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action_levels Set action levels: failure thresholds and functions to invoke
Description

The action_levels() function works with the actions argument that is present in the create_agent ()
function and in every validation step function (which also has an actions argument). With it, we
can provide threshold failure values for any combination of warn, stop, or notify failure states.

We can react to any entering of a state by supplying corresponding functions to the fns argu-
ment. They will undergo evaluation at the time when the matching state is entered. If provided to
create_agent() then the policies will be applied to every validation step, acting as a default for
the validation as a whole.

Calls of action_levels() could also be applied directly to any validation step and this will act
as an override if set also in create_agent(). Usage of action_levels() is required to have
any useful side effects (i.e., warnings, throwing errors) in the case of validation functions oper-
ating directly on data (e.g., mtcars %>% col_vals_l1t("mpg", 35)). There are two helper func-
tions that are convenient when using validation functions directly on data (the agent-less work-
flow): warn_on_fail() and stop_on_fail(). These helpers either warn or stop (default fail-
ure threshold for each is set to 1), and, they do so with informative warning or error messages.
The stop_on_fail() helper is applied by default when using validation functions directly on data
(more information on this is provided in Details).
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Usage
action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)

warn_on_fail(warn_at = 1)
stop_on_fail(stop_at = 1)
Arguments

warn_at Threshold value for the "warn’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the warn failure state.

stop_at Threshold value for the ’stop’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the stop failure state.

notify_at Threshold value for the ’notify’ failure state
scalar<integer|numeric>(val>=0) // default: NULL (optional)
Either the threshold number or the threshold fraction of failing test units that
result in entering the notify failure state.

fns Functions to execute when entering failure states
list // default: NULL (optional)
A named list of functions that is to be paired with the appropriate failure states.
The syntax for this list involves using failure state names from the set of warn,
stop, and notify. The functions corresponding to the failure states are pro-
vided as formulas (e.g., list(warn = ~warning("Too many failures.")). A
series of expressions for each named state can be used by enclosing the set of
statements with { }.

Details

The output of the action_levels() call in actions will be interpreted slightly differently if using
an agent or using validation functions directly on a data table. For convenience, when working
directly on data, any values supplied to warn_at or stop_at will be automatically given a stock
warning() or stop() function. For example using small_table %>% col_is_integer("date")
will provide a detailed stop message by default, indicating the reason for the failure. If you were
to supply the fns for stop or warn manually then the stock functions would be overridden. Fur-
thermore, if actions is NULL in this workflow (the default), pointblank will use a stop_at value
of 1 (providing a detailed, context-specific error message if there are any failing units). We can
absolutely suppress this automatic stopping behavior by at each validation step by setting active
= FALSE. In this interactive data case, there is no stock function given for notify_at. The notify
failure state is less commonly used in this workflow as it is in the agent-based one.

When using an agent, we often opt to not use any functions in fns as the warn, stop, and notify
failure states will be reported on when using create_agent_report() (and, usually that’s suffi-
cient). Instead, using the end_fns argument is a better choice since that scheme provides useful
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data on the entire interrogation, allowing for finer control on side effects and reducing potential for
duplicating any side effects.

Value

An action_levels object.

Defining threshold values

Any threshold values supplied for the warn_at, stop_at, or notify_at arguments correspond to
the warn, stop, and notify failure states, respectively. A threshold value can either relates to an
absolute number of test units or a fraction-of-total test units that are failing. Exceeding the threshold
means entering one or more of the warn, stop, or notify failure states.

If a threshold value is a decimal value between @ and 1 then it’s a proportional failure threshold
(e.g., @.15 indicates that if 15 percent of the test units are found to be failing, then the designated
failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes
an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to be failing, the

failure state is entered).

Examples

For these examples, we will use the included small_table dataset.

small_table

#> # A tibble: 13 x 8

#> date_time date ab c de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA  3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Create an action_levels object with fractional values for the warn, stop, and notify states.

al <-
action_levels(

warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.5

)
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A summary of settings for the al object is shown by printing it.

Create a pointblank agent and apply the al object to actions. Add two validation steps and inter-
rogate the small_table.

agent_1 <-

create_agent(
tbl = small_table,
actions = al

) %>%

col_vals_gt(
columns = a, value = 2

) %>%

col_vals_1t(

columns = d, value = 20000
) %>%
interrogate()

The report from the agent will show that the warn state has been entered for the first validation step
but not the second one. We can confirm this in the console by inspecting the warn component in the
agent’s x-list.

x_list <- get_agent_x_list(agent = agent_1)
x_list$warn
## [1]1 TRUE FALSE

Applying the action_levels object to the agent means that all validation steps will inherit these
settings but we can override this by applying another such object to the validation step instead (this
time using the warn_on_fail () shorthand).

agent_2 <-
create_agent(
tbl = small_table,
actions = al
) %>%
col_vals_gt(
columns = a, value = 2,
actions = warn_on_fail(warn_at = 0.5)
) %>%
col_vals_1t(
columns = d, value = 20000
) %>%
interrogate()

In this case, the first validation step has a less stringent failure threshold for the warn state and
it’s high enough that the condition is not entered. This can be confirmed in the console through
inspection of the x-list warn component.
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x_list <- get_agent_x_list(agent = agent_2)
x_list$warn

## [1] FALSE FALSE

In the context of using validation functions directly on data (i.e., no involvement of an agent) we
want to trigger warnings and raise errors. The following will yield a warning if it is executed
(returning the small_table data).

small_table %>%
col_vals_gt(
columns = a, value = 2,
actions = warn_on_fail(warn_at = 2)

)
## # A tibble: 13 x 8
## date_time date ab C de
#it <dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
# 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. .. 7 834. TRUE
## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE

## # ... with 1 more variable: f <chr>

## Warning message:

## Exceedance of failed test units where values in ‘a‘ should have been >
## V2.

## The ‘col_vals_gt()* validation failed beyond the absolute threshold

## level (2).

## * failure level (4) >= failure threshold (2)

With the same pipeline, not supplying anything for actions (it’s NULL by default) will have the
same effect as using stop_on_fail(stop_at =1).

small_table %>%
col_vals_gt(columns = a, value = 2)

## Error: Exceedance of failed test units where values in ‘a‘ should have
## been > ‘2%,
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## The ‘col_vals_gt()" validation failed beyond the absolute threshold
## level (1).
## * failure level (4) >= failure threshold (1)

Here’s the equivalent set of statements:

small_table %>%
col_vals_gt(
columns = a, value = 2,
actions = stop_on_fail(stop_at = 1)

N aN

## Error: Exceedance of failed test units where values in ‘a‘ should have
## been > ‘2%,

## The ‘col_vals_gt()" validation failed beyond the absolute threshold
## level (1).

## * failure level (4) >= failure threshold (1)

This is because the stop_on_fail() call is auto-injected in the default case (when operating on
data) for your convenience. Behind the scenes a ’secret agent’ uses ’covert actions’: all so you can
type less.

Function ID

1-5

See Also

Other Planning and Prep: create_agent(), create_informant(), db_tb1(),draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), tbhl_store(), validate_rmd()

activate_steps Activate one or more of an agent’s validation steps

Description

If certain validation steps need to be activated after the creation of the validation plan for an agent,
use the activate_steps() function. This is equivalent to using the active = TRUE for the selected
validation steps (active is an argument in all validation functions). This will replace any function
that may have been defined for the active argument during creation of the targeted validation steps.

Usage

activate_steps(agent, i = NULL)
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Arguments
agent The pointblank agent object
obj:<ptblank_agent>// required
A pointblank agent object that is commonly created through the use of the
create_agent () function.
i A validation step number
scalar<integer> // default: NULL (optional)
The validation step number, which is assigned to each validation step in the order
of definition. If NULL (the default) then step activation won’t occur by index.
Value

A ptblank_agent object.

Function ID

9-5

See Also

For the opposite behavior, use the deactivate_steps() function.

Other Object Ops: deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()

Examples

# Create an agent that has the
# “small_table' object as the
# target table, add a few inactive
# validation steps, and then use
# “interrogate()®
agent_1 <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %%
col_exists(
columns = date,
active = FALSE
) %%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-91{3}",
active = FALSE
) %%
interrogate()

# In the above, the data is
# not actually interrogated
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# because the ‘active' setting
# was ‘FALSE® in all steps; we
# can selectively change this
# with ‘activate_steps()*
agent_2 <-

agent_1 %>%

activate_steps(i = 1) %>%

interrogate()

affix_date Put the current date into a file name

Description

This function helps to affix the current date to a filename. This is useful when writing agent and/or
informant objects to disk as part of a continuous process. The date can be in terms of UTC time
or the local system time. The date can be affixed either to the end of the filename (before the file
extension) or at the beginning with a customizable delimiter.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk.
Furthermore the log4r_step() function has the append_to argument that accepts filenames, and,
it’s reasonable that a series of log files could be differentiated by a date component in the naming
scheme. The modification of the filename string takes effect immediately but not at the time of
writing a file to disk. In most cases, especially when using affix_date() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the

filenames.
Usage
affix_date(
filename,
position = c("end", "start"),
format = "%Y-%m-%d",
delimiter = "_",
utc_time = TRUE
)
Arguments
filename The filename to modify.
position Where to place the formatted date. This could either be at the "end"” of the
filename (the default) or at the "start".
format A base: :strptime() format string for formatting the date. By default, this is

"%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as
YYYY-MM-DD). Refer to the documentation on base: : strptime () for conversion
specifications if planning to use a different format string.
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delimiter The delimiter characters to use for separating the date string from the original
file name.
utc_time An option for whether to use the current UTC time to establish the date (the

default, with TRUE), or, use the system’s local time (FALSE).

Value

A character vector.

Examples

The basics of creating a filename with the current date:
Taking the generic "pb_file" name for a file, we add the current date to it as a suffix.

affix_date(filename = "pb_file")

## [1] "pb_file_2022-04-01"

File extensions won’t get in the way:
affix_date(filename = "pb_file.rds")
## [1] "pb_file_2022-04-01.rds"

The date can be used as a prefix.

affix_date(
filename = "pb_file",
position = "start"

)
## [1] "2022-04-01_pb_file"
The date pattern can be changed and so can the delimiter.

affix_date(
filename = "pb_file.yml",
format = "%Y%m%d",
delimiter = "-"

)

## [1] "pb_file-20220401.yml"

Using a date-based filename in a pointblank workflow:

We can use a file-naming convention involving dates when writing output files immediately after
interrogating. This is just one example (any workflow involving a filename argument is applica-
ble). It’s really advantageous to use date-based filenames when interrogating directly from YAML
in a scheduled process.
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yaml_agent_interrogate(
filename = system.file(
"yaml”, "agent-small_table.yml",
package = "pointblank”
)
) %%
x_write_disk(
filename = affix_date(
filename = "small_table_agent.rds”,
delimiter = "-"
),
keep_tbl = TRUE,
keep_extracts = TRUE
)

In the above, we used the written-to-disk agent (The "agent-small_table.yml"” YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_date() function was used
to ensure that a daily run would produce a file whose name indicates the day of execution.

