterion
calculation for a DGP emulator. Turning this option on could improve the speed
of criterion calculations when the DGP emulator is built with a moderately large
number of training data points and the Matérn-2.5 kernel.

aggregate an R function that aggregates scores of the PEI across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

– the emulator output dimension if object is an instance of the dgp class;
or

pei 47

– the number of emulators contained in object if object is an instance
of the bundle class.

• the output should be a vector that gives aggregations of scores at different
design points.

Set to NULL to disable the aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class, a vector is returned with the length equal to batch_size,
giving the positions (i.e., row numbers) of next design points from x_cand.

• If object is an instance of the dgp class, a matrix is returned with row number equal to
batch_size and column number equal to one (if aggregate is not NULL) or the output di-
mension (if aggregate is NULL), giving positions (i.e., row numbers) of next design points
from x_cand to be added to the DGP emulator across different outputs.

• If object is an instance of the bundle class, a matrix is returned with row number equal
to batch_size and column number equal to the number of emulators in the bundle, giving
positions (i.e., row numbers) of next design points from x_cand to be added to individual
emulators.

Note

• The column order of the first argument of aggregate must be consistent with the order of em-
ulator output dimensions (if object is an instance of the dgp class), or the order of emulators
placed in object if object is an instance of the bundle class;

• If x_cand is supplied as a list when object is an instance of bundle class and a aggregate
function is provided, the matrices in x_cand must have common rows (i.e., the candidate sets
of emulators in the bundle have common input locations) so the aggregate function can be
applied.

• The function is only applicable to DGP emulators without likelihood layers.

• Any R vector detected in x_cand and pseudo_points will be treated as a column vector and
automatically converted into a single-column R matrix.

References

Mohammadi, H., Challenor, P., Williamson, D., & Goodfellow, M. (2022). Cross-validation-based
adaptive sampling for Gaussian process models. SIAM/ASA Journal on Uncertainty Quantification,
10(1), 294-316.

Examples

Not run:

load packages and the Python env
library(lhs)

https://mingdeyu.github.io/dgpsi-R/

48 plot

library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using PEI
next_point <- pei(m, x_cand = x_cand)
X_new <- x_cand[next_point,,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit with 500 training iterations
m <- update(m, X, Y, refit = TRUE, N = 500)

plot the LOO validation
plot(m)

End(Not run)

plot Validation plots of a constructed GP, DGP, or linked (D)GP emulator

Description

This function draws validation plots of a GP, DGP, or linked (D)GP emulator.

Usage

S3 method for class 'dgp'
plot(
x,
x_test = NULL,
y_test = NULL,

plot 49

dim = NULL,
method = "mean_var",
style = 1,
min_max = TRUE,
color = "turbo",
type = "points",
verb = TRUE,
force = FALSE,
cores = 1,
threading = FALSE,
...

)

S3 method for class 'lgp'
plot(
x,
x_test = NULL,
y_test = NULL,
dim = NULL,
method = "mean_var",
style = 1,
min_max = TRUE,
color = "turbo",
type = "points",
verb = TRUE,
force = FALSE,
cores = 1,
threading = FALSE,
...

)

S3 method for class 'gp'
plot(
x,
x_test = NULL,
y_test = NULL,
dim = NULL,
method = "mean_var",
style = 1,
min_max = TRUE,
color = "turbo",
type = "points",
verb = TRUE,
force = FALSE,
cores = 1,
...

)

50 plot

Arguments

x can be one of the following emulator classes:
• the S3 class gp.
• the S3 class dgp.
• the S3 class lgp.

x_test same as that of validate().
y_test same as that of validate().
dim if dim = NULL, the index of an emulator’s input will be shown on the x-axis in

validation plots. Otherwise, dim indicates which dimension of an emulator’s
input will be shown on the x-axis in validation plots:

• If x is an instance of the gp of dgp class, dim is an integer.
• If x is an instance of the lgp class, dim can be

1. an integer referring to the dimension of the global input to emulators in
the first layer of a linked emulator system; or

2. a vector of three integers referring to the dimension (specified by the
third integer) of the global input to an emulator (specified by the second
integer) in a layer (specified by the first integer) that is not the first layer
of a linked emulator system.

