
Package ‘kbal’
October 16, 2024

Type Package

Title Kernel Balancing

Version 0.1.1

Date 2024-10-14

Description Provides a weighting approach that employs kernels to make one group have a simi-
lar distribution to another group on covari-
ates. This method matches not only means or marginal distributions but also higher-order trans-
formations implied by the choice of kernel. 'kbal' is applicable to both treatment effect estima-
tion and survey reweighting problems. Based on Hazlett, C. (2020) ``Kernel Balancing: A flexi-
ble non-parametric weighting procedure for estimating causal effects.'' Statistica Sinica. <https:
//www.researchgate.net/publication/299013953_Kernel_Balancing_A_flexible_
non-parametric_weighting_procedure_for_estimating_causal_effects/stats>.

URL https://github.com/chadhazlett/kbal

License GPL (>= 2)

LazyData TRUE

LazyLoad yes

Depends R (>= 3.5.0)

Imports Rcpp (>= 0.11.0), RcppParallel (>= 4.4.4), dplyr, RSpectra

LinkingTo Rcpp, RcppParallel

Maintainer Borna Bateni <borna@ucla.edu>

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Author Chad Hazlett [aut, cph],
Ciara Sterbenz [aut],
Erin Hartman [ctb],
Alex Kravetz [ctb],
Borna Bateni [aut, cre]

Repository CRAN

Date/Publication 2024-10-16 18:10:05 UTC

1

https://www.researchgate.net/publication/299013953_Kernel_Balancing_A_flexible_non-parametric_weighting_procedure_for_estimating_causal_effects/stats
https://www.researchgate.net/publication/299013953_Kernel_Balancing_A_flexible_non-parametric_weighting_procedure_for_estimating_causal_effects/stats
https://www.researchgate.net/publication/299013953_Kernel_Balancing_A_flexible_non-parametric_weighting_procedure_for_estimating_causal_effects/stats
https://github.com/chadhazlett/kbal

2 biasbound

Contents
biasbound . 2
b_maxvarK . 3
dimw . 4
drop_multicollin . 5
ebalance_custom . 6
getdist . 7
getw . 9
kbal . 11
lalonde . 19
makeK . 20
one_hot . 21

Index 23

biasbound Worst-Case Bias Bound due to Incomplete Balance

Description

Calculate the upper bound on the bias induced by approximate balance with a given hilbertnorm.
Approximate balance is conducted in kbal() and uses only the first numdims dimensions of the
singular value decomposition of the kernel matrix to generate weights w which produce mean bal-
ance between control or sampled units and treated or population units. The following function
calculates the worse-case bias induced by this approximate balancing with weights w and a given
hilbertnorm.

Usage

biasbound(observed, target, svd.out, w, w.pop = NULL, hilbertnorm = 1)

Arguments

observed a numeric vector of length equal to the total number of units where sampled/control
units take a value of 1 and population/treated units take a value of 0.

target a numeric vector of length equal to the total number of units where popula-
tion/treated units take a value of 1 and sample/control units take a value of 0.

svd.out the list object output from svd() performed on the kernel matrix. Requires a list
object with left singular vectors in svd.out$u and singular values in svd.out$d

w numeric vector containing the weight for every corresponding unit. Note that
these weights should sum to the total number of units, not to one. They are
divided by the number of control or sample and treated or population units in-
ternally.

w.pop an optional vector input to specify population weights. Must be of length equal
to the total number of units (rows in svd.out) with all sampled units receiving
a weight of 1. The sum of the weights for population units must be either 1 or
the number of population units.

b_maxvarK 3

hilbertnorm numeric value of the Hilbert norm. Default is 1.

Value

biasbound value of worst-case bias bound due to incomplete balance with inputted weights

Examples

#load and clean data a bit
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

xvars=c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

#need a kernel matrix to run SVD on and pass in so get that first with makeK
#running makeK with the sampled units as the bases
K = makeK(allx = lalonde[,xvars], useasbases = 1-lalonde$nsw)

#svd on this kernel
svd_pass = svd(K)
#let's use the original weights of 1/number of sampled units, and 1/number of target units
#this is the default if we pass in w as all 1's
biasbound(observed=(1-lalonde$nsw),

target=lalonde$nsw,
svd.out = svd_pass,
w = rep(1,nrow(lalonde)), hilbertnorm=1)

b_maxvarK Maximum Variance of Gaussian Kernel Matrix

Description

Searches for the argmax of the variance of the Kernel matrix.

Usage

b_maxvarK(data, useasbases, cat_data = TRUE, maxsearch_b = 2000)

Arguments

data a matrix of data where rows are all units and columns are covariates. Where
all covariates are categorical, this matrix should be one-hot encoded (refer to
one_hot to produce) with cat_data argument true.