Function ID

13-3

See Also

The affix_datetime() function provides the same features except it produces a datetime string
by default.

Other Utility and Helper Functions: affix_datetime(), col_schema(), from_github(), has_columns(),
stop_if_not()

affix_datetime Put the current datetime into a file name

Description

This function helps to affix the current datetime to a filename. This is useful when writing agent
and/or informant objects to disk as part of a continuous process. The datetime string can be based on
the current UTC time or the local system time. The datetime can be affixed either to the end of the
filename (before the file extension) or at the beginning with a customizable delimiter. Optionally,
the time zone information can be included. If the datetime is based on the local system time, the
user system time zone is shown with the format <time>(+/-)hhmm. If using UTC time, then the
<time>Z format is adopted.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to
disk. The modification of the filename string takes effect immediately but not at the time of writing
a file to disk. In most cases, especially when using affix_datetime() with the aforementioned
file-writing functions, the file timestamps should approximate the time components affixed to the
filenames.
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Usage

affix_datetime(
filename,
position = c(

affix_datetime

"end", “Start”),

format = "%Y-%m-%d_%H-%M-%S",

n

delimiter =

n

-

utc_time = TRUE,
add_tz = FALSE

Arguments

filename

position

format

delimiter

utc_time

add_tz

Value

A character vector.

Examples

The filename to modify.

Where to place the formatted datetime. This could either be at the "end"” of the
filename (the default) or at the "start".

A base::strptime() format string for formatting the datetime. By default,
this is "%Y-%m-%dT%H:%M:%S" which expresses the date according to the ISO
8601 standard. For example, if the current datetime is 2020-12-04 13:11:23,
the formatted string would become "2020-12-04T13:11:23". Refer to the doc-
umentation on base: :strptime() for conversion specifications if planning to
use a different format string.

The delimiter characters to use for separating the datetime string from the orig-
inal file name.

An option for whether to use the current UTC time to establish the datetime (the
default, with TRUE), or, use the system’s local time (FALSE).

Should the time zone (as an offset from UTC) be provided? If TRUE then
the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or
<time>(+/-)hhmm. By default, this is FALSE.

The basics of creating a filename with the current date and time:

Taking the generic "pb_file" name for a file, we add the current datetime to it as a suffix.

affix_datetime(filename = "pb_file")

## [1] "pb_file_2022-04-01_00-32-53"

File extensions won’t get in the way:

affix_datetime(filename = "pb_file.rds")

## [1] "pb_file_2022-04-01_00-32-53.rds"

The datetime can be used as a prefix.
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affix_datetime(
filename = "pb_file",
position = "start”

)
## [1] "2022-04-01_00-32-53_pb_file”
The datetime pattern can be changed and so can the delimiter.

affix_datetime(
filename = "pb_file.yml",
format = "%Y%m%d_%H%EM%S" ,
delimiter = "-"

)
## [1] "pb_file-20220401_003253.yml"
Time zone information can be included. By default, all datetimes are given in the UTC time zone.

affix_datetime(
filename = "pb_file.yml",
add_tz = TRUE

)

## [1] "pb_file_2022-04-01_00-32-53Z.yml"
We can use the system’s local time zone with utc_time = FALSE.

affix_datetime(
filename = "pb_file.yml",
utc_time = FALSE,
add_tz = TRUE

)

## [1] "pb_file_2022-03-31_20-32-53-0400.yml"

Using a datetime-based filename in a pointblank workflow:

We can use a file-naming convention involving datetimes when writing output files immediately
after interrogating. This is just one example (any workflow involving a filename argument is
applicable). It’s really advantageous to use datetime-based filenames when interrogating directly
from YAML in a scheduled process, especially if multiple validation runs per day are being exe-
cuted on the same target table.

yaml_agent_interrogate(
filename = system.file(
"yaml”, "agent-small_table.yml",
package = "pointblank”
)
) %>%
x_write_disk(
filename = affix_datetime(
filename = "small_table_agent.rds”,
delimiter = "-"
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),
keep_tbl = TRUE,
keep_extracts = TRUE

)

In the above, we used the written-to-disk agent (The "agent-small_table.yml” YAML file) for
an interrogation via yaml_agent_interrogate(). Then, the results were written to disk as an
RDS file. In the filename argument of x_write_disk(), the affix_datetime() function was
used to ensure that frequent runs would produce files whose names indicate the day and time of
execution.

Function ID

13-4

See Also

The affix_date() function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: affix_date(), col_schema(), from_github(), has_columns(),
stop_if_not()

all_passed Did all of the validations fully pass?

Description

Given an agent’s validation plan that had undergone interrogation via interrogate(), did every
single validation step result in zero failing test units? Using the all_passed() function will let us
know whether that’s TRUE or not.

Usage

all_passed(agent, i = NULL)

Arguments
agent The pointblank agent object
obj:<ptblank_agent>// required
A pointblank agent object that is commonly created through the use of the
create_agent () function.
i Validation step numbers

vector<integer> // default: NULL (optional)

A vector of validation step numbers. These values are assigned to each vali-
dation step by pointblank in the order of definition. If NULL (the default), all
validation steps will be used for the evaluation of complete passing.
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The all_passed() function provides a single logical value based on an interrogation performed in
the agent-based workflow. For very large-scale validation (where data quality is a known issue, and
is perhaps something to be tamed over time) this function is likely to be less useful since it is quite

stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alterna-
tive is in using the test (test_x()) variants of the validation functions. Each of those produce a sin-
gle logical value and each and have a threshold option for failure levels. Another option is to uti-
lize post-interrogation objects within the agent’s x-list (obtained by using the get_agent_x_list()
function). This allows for many possibilities in producing a single logical value from an interroga-

tion.

Value

A logical value.

Examples

Create a simple table with a column of numerical values.

tbl <- dplyr::tibble(a

#> # A tibble: 4 x 1

tbl

#> a
#>  <dbl>
#> 1 4
#> 2 5
#> 3 7
#> 4 8

Validate that values in column a are always greater than 4.

agent <-

create_agent(tbl = tbl) %>%
col_vals_gt(columns = a, value
col_vals_lte(columns = a, value
col_vals_increasing(columns
interrogate()

Determine if these column validations have all passed by using all_passed() (they do).
all_passed(agent = agent)

#> [1] TRUE

Function ID

8-4

c(4, 5, 7, 8)
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See Also

Other Post-interrogation: get_agent_x_list(), get_data_extracts(), get_sundered_data(),
write_testthat_file()

col_count_match Does the column count match that of a different table?

Description

The col_count_match() validation function, the expect_col_count_match() expectation func-
tion, and the test_col_count_match() test function all check whether the column count in the
target table matches that of a comparison table. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. As a validation step or as an expectation, there
is a single test unit that hinges on whether the column counts for the two tables are the same (after
any preconditions have been applied).

Usage

col_count_match(
X,
count,
preconditions = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_count_match(object, count, preconditions = NULL, threshold = 1)

test_col_count_match(object, count, preconditions = NULL, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
count The count comparison

scalar<numeric|integer>|obj:<tbl_*>// required

Either a literal value for the number of columns, or, a table to compare against
the target table in terms of column count values. If supplying a comparison table,
it can either be a table object such as a data frame, a tibble, a tb1_dbi object, or a
tbl_spark object. Alternatively, a table-prep formula (~ <tbl reading code>)
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preconditions

actions

step_id

label

brief

active
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or a function ( function() <tbl reading code>) can be used to lazily read
in the comparison table at interrogation time.

Input table modification prior to validation

<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
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object

threshold

Value
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through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1l_spark)

* the following database tables (tb1l_dbi):

— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that this particular validation requires some op-
eration on the target table before the column count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table
and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed. Alternatively, a function could instead be supplied.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

* "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_count_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_count_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:
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agent %>%
col_count_match(

count = ~ file_tb1(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
),
preconditions = ~ . %>% dplyr::filter(a < 10),

actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_count_match()"‘ step.”,
active = FALSE

YAML representation:

steps:
- col_count_match:
count: ~ file_tbl(
file = from_github(

file = "sj_all_revenue_large.rds"”,
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
)
preconditions: ~. %>% dplyr::filter(a < 10)
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_count_match()‘ step.
active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

Create a simple table with three columns and three rows of values:

thl <-
dplyr::tibble(
a=c(5, 7, 6),
b=c(7, 1, 0,
c=c(1, 1, 1)
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tbl

#> # A tibble: 3 x 3
#> a b c
#>  <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1

Create a second table which is quite different but has the same number of columns as tbl.

thl_2 <-
dplyr::tibble(
e = C(”a”, NA, HaH, MC”)’

f =c(2.6, 1.2, 9, NA),
g = c("f", "g", "h", "i")
)

tbl_2

#> # A tibble: 4 x 3

#> e fg

#>  <chr> <dbl> <chr>

#> 1 a 2.6 f

#> 2 <NA> 1.2 g

#> 3 a 0 h

#> 4 c NA i

‘We’ll use these tables with the different function variants.

A: Using an agent with validation functions and then interrogate():

Validate that the count of columns in the target table (tbl) matches that of the comparison table
(tbl_2).

agent <-
create_agent(tbl = tbhl) %>%
col_count_match(count = tbl_2) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter: data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_count_match(count = tbl_2)
#> # A tibble: 3 x 3
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#> a b C
#>  <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 Q 1

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_count_match(tbl, count = tbl_2)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

tbl %>% test_col_count_match(count = 3)
#> [1] TRUE

Function ID

2-32

See Also

Other validation functions: col_exists(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(), col_is_posix(),col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_exists Do one or more columns actually exist?

Description

The col_exists() validation function, the expect_col_exists() expectation function, and the
test_col_exists() test function all check whether one or more columns exist in the target table.
The only requirement is specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expectation
will operate over a single test unit, which is whether the column exists or not.
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Usage

col_exists(
X,
columns = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_col_exists(object, columns, threshold = 1)

test_col_exists(object, columns, threshold = 1)

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step

vector<character> // default: NULL (optional)
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Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

object A data table for expectations or tests
obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tb1l_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer |numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:
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¢ data frames (data. frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

» "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_exists() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_exists() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
col_exists(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_exists()" step.”,
active = FALSE
)

YAML representation:

steps:
- col_exists:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_exists()‘ step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples
For all examples here, we’ll use a simple table with two columns: a and b.
thl <-

dplyr::tibble(
a=c(5 7, 6,5, 8,7,
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b=c(@, 1,0, 00, 3)

)
tbl
#> # A tibble: 6 x 2
#> a b
#>  <dbl> <dbl>
#> 1 5 7
#> 2 7 1
#> 3 6 Q
#> 4 5 Q
#> 5 8 0
#> 6 7 3

‘We’ll use this table with the different function variants.