This argument is only used when style = 1 and the emulator input is at least
two-dimensional. Defaults to NULL.

method same as that of validate().
style either 1 or 2, indicating two different types of validation plots.
min_max a bool indicating if min-max normalization will be used to scale the testing

output, RMSE, predictive mean and std from the emulator. Defaults to TRUE.
color a character string indicating the color map to use when style = 2:

• 'magma' (or 'A')
• 'inferno' (or 'B')
• 'plasma' (or ’C’)
• 'viridis' (or 'D')
• 'cividis' (or 'E')
• 'rocket' (or 'F')
• 'mako' (or 'G')
• 'turbo' (or 'H')

Defaults to 'turbo' (or 'H').
type either 'line' or 'points, indicating whether to draw testing data in the OOS

validation plot as a line or individual points when the input of the emulator is
one-dimensional and style = 1. Defaults to 'points'

verb a bool indicating if the trace information on plotting will be printed during the
function execution. Defaults to TRUE.

force same as that of validate().
cores same as that of validate().
threading same as that of validate().
... N/A.

Poisson 51

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Note

• plot() calls validate() internally to obtain validation results for plotting. However, plot()
will not export the emulator object with validation results. Instead, it only returns the plotting
object. For small-scale validations (i.e., small training or testing data points), direct execution
of plot() is fine. However, for moderate- to large-scale validations, it is recommended to
first run validate() to obtain and store validation results in the emulator object, and then
supply the object to plot(). This is because if an emulator object has the validation results
stored, each time when plot() is invoked, unnecessary evaluations of repetitive LOO or OOS
validation will not be implemented.

• plot() uses information provided in x_test and y_test to produce the OOS validation plots.
Therefore, if validation results are already stored in x, unless x_test and y_test are identical
to those used by validate(), plot() will re-evaluate OOS validations before plotting.

• Any R vector detected in x_test and y_test will be treated as a column vector and automat-
ically converted into a single-column R matrix. Thus, if x_test or y_test is a single testing
data point with multiple dimensions, it must be given as a matrix.

• The returned patchwork object contains the ggplot2 objects. One can modify the included in-
dividual ggplots by accessing them with double-bracket indexing. See https://patchwork.
data-imaginist.com/ for further information.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

Poisson Initialize a Poisson likelihood node

Description

This function constructs a likelihood object to represent a Poisson likelihood node.

Usage

Poisson(input_dim = NULL)

https://mingdeyu.github.io/dgpsi-R/
https://patchwork.data-imaginist.com/
https://patchwork.data-imaginist.com/

52 predict

Arguments

input_dim a vector of length one that contains the indices of one GP node in the feeding
layer whose outputs feed into this likelihood node. When set to NULL, all outputs
from GP nodes in the feeding layer feed into this likelihood node, and in such a
case one needs to ensure that only one GP node is specified in the feeding layer.
Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A ’python’ object to represent a Poisson likelihood node.

Note

The Poisson likelihood node can only be linked to one feeding GP node.

Examples

Not run:

Check https://mingdeyu.github.io/dgpsi-R/ for examples
on how to customize DGP structures using Poisson().

End(Not run)

predict Predictions from GP, DGP, or linked (D)GP emulators

Description

This function implements single-core or multi-core predictions (with or without multi-threading)
from GP, DGP, or linked (D)GP emulators.

Usage

S3 method for class 'dgp'
predict(
object,
x,
method = "mean_var",
full_layer = FALSE,
sample_size = 50,
cores = 1,
chunks = NULL,
threading = FALSE,

https://mingdeyu.github.io/dgpsi-R/

predict 53

...
)

S3 method for class 'lgp'
predict(
object,
x,
method = "mean_var",
full_layer = FALSE,
sample_size = 50,
cores = 1,
chunks = NULL,
threading = FALSE,
...

)

S3 method for class 'gp'
predict(
object,
x,
method = "mean_var",
sample_size = 50,
cores = 1,
chunks = NULL,
...

)

Arguments

object an instance of the gp, dgp, or lgp class.

x the testing input data:

• if object is an instance of the gp or dgp class, x is a matrix where each row
is an input testing data point and each column is an input dimension.

• if object is an instance of the lgp class, x can be a matrix or a list:
– if x is a matrix, it is the global testing input data that feed into the em-

ulators in the first layer of a system. The rows of x represent different
input data points and the columns represent input dimensions across all
emulators in the first layer of the system. In this case, it is assumed that
the only global input to the system is the input to the emulators in the
first layer and there is no global input to emulators in other layers.

