fda.usc 2.2.0

fda.usc 2.1.0

fda.usc 2.0.3

fda.usc 2.0.2

fda.usc 2.0.1

fda.usc 2.0.0

Version 2.0.0 is a major release with several new features, including:

  1. ldata() class definition.

  2. Redefined metric.ldata(), it computes distance for ldata object: list with m functional data mfdata() and univariate data included in a data frame called “df”

  3. New function metric.mfdata(): compute distance for mfdata class object: list with m functional data

  4. plot.ldata(): plots for ldata object, it allows drawing using a color bar.

  5. plot.mfdata(): plot formfdata object (internal function, pending to completed the Rd document)

  6. depth.modep(), depth.mode() call metric.lp() and metric.ldata() propperly

  7. New functions: subset.ldata(), is.lfdata(), [.lfdata(), [.ldata, is.ldata(), names.ldata() and c.ldata()

fda.usc 1.5.0

fda.usc 1.4.0

fda.usc 1.3.0

fda.usc 1.2.3

fda.usc 1.2.2

fda.usc 1.2.1

fda.usc 1.2.0

New functions:

fda.usc 1.1.0

New functions:

New dataset: Mithochondiral calcium overload (MCO) data set.

New utilities:

fda.usc 1.0.5

fda.usc 1.0.4

fda.usc 1.0.3

fda.usc 1.0.2

fda.usc 1.0.1

New functions:

New arguments and options:

New arguments “wild” and “type.wild” in fregre.bootstrap(). In fregre.glm(), fregre.gsam(), classif.glm2boost(), classif.gsam2boost() the “fdataobj” argument allows a multivariate data or functional data. * fregre.lm() allows penalization by “rn” parameter (ridge regression). * fregre.pc() and fregre.basis() allow weighted least squares by “weights” argument.

fda.usc 1.0.0

fda.usc 0.9.8.1

Release 0.9.8.1 introduces new functions flm.Ftest() and dfv.test(). The first performs a functional F-test and the second implements the test of Delsol, Ferraty and Vieu (2010).

Function flm.test() now has a better computational performance and function Aijr() has been replaced by Adot().

New argument “lambda” in fdata2fd() function.

New argument “rn” in create.pc.basis() function.

fregre.kgam() has been renamed to fregre.gkam().

fda.usc 0.9.8

Release 0.9.8 introduces a new function flm.test() that allows to test for the Functional Linear Model with scalar response for a given dataset. Is based on the new functions PCvM.statistic(), Aijr() and rber.gold().

A bug in fregre.kgam() has been fixed.

fda.usc 0.9.7

fda.usc 0.9.6

fda.usc 0.9.5

Release 0.9.5 improves fdata.bootstrap() function (better computational efficiency). It introduces a new functions: for Partial Linear Square (pls.fdata(), fregre.pls() and fregre.pls.cv()) and Simpson integration (int.simpson() and int.simpson2()). It modifies the functions metric.lp(), inprod.fdata(), summary.fregre.fd() and predict.fregre.fd().

fda.usc 0.9.4

Release 0.9.4 added 3 script files: Outliers_fdata.R, flm_beta_estimation_brownian_data.R and Classif_phoneme.R. It has introduced the functions fregre.glm() and predict.fregre.glm() which allow fit and predict respectively Functional Generalized Linear Models. It has introduced the functions create.pc.basis and create.fdata.basis() which allow to create basis objects for functional data of class “fdata”.

fda.usc 0.9

Release 0.9 introduces a new function h.default() that simplifies the calculation of the bandwidth parameter “h” in the functions: fregre.np(), fregre.np.cv() and fregre.plm().
In most of the functions has added a stop control when the dataset has missing data (NA’s). It adds the attribute “call” to the distance matrix calculated in metric.lp(), semimetric.basis() and semimetric.NPFDA() functions.