A: Using an agent with validation functions and then interrogate():
Validate that column a exists in the tb1 table with col_exists().

agent <-
create_agent(tbl = tbl) %>%
col_exists(columns = a) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_exists(columns = a)
#> # A tibble: 6 x 2

#> a b
#>  <dbl> <dbl>
#> 1 5 7
#> 2 7 1
#> 3 6 0
#> 4 5 0
# 5 8 0
#> 6 7 3

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_exists(tbl, columns = a)
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D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_exists(columns = a)
#> [1] TRUE

Function ID

2-29

See Also

Other validation functions: col_count_match(), col_is_character(), col_is_date(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_1lte(),
col_vals_make_set (), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_character Do the columns contain character/string data?

Description

The col_is_character() validation function, the expect_col_is_character() expectation func-
tion, and the test_col_is_character () test function all check whether one or more columns in a
table is of the character type. Like many of the col_is_x*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly
on a data table or with an agent object (technically, a ptblank_agent object) whereas the expecta-
tion and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a character-type column or not.

Usage

col_is_character(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_character(object, columns, threshold = 1)

test_col_is_character(object, columns, threshold = 1)
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Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
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threshold

Value
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involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1l_dbi):

PostgreSQOL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_character() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_is_character() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:
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agent %>%
col_is_character(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),

label = "The ‘col_is_character()" step."”,
active = FALSE
)
YAML representation:
steps:

- col_is_character:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_character()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples
For all examples here, we’ll use a simple table with a numeric column (a) and a character column

(b).

tbl <-
dplyr::tibble(
a=c5,7,6,5 8, 7)),

b = LETTERS[1:6]
)
tbl
#> # A tibble: 6 x 2
#> ab
#>  <dbl> <chr>
#> 1 5A
#> 2 7B
#> 3 6 C
#> 4 5D
#> 5 8 E
#> 6 7 F

‘We’ll use this table with the different function variants.
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A: Using an agent with validation functions and then interrogate():
Validate that column b has the character class.

agent <-
create_agent(tbl = tbl) %>%
col_is_character(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_is_character(columns = b) %>%
dplyr::slice(1:5)
#> # A tibble: 5 x 2
#> ab
#>  <dbl> <chr>
#>
#>
#>
#>
#>

g~ w N =
o Ul O NG
mooO W >

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_character(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_is_character(columns = b)
#> [1] TRUE
Function ID
2-22

See Also

Other validation functions: col_count_match(), col_exists(), col_is_date(),col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(), col_is_posix(),col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
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col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_date Do the columns contain R Date objects?

Description

The col_is_date() validation function, the expect_col_is_date() expectation function, and the
test_col_is_date() test function all check whether one or more columns in a table is of the R
Date type. Like many of the col_is_*()-type functions in pointblank, the only requirement is
a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
a single test unit, which is whether the column is a Date-type column or not.

Usage

col_is_date(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_col_is_date(object, columns, threshold = 1)

test_col_is_date(object, columns, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent thatis commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.
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Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
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threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:
e data frames (data.frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1l_spark)
* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{ toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_date() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_date() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_date(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_date()" step.”,
active = FALSE

YAML representation:
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steps:
- col_is_date:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_date()‘ step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has a date column. The following examples will validate
that that column is of the Date class.

small_table
#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE 1low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column date has the Date class.

agent <-
create_agent(tbl = small_table) %>%
col_is_date(columns = date) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_date(columns = date) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8

#> date_time date ab o de f

#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_date(small_table, columns = date)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

small_table %>% test_col_is_date(columns = date)
#> [1] TRUE

Function ID

2-26

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_factor(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_is_factor Do the columns contain R factor objects?

Description

The col_is_factor() validation function, the expect_col_is_factor() expectation function,
and the test_col_is_factor() test function all check whether one or more columns in a table is
of the factor type. Like many of the col_is_x*()-type functions in pointblank, the only requirement
is a specification of the column names. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
a single test unit, which is whether the column is a factor-type column or not.

Usage

col_is_factor(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_factor(object, columns, threshold = 1)

test_col_is_factor(object, columns, threshold = 1)

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.
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Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
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single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1l_df)
» Spark DataFrames (tbl_spark)
* the following database tables (tb1_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SOQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
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col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{ toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_factor() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_factor() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_factor(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_factor()" step.”,
active = FALSE

)

YAML representation:

steps:
- col_is_factor:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_factor()" step.
active: false
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In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

Let’s modify the f column in the small_table dataset so that the values are factors instead of hav-
ing the character class. The following examples will validate that the f column was successfully
mutated and now consists of factors.

thl <-
small_table %>%

dplyr::mutate(f = factor(f))
tbl
#> # A tibble: 13 x 8
#> date_time date ab c de f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <fct>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():
Validate that the column f in the tb1l object is of the factor class.

agent <-
create_agent(tbl = tbhl) %>%
col_is_factor(columns = f) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.
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tbl %>%
col_is_factor(columns = f) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8

#> date_time date ab C de f

#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <fct>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_factor(tbl, f)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

tbl %>% test_col_is_factor(columns = f)
#> [1] TRUE

Function ID

2-28

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_integer Do the columns contain integer values?




48 col_is_integer

Description

The col_is_integer () validation function, the expect_col_is_integer() expectation function,
and the test_col_is_integer() test function all check whether one or more columns in a table is
of the integer type. Like many of the col_is_*()-type functions in pointblank, the only require-
ment is a specification of the column names. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and
test functions can only be used with a data table. Each validation step or expectation will operate
over a single test unit, which is whether the column is an integer-type column or not.

Usage

col_is_integer(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
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and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:
e data frames (data. frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1l_spark)
* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).
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Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_integer() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_integer() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_integer(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_integer()"® step.”,
active = FALSE

YAML representation:

steps:
- col_is_integer:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_integer()" step.
active: false
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In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples
For all examples here, we’ll use a simple table with a character column (a) and a integer column

(b).

tbl <-
dplyr::tibble(

a = letters[1:6],
b=2:7
)
tbl
#> # A tibble: 6 x 2
#> a b
#>  <chr> <int>
#> 1 a 2
#> 2 b 3
#> 3 ¢ 4
#> 4 d 5
#> 5 e 6
#> 6 f 7

A: Using an agent with validation functions and then interrogate():
Validate that column b has the integer class.

agent <-
create_agent(tbl = tbl) %>%
col_is_integer(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_is_integer(columns = b)
#> # A tibble: 6 x 2

#> a b

#>  <chr> <int>

#> 1 a 2
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#> 2 b 3
#> 3 c 4
#> 4 d 5
#> 5 e 6
#> 6 f 7

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_integer(tbl, columns = b)

D: Using the test function:
With the test_x() form, we should get a single logical value returned to us.

tbl %>% test_col_is_integer(columns = b)
#> [1] TRUE

Function ID

2-24

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_logical Do the columns contain logical values?

Description

The col_is_logical() validation function, the expect_col_is_logical() expectation function,
and the test_col_is_logical() test function all check whether one or more columns in a table
is of the logical (TRUE/FALSE) type. Like many of the col_is_x()-type functions in pointblank,
the only requirement is a specification of the column names. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expectation
will operate over a single test unit, which is whether the column is an logical-type column or not.
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Usage

col_is_logical(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step

vector<character> // default: NULL (optional)
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Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, e))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tb1l_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold

scalar<integer |numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:
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¢ data frames (data. frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_logical() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_logical() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_logical(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_logical()"® step.”,
active = FALSE
)

YAML representation:

steps:
- col_is_logical:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_logical()"® step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples
The small_table dataset in the package has an e column which has logical values. The following

examples will validate that that column is of the logical class.

small_table
#> # A tibble: 13 x 8
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

O NO O~ WN =

o

10
11
12
13

date_time
<dttm>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

11:00:
00:32:
13:32:
17:23:
12:36:
06:15:
18:46:
11:27:
04:30:
04:30:00
20:07:00
02:51:00
11:23:00
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00
00
00
00
00
00
00
00

date
<date>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

a
<int>
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b

<chr>
1-bcd-345
5-egh-163
8-kdg-938
5-jdo-903
3-1dm-038
2-dhe-923
1-knw-093
5-boe-639
5-bce-642
5-bce-642
2-dmx-010
7-dmx-010
3-dka-303

C
<dbl>
3
8
3

3423.
10000.
2343.
3892.
284.
3291.
843.
1036.
838.
838.
834.
108.
2230.

=
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=
>

A: Using an agent with validation functions and then interrogate():

Validate that the column e has the logical class.

agent <-

de
<db1l>

col_is_logical

.F
<chr>
high
low
high
mid
low
mid
high
low
high
high
low
low
high

<lgl>
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE

create_agent(tbl = small_table) %>%
col_is_logical(columns = e) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%

col_is_logical(columns = e) %>%

dplyr::slice(1:5)
#> # A tibble: 5 x 8
#> date_time date ab C de f
#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time
used in testthat tests.

expect_col_is_logical(small_table, columns

e)

. This is primarily
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D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_logical(columns = e)
#> [1] TRUE

Function ID

2-25

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_numeric(), col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(),col_vals_null(),col_vals_regex(),col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_numeric Do the columns contain numeric values?

Description

The col_is_numeric() validation function, the expect_col_is_numeric() expectation function,
and the test_col_is_numeric() test function all check whether one or more columns in a table
is of the numeric type. Like many of the col_is_*()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

col_is_numeric(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)
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Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
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object

threshold

Value
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involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1l_dbi):

PostgreSQOL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_numeric() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_is_numeric() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:
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agent %>%

col_is_numeric(

columns
actions
label =
active

:a,

= action_levels(warn_at = 0.1, stop_at = 0.2),

"The ‘col_is_numeric()" step.”,

FALSE

YAML representation:

steps:

- col_is_numeric:

columns:

c(a)

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using

actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_numeric()"® step.

active:

false

the yaml_agent_string() function.

Examples

The small_table dataset in the package has a d column that is known to be numeric. The following

examples will validate that that column is indeed of the numeric class.

small_table

#> # A tibble:

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
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date_time
<dttm>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

11

00:

13

17:
12:
06:
18:
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04:
04:
20:
02:
:23:

11

13 x 8
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32:
:32:
23:
36:
15:
46:
:27:
30:
30:
Q7:
100

51

00
00
00
00
00
00
00
00
00
00
00

00

date
<date>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20
2016-01-26
2016-01-28
2016-01-30

a
<int>
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b

<chr>
1-bcd-345
5-egh-163
8-kdg-938
5-jdo-903
3-1dm-038
2-dhe-923
1-knw-093
5-boe-639
5-bce-642
5-bce-642
2-dmx-010
7-dmx-010
3-dka-303

C
<dbl>
3
8
3

=
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=
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d
<dbl>
3423.