– if x is a list, it should have L (the number of layers in an emulator sys-
tem) elements. The first element is a matrix that represents the global
testing input data that feed into the emulators in the first layer of the
system. The remaining L-1 elements are L-1 sub-lists, each of which
contains a number (the same number of emulators in the corresponding
layer) of matrices (rows being testing input data points and columns
being input dimensions) that represent the global testing input data to
the emulators in the corresponding layer. The matrices must be placed

54 predict

in the sub-lists based on how their corresponding emulators are placed
in struc argument of lgp(). If there is no global input data to a certain
emulator, set NULL in the corresponding sub-list of x.

method the prediction approach: mean-variance ("mean_var") or sampling ("sampling")
approach. Defaults to "mean_var".

full_layer a bool indicating whether to output the predictions of all layers. Defaults to
FALSE. Only used when object is a DGP and linked (D)GP emulator.

sample_size the number of samples to draw for each given imputation if method = "sampling".
Defaults to 50.

cores the number of cores/workers to be used. If set to NULL, the number of cores is
set to (max physical cores available - 1). Defaults to 1.

chunks the number of chunks that the testing input matrix x will be divided into for
multi-cores to work on. Only used when cores is not 1. If not specified (i.e.,
chunks = NULL), the number of chunks is set to the value of cores. Defaults to
NULL.

threading a bool indicating whether to use the multi-threading to accelerate the predic-
tions of DGP or linked (D)GP emulators. Turn this option on when you use the
Matérn-2.5 kernel and have a moderately large number of training data points as
in such a case you could gain faster predictions. Defaults to FALSE.

... N/A.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class:

1. if method = "mean_var": an updated object is returned with an additional slot called
results that contains two matrices named mean for the predictive means and var for the
predictive variances. Each matrix has only one column with its rows corresponding to
testing positions (i.e., rows of x).

2. if method = "sampling": an updated object is returned with an additional slot called
results that contains a matrix whose rows correspond to testing positions and columns
correspond to sample_size number of samples drawn from the predictive distribution of
GP.

• If object is an instance of the dgp class:

1. if method = "mean_var" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two matrices named mean for the predic-
tive means and var for the predictive variances respectively. Each matrix has its rows
corresponding to testing positions and columns corresponding to DGP global output di-
mensions (i.e., the number of GP/likelihood nodes in the final layer).

2. if method = "mean_var" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers) matrices named layer1, layer2,..., layerL. Each matrix has its

https://mingdeyu.github.io/dgpsi-R/

predict 55

rows corresponding to testing positions and columns corresponding to output dimensions
(i.e., the number of GP/likelihood nodes from the associated layer).

3. if method = "sampling" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains D (i.e., the number of GP/likelihood nodes
in the final layer) matrices named output1, output2,..., outputD. Each matrix has
its rows corresponding to testing positions and columns corresponding to samples of size:
B * sample_size, where B is the number of imputations specified in dgp().

4. if method = "sampling" and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers) sub-lists
named layer1, layer2,..., layerL. Each sub-list represents samples drawn from
the GP/likelihood nodes in the corresponding layer, and contains D (i.e., the number of
GP/likelihood nodes in the corresponding layer) matrices named output1, output2,..., outputD.
Each matrix gives samples of the output from one of D GP/likelihood nodes, and has its
rows corresponding to testing positions and columns corresponding to samples of size: B
* sample_size, where B is the number of imputations specified in dgp().

• If object is an instance of the lgp class:

1. if method = "mean_var" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two sub-lists named mean for the predic-
tive means and var for the predictive variances respectively. Each sub-list contains M
number (same number of emulators in the final layer of the system) of matrices named
emulator1, emulator2,..., emulatorM. Each matrix has its rows corresponding to
global testing positions and columns corresponding to output dimensions of the associ-
ated emulator in the final layer.

2. if method = "mean_var" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers in the emulated system) components named layer1, layer2,..., layerL.
Each component represents a layer and contains M number (same number of emulators in
the corresponding layer of the system) of matrices named emulator1, emulator2,..., emulatorM.
Each matrix has its rows corresponding to global testing positions and columns corre-
sponding to output dimensions of the associated GP/DGP emulator in the corresponding
layer.

3. if method = "sampling" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains M number (same number of emulators in
the final layer of the system) of sub-lists named emulator1, emulator2,..., emulatorM.
Each sub-list corresponds to an emulator in the final layer, and contains D matrices,
named output1, output2,..., outputD, that correspond to the output dimensions
of the GP/DGP emulator. Each matrix has its rows corresponding to testing positions and
columns corresponding to samples of size: B * sample_size, where B is the number of
imputations specified in lgp().

4. if method = "sampling" and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers of the emu-
lated system) sub-lists named layer1, layer2,..., layerL. Each sub-list represents
a layer and contains M number (same number of emulators in the corresponding layer
of the system) of components named emulator1, emulator2,..., emulatorM. Each
component corresponds to an emulator in the associated layer, and contains D matrices,
named output1, output2,..., outputD, that correspond to the output dimensions of

56 prune

the GP/DGP emulator. Each matrix has its rows corresponding to testing positions and
columns corresponding to samples of size: B * sample_size, where B is the number of
imputations specified in lgp().