4 dimw

useasbases binary vector specifying what observations are to be used in forming bases
(columns) of the kernel matrix. Suggested default is: if the number of obser-
vations is under 4000, use all observations; when the number of observations is
over 4000, use the sampled (control) units only.

cat_data logical for whether kernel contains only categorical data or not. Default is TRUE.
maxsearch_b the maximum value of b, the denominator of the Gaussian, searched during max-

imization. Default is 2000.

Value

b_maxvar numeric b value, the denominator of the Gaussian, which produces the maximum
variance of K kernel matrix

var_K numeric maximum variance of K kernel matrix found with b as b_maxvar

Examples

#lalonde with only categorical data
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

cat_vars <- c("black","hisp","married","nodegr","u74","u75")
#Convert to one-hot encoded data matrix:
onehot_lalonde = one_hot(lalonde[, cat_vars])
colnames(onehot_lalonde)
best_b <- b_maxvarK(data = onehot_lalonde,

useasbases = 1-lalonde$nsw)

dimw Difference in Means and Difference in Weighted Means

Description

Calculates the simple difference in means or weighted difference in means between the control or
sample population and the treated or target population.

Usage

dimw(X, w, target)

Arguments

X matrix of data where rows are observations and columns are covariates.
w numeric vector of weights for each observation.
target numeric vector of length equal to the total number of units where population/treated

units take a value of 1 and sample/control units take a value of 0.

drop_multicollin 5

Value

dim the simple, unweighted difference in means.

dimw the weighted difference in means.

Examples

#let's say we want to get the unweighted DIM and the weighted DIM using weights from the kbal
#function with the lalonde data:
#load and clean data a bit
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

xvars=c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

#get the kbal weights
kbalout= kbal(allx=lalonde[,xvars],

sampledinpop=FALSE,
treatment=lalonde$nsw)

#now use dimw to get the DIMs
dimw(X = lalonde[,xvars], w = kbalout$w, target = lalonde$nsw)

drop_multicollin Drop Multicollinear Columns

Description

Drops multicollinear columns in order of highest correlation using the correlation matrix. This func-
tion uses the cor function from the stats package to calculate the correlations between columns.

Usage

drop_multicollin(allx, printprogress = TRUE)

Arguments

allx a matrix of data to check for multicollinearity. All columns must be numeric.

printprogress logical to indicate if progress should be printed out to the command line. Default
is TRUE.

Value

A list containing:

allx_noMC resulting data matrix of full rank after multicollinear columns have been dropped.

dropped_cols column names of the dropped columns.

6 ebalance_custom

Examples

Create data with multicollinearity
data <- data.frame(x = rnorm(100),

y = sample.int(100, 100),
z = runif(100, 3, 6))

test = data.frame(mc_1 = data$x,
mc_2 = data$x * 2 + data$y - data$z)

dat = cbind(test, data)
Run function
mc_check = drop_multicollin(dat)
mc_check$dropped_cols

ebalance_custom Modified version of ebalance (originally from Jens Hainmueller)

Description

This is a custom version of the ebal (entropy balancing) package by Jens Hainmueller. Chooses
weights on controls to make covariate means equal to those of treated. This version differs from
ebal only in that it handles cases where there is only a single unit, which otherwise causes a problem
in the original code.

Usage

ebalance_custom(
Treatment,
X,
base.weight = NULL,
norm.constant = NULL,
coefs = NULL,
max.iterations = 200,
constraint.tolerance = 0.001,
print.level = 0

)

Arguments

Treatment a numeric vector of length equal to the total number of units where treated (pop-
ulation) units take a value of 1 and control (sampled) units take a value of 0.

X matrix of data where rows are observations and columns are covariates.

base.weight an optional numeric vector argument of length equal to the total number of con-
trol units to specify the base weight of each control unit within entropy balanc-
ing. Default is even weights (1) for all controls.

norm.constant an optional numeric argument; users should leave unspecified in most cases.

getdist 7

coefs an optional vector argument of length equal to one more than the number of
covariates in X; users should leave unspecified in most cases.

max.iterations numeric maximum number of iterations to use when searching for weights
constraint.tolerance

numeric tolerance level.

print.level a numeric argument to specify the amount of information printed out. 0 is silent,
1 prints convergence status, 2 prints maximum deviance per iteration, 3 prints
loss and step length.

Value

target.margins Column sums of X among the treated units.

co.xdata Covariate matrix for the controls only built from X with an additional appended
column of ones.

w weights found using ebalance. Note that treated units all receive flat weights of
1

maxdiff absolute value of the largest component of the gradient in the last iteration.

norm.constant norm constant used
constraint.tolerance

tolerance used to evaluate convergence

max.iterations max iterations used

base.weight base weights used

print.level print level used

converged Convergence status. If ebalance failed to find weights within the specified constraint.tolerance
after max.iterations this is FALSE. Note that even if ebalance does not con-
verge, the last iteration’s weights w are returned.

getdist L1 Distance

Description

Calculates the L1 distance between the treated or population units and the kernel balanced control
or sampled units.