10000.
2343.
3892.

284.
3291.
843.
1036.
838.
838.
834.
108.
2230.

e
<lgl>
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE

.F
<chr>
high
low
high
mid
low
mid
high
low
high
high
low
low
high
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A: Using an agent with validation functions and then interrogate():
Validate that the column d has the numeric class.

agent <-
create_agent(tbl = small_table) %>%
col_is_numeric(columns = d) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_numeric(columns = d) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8

#> date_time date ab C de f

#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_numeric(small_table, columns = d)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>% test_col_is_numeric(columns = d)
#> [1] TRUE
Function ID
2-23

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_posix(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
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col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_is_posix Do the columns contain POSIXct dates?

Description

The col_is_posix() validation function, the expect_col_is_posix() expectation function, and
the test_col_is_posix() test function all check whether one or more columns in a table is of the
R POSIXct date-time type. Like many of the col_is_x()-type functions in pointblank, the only
requirement is a specification of the column names. The validation function can be used directly on
a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

col_is_posix(
X,
columns,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_is_posix(object, columns, threshold = 1)

test_col_is_posix(object, columns, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.
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actions

step_id

label

brief

active

object

col_is_posix

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
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threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:
e data frames (data.frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1l_spark)
* the following database tables (tbl_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level
(specified as either the fraction of test units failed, or, an absolute value), often using the warn_at ar-
gument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_x()-type functions, using action_levels(warn_at =1) or action_levels(stop_at =
1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{ toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_is_posix() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_is_posix() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_is_posix(
columns = a,
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_is_posix()" step.",
active = FALSE

YAML representation:
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steps:
- col_is_posix:
columns: c(a)
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_is_posix()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

The small_table dataset in the package has a date_time column. The following examples will
validate that that column is of the POSIXct and POSIXt classes.

small_table

#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE 1low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():

Validate that the column date_time is indeed a date-time column.

agent <-
create_agent(tbl = small_table) %>%
col_is_posix(columns = date_time) %>%

interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated

here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_is_posix(columns = date_time) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8

#> date_time date ab o de f

#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_is_posix(small_table, columns = date_time)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

small_table %>% test_col_is_posix(columns = date_time)
#> [1] TRUE

Function ID

2-27

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(),col_is_integer(), col_is_logical(), col_is_numeric(), col_schema_match(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_l1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_schema Generate a table column schema manually or with a reference table

Description

A table column schema object, as can be created by col_schema(), is necessary when using
the col_schema_match() validation function (which checks whether the table object under study
matches a known column schema). The col_schema object can be made by carefully supplying
the column names and their types as a set of named arguments, or, we could provide a table object,
which could be of the data. frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional
option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate
the schema based on R column types (e.g., "numeric”, "character”, etc.), SQL column types
(e.g., "double”, "varchar”, etc.), or Spark SQL column types ("DoubleType”, "StringType”,
etc.). This is great if we want to validate table column schemas both on the server side and when

tabular data is collected and loaded into R.

Usage
col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))
Arguments
Column-by-column schema definition
<multiple expressions>// required (or, use .tbl)
A set of named arguments where the names refer to column names and the values
are one or more column types.
.tbl A data table for defining a schema

obj:<tbl_x>// optional

An option to use a table object to define the schema. If this is provided then
any values provided to ... will be ignored. This can either be a table object,
a table-prep formula.This can be a table object such as a data frame, a tibble,
a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula
(~ <tbl reading code>) or a function (function() <tbl reading code>)
can be used to lazily read in the table at interrogation time.

.db_col_types Use R column types or database column types?
singl-kw:[r|sqll // default: "r"
Determines whether the column types refer to R column types ("r") or SQL
column types ("sql").

Examples
Create a simple table with two columns: one integer and the other character.
tbl <-

dplyr::tibble(
a=1:5,
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b = letters[1:5]

)

tbl

#> # A tibble: 5 x 2

#> a
#>  <int>
#>
#>
#>
#>
#>

gl w N =
g b~ w N =
® O 0O T

b
<chr>
a

col _schema

Create a column schema object that describes the columns and their types (in the expected order).

schema_obj <-
col_schema(
a = "integer”,
b = "character”
)
schema_obj
#> $a
#> [1]1 "integer”
#>
#> $b

#> [1] "character”

#>

#> attr(,"class")
#> [1]1 "r_type”

"col_schema”

Validate that the schema object schema_obj exactly defines the column names and column types of

the tbl table.

agent <-

create_agent(tbl = tbl) %>%

col_schema_match(schema_obj) %>%

interrogate()

Determine if this validation step passed by using all_passed().

all_passed(agent)

## [1] TRUE

We can alternatively create a column schema object from a tb1_df object.
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schema_obj <-
col_schema(
.tbl = dplyr::tibble(
a = integer(90),
b = character(0)
)
)

This should provide the same interrogation results as in the previous example.

create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate() %>%
all_passed()

## [1] TRUE
Function ID

13-1

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), from_github(), has_columns(),
stop_if_not()

col_schema_match Do columns in the table (and their types) match a predefined schema?

Description

The col_schema_match() validation function, the expect_col_schema_match() expectation func-
tion, and the test_col_schema_match() test function all work in conjunction with a col_schema

object (generated through the col_schema() function) to determine whether the expected schema

matches that of the target table. The validation function can be used directly on a data table or with

an agent object (technically, a ptblank_agent object) whereas the expectation and test functions

can only be used with a data table.

The validation step or expectation operates over a single test unit, which is whether the schema
matches that of the table (within the constraints enforced by the complete, in_order, and is_exact
options). If the target table is a tb1_dbi or a tbl_spark object, we can choose to validate the col-
umn schema that is based on R column types (e.g., "numeric”, "character”, etc.), SQL column
types (e.g., "double”, "varchar”, etc.), or Spark SQL types (e.g,. "DoubleType”, "StringType”,

etc.). That option is defined in the col_schema() function (it is the .db_col_types argument).

There are options to make schema checking less stringent (by default, this validation operates with
highest level of strictness). With the complete option set to FALSE, we can supply a col_schema
object with a partial inclusion of columns. Using in_order set to FALSE means that there is no
requirement for the columns defined in the schema object to be in the same order as in the target
table. Finally, the is_exact option set to FALSE means that all column classes/types don’t have to
be provided for a particular column. It can even be NULL, skipping the check of the column type.
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Usage

col_schema_match(
X,
schema,
complete = TRUE,
in_order = TRUE,

)

is_exact = TRUE,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

expect_col_schema_match(

)

object,
schema,
complete = TRUE,
in_order = TRUE,
is_exact = TRUE,

threshold = 1

test_col_schema_match(

object,

schema,

complete = TRUE,
in_order = TRUE,
is_exact = TRUE,
threshold = 1

col _schema_ match

A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

obj:<col_schema> // required

A table schema of type col_schema which can be generated using the col_schema()

)
Arguments
X
schema The table schema
function.
complete

Requirement for columns specified to exist
scalar<logical> // default: TRUE

A requirement to account for all table columns in the provided schema. By
default, this is TRUE and so that all column names in the target table must be
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in_order

is_exact

actions

step_id

label

brief
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present in the schema object. This restriction can be relaxed by using FALSE,
where we can provide a subset of table columns in the schema.

Requirement for columns in a specific order

scalar<logical> // default: TRUE

A stringent requirement for enforcing the order of columns in the provided
schema. By default, this is TRUE and the order of columns in both the schema and
the target table must match. By setting to FALSE, this strict order requirement is
removed.

Requirement for column types to be exactly specified

scalar<logical>// default: TRUE

Determines whether the check for column types should be exact or even per-
formed at all. For example, columns in R data frames may have multiple classes
(e.g., adate-time column can have both the "POSIXct"” and the "POSIXt" classes).
If using is_exact == FALSE, the column type in the user-defined schema for a
date-time value can be set as either "POSIXct"” or "POSIXt" and pass validation
(with this column, at least). This can be taken a step further and using NULL
for a column type in the user-defined schema will skip the validation check of a
column type. By default, is_exact is set to TRUE.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
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preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

object A data table for expectations or tests
obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

¢ data frames (data. frame) and tibbles (tb1l_df)
» Spark DataFrames (tbl_spark)
* the following database tables (tb1l_dbi):

— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL : :MySQL())
— Microsoft SQL Server tables (via odbc)
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— BigQuery tables (using bigrquery: :bigquery())
— DuckDB tables (through duckdb: : duckdb())
— SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
level (specified as either the fraction of test units failed, or, an absolute value), often using the
warn_at argument. Using action_levels(warn_at =1) or action_levels(stop_at=1) are
good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)3}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_schema_match() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_schema_match() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_schema_match(
schema = col_schema(
a = "integer",
b = "character”
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),

complete = FALSE,

in_order = FALSE,

is_exact = FALSE,

actions = action_levels(stop_at = 1),
label = "The ‘col_schema_match()" step.”,
active = FALSE

YAML representation:

steps:
- col_schema_match:
schema:
a: integer
b: character
complete: false
in_order: false
is_exact: false
actions:
stop_count: 1.0
label: The ‘col_schema_match()* step.
active: false

In practice, both of these will often be shorter as only the schema argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with two columns: one integer (a) and the other
character (b). The following examples will validate that the table columns abides match a schema
object as created by col_schema().

thl <-
dplyr::tibble(
a=1:5,
b = letters[1:5]
)
tbl
#> # A tibble: 5 x 2
#> ab
#>  <int> <chr>
#> 1 1 a

#> 2 2 b
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#> 3 3
#> 4 4
# 5 5

® O 0

Create a column schema object with the helper function col_schema() that describes the columns
and their types (in the expected order).

schema_obj <-
col_schema(

a = "integer”,
b = "character”
)
schema_obj
#> $a
#> [1] "integer”
#>
#> $b
#> [1] "character”
#>
#> attr(,"class")
#> [1]1 "r_type” "col_schema”

A: Using an agent with validation functions and then interrogate():

Validate that the schema object schema_obj exactly defines the column names and column types.
We’ll determine if this validation has a failing test unit (there is a single test unit governed by
whether there is a match).

agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema = schema_obj) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_schema_match(schema = schema_obj)
#> # A tibble: 5 x 2

#> ab
#>  <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3c
#> 4 4 d
#> 5 5e



80 col vals_between

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_schema_match(tbl, scheam = schema_obj)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_schema_match(schema = schema_obj)
#> [1] TRUE

Function ID

2-30

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(),col_vals_null(),col_vals_regex(),col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_between Do column data lie between two specified values or data in other
columns?