Note

Any R vector detected in x will be treated as a column vector and automatically converted into a
single-column R matrix. Thus, if x is a single testing data point with multiple dimensions, it must
be given as a matrix.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

prune Static pruning of a DGP emulator

Description

This function implements the static pruning of a DGP emulator.

Usage

prune(object, control = list(), verb = TRUE)

Arguments

object an instance of the dgp class that is generated by dgp() with struc = NULL.

control a list that can supply the following two components to control the static pruning
of the DGP emulator:

• min_size, the minimum number of design points required to trigger the
pruning. Defaults to 10 times of the input dimensions.

• threshold, the R2 value above which a GP node is considered redundant
and removable. Defaults to 0.97.

verb a bool indicating if the trace information will be printed during the function
execution. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object that could be an instance of gp, dgp, or bundle (of GP emulators) class.

https://mingdeyu.github.io/dgpsi-R/

prune 57

Note

• The function requires a DGP emulator that has been trained with a dataset comprising a mini-
mum size equal to min_size in control. If the training dataset size is smaller than this, it is
suggested to enrich the design of the DGP emulator and prune its structure dynamically using
the design() function. Depending on the design of the DGP emulator, the static pruning may
not be accurate. It is thus suggested to implement dynamic pruning as a part of the sequential
design via design().

• The following slots:

– loo and oos created by validate(); and
– results created by predict();

in object will be removed and not contained in the returned object.

Examples

Not run:

load the package and the Python env
library(dgpsi)

construct the borehole function over a hypercube
f <- function(x){

x[,1] <- (0.15 - 0.5) * x[,1] + 0.5
x[,2] <- exp((log(50000) - log(100)) * x[,2] + log(100))
x[,3] <- (115600 - 63070) *x[,3] + 63070
x[,4] <- (1110 - 990) * x[,4] + 990
x[,5] <- (116 - 63.1) * x[,5] + 63.1
x[,6] <- (820 - 700) * x[,6] + 700
x[,7] <- (1680 - 1120) * x[,7] + 1120
x[,8] <- (12045 - 9855) * x[,8] + 9855
y <- apply(x, 1, RobustGaSP::borehole)

}

set a random seed
set_seed(999)

generate training data
X <- maximinLHS(80, 8)
Y <- f(X)

generate validation data
validate_x <- maximinLHS(500, 8)
validate_y <- f(validate_x)

training a DGP emulator with anisotropic squared exponential kernels
m <- dgp(X, Y, share = F)

OOS validation of the DGP emulator
plot(m, validate_x, validate_y)

prune the emulator until no more GP nodes are removable

58 read

m <- prune(m)

OOS validation of the resulting emulator
plot(m, validate_x, validate_y)

End(Not run)

read Load the stored emulator

Description

This function loads the .pkl file that stores the emulator.

Usage

read(pkl_file)

Arguments

pkl_file the path to and the name of the .pkl file where the emulator is stored.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The S3 class of a GP emulator, a DGP emulator, a linked (D)GP emulator, or a bundle of (D)GP
emulators.

Examples

Not run:

See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

set_imp 59

set_imp Reset number of imputations for a DGP emulator

Description

This function resets the number of imputations for predictions from a DGP emulator.

Usage

set_imp(object, B = 5)

Arguments

object an instance of the S3 class dgp.

B the number of imputations to produce predictions from object. Increase the
value to account for more imputation uncertainties with slower predictions. De-
crease the value for lower imputation uncertainties but faster predictions. De-
faults to 5.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the information of B incorporated.

Note

• This function is useful when a DGP emulator has been trained and one wants to make faster
predictions by decreasing the number of imputations without rebuilding the emulator.

• The following slots:

– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

Examples

Not run:

See design() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

60 set_linked_idx

set_linked_idx Set linked indices

Description

This function adds the linked information to a GP or DGP emulator if the information is not pro-
vided when the emulator is constructed by gp() or dgp().

Usage

set_linked_idx(object, idx)

Arguments

object an instance of the S3 class gp or dgp.

idx same as the argument linked_idx of gp() and dgp().

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the information of idx incorporated.

Note

This function is useful when different models are emulated by different teams. Each team can
create their (D)GP emulator even without knowing how different emulators are connected together.
When this information is available and different emulators are collected, the connection information
between emulators can then be assigned to individual emulators with this function.

Examples

Not run:

See lgp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

set_seed 61

set_seed Random seed generator

Description

This function initializes a random number generator that sets the random seed in both R and Python
to ensure reproducible results from the package.