Usage

getdist(
target,
observed,
K,
w.pop = NULL,
w = NULL,
numdims = NULL,

8 getdist

ebal.tol = 1e-06,
ebal.maxit = 500,
svd.U = NULL

)

Arguments

target a numeric vector of length equal to the total number of units where popula-
tion/treated units take a value of 1 and sample/control units take a value of 0.

observed a numeric vector of length equal to the total number of units where sampled/control
units take a value of 1 and population/treated units take a value of 0.

K the kernel matrix

w.pop an optional vector input to specify population weights. Must be of length equal
to the total number of units (rows in svd.U) with all sampled units receiving a
weight of 1. The sum of the weights for population units must be either 1 or the
number of population units.

w a optional numeric vector of weights for every observation. Note that these
weights should sum to the total number of units, where treated or population
units have a weight of 1 and control or sample units have appropriate weights
derived from kernel balancing with mean 1, is consistent with the output of
getw(). If unspecified, these weights are found internally using numdims di-
mensions of the SVD of the kernel matrix svd.U with ebalance_custom().

numdims an optional numeric input specifying the number of columns of the singular
value decomposition of the kernel matrix to use when finding weights when w is
not specified.

ebal.tol an optional numeric input specifying the tolerance level used by custom entropy
balancing function ebalance_custom() in the case that w is not specified. De-
fault is 1e-6.

ebal.maxit maximum number of iterations in optimization search used by ebalance_custom
when w is not specified. Default is 500.

svd.U an optional matrix of left singular vectors from performing svd() on the kernel
matrix in the case that w is unspecified. If unspecified when w also not specified,
internally computes the svd of K.

Value

L1 a numeric giving the L1 distance, the absolute difference between pX_D1 and
pX_D0w

w numeric vector of weights used

pX_D1 a numeric vector of length equal to the total number of observations where the
nth entry is the sum of the kernel distances from the nth unit to every treated or
population unit. If population units are specified, this sum is weighted by w.pop
accordingly.

pX_D0 a numeric vector of length equal to the total number of observations where the
nth entry is the sum of the kernel distances from the nth unit to every control or
sampled unit.

getw 9

pX_D0w a numeric vector of length equal to the total number of observations where the
nth entry is the weighted sum of the kernel distances from the nth unit to every
control or sampled unit. The weights are given by entropy balancing and pro-
duce mean balance on ϕ(X), the expanded features of X using a given kernel
ϕ(.), for the control or sample group and treated group or target population.

Examples

#loading and cleaning lalonde data
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

xvars=c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

#need to first build gaussian kernel matrix
K_pass <- makeK(allx = lalonde[,xvars])
#also need the SVD of this matrix
svd_pass <- svd(K_pass)

#running without passing weights in directly, using numdims=33
l1_lalonde <- getdist(target = lalonde$nsw,

observed = 1-lalonde$nsw,
K = K_pass,
svd.U = svd_pass$u,
numdims = 33)

#alternatively, we can get the weights ourselves and pass them in directly
#using the first 33 dims of svd_pass$u to match the above

w_opt <- getw(target= lalonde$nsw,
observed = 1-lalonde$nsw,
svd.U = svd_pass$u[,1:33])$w

l1_lalonde2 <- getdist(target = lalonde$nsw,
observed = 1-lalonde$nsw,
K = K_pass,
w = w_opt)

getw Find Weights using Entropy Balancing.

Description

Uses entropy balancing to find and return the weights that produce mean balance on ϕ(Xi), the
expanded features of Xi using a given kernel ϕ(.), for the control or sample group and treated
group or target population.

10 getw

Usage

getw(target, observed, svd.U, ebal.tol = 1e-06, ebal.maxit = 500)

Arguments

target a numeric vector of length equal to the total number of units where popula-
tion/treated units take a value of 1 and sample/control units take a value of 0.

observed a numeric vector of length equal to the total number of units where sampled/control
units take a value of 1 and population/treated units take a value of 0.

svd.U a matrix of left singular vectors from performing svd() on the kernel matrix.

ebal.tol tolerance level used by custom entropy balancing function ebalance_custom.
Default is 1e-6.

ebal.maxit maximum number of iterations in optimization search used by ebalance_custom.
Default is 500.