Description

The col_vals_between() validation function, the expect_col_vals_between() expectation func-
tion, and the test_col_vals_between() test function all check whether column values in a table
fall within a range. The range specified with three arguments: left, right, and inclusive. The
left and right values specify the lower and upper bounds. The bounds can be specified as single,
literal values or as column names given in vars (). The inclusive argument, as a vector of two log-
ical values relating to left and right, states whether each bound is inclusive or not. The default is
c(TRUE, TRUE), where both endpoints are inclusive (i.e., [1left, right]). For partially-unbounded
versions of this function, we can use the col_vals_1t(), col_vals_lte(), col_vals_gt(), or
col_vals_gte() validation functions. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).
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Usage

col_vals_between(
X,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_between(

object,

columns,

left,

right,

inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_between(
object,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required
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right
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segments

actions
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A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

Definition of left bound

<value expression>// required

The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

Definition of right bound

<value expression>// required

The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

Inclusiveness of bounds

vector<logical>// default: c(TRUE, TRUE)

A two-element logical value that indicates whether the 1left and right bounds
should be inclusive. By default, both bounds are inclusive.

Allow missing values to pass validation
scalar<logical> // default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

Input table modification prior to validation

<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col =col +10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table

<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
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a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.
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The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
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step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_between() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_between() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_between(
columns = a,
left =1,
right = 2,
inclusive = c(TRUE, FALSE),
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_between()" step.”,
active = FALSE

YAML representation:

steps:

- col_vals_between:
columns: c(a)
left: 1.0
right: 2.0
inclusive:

- true
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- false

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_between()" step.
active: false
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In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing

to disk by using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a column of numeric values in c (there are a few NAs

in that column). The following examples will validate the values in that numeric column.

small_table
#> # A tibble: 13 x 8

#> date_time date ab c d
#> <dttm> <date> <int> <chr> <dbl> <dbl>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423.
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000.
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343.
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892.
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284.
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291.
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843.
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036.
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838.
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838.
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834.
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108.
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230.

A: Using an agent with validation functions and then interrogate():

e
<lgl>
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE

.F
<chr>
high
low
high
mid
low
mid
high
low
high
high
low
low
high

Validate that values in column c are all between 1 and 9. Because there are NA values, we’ll choose

to let those pass validation by setting na_pass = TRUE.

agent <-
create_agent(tbl = small_table) %>%
col_vals_between(
columns = c,
left = 1, right = 9,
na_pass = TRUE
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) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_between(
columns = c,
left = 1, right = 9,
na_pass = TRUE
) %>%
dplyr::pull(c)
#> [1] 3 8 3NA 7 4 3 2 9 9 7 8NA

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_between(
small_table, columns = c,
left =1, right =9,
na_pass = TRUE

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_between(
columns = ¢,
left = 1, right = 9,
na_pass = TRUE

)
#> [1] TRUE

An additional note on the bounds for this function: they are inclusive by default (i.e., values of
exactly 1 and 9 will pass). We can modify the inclusiveness of the upper and lower bounds with
the inclusive option, which is a length-2 logical vector.

Testing with the upper bound being non-inclusive, we get FALSE since two values are 9 and they
now fall outside of the upper (or right) bound.

small_table %>%
test_col_vals_between(
columns = ¢, left =1, right = 9,
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inclusive = c(TRUE, FALSE),
na_pass = TRUE

)
#> [1] FALSE

Function ID
2-7

See Also

The analogue to this function: col_vals_not_between().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_1lte(),
col_vals_make_set (), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_decreasing Are column data decreasing by row?

Description

The col_vals_decreasing() validation function, the expect_col_vals_decreasing() expec-
tation function, and the test_col_vals_decreasing() test function all check whether column
values in a table are decreasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing increasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_decreasing(
X,
columns,
allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
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step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_decreasing(
object,
columns,

allow_stationary = FALSE,
increasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_decreasing(
object,
columns,
allow_stationary
increasing_tol =
na_pass = FALSE,
preconditions = NULL,
threshold = 1

= FALSE,
NULL,

)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().

Specifies the column (or a set of columns) to which this validation should be

applied. See the Column Names section for more information.
allow_stationary

Allowance for stationary pauses in values

scalar<logical>// default: FALSE

An option to allow pauses in decreasing values. For example if the values

for the test units are [85, 82, 82, 8@, 77] then the third unit (82, ap-

pearing a second time) would be marked with fail when allow_stationary

is FALSE. Using allow_stationary = TRUE will result in all the test units in

[85, 82, 82, 80, 77]tobe marked with pass.

increasing_tol Optional tolerance threshold for backtracking
scalar<numeric>(val>=0) // default: NULL (optional)
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na_pass

preconditions

segments

actions

step_id

label
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An optional threshold value that allows for movement of numerical values in
the positive direction. By default this is NULL but using a numerical value with
set the absolute threshold of positive travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

Allow missing values to pass validation
scalar<logical>// default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value
scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,

for the best appearance, it should be kept quite short. See the Labels section for
more information.
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brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

object A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1l_df)
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» Spark DataFrames (tb1l_spark)
* the following database tables (tbl_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
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names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

col}": The current column name

”{ .
* "{.seg_col}": The current segment’s column name
"{ .

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
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to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_decreasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_decreasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_decreasing(
columns = a,
allow_stationary
increasing_tol =
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),

= TRUE,
0.5,

label = "The ‘col_vals_decreasing()" step.”,
active = FALSE
)
YAML representation:
steps:

- col_vals_decreasing:
columns: c(a)
allow_stationary: true
increasing_tol: 0.5
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_decreasing()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.
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Examples

The game_revenue dataset in the package has the column session_start, which contains date-
time values. Let’s create a column of difftime values (in time_left) that describes the time re-
maining in the month relative to the session start.

game_revenue_2 <-
game_revenue %>%
dplyr::mutate(
time_left =
lubridate: : ymd_hms(
"2015-02-01 00:00:00"
) - session_start

game_revenue_2
#> # A tibble: 2,000 x 12

#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 @1:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 @1:42:33 ad

#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 11:55:20 ad

#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad

#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad

#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad

#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad

#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2015-01-01 15:17:18 2015-01-01 15:19:36 ad

#> # 1 1,990 more rows

#> # i 7 more variables: item_name <chr>, item_revenue <dbl>,

#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>,
#> #  time_left <drtn>

Let’s ensure that the "difftime"” values in the new time_left column has values that are decreas-
ing from top to bottom.

A: Using an agent with validation functions and then interrogate():

Validate that all "difftime"” values in the column time_left are decreasing, and, allow for
repeating values (allow_stationary will be set to TRUE).

agent <-
create_agent(tbl = game_revenue_2) %>%
col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE
) %>%
interrogate()
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Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

game_revenue_2 %>%
col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE
) %>%
dplyr::select(time_left) %>%
dplyr::distinct() %>%
dplyr::count()
#> # A tibble: 1 x 1

#> n
#> <int>
#> 1 618

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_decreasing(
game_revenue_2,
columns = time_left,
allow_stationary = TRUE

)

D: Using the test function:
With the test_%() form, we should get a single logical value returned to us.

game_revenue_2 %>%
test_col_vals_decreasing(
columns = time_left,
allow_stationary = TRUE

)
#> [1] TRUE

Function ID
2-14

See Also

The analogous function that moves in the opposite direction: col_vals_increasing().
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Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_equal(), col_vals_expr(), col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_equal Are column data equal to a fixed value or data in another column?

Description

The col_vals_equal () validation function, the expect_col_vals_equal() expectation function,
and the test_col_vals_equal() test function all check whether column values in a table are equal
to a specified value. The value can be specified as a single, literal value or as a column name given
in vars(). The validation function can be used directly on a data table or with an agent object
(technically, a ptblank_agent object) whereas the expectation and test functions can only be used
with a data table. Each validation step or expectation will operate over the number of test units that
is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_equal(
X,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_equal(

object,

columns,

value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1
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test_col_vals_equal(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)
Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required
A value used for this test of equality. This can be a single value or a compatible
column given in vars (). Any column values equal to what is specified here will
pass validation.

na_pass Allow missing values to pass validation

scalar<logical>// default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
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step_id

label

brief

active

object

threshold
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A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_*>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
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scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1l_df)
e Spark DataFrames (tb1l_spark)
* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.



102 col_vals_equal

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
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Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
» "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_equal() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_equal() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_equal(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_equal()" step.”,
active = FALSE

YAML representation:

steps:
- col_vals_equal:
columns: c(a)
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value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_equal()‘ step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

thl <-
dplyr::tibble(
a=c(, 5,5, 5,5, 5),
b=cC, 1,1, 2, 2, 2,
c=c(, 1,1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)1,
e = LETTERS[c(1:6)1],
f = LETTERS[c(1:6)]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1A A A
#> 2 5 1 1B B B
#> 3 5 1 1C C C
#> 4 5 2 2 E D D
#> 5 5 2 2 F E E
#> 6 5 2 2 G F F

A: Using an agent with validation functions and then interrogate():

Validate that values in column a are all equal to the value of 5. We’ll determine if this validation
has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbhl) %>%
col_vals_equal(columns = a, value = 5) %>%
interrogate()
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Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_equal(columns = a, value = 5) %>%
dplyr::pull(a)

#>[1] 555555

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_equal(tbl, columns = a, value = 5)

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

test_col_vals_equal(tbl, columns = a, value = 5)
#> [1] TRUE

Function ID

2-3

See Also

The analogue to this function: col_vals_not_equal().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_expr(), col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_vals_expr Do column data agree with a predicate expression?

Description

The col_vals_expr() validation function, the expect_col_vals_expr() expectation function,
and the test_col_vals_expr() test function all check whether column values in a table agree
with a user-defined predicate expression. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

col_vals_expr(
X,
expr,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
expr Predicate expression

<predicate expression>// required
A predicate expression to use for this validation. This can either be in the form
of a call made with the expr () function or as a one-sided R formula (using a
leading ~).