Usage

set_seed(seed)

Arguments

seed a single integer value.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value.

Examples

Not run:

See dgp() for an example.

End(Not run)

summary Summary of a constructed GP, DGP, or linked (D)GP emulator

Description

This function summarizes key information of a GP, DGP or linked (D)GP emulator.

Usage

S3 method for class 'gp'
summary(object, ...)

S3 method for class 'dgp'
summary(object, ...)

S3 method for class 'lgp'
summary(object, ...)

https://mingdeyu.github.io/dgpsi-R/

62 trace_plot

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class lgp.

... N/A.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A table summarizing key information contained in object.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

trace_plot Plot of DGP model parameter traces

Description

This function plots the traces of model parameters of a chosen GP node in a DGP emulator.

Usage

trace_plot(object, layer = NULL, node = 1)

Arguments

object an instance of the dgp class.

layer the index of a layer. Defaults to NULL for the final layer.

node the index of a GP node in the layer specified by layer. Defaults to 1 for the first
GP node in the corresponding layer.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/
https://mingdeyu.github.io/dgpsi-R/

unpack 63

Value

A ggplot object.

Examples

Not run:

See dgp() for an example.

End(Not run)

unpack Unpack a bundle of (D)GP emulators

Description

This function unpacks a bundle of (D)GP emulators safely so any further manipulations of unpacked
individual emulators will not impact the ones in the bundle.

Usage

unpack(object)

Arguments

object an instance of the class bundle.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A named list that contains individual emulators (named emulator1,...,emulatorS) packed in
object, where S is the number of emulators in object.

Examples

Not run:

See pack() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

64 update

update Update a GP or DGP emulator

Description

This function updates the training input and output of a GP or DGP emulator with an option to refit
the emulator.

Usage

update(object, X, Y, refit, reset, verb, ...)

S3 method for class 'dgp'
update(
object,
X,
Y,
refit = FALSE,
reset = FALSE,
verb = TRUE,
N = 100,
cores = 1,
ess_burn = 10,
B = NULL,
...

)

S3 method for class 'gp'
update(object, X, Y, refit = FALSE, reset = FALSE, verb = TRUE, ...)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.

X the new input data which is a matrix where each row is an input training data
point and each column is an input dimension.

Y the new output data:

• If object is an instance of the gp class, Y is a matrix with only one column
and each row being an output data point.

• If object is an instance of the dgp class, Y is a matrix with its rows being
output data points and columns being output dimensions. When likelihood
(see below) is not NULL, Y must be a matrix with only one column.

refit a bool indicating whether to re-fit the emulator object after the training input
and output are updated. Defaults to FALSE.

update 65

reset a bool indicating whether to reset hyperparameters of the emulator object to
their initial values when the emulator was constructed, after the training input
and output are updated. Defaults to FALSE.

verb a bool indicating if the trace information will be printed during the function
execution. Defaults to TRUE.

... N/A.

N number of training iterations used to re-fit the emulator object if it is an instance
of the dgp class. Defaults to 100.

cores the number of cores/workers to be used to re-fit GP components (in the same
layer) at each M-step during the re-fitting. If set to NULL, the number of cores is
set to (max physical cores available - 1). Only use multiple cores when
there is a large number of GP components in different layers and optimization
of GP components is computationally expensive. Defaults to 1.

ess_burn number of burnin steps for the ESS-within-Gibbs at each I-step in training the
emulator object if it is an instance of the dgp class. Defaults to 10.

B the number of imputations for predictions from the updated emulator object if
it is an instance of the dgp class. This overrides the number of imputations set
in object. Set to NULL to use the same number of imputations set in object.
Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object.

Note

• The following slots:

– loo and oos created by validate();
– results created by predict(); and
– design created by design()

in object will be removed and not contained in the returned object.

• Any R vector detected in X and Y will be treated as a column vector and automatically con-
verted into a single-column R matrix. Thus, if X is a single data point with multiple dimen-
sions, it must be given as a matrix.

Examples

Not run:

See alm(), mice(), pei(), or vigf() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

66 validate

validate Validate a constructed GP, DGP, or linked (D)GP emulator

Description

This function validate a constructed GP, DGP, or linked (D)GP emulator via the Leave-One-Out
(LOO) cross validation or Out-Of-Sample (OOS) validation.

Usage

validate(object, x_test, y_test, method, verb, force, cores, ...)

S3 method for class 'gp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = "mean_var",
verb = TRUE,
force = FALSE,
cores = 1,
...