Value

A list containing:

w A numeric vector of weights.

converged boolean indicating if ebalance_custom converged

ebal_error returns error message if ebalance_custom encounters an error

Examples

#load and clean data
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

xvars=c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

#need a kernel matrix to run SVD on then find weights with; so get that first with makeK.
#running makeK with the sampled units as the bases
K = makeK(allx = lalonde[,xvars], useasbases = 1-lalonde$nsw)

#SVD on this kernel and get matrix with left singular values
U = svd(K)$u
#Use the first 10 dimensions of U.
U2=U[,1:10]
getw.out=getw(target=lalonde$nsw,

observed=1-lalonde$nsw,
svd.U=U2)

kbal 11

kbal Kernel Balancing

Description

Kernel balancing (kbal) is non-parametric weighting tool to make two groups have a similar dis-
tribution of covariates, not only in terms of means or marginal distributions but also on (i) general
smooth functions of the covariates, including on (ii) a smoothing estimator of the joint distribution
of the covariates. It was originally designed (Hazlett, 2017) to make control and treated groups look
alike, as desired when estimating causal effects under conditional ignorability. This package also
facilitates use of this approach for more general distribution-alignment tasks, such as making a sam-
pled group have a similar distribution of covariates as a target population, as in survey reweighting.
The examples below provide an introduction to both settings.

To proceed in the causal effect setting, kbal assumes that the expectation of the non-treatment
potential outcome conditional on the covariates falls in a large, flexible space of functions associated
with a kernel. It then constructs linear bases for this function space and achieves approximate
balance on these bases. The approximation is one that minimizes the worst-case bias that could
persist due to remaining imbalances.

The kbal function implements kernel balancing using a gaussian kernel to expand the features
of Xi to infinite dimensions. It finds approximate mean balance for the control or sample group
and treated group or target population in this expanded feature space by using the first numdims
dimensions of the singular value decomposition of the gaussian kernel matrix. It employs entropy
balancing to find the weights for each unit which produce this approximate balance. When numdims
is not user-specified, it searches through increasing dimensions of the SVD of the kernel matrix to
find the number of dimensions which produce weights that minimizes the worst-case bias bound
with a given hilbertnorm. It then returns these optimal weights, along with the minimized bias,
the kernel matrix, a record of the number of dimensions used and the corresponding bias, as well
as an original bias using naive group size weights for comparison. Note that while kernel balancing
goes far beyond simple mean balancing, it may not result in perfect mean balance. Users who wish
to require mean balancing can specify meanfirst = T to require mean balance on as many dimen-
sions of the data as optimally feasible. Alternatively, users can manually specify constraint to
append additional vector constraints to the kernel matrix in the bias bound optimization, requiring
mean balance on these columns. Note further that kbal supports three types of input data: fully
categorical, fully continuous, or mixed. When data is only categorical, as is common with de-
mographic variables for survey reweighting, users should use argument cat_data = TRUE and can
input their data as factors, numeric, or characters and kbal will internally transform the data to a
more appropriate one-hot encoding and search for the value of b, the denominator of the exponent
in the Gaussian, which maximizes the variance of the kernel matrix. When data is fully continu-
ous, users should use default settings (cat_data = FALSE and cont_data = FAlSE, which will scale
all columns and again conduct an internal search for the value of b which maximizes the variance
of K. Note that with continuous data, this search may take considerably more computational time
than the categorical case. When data is a mix of continuous and categorical data, users should use
argument mixed_data = TRUE, specify by name what columns are categorical with cat_columns,
and also set the scaling of the continuous variables with cont_scale. This will result in a one-hot
encoding of categorical columns concatenated with the continuous columns scaled in accordance
with cont_scale and again an internal search for the value of b which maximizes the variance

12 kbal

in the kernel matrix. Again note that compared to the categorical case, this search will take more
computational time.

Usage

kbal(
allx,
useasbases = NULL,
b = NULL,
sampled = NULL,
sampledinpop = NULL,
treatment = NULL,
population.w = NULL,
K = NULL,
K.svd = NULL,
cat_data = FALSE,
mixed_data = FALSE,
cat_columns = NULL,
cont_scale = NULL,
scale_data = NULL,
drop_MC = NULL,
linkernel = FALSE,
meanfirst = FALSE,
mf_columns = NULL,
constraint = NULL,
scale_constraint = TRUE,
numdims = NULL,
minnumdims = NULL,
maxnumdims = NULL,
fullSVD = FALSE,
incrementby = 1,
ebal.maxit = 500,
ebal.tol = 1e-06,
ebal.convergence = NULL,
maxsearch_b = 2000,
early.stopping = TRUE,
printprogress = TRUE

)

Arguments

allx a data matrix containing all observations where rows are units and columns are
covariates. When using only continuous covariates (cat_data = F and mixed_data
= F), all columns must be numeric. When using categorical data (either cat_data
= T or mixed_data = T), categorical columns can be characters or numerics which
will be treated as factors. Users should one-hot encoded categorical covariates
as this transformation occurs internally.