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
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segments

actions

step_id

label

brief

active
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leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table

<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
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involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1l_dbi):

PostgreSQOL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
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Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
» "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_expr() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_expr() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_expr(
expr = ~a % 1 ==20,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_expr()" step.",
active = FALSE

YAML representation:

steps:

- col_vals_expr:
expr: ~akkl ==
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
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actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The “col_vals_expr()" step.
active: false

In practice, both of these will often be shorter as only the expr argument requires a value. Ar-
guments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(

a=c(1, 2,1,7, 8, 6),
b=c, 0,0,1,1,1),
c =c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),
)

tbl

#> # A tibble: 6 x 3

#> a b C

#>  <dbl> <dbl> <dbl>

#> 1 1 (%) 0.5

#> 2 2 Q 0.3

#> 3 1 Q 0.8

#> 4 7 1 1.4

#> 5 8 1 1.9

#> 6 6 1 1.2

A: Using an agent with validation functions and then interrogate():

Validate that values in column a are integer-like by using the R modulo operator and expecting
0. We’ll determine if this validation has any failing test units (there are 6 test units, one for each
row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_expr(expr = expr(a %% 1 == 0)) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_expr(expr = expr(a %% 1 == 0)) %>%
dplyr::pull(a)

#> [1] 121786

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_expr(tbl, expr = ~ a %% 1 == @)

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

test_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
#> [1] TRUE

Variations:

We can do more complex things by taking advantage of the case_when() and between() func-
tions (available for use in the pointblank package).

tbl %>%
test_col_vals_expr(expr = ~ case_when(
b ==0~ a %% between(@, 5) & c < 1,
b==1~a>5&c>1
))
#> [1] TRUE

If you only want to test a subset of rows, then the case_when() statement doesn’t need to be
exhaustive. Any rows that don’t fall into the cases will be pruned (giving us less test units overall).

tbl %>%

test_col_vals_expr(expr = ~ case_when(
b==1~a>5&c>1
)
#> [1] TRUE

Function ID

2-19
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See Also

These reexported functions (from rlang and dplyr) work nicely within col_vals_expr() and its
variants: rlang: :expr(), dplyr: :between(), and dplyr: :case_when().

Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_gt(),
col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_gt Are column data greater than a fixed value or data in another column?

Description

The col_vals_gt () validation function, the expect_col_vals_gt () expectation function, and the
test_col_vals_gt() test function all check whether column values in a table are greater than a
specified value (the exact comparison used in this function is col_val > value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_gt(
X,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_gt(
object,
columns,

value,
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na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_gt(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required

A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than what is specified here
will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
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a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value
scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
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obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)

that serves as the target table for the expectation function or the test function.
threshold The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1l_df)

* Spark DataFrames (tb1_spark)

* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.
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Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
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function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
° Il{ .

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gt() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gt() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_gt(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_gt()" step.”,
active = FALSE
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YAML representation:

steps:
- col_vals_gt:
columns: c(a)
value: 1.0
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_gt()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

tbl <-
dplyr::tibble(
a=c(, 5,5, 5, 5, 5)),
b=c@, 1,1, 2,2, 2),
c=c(1, 1,1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D
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A: Using an agent with validation functions and then interrogate():

Validate that values in column a are all greater than the value of 4. We’ll determine if this valida-
tion had any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbhl) %>%
col_vals_gt(columns = a, value = 4) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_vals_gt(columns = a, value = 4)
#> # A tibble: 6 x 6

#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_gt(tbl, columns = a, value = 4)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_gt(tbl, columns = a, value = 4)
#> [1] TRUE
Function ID

2-6

See Also

The analogous function with a left-closed bound: col_vals_gte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(),
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col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_gte Are column data greater than or equal to a fixed value or data in an-
other column?

Description

The col_vals_gte() validation function, the expect_col_vals_gte() expectation function, and
the test_col_vals_gte() test function all check whether column values in a table are greater than
or equal to a specified value (the exact comparison used in this function is col_val >= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gte(
X,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_gte(
object,
columns,
value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1
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test_col_vals_gte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required

A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values greater than or equal to what is
specified here will pass validation.

na_pass Allow missing values to pass validation
scalar<logical>// default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
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step_id

label

brief

active

object

threshold
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A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_*>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
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scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

¢ data frames (data. frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1_spark)

* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.
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Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
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Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
» "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_gte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_gte() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_gte(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_gte()" step.”,
active = FALSE

YAML representation:

steps:
- col_vals_gte:
columns: c(a)
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value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_gte()' step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

thl <-
dplyr::tibble(
a=c(, 5 5 5,5, 5),
b=c1, 1,1, 2, 2, 2),
c=c(, 1,1, 2, 3, 4),
d = LETTERS[a],
e = LETTERS[b],
f = LETTERS[c]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():

Validate that values in column a are all greater than or equal to the value of 5. We’ll determine if
this validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_gte(columns = a, value = 5) %>%
interrogate()
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Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>% col_vals_gte(columns = a, value = 5)
#> # A tibble: 6 x 6

#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_gte(tbl, columns = a, value = 5)

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

test_col_vals_gte(tbl, columns = a, value = 5)
#> [1] TRUE

Function ID

2-5

See Also

The analogous function with a left-open bound: col_vals_gt().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(),col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_vals_increasing Are column data increasing by row?

Description

The col_vals_increasing() validation function, the expect_col_vals_increasing() expec-
tation function, and the test_col_vals_increasing() test function all check whether column
values in a table are increasing when moving down a table. There are options for allowing NA
values in the target column, allowing stationary phases (where consecutive values don’t change),
and even on for allowing decreasing movements up to a certain threshold. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_increasing(
X,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_increasing(
object,
columns,

allow_stationary = FALSE,
decreasing_tol = NULL,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

test_col_vals_increasing(
object,
columns,
allow_stationary = FALSE,
decreasing_tol = NULL,
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na_pass = FALSE,
preconditions = NULL,
threshold = 1

)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().

Specifies the column (or a set of columns) to which this validation should be

applied. See the Column Names section for more information.
allow_stationary

Allowance for stationary pauses in values
scalar<logical>// default: FALSE

An option to allow pauses in decreasing values. For example if the values
for the test units are [80, 82, 82, 85, 88] then the third unit (82, ap-
pearing a second time) would be marked with fail when allow_stationary
is FALSE. Using allow_stationary = TRUE will result in all the test units in
[80, 82, 82, 85, 88] tobe marked with pass.

decreasing_tol Optional tolerance threshold for backtracking
scalar<numeric>(val>=0) // default: NULL (optional)
An optional threshold value that allows for movement of numerical values in
the negative direction. By default this is NULL but using a numerical value with
set the absolute threshold of negative travel allowed across numerical test units.
Note that setting a value here also has the effect of setting allow_stationary
to TRUE.

na_pass Allow missing values to pass validation
scalar<logical>// default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
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ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value
scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).
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object A data table for expectations or tests
obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1_df)
e Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars (). This continues to work, but c() offers the same
capability and supersedes vars() in columns.
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Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
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function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
° Il{ .

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_increasing() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_increasing() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_increasing(
columns = a,
allow_stationary
decreasing_tol =
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_increasing()" step.",

TRUE
5

’
’

0.
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active = FALSE

YAML representation:

steps:

- col_vals_increasing:
columns: c(a)
allow_stationary: true
decreasing_tol: 0.5
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_increasing()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples
The game_revenue dataset in the package has the column session_start, which contains date-

time values. Let’s ensure that this column has values that are increasing from top to bottom.

game_revenue
#> # A tibble: 2,000 x 11

#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 ©1:31:03 2015-01-01 01:42:33 ad

#> 5 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 11:55:20 ad

#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad

#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad

#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad

#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad

#> 10 FXWUORGYNJAE271 FXWUORGYNJ~ 2015-01-01 15:17:18 2015-01-01 15:19:36 ad

#> # 1 1,990 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>
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A: Using an agent with validation functions and then interrogate():

Validate that all date-time values in the column session_start are increasing, and, allow for
repeating values (allow_stationary will be set to TRUE). We’ll determine if this validation has
any failing test units (there are 2000 test units).

agent <-
create_agent(tbl = game_revenue) %>%
col_vals_increasing(
columns = session_start,
allow_stationary = TRUE
) %%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

game_revenue %>%
col_vals_increasing(
columns = session_start,
allow_stationary = TRUE
) %>%
dplyr::select(session_start) %>%
dplyr::distinct() %>%
dplyr::count()
#> # A tibble: 1 x 1

#> n
#> <int>
#> 1 618

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_increasing(
game_revenue,
columns = session_start,
allow_stationary = TRUE

)

D: Using the test function:
With the test_x() form, we should get a single logical value returned to us.

game_revenue %>%
test_col_vals_increasing(
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columns = session_start,
allow_stationary = TRUE

)
#> [1] TRUE

Function ID
2-13

See Also

The analogous function that moves in the opposite direction: col_vals_decreasing().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_1t(),col_vals_lte(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

col_vals_in_set Are column data part of a specified set of values?

Description

The col_vals_in_set() validation function, the expect_col_vals_in_set() expectation func-
tion, and the test_col_vals_in_set() test function all check whether column values in a table
are part of a specified set of values. The validation function can be used directly on a data table or
with an agent object (technically, a ptblank_agent object) whereas the expectation and test func-
tions can only be used with a data table. Each validation step or expectation will operate over the
number of test units that is equal to the number of rows in the table (after any preconditions have
been applied).

Usage

col_vals_in_set(
X,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
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expect_col_vals_in_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1

)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tb1_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values
vector<integer|numeric|character> // required

A vector of numeric or string-based elements, where column values found within
this set will be considered as passing.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.
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step_id

label

brief

active

object

threshold
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Manual setting of the step ID value
scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
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single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tbl_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.
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The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
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step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)3}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_in_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_in_set() as a validation step is
expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_in_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_in_set()" step.”,
active = FALSE

YAML representation:

steps:

- col_vals_in_set:
columns: c(a)
set:

w N =
(SR RN ]

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
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actions:

warn_fraction: 0.1
stop_fraction: 0.2

label: The ‘col_vals_in_set()" step.
active: false
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In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are part of a
given set.

small_table

#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE 1low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():

Validate that values in column f are all part of the set of values containing low, mid, and high.
We’ll determine if this validation has any failing test units (there are 13 test units, one for each
Tow).

agent <-
create_agent(tbl = small_table) %>%
col_vals_in_set(

columns = f, set = c("low”, "mid"”, "high")
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_in_set(

columns = f, set = c("low”, "mid", "high")
) %%
dplyr::pull(f) %>%
unique()

# [1] "high” "low” "mid"

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_in_set(
small_table,
columns = f, set = c("low”, "mid”, "high")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_in_set(
columns = f, set = c("low”, "mid"”, "high")
)
#> [1] TRUE

Function ID
2-9

See Also

The analogue to this function: col_vals_not_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_increasing(), col_vals_1t(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_vals_l1t Are column data less than a fixed value or data in another column?

Description

The col_vals_l1t() validation function, the expect_col_vals_lt() expectation function, and
the test_col_vals_1t() test function all check whether column values in a table are less than a
specified value (the exact comparison used in this function is col_val <value). The value can
be specified as a single, literal value or as a column name given in vars(). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_1t(
X,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_1t(
object,
columns,
value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_1t(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
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Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required
A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values less than what is specified here
will pass validation.

na_pass Allow missing values to pass validation
scalar<logical>// default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
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label

brief

active

object

threshold
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index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.



col vals It 149

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
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step}”: The validation step name

col}": The current column name

seg_col}": The current segment’s column name

"
"
"

o "{.