)

S3 method for class 'dgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = "mean_var",
verb = TRUE,
force = FALSE,
cores = 1,
threading = FALSE,
...

)

S3 method for class 'lgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = "mean_var",
verb = TRUE,
force = FALSE,
cores = 1,
threading = FALSE,

validate 67

...
)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class lgp.

x_test the OOS testing input data:

• if x is an instance of the gp or dgp class, x_test is a matrix where each row
is an input testing data point and each column is an input dimension.

• if x is an instance of the lgp class, x_test can be a matrix or a list:
– if x_test is a matrix, it is the global testing input data that feed into the

emulators in the first layer of a system. The rows of x_test represent
different input data points and the columns represent input dimensions
across all emulators in the first layer of the system. In this case, it
is assumed that the only global input to the system is the input to the
emulators in the first layer and there is no global input to emulators in
other layers.

– if x_test is a list, it should have L (the number of layers in an emula-
tor system) elements. The first element is a matrix that represents the
global testing input data that feed into the emulators in the first layer
of the system. The remaining L-1 elements are L-1 sub-lists, each of
which contains a number (the same number of emulators in the corre-
sponding layer) of matrices (rows being testing input data points and
columns being input dimensions) that represent the global testing input
data to the emulators in the corresponding layer. The matrices must be
placed in the sub-lists based on how their corresponding emulators are
placed in struc argument of lgp(). If there is no global input data to
a certain emulator, set NULL in the corresponding sub-list of x_test.

x_test must be provided for the validation if x is an instance of the lgp. De-
faults to NULL.

y_test the OOS testing output data that correspond to x_test:

• if x is an instance of the gp class, y_test is a matrix with only one column
and each row being an testing output data point.

• if x is an instance of the dgp class, y_test is a matrix with its rows being
testing output data points and columns being output dimensions.

• if x is an instance of the lgp class, y_test can be a single matrix or a list
of matrices:

– if y_test is a single matrix, then there is only one emulator in the
final layer of the linked emulator system and y_test represents the
emulator’s output with rows being testing positions and columns being
output dimensions.

68 validate

– if y_test is a list, then y_test should have M number (the same num-
ber of emulators in the final layer of the system) of matrices. Each
matrix has its rows corresponding to testing positions and columns cor-
responding to output dimensions of the associated emulator in the final
layer.

y_test must be provided for the validation if x is an instance of the lgp. De-
faults to NULL.

method the prediction approach in validations: mean-variance ("mean_var") or sam-
pling ("sampling") approach. Defaults to "mean_var".

verb a bool indicating if the trace information on validations will be printed during
the function execution. Defaults to TRUE.

force a bool indicating whether to force the LOO or OOS re-evaluation when loo or
oos slot already exists in object. When force = FALSE, validate() will try to
determine automatically if the LOO or OOS re-evaluation is needed. Set force
to TRUE when LOO or OOS re-evaluation is required. Defaults to FALSE.

cores the number of cores/workers to be used for the LOO or OOS validation. If set to
NULL, the number of cores is set to (max physical cores available - 1).
Defaults to 1.

... N/A.

threading a bool indicating whether to use the multi-threading to accelerate the LOO or
OOS. Turning this option on could improve the speed of validations when the
emulator is built with a moderately large number of training data points and the
Matérn-2.5 kernel.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class, an updated object is returned with an additional slot
called loo (for LOO cross validation) or oos (for OOS validation) that contains:

– two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

– a column matrix called mean, if method = "mean_var", or median, if method = "sampling",
that contains the predictive means or medians of the GP emulator at validation positions.

– three column matrices called std, lower, and upper that contain the predictive standard
deviations and credible intervals of the GP emulator at validation positions. If method
= "mean_var", the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling", the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

– a numeric value called rmse that contains the root mean/median squared error of the GP
emulator.

– a numeric value called nrmse that contains the (min-max) normalized root mean/median
squared error of the GP emulator. The min-max normalization is based on the maximum
and minimum values of the validation outputs contained in y_train (or y_test).

https://mingdeyu.github.io/dgpsi-R/

validate 69

The rows of matrices (mean, median, std, lower, and upper) correspond to the validation
positions.

• If object is an instance of the dgp class, an updated object is returned with an additional
slot called loo (for LOO cross validation) or oos (for OOS validation) that contains:

– two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

– a matrix called mean, if method = "mean_var", or median, if method = "sampling", that
contains the predictive means or medians of the DGP emulator at validation positions.

– three matrices called std, lower, and upper that contain the predictive standard devi-
ations and credible intervals of the DGP emulator at validation positions. If method =
"mean_var", the upper and lower bounds of a credible interval are two standard devia-
tions above and below the predictive mean. If method = "sampling", the upper and lower
bounds of a credible interval are 2.5th and 97.5th percentiles.