useasbases optional binary vector to specify what observations are to be used in forming
bases (columns) of the kernel matrix to get balance on. If the number of obser-

kbal 13

vations is under 4000, the default is to use all observations. When the number of
observations is over 4000, the default is to use the sampled (control) units only.

b scaling factor in the calculation of Gaussian kernel distance equivalent to the
entire denominator 2σ2 of the exponent. Default is to search for the value which
maximizes the variance of the kernel matrix.

sampled a numeric vector of length equal to the total number of units where sampled
units take a value of 1 and population units take a value of 0.

sampledinpop a logical to be used in combination with input sampled that, when TRUE, indi-
cates that sampled units should also be included in the target population when
searching for optimal weights.

treatment an alternative input to sampled and sampledinpop that is a numeric vector of
length equal to the total number of units. Current version supports the ATT
estimand. Accordingly, the treated units are the target population, and the con-
trol are equivalent to the sampled. Weights play the role of making the con-
trol groups (sampled) look like the target population (treated). When specified,
sampledinpop is forced to be FALSE.

population.w optional vector of population weights length equal to the number of population
units. Must sum to either 1 or the number of population units.

K optional matrix input that takes a user-specified kernel matrix and performs SVD
on it internally in the search for weights which minimize the bias bound.

K.svd optional list input that takes a user-specified singular value decomposition of
the kernel matrix. This list must include three objects K.svd$u, a matrix of
left-singular vectors, K.svd$v, a matrix of right-singular vectors, and their cor-
responding singular values K.svd$d.

cat_data logical argument that when true indicates allx contains only categorical data.
When true, the internal construction of the kernel matrix uses a one-hot encoding
of allx (multiplied by a factor of

√
0.5 to compensate for double counting) and

the value of b which maximizes the variance of this kernel matrix. When true,
mixed_data, scale_data, linkernel, and drop_MC should be FALSE. Default
is FALSE.

mixed_data logical argument that when true indicates allx contains a combination of both
continuous and categorical data. When true, the internal construction of the
kernel matrix uses a one-hot encoding of the categorical variables in allx as
specified by cat_columns (multiplied by a factor of

√
0.5 to compensate for

double counting) concatenated with the remaining continuous variables scaled to
have default standard deviation of 1 or that specified in cont_scale. When both
cat_data and cat_data are FALSE, the kernel matrix assumes all continuous
data, does not one-hot encode any part of allx but still uses the value of b
which produces maximal variance in K. Default is FALSE.

cat_columns optional character argument that must be specified when mixed_data is TRUE
and that indicates what columns of allx contain categorical variables.

cont_scale optional numeric argument used when mixed_data is TRUE which specifies how
to scale the standard deviation of continuous variables in allx. Can be either a a
single value or a vector with length equal to the number of continuous variables
in allx (columns not specified in cat_columns) and ordered accordingly.

14 kbal

scale_data logical when true scales the columns of allx (demeans and scales variance to
1) before building the kernel matrix internally. This is appropriate when allx
contains only continuous variables with different scales, but is not recommended
when allx contains any categorical data. Default is TRUE when both cat_data
and mixed_data are FALSE and FALSE otherwise.

drop_MC logical for whether or not to drop multicollinear columns in allx before build-
ing K. When either cat_data or mixed_data is TRUE, forced to be FALSE. Oth-
erwise, with continuous data only, default is TRUE.

linkernel logical if true, uses the linear kernel K = XX ′ which achieves balance on the
first moments of X (mean balance). Note that for computational ease, the code
employs K = X and adjusts singular values accordingly. Default is FALSE.

meanfirst logical if true, internally searches for the optimal number of dimensions of the
svd of allx to append to K as additional constraints. This will produce mean
balance on as many dimensions of allx as optimally feasible with specified
ebalance convergence and a minimal bias bound on the remaining unbalances
columns of the left singular vectors of K. Note that any scaling specified on allx
will be also be applied in the meanfirst routine. Default is FALSE.

mf_columns either character or numeric vector to specify what columns of allx to perform
meanfirst with. If left unspecified, all columns will be used.

constraint optional matrix argument of additional constraints which are appended to the
front of the left singular vectors of K. When specified, the code conducts a
constrained optimization requiring mean balance on the columns of this ma-
trix throughout the search for the minimum bias bound over the dimensions of
the left singular vectors of K.

scale_constraint

logical for whether constraints in constraint should be scaled before they are
appended to the svd of K. Default is TRUE.

numdims optional numeric argument specifying the number of dimensions of the left sin-
gular vectors of the kernel matrix to find balance bypassing the optimization
search for the number of dimensions which minimize the biasbound.

minnumdims numeric argument to specify the minimum number of the left singular vectors of
the kernel matrix to seek balance on in the search for the number of dimensions
which minimize the bias. Default minimum is 1.