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)3}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_1t() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_1t() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_1t(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_1t()"® step.”,
active = FALSE

YAML representation:

steps:
- col_vals_1t:
columns: c(a)

value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
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stop_fraction: 0.2
label: The ‘col_vals_1t()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

thl <-
dplyr::tibble(
a=c(, 5, 5 5,5, 5),
b=c@, 1,1, 2, 2, 2)),
c=c(1, 1,1, 2, 3, 4,
d = LETTERS[al,
e = LETTERS[b],
f = LETTERS[c]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():

Validate that values in column c are all less than the value of 5. We’ll determine if this validation
has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_lt(columns = c, value = 5) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_lt(columns = c, value = 5) %>%
dplyr::pull(c)

# [11] 111234

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_lt(tbl, columns = c, value = 5)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

test_col_vals_lt(tbl, columns = c, value = 5)
#> [1] TRUE

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1lte(),
col_vals_make_set (), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_lte Are column data less than or equal to a fixed value or data in another
column?
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Description

The col_vals_1te() validation function, the expect_col_vals_lte() expectation function, and
the test_col_vals_lte() test function all check whether column values in a table are less than
or equal to a specified value (the exact comparison used in this function is col_val <= value).
The value can be specified as a single, literal value or as a column name given in vars(). The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_lte(
X,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_lte(
object,
columns,
value,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_lte(
object,
columns,
value,
na_pass = FALSE,
preconditions = NULL,
threshold = 1

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
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A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required

A value used for this comparison. This can be a single value or a compatible col-
umn given in vars(). Any column values less than or equal to what is specified
here will pass validation.

na_pass Allow missing values to pass validation
scalar<logical> // default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col =col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
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be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

object A data table for expectations or tests
obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
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returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

¢ data frames (data. frame) and tibbles (tb1l_df)

* Spark DataFrames (tb1l_spark)

* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).
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Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_lte() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation func-
tion. Here is an example of how a complex call of col_vals_lte() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_lte(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_lte()® step.”,
active = FALSE

YAML representation:
steps:

- col_vals_lte:
columns: c(a)

value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_lte()‘ step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function
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Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

thl <-
dplyr::tibble(
a=c(, 5, 5 5,5, 5),
b=c@, 1,1, 2, 2, 2)),
c=c(, 1,1, 2,3, 4,
d = LETTERS[al,
e = LETTERS[b],
f = LETTERS[c]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

A: Using an agent with validation functions and then interrogate():
Validate that values in column c are all less than or equal to the value of 4. We’ll determine if this
validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_lte(columns = c, value = 4) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_lte(columns = c, value = 4) %>%
dplyr::pull(c)

#>[1] 111234

C: Using the expectation function:
With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.
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expect_col_vals_lte(tbl, columns = c, value = 4)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

test_col_vals_lte(tbl, columns = c, value = 4)
#> [1] TRUE

Function ID
2-2

See Also

The analogous function with a right-open bound: col_vals_1t().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_make_set Is a set of values entirely accounted for in a column of values?

Description

The col_vals_make_set() validation function, the expect_col_vals_make_set() expectation
function, and the test_col_vals_make_set() test function all check whether set values are all
seen at least once in a table column. A necessary criterion here is that no additional values (outside
those definied in the set) should be seen (this requirement is relaxed in the col_vals_make_subset ()
validation function and in its expectation and test variants). The validation function can be used di-
rectly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expecta-
tion will operate over the number of test units that is equal to the number of elements in the set
plus a test unit reserved for detecting column values outside of the set (any outside value seen will
make this additional test unit fail).

Usage

col_vals_make_set(
X,
columns,
set,
preconditions = NULL,



col vals _make_set

segments = NULL,
actions = NULL,
step_id = NULL,
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label = NULL,
brief = NULL,
active = TRUE
)
expect_col_vals_make_set(
object,
columns,
set,
preconditions = NULL,
threshold =
)
test_col_vals_make_set(
object,
columns,
set,
preconditions = NULL,
threshold = 1
)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.
set Set of values
vector<integer|numeric|character> // required
A vector of elements that is expected to be equal to the set of unique values in
the target column.
preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col =col + 10). See the Preconditions sec-
tion for more information.
segments Expressions for segmenting the target table
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actions

step_id

label

brief

active
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<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
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object

threshold

Value
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active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1l_df)
» Spark DataFrames (tbl_spark)
* the following database tables (tb1l_dbi):

— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: : duckdb())

— SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).
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Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr: :mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
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the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

o "{.step}": The validation step name

e "{.col}": The current column name

* "{.seg_col}": The current segment’s column name
* "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{ toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_set() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_make_set() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_make_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_make_set()" step.”,
active = FALSE

YAML representation:
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steps:

- col_vals_make_set:
columns: c(a)
set:

w N =
(SR CRN N]

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_make_set()‘ step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples
The small_table dataset in the package will be used to validate that column values are part of a

given set.

small_table
#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE 1low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE 1low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():

Validate that values in column f comprise the values of low, mid, and high, and, no other values.
We’ll determine if this validation has any failing test units (there are 4 test units).
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agent <-
create_agent(tbl = small_table) %>%
col_vals_make_set(

columns = f, set = c("low”, "mid", "high")
) %%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_make_set(

columns = f, set = c("low”, "mid", "high")
) %>%
dplyr::pull(f) %>%
unique()

#> [-I:I Ilhighll ”].OW” umidu

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_make_set(
small_table,
columns = f, set = c("low”, "mid”, "high")

)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_make_set(
columns = f, set = c("low”, "mid"”, "high")

)
#> [1] TRUE

Function ID

2-11

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
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col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(), col_vals_1t(),
col_vals_1te(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_make_subset Is a set of values a subset of a column of values?

Description

The col_vals_make_subset() validation function, the expect_col_vals_make_subset() ex-
pectation function, and the test_col_vals_make_subset() test function all check whether all
set values are seen at least once in a table column. The validation function can be used directly
on a data table or with an agent object (technically, a ptblank_agent object) whereas the expecta-
tion and test functions can only be used with a data table. Each validation step or expectation will
operate over the number of test units that is equal to the number of elements in the set.

Usage

col_vals_make_subset(
X,
columns,
set,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_make_subset(

object,

columns,

set,

preconditions = NULL,
threshold = 1
)

test_col_vals_make_subset(
object,
columns,
set,
preconditions = NULL,
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threshold = 1

)
Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tb1_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

set Set of values

vector<integer|numeric|character> // required

A vector of elements that is expected to be a subset of the unique values in the
target column.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
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function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

object A data table for expectations or tests
obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.
threshold The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
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returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:
e data frames (data. frame) and tibbles (tbl_df)

» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

‘When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).
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Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_make_subset() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_make_subset() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%

col_vals_make_subset(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_make_subset()" step.”,
active = FALSE

YAML representation:

steps:

- col_vals_make_subset:
columns: c(a)
set:

w N =
(SR CIN ]

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_make_subset()" step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
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is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are part of a
given set.

small_table

#> # A tibble: 13 x 8

#> date_time date ab c de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA  3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():

Validate that the distinct set of values in column f contains at least the subset defined as low
and high (the column actually has both of those and some mid values). We’ll determine if this
validation has any failing test units (there are 2 test units, one per element in the set).

agent <-
create_agent(tbl = small_table) %>%
col_vals_make_subset(

columns = f, set = c("low”, "high")
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_make_subset(
columns = f, set = c("low”, "high")
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) %>%
dplyr::pull(f) %>%
unique()

#> [-I:I Ilhighn ”].OW” Hmidn

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_make_subset(
small_table,
columns = f, set = c("low”, "high")

)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_make_subset(
columns = f, set = c("low”, "high")
)
#> [1] TRUE

Function ID

2-12

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),
col_vals_lte(), col_vals_make_set(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_not_between Do column data lie outside of two specified values or data in other
columns?
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Description

The col_vals_not_between() validation function, the expect_col_vals_not_between() ex-
pectation function, and the test_col_vals_not_between() test function all check whether col-
umn values in a table do not fall within a range. The range specified with three arguments:
left, right, and inclusive. The left and right values specify the lower and upper bounds.
The bounds can be specified as single, literal values or as column names given in vars(). The
inclusive argument, as a vector of two logical values relating to left and right, states whether
each bound is inclusive or not. The default is c(TRUE, TRUE), where both endpoints are inclu-
sive (i.e., [left, right]). For partially-unbounded versions of this function, we can use the
col_vals_1t(),col_vals_lte(), col_vals_gt(),orcol_vals_gte() validation functions. The
validation function can be used directly on a data table or with an agent object (technically, a
ptblank_agent object) whereas the expectation and test functions can only be used with a data
table. Each validation step or expectation will operate over the number of test units that is equal to
the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_not_between(
X,
columns,
left,
right,
inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_not_between(

object,

columns,

left,

right,

inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_not_between(
object,
columns,
left,
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right,

inclusive = c(TRUE, TRUE),
na_pass = FALSE,
preconditions = NULL,
threshold = 1

)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

left Definition of left bound
<value expression>// required

The lower bound for the range. The validation includes this bound value (if the
first element in inclusive is TRUE) in addition to values greater than left. This
can be a single value or a compatible column given in vars().

right Definition of right bound
<value expression>// required

The upper bound for the range. The validation includes this bound value (if the
second element in inclusive is TRUE) in addition to values lower than right.
This can be a single value or a compatible column given in vars().

inclusive Inclusiveness of bounds
vector<logical> // default: c(TRUE, TRUE)

A two-element logical value that indicates whether the left and right bounds
should be inclusive. By default, both bounds are inclusive.

na_pass Allow missing values to pass validation
scalar<logical>// default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
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actions

step_id

label

brief

active
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An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value
scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
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object

threshold

Value
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active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tb1l_df)
» Spark DataFrames (tbl_spark)
* the following database tables (tb1l_dbi):

— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: : duckdb())

— SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)

OI'C("a", “b”, "C

")). {tidyselect} helpers are also supported, such as contains("date”) and

where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).
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Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a+ 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b=col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_between() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_between() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_between(
columns = a,
left =1,
right = 2,
inclusive = c(TRUE, FALSE),
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na_pass = TRUE,

preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions =
label = "The ‘col_vals_not_between()* step.”,
active = FALSE

YAML representation:

steps:
- col_vals_not_between:

columns: c(a)
left: 1.0
right: 2.0
inclusive:
- true
- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_not_between()" step.
active: false

col _vals not_between

action_levels(warn_at = 0.1, stop_at = 0.2),

In practice, both of these will often be shorter as only the columns, left, and right arguments re-
quire values. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a column of numeric values in c (there are a few NAs

in that column). The following examples will validate the values in that numeric column.

small_table

#> # A tibble: 13 x 8

#> date_time date ab

#> <dttm> <date> <int> <chr>

#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923

C d
<dbl> <dbl>
3 3423.