– a vector called rmse that contains the root mean/median squared errors of the DGP emu-
lator across different output dimensions.

– a vector called nrmse that contains the (min-max) normalized root mean/median squared
errors of the DGP emulator across different output dimensions. The min-max normaliza-
tion is based on the maximum and minimum values of the validation outputs contained
in y_train (or y_test).

The rows and columns of matrices (mean, median, std, lower, and upper) correspond to the
validation positions and DGP emulator output dimensions, respectively.

• If object is an instance of the lgp class, an updated object is returned with an additional
slot called oos (for OOS validation) that contains:

– two slots called x_test and y_test that contain the validation data points for OOS.
– a list called mean, if method = "mean_var", or median, if method = "sampling", that

contains the predictive means or medians of the linked (D)GP emulator at validation
positions.

– three lists called std, lower, and upper that contain the predictive standard deviations
and credible intervals of the linked (D)GP emulator at validation positions. If method
= "mean_var", the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling", the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

– a list called rmse that contains the root mean/median squared errors of the linked (D)GP
emulator.

– a list called nrmse that contains the (min-max) normalized root mean/median squared er-
rors of the linked (D)GP emulator. The min-max normalization is based on the maximum
and minimum values of the validation outputs contained in y_test.

Each element in mean, median, std, lower, upper, rmse, and nrmse corresponds to a (D)GP
emulator in the final layer of the linked (D)GP emulator.

Note

• When both x_test and y_test are NULL, the LOO cross validation will be implemented.
Otherwise, OOS validation will be implemented. The LOO validation is only applicable to a
GP or DGP emulator (i.e., x is an instance of the gp or dgp class). If a linked (D)GP emulator
(i.e., x is an instance of the lgp class) is provided, x_test and y_test must also be provided
for OOS validation.

70 vigf

• Any R vector detected in x_test and y_test will be treated as a column vector and automat-
ically converted into a single-column R matrix. Thus, if x_test or y_test is a single testing
data point with multiple dimensions, it must be given as a matrix.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

vigf Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using VIGF

Description

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Variance of Improvement for Global Fit (VIGF).
For VIGF on GP emulators, see the reference below.

Usage

vigf(object, x_cand, ...)

S3 method for class 'gp'
vigf(object, x_cand, batch_size = 1, workers = 1, ...)

S3 method for class 'dgp'
vigf(
object,
x_cand,
batch_size = 1,
workers = 1,
threading = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
vigf(
object,
x_cand,
batch_size = 1,
workers = 1,
threading = FALSE,
aggregate = NULL,

vigf 71

...
)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design point(s) are deter-
mined. If object is an instance of the bundle class, x_cand could also be a list
with the length equal to the number of emulators contained in the object. Each
slot in x_cand is a matrix that gives a candidate set for each emulator included
in the bundle. See Note section below for further information.

... any arguments (with names different from those of arguments used in vigf())
that are used by aggregate can be passed here.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

workers the number of workers/cores to be used for the criterion calculation. If set to
NULL, the number of workers is set to (max physical cores available - 1).
Defaults to 1.

threading a bool indicating whether to use the multi-threading to accelerate the criterion
calculation for a DGP emulator. Turning this option on could improve the speed
of criterion calculations when the DGP emulator is built with a moderately large
number of training data points and the Matérn-2.5 kernel.

aggregate an R function that aggregates scores of the VIGF across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

• the output should be a vector that gives aggregations of scores at different
design points.

Set to NULL to disable the aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

72 vigf

Value

• If object is an instance of the gp class, a vector is returned with the length equal to batch_size,
giving the positions (i.e., row numbers) of next design points from x_cand.

• If object is an instance of the dgp class, a matrix is returned with row number equal to
batch_size and column number equal to one (if aggregate is not NULL) or the output di-
mension (if aggregate is NULL), giving positions (i.e., row numbers) of next design points
from x_cand to be added to the DGP emulator across different outputs. If object is a DGP
emulator with either Hetero or NegBin likelihood layer, the returned matrix has two columns
with the first column giving positions of next design points from x_cand that correspond to
the mean parameter of the normal or negative Binomial distribution, and the second column
giving positions of next design points from x_cand that correspond to the variance parameter
of the normal distribution or the dispersion parameter of the negative Binomial distribution.

• If object is an instance of the bundle class, a matrix is returned with row number equal
to batch_size and column number equal to the number of emulators in the bundle, giving
positions (i.e., row numbers) of next design points from x_cand to be added to individual
emulators.