maxnumdims numeric argument to specify the maximum number of the left singular vectors of
the kernel matrix to seek balance on in the search for the number of dimensions
which minimize the bias. For a Gaussian kernel, the default is the minimum
between 500 and the number of bases given by useasbases. With a linear
kernel, the default is the minimum between 500 and the number of columns in
allx.

fullSVD logical argument for whether the full SVD should be conducted internally. When
FALSE, the code uses truncated svd methods from the Rspectra package in the
interest of improving run time. When FALSE, the code computes only the SVD
up to the either 80 percent of the columns of K or maxnumdims singular vectors,
whichever is larger. When the number of columns is less than 80 percent the
number of rows, defaults to full svd. Default is FALSE.

kbal 15

incrementby numeric argument to specify the number of dimensions to increase by from
minnumdims to maxnumdims in each iteration of the search for the number of
dimensions which minimizes the bias. Default is 1.

ebal.maxit maximum number of iterations used by ebalance_custom() in optimization in
the search for weights w. Default is 500.

ebal.tol tolerance level used by ebalance_custom(). Default is 1e-6.
ebal.convergence

logical to require ebalance convergence when selecting the optimal numdims
dimensions of K that minimize the biasbound. When constraints are appended
to the left singular vectors of K via meanfirst=TRUE or constraints, forced to
be TRUE and otherwise FALSE.

maxsearch_b optional argument to specify the maximum b in search for maximum variance
of K in b_maxvarK(). Default is 2000.

early.stopping logical argument indicating whether bias balance optimization should stop twenty
rounds after finding a minimum. Default is TRUE.

printprogress logical argument to print updates throughout. Default is TRUE.

Value

w a vector of the weights found using entropy balancing on numdims dimensions
of the SVD of the kernel matrix.

biasbound_opt a numeric giving the minimal bias bound found using numdims as the number of
dimensions of the SVD of the kernel matrix. When numdims is user-specified,
the bias bound using this number of dimensions of the kernel matrix.

biasbound_orig a numeric giving the bias bound found when all sampled (control) units have a
weight equal to one over the number of sampled (control) units and all target
units have a weight equal to one over the number of target units.

biasbound_ratio

a numeric giving the ratio of biasbound_orig tobiasbound_opt. Can be infor-
mative when comparing the performance of different b values.

dist_record a matrix recording the bias bound corresponding to balance on increasing di-
mensions of the SVD of the kernel matrix starting from minnumdims increasing
by incrementby to maxnumdims or until the bias grows to be 1.25 times the
minimal bias found.

numdims a numeric giving the optimal number of dimensions of the SVD of the kernel
matrix which minimizes the bias bound.

L1_orig a numeric giving the L1 distance found when all sampled (control) units have
a weight equal to one over the number of sampled (control) units and all target
units have a weight equal to one over the number of target units.

L1_opt a numeric giving the L1 distance at the minimum bias bound found using numdims
as the number of dimensions of the SVD of the kernel matrix. When numdims
is user-specified, the L1 distance using this number of dimensions of the kernel
matrix.

K the kernel matrix

16 kbal

onehot_dat when categorical data is specified, the resulting one-hot encoded categorical data
used in the construction of K. When mixed data is specified, returns concatenated
one-hot encoded categorical data and scaled continuous data used to construct
K.

linkernel logical for whether linear kernel was used

svdK a list giving the SVD of the kernel matrix with left singular vectors svdK$u, right
singular vectors svdK$v, and singular values svdK$d

b numeric scaling factor used in the the calculation of gaussian kernel equivalent
to the denominator 2σ2 of the exponent.

maxvar_K returns the resulting variance of the kernel matrix when the b determined inter-
nally as the argmax of the variance K

bases numeric vector indicating what bases (rows in allx) were used to construct
kernel matrix (columns of K)

truncatedSVD.var

when truncated SVD methods are used on symmetric kernel matrices, a nu-
meric which gives the proportion of the total variance of K captured by the first
maxnumdims singular values found by the truncated SVD. When the kernel ma-
trix is non-symmetric, this is a worst case approximation of the percent variance
explained, assuming the remaining unknown singular values are the same mag-
nitude as the last calculated in the truncated SVD.

dropped_covariates

provides a vector of character column names for covariates dropped due to mul-
ticollinearity.

meanfirst_dims when meanfirst=TRUE the optimal number of the singular vectors of allx se-
lected and appended to the front of the left singular vectors of K

meanfirst_cols when meanfirst=TRUE meanfirst_dims first left singular vectors of allx se-
lected that are appended to the front of the left singular vectors of K and balanced
on

ebal_error when ebalance is unable to find convergent weights, the associated error mes-
sage it reports