Note

• The column order of the first argument of aggregate must be consistent with the order of em-
ulator output dimensions (if object is an instance of the dgp class), or the order of emulators
placed in object if object is an instance of the bundle class;

• If x_cand is supplied as a list when object is an instance of bundle class and a aggregate
function is provided, the matrices in x_cand must have common rows (i.e., the candidate sets
of emulators in the bundle have common input locations) so the aggregate function can be
applied.

• Any R vector detected in x_cand will be treated as a column vector and automatically con-
verted into a single-column R matrix.

References

Mohammadi, H., & Challenor, P. (2022). Sequential adaptive design for emulating costly computer
codes. arXiv:2206.12113.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))
}

generate the initial design

window 73

X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using VIGF
next_point <- vigf(m, x_cand = x_cand)
X_new <- x_cand[next_point,,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit with 500 training iterations
m <- update(m, X, Y, refit = TRUE, N = 500)

plot the LOO validation
plot(m)

End(Not run)

window Trim the sequences of model parameters of a DGP emulator

Description

This function trim the sequences of model parameters of a DGP emulator that are generated during
the training.

Usage

window(object, start, end = NULL, thin = 1)

Arguments

object an instance of the S3 class dgp.

start the first iteration before which all iterations are trimmed from the sequences.

end the last iteration after which all iterations are trimmed from the sequences. Set
to NULL to keep all iterations after (including) start. Defaults to NULL.

thin the interval between the start and end iterations to thin out the sequences.
Defaults to 1.

74 write

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with trimmed sequences of model parameters.

Note

• This function is useful when a DGP emulator has been trained and one wants to trim the
sequences of model parameters and use the trimmed sequences to generate the point estimates
of DGP model parameters for predictions.

• The following slots:

– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

Examples

Not run:

See dgp() for an example.

End(Not run)

write Save the constructed emulator

Description

This function saves the constructed emulator to a .pkl file.

Usage

write(object, pkl_file, light = TRUE)

Arguments

object an instance of the S3 class gp, dgp, lgp, or bundle.

pkl_file the path to and the name of the .pkl file to which the emulator object is saved.

light a bool indicating if a light version of the constructed emulator (that requires a
small storage) will be saved. This argument has no effects on GP or bundles of
GP emulators. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/
https://mingdeyu.github.io/dgpsi-R/

write 75

Value

No return value. object will be save to a local .pkl file specified by pkl_file.

Note

Since the constructed emulators are ’python’ objects, save() from R will not work as it is only for
R objects.

Examples

Not run:

See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

Index

alm, 2
alm(), 3, 13, 24, 30

combine, 6
continue, 7
continue(), 24

design, 8
design(), 13–15, 24, 26, 30, 43, 46, 65
dgp, 17
dgp(), 6–8, 12, 13, 18, 21, 42, 43, 55, 60
draw, 25
draw(), 13, 14, 16

gp, 26
gp(), 6, 12, 13, 28, 43, 46, 60

Hetero, 31
Hetero(), 6, 42

init_py, 32

kernel, 33
kernel(), 6, 18, 27

lgp, 35
lgp(), 6, 24, 30, 54–56, 67

mice, 37
mice(), 13, 24, 30, 39

NegBin, 41
NegBin(), 6, 42
nllik, 42

pack, 43
pack(), 12, 13
pei, 45
pei(), 13, 24, 30, 46
plot, 48
plot(), 24, 30, 36, 51

Poisson, 51
Poisson(), 6, 18, 42
predict, 52
predict(), 8, 21, 24, 28, 30, 36, 57, 59, 65, 74
prune, 56

read, 58
read(), 23, 36

save(), 75
set_imp, 59
set_imp(), 24
set_linked_idx, 60
set_linked_idx(), 22–24, 29, 30
set_seed, 61
summary, 61
summary(), 18, 21, 24, 28, 30, 36

trace_plot, 62

unpack, 63
update, 64
update(), 24, 30

validate, 66
validate(), 8, 15, 24, 30, 36, 50, 51, 57, 59,

65, 68, 74
vigf, 70
vigf(), 13, 24, 30, 71

window, 73
window(), 24
write, 74
write(), 23, 24, 30, 36

76

	alm
	combine
	continue
	design
	dgp
	draw
	gp
	Hetero
	init_py
	kernel
	lgp
	mice
	NegBin
	nllik
	pack
	pei
	plot
	Poisson
	predict
	prune
	read
	set_imp
	set_linked_idx
	set_seed
	summary
	trace_plot
	unpack
	update
	validate
	vigf
	window
	write
	Index