References

Hazlett, C. (2017), "Kernel Balancing: A flexible non-parametric weighting procedure for estimat-
ing causal effects." Forthcoming in Statistica Sinica. https://doi.org/10.5705/ss.202017.0555

Examples

#--
Example 1: Reweight a control group to a treated to estimate ATT.
Benchmark using Lalonde et al.
#--
#1. Rerun Lalonde example with settings as in Hazlett, C (2017). Statistica Sinica paper:
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)

kbal 17

lalonde <- lalonde[lalonde_sample,]

xvars=c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

kbalout.full= kbal(allx=lalonde[,xvars],
b=length(xvars),
treatment=lalonde$nsw,
fullSVD = TRUE)

summary(lm(re78~nsw,w=kbalout.full$w, data = lalonde))

#2. Lalonde with categorical data only: u74, u75, nodegree, race, married
cat_vars=c("race_ethnicity","married","nodegr","u74","u75")

kbalout_cat_only = kbal(allx=lalonde[,cat_vars],
cat_data = TRUE,
treatment=lalonde$nsw,
fullSVD = TRUE)

kbalout_cat_only$b
summary(lm(re78~nsw,w=kbalout_cat_only$w, data = lalonde))

#3. Lalonde with mixed categorical and continuous data
cat_vars=c("race_ethnicity", "married")
all_vars= c("age","educ","re74","re75","married", "race_ethnicity")

kbalout_mixed = kbal(allx=lalonde[,all_vars],
mixed_data = TRUE,
cat_columns = cat_vars,
treatment=lalonde$nsw,
fullSVD = TRUE)

kbalout_mixed$b
summary(lm(re78~nsw,w=kbalout_mixed$w, data = lalonde))

#--
Example 1B: Reweight a control group to a treated to esimate ATT.
Benchmark using Lalonde et al. -- but just mean balancing now
via "linkernel".
#--

Rerun Lalonde example with settings as in Hazlett, C (2017). Statistica paper:
kbalout.lin= kbal(allx=lalonde[,xvars],

b=length(xvars),
treatment=lalonde$nsw,
linkernel=TRUE,
fullSVD=TRUE)

Check balance with and without these weights:
dimw(X=lalonde[,xvars], w=kbalout.lin$w, target=lalonde$nsw)

summary(lm(re78~nsw,w=kbalout.lin$w, data = lalonde))

18 kbal

#--
Example 2: Reweight a sample to a target population.
#--
Suppose a population consists of four groups in equal shares:
white republican, non-white republican, white non-republicans,
and non-white non-republicans. A given policy happens to be supported
by all white republicans, and nobody else. Thus the mean level of
support in the population should be 25%.
#
Further, the sample is surveyed in such a way that was careful
to quota on party and race, obtaining 50% republican and 50% white.
However, among republicans three-quarters are white and among non-republicans,
three quarters are non-white. This biases the average level of support
despite having a sample that matches the population on its marginal distributions. #'
We'd like to reweight the sample so it resembles the population not
just on the margins, but in the joint distribution of characteristics.

pop <- data.frame(
republican = c(rep(0,400), rep(1,400)),
white = c(rep(1,200), rep(0,200), rep(1,200), rep(0,200)),
support = c(rep(1,200), rep(0,600)))

mean(pop$support) # Target value

Survey sample: correct margins/means, but wrong joint distribution
samp <- data.frame(republican = c(rep(1, 40), rep(0,40)),

white = c(rep(1,30), rep(0,10), rep(1,10), rep(0,30)),
support = c(rep(1,30), rep(0,50)))

mean(samp$support) # Appears that support is 37.5% instead of 25%.

Mean Balancing ---
Sample is already mean-balanced to the population on each
characteristic. However for illustrative purposes, use ebal()
dat <- rbind(pop,samp)

Indicate which units are sampled (1) and which are population units(0)
sampled <- c(rep(0,800), rep(1,80))

Run ebal (treatment = population units = 1-sampled)
ebal_out <- ebalance_custom(Treatment = 1-sampled,

X=dat[,1:2],
constraint.tolerance=1e-6,
print.level=-1)

We can see everything gets even weights, since already mean balanced.
length(unique(ebal_out$w))

And we end up with the same estimate we started with
weighted.mean(samp[,3], w = ebal_out$w)

We see that, because the margins are correct, all weights are equal

lalonde 19

unique(cbind(samp, e_bal_weight = ebal_out$w))

Kernel balancing for weighting to a population (i.e. kpop) -------
kbalout = kbal(allx=dat[,1:2],

useasbases=rep(1,nrow(dat)),
sampled = sampled,
b = 1,
sampledinpop = FALSE)

The weights now vary:
plot(kbalout$w[sampled ==1], pch=16)

And produce correct estimate:
weighted.mean(samp$support, w = kbalout$w[sampled==1])

kbal correctly downweights white republicans and non-white non-republicans
and upweights the non-white republicans and white non-republicans
unique(round(cbind(samp[,-3], k_bal_weight = kbalout$w[sampled==1]),6))

lalonde Data from National Supported Work program and Panel Study in In-
come Dynamics

Description

Dehejia and Wahba (1999) sample of data from Lalonde (1986). This data set includes 185 treated
units from the National Supported Work (NSW) program, paired with 2490 control units drawn
from the Panel Study of Income Dynamics (PSID-1).

The treatment variable of interest is nsw, which indicates that an individual was in the job training
program. The main outcome of interest is real earnings in 1978 (re78). The remaining variables
are characteristics of the individuals, to be used as controls.

Usage

lalonde

Format

A data frame with 2675 rows and 14 columns.

nsw treatment indicator: participation in the National Supported Work program.

re78 real earnings in 1978 (outcome)

u78 unemployed in 1978; actually an indicator for zero income in 1978

age age in years

black indicator for identifying as black

hisp indicator for identifying as Hispanic

20 makeK

race_ethnicity factor for self-identified race/ethnicity; same information as black and hisp in
character form.

married indicator for being married

re74 real income in 1974

re75 real income in 1975

u74 unemployment in 1974; actually an indicator for zero income in 1974

u75 unemployment in 1975; actually an indicator for zero income in 1975

educ Years of education of the individual

nodegr indicator for no high school degree; actually an indicator for years of education less than
12

References

Dehejia, Rajeev H., and Sadek Wahba. "Causal effects in non-experimental studies: Reevaluating
the evaluation of training programs." Journal of the American statistical Association 94.448 (1999):
1053-1062.

LaLonde, Robert J. "Evaluating the econometric evaluations of training programs with experimental
data." The American economic review (1986): 604-620.

makeK Build the Gaussian Kernel Matrix

Description

Builds the Gaussian kernel matrix using Rcpp.

Usage

makeK(allx, useasbases = NULL, b = NULL, linkernel = FALSE, scale = TRUE)

Arguments

allx a data matrix containing all observations where rows are units and columns are
covariates.

useasbases a binary vector with length equal to the number of observations (rows in allx)
to specify which bases to use when constructing the kernel matrix (columns of
K). If not specified, the default is to use all observations.

b Scaling factor in the calculation of Gaussian kernel distance equivalent to the en-
tire denominator 2σ2 of the exponent. Default is twice the number of covariates
or columns in allx.

linkernel a logical value indicating whether to use a linear kernel, K = XX ′, which in
practice employs K = X . Default is FALSE.

scale a logical value indicating whether to standardize allx (demeaned with sd=1)
before constructing the kernel matrix. Default is TRUE.

one_hot 21

Value

K The kernel matrix

Examples

#load and clean data a bit

set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

xvars <- c("age","black","educ","hisp","married","re74","re75","nodegr","u74","u75")

#note that lalonde$nsw is the treatment vector, so the observed is 1-lalonde$nsw
#running makeK with the sampled/control units as the bases given
#the large size of the data
K <- makeK(allx = lalonde[,xvars], useasbases = 1-lalonde$nsw)

one_hot One-Hot Encoding for Categorical Data

Description

Converts raw categorical string/factor data matrix into numeric one-hot encoded data matrix. In-
tended to help prepare data to be passed to kbal argument allx when categorical data is used.

Usage

one_hot(data)

Arguments

data a dataframe or matrix where columns are string or factor type covariates

Value

onehot_data a matrix of combined sample and population data with rows corresponding to
units and columns one-hot encoded categorical covariates

Examples

#Ex 1. Make up some categorical demographic data
dat = data.frame(pid = c(rep("Rep", 20),

rep("Dem", 20),
rep("Ind", 20)),

gender = c(rep("female", 35),

22 one_hot

rep("male", 25)))
#Convert to one-hot encoded data matrix:
onehot_dat = one_hot(dat)

#Ex 2. lalonde data
set.seed(123)
data("lalonde")
Select a random subset of 500 rows
lalonde_sample <- sample(1:nrow(lalonde), 500, replace = FALSE)
lalonde <- lalonde[lalonde_sample,]

cat_vars=c("black","hisp","married","nodegr","u74","u75")
onehot_lalonde = one_hot(lalonde[, cat_vars])

Index

∗ datasets
lalonde, 19

b_maxvarK, 3
biasbound, 2

dimw, 4
drop_multicollin, 5

ebalance_custom, 6

getdist, 7
getw, 9

kbal, 11

lalonde, 19

makeK, 20

one_hot, 3, 21

23

	biasbound
	b_maxvarK
	dimw
	drop_multicollin
	ebalance_custom
	getdist
	getw
	kbal
	lalonde
	makeK
	one_hot
	Index