8 10000.

3 2343.

NA 3892.

7 284.

4 3291.

e
<lgl>
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE

.F
<chr>
high
low
high
mid
low
mid
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#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE 1low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then interrogate():

Validate that values in column c are all between 10 and 20. Because there are NA values, we’ll
choose to let those pass validation by setting na_pass = TRUE. We’ll determine if this validation
has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_not_between(
columns = ¢,
left = 10, right = 20,
na_pass = TRUE
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_not_between(
columns = ¢,
left = 10, right = 20,
na_pass = TRUE
) %>%
dplyr::pull(c)
[1] 3 8 3NA 7 4 3

#> 2 9 9 7 8NA

C: Using the expectation function:

With the expect_x* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_between(
small_table, columns = c,
left = 10, right = 20,
na_pass = TRUE

)
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D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_not_between(
columns = ¢,
left = 10, right = 20,
na_pass = TRUE

)
#> [1] TRUE

An additional note on the bounds for this function: they are inclusive by default. We can modify
the inclusiveness of the upper and lower bounds with the inclusive option, which is a length-2
logical vector.

In changing the lower bound to be 9 and making it non-inclusive, we get TRUE since although two
values are 9 and they fall outside of the lower (or left) bound (and any values 'not between’ count
as passing test units).

small_table %>%
test_col_vals_not_between(
columns = c,
left = 9, right = 20,
inclusive = c(FALSE, TRUE),
na_pass = TRUE
)
#> [1] TRUE

Function ID

2-8

See Also

The analogue to this function: col_vals_between().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(),col_vals_1t(),
col_vals_1lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(),col_vals_null(),col_vals_regex(),col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_vals_not_equal

Are column data not equal to a fixed value or data in another column?

Description

The col_vals_not_equal() validation function, the expect_col_vals_not_equal() expecta-
tion function, and the test_col_vals_not_equal () test function all check whether column values
in a table are not equal to a specified value. The validation function can be used directly on a data
table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions

have been applied).

Usage

col_vals_not_equal(
X!
columns,
value,
na_pass = FALSE,

preconditions = NULL,

segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_not_equal(

object,

columns,

value,

na_pass = FALSE,

preconditions = NULL,

threshold = 1
)

test_col_vals_not_equal(

object,

columns,

value,

na_pass = FALSE,

preconditions = NULL,

threshold = 1
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Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
<value expression>// required
A value used for this test of inequality. This can be a single value or a compatible
column given in vars(). Any column values not equal to what is specified here
will pass validation.

na_pass Allow missing values to pass validation

scalar<logical> // default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
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index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.
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The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
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step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)3}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_equal() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_equal() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_equal(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_equal()" step.”,
active = FALSE

YAML representation:

steps:
- col_vals_not_equal:
columns: c(a)

value: 1.0

na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
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stop_fraction: 0.2
label: The ‘col_vals_not_equal()" step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c¢) and
three character columns (d, e, and f).

thl <-
dplyr::tibble(
a=c(, 5,5, 5,5, 5),
b=-c(, 1,1, 2, 2, 2),
c=c(1, 1,1, 2, 2, 2),
d = LETTERS[c(1:3, 5:7)1,
e = LETTERS[c(1:6)1,
f = LETTERS[c(1:6)]
)
tbl
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1A A A
#> 2 5 1 1B B B
#> 3 5 1 1C C C
#> 4 5 2 2 E D D
#> 5 5 2 2 F E E
#> 6 5 2 2 G F F

A: Using an agent with validation functions and then interrogate():

Validate that values in column a are all not equal to the value of 6. We’ll determine if this
validation has any failing test units (there are 6 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
col_vals_not_equal(columns = a, value = 6) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_not_equal(columns = a, value = 6) %>%
dplyr::pull(a)

#> [11 555555

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_equal(tbl, columns = a, value = 6)

D: Using the test function:
With the test_x() form, we should get a single logical value returned to us.

test_col_vals_not_equal(tbl, columns = a, value = 6)
#> [1] TRUE

Function ID

2-4

See Also

The analogue to this function: col_vals_equal().

Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),
col_vals_1te(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()

col_vals_not_in_set Are data not part of a specified set of values?

Description

The col_vals_not_in_set() validation function, the expect_col_vals_not_in_set() expec-
tation function, and the test_col_vals_not_in_set() test function all check whether column
values in a table are not part of a specified set of values. The validation function can be used
directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the
expectation and test functions can only be used with a data table. Each validation step or expecta-
tion will operate over the number of test units that is equal to the number of rows in the table (after
any preconditions have been applied).
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col_vals_not_in_set(

X,

columns,

set,
preconditions

= NULL,

segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)

expect_col_vals_not_in_set(

object,
columns,

set,
preconditions
threshold = 1

)

= NULL,

test_col_vals_not_in_set(

object,
columns,

set,
preconditions
threshold = 1

Arguments

X

columns

set

preconditions

= NULL,

A pointblank agent or a data table

obj:<ptblank_agent>|obj:<tbl_*>// required

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,

an agent object of class ptblank_agent that is commonly created with create_agent ().

The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

Set of values

vector<integer|numeric|character> // required

A vector of numeric or string-based elements, where column values found within
this set will be considered as failing.

Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
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segments

actions

step_id

label

brief

active

col_vals_not_in_set

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col =col + 10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table

<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value
scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
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threshold

Value
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step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests

obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

 data frames (data.frame) and tibbles (tb1l_df)

e Spark DataFrames (tb1_spark)

* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_in_set() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_in_set() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_in_set(
columns = a,
set = c(1, 2, 3, 4),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
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actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_not_in_set()" step.",
active = FALSE

YAML representation:

steps:

- col_vals_not_in_set:
columns: c(a)
set:

w N =
(SRR ]

- 4.
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_not_in_set()"‘ step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package will be used to validate that column values are not part of
a given set.

A: Using an agent with validation functions and then interrogate():

Validate that values in column f contain none of the values lows, mids, and highs. We’ll deter-
mine if this validation has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_not_in_set(

columns = f, set = c("lows”, "mids"”, "highs")
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_not_in_set(

columns = f, set = c("lows”, "mids”, "highs")
) %%
dplyr::pull(f) %>%
unique()

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_in_set(
small_table,
columns = f, set = c("lows”, "mids"”, "highs")

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

small_table %>%
test_col_vals_not_in_set(
columns = f, set = c("lows”, "mids"”, "highs")
)
#> [1] TRUE

Function ID

2-10

See Also

The analogue to this function: col_vals_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(), col_vals_1t(),
col_vals_1lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_null(), col_vals_null(), col_vals_regex(),col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
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col_vals_not_null Are column data not NULL/NA?

Description

The col_vals_not_null() validation function, the expect_col_vals_not_null() expectation
function, and the test_col_vals_not_null() test function all check whether column values in
a table are not NA values or, in the database context, not NULL values. The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table. Each validation step
or expectation will operate over the number of test units that is equal to the number of rows in the
table (after any preconditions have been applied).

Usage

col_vals_not_null(
X,
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)
expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
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leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table

<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step

vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
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involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1l_dbi):

PostgreSQOL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

step}”: The validation step name

"

e "{.col}": The current column name
"{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_not_null() is represented in YAML (under the
top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_not_null() as a validation step
is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_not_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
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label = "The ‘col_vals_not_null()" step.”,
active = FALSE
)

YAML representation:

steps:
- col_vals_not_null:
columns: c(a)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_not_null()" step.
active: false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, ¢, and d.

tbl <-
dplyr::tibble(
a=c(5, 7, 6, 8),
b=c(7, 1, 9, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)

S Ul

)
tbl
#> # A tibble: 5 x 4
#> a b c d
#>  <dbl> <dbl> <1gl> <dbl>
#> 1 5 7 NA 35
#> 2 7 1 NA 23
#> 3 6 @ NA NA
#> 4 5 0 NA NA
#> 5 8 0 NA NA

A: Using an agent with validation functions and then interrogate():

Validate that all values in column b are not NA (they would be non-NULL in a database context,
which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5
test units, one for each row).
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agent <-
create_agent(tbl = tbhl) %>%
col_vals_not_null(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_not_null(columns = b) %>%
dplyr::pull(b)

#> [1] 71000

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_not_null(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_vals_not_null(columns = b)
#> [1] TRUE

Function ID
2-16

See Also

The analogue to this function: col_vals_null().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),

col_vals_1te(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),

tbl_match()
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col_vals_null Are column data NULL/NA?

Description

The col_vals_null() validation function, the expect_col_vals_null() expectation function,
and the test_col_vals_null() test function all check whether column values in a table are NA
values or, in the database context, NULL values. The validation function can be used directly on a
data table or with an agent object (technically, a ptblank_agent object) whereas the expectation
and test functions can only be used with a data table. Each validation step or expectation will
operate over the number of test units that is equal to the number of rows in the table (after any
preconditions have been applied).

Usage

col_vals_null(
X,
columns,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)

Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
columns The target columns

<tidy-select>// required

A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
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leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

Expressions for segmenting the target table

<segmentation expressions>// default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

Manual setting of the step ID value

scalar<character>// default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step

scalar<character>// default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en"” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?

scalar<logical>// default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
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involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)

» Spark DataFrames (tbl_spark)

* the following database tables (tb1l_dbi):

PostgreSQOL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: : duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).
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Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b =col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.
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Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name
e "{.col}": The current column name
» "{.seg_col}": The current segment’s column name

* "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_null() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_null() as a validation step is expressed in
R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
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)

col_vals_null

label = "The ‘col_vals_null()"‘ step.”,
active = FALSE

YAML representation:

steps:
- col_vals_null:

columns: c(a)

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")

actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘col_vals_null()" step.

active:

false

In practice, both of these will often be shorter as only the columns argument requires a value.
Arguments with default values won’t be written to YAML when using yaml_write() (though it is
acceptable to include them with their default when generating the YAML by other means). It is also
possible to preview the transformation of an agent to YAML without any writing to disk by using
the yaml_agent_string() function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, ¢, and d.

tbl <-
dplyr::tibble(

)

tbl

#>
#>
#>
#>
#>
#>
#>
#>

a=c(5,
b=c(7,

c = c(NA, NA, NA, NA, NA),
d

7,
T,

8),
),

6,
0,

S Ol

= ¢(35, 23, NA, NA, NA)

# A tibble: 5
a b

<dbl> <dbl>

1 5 7
2 7 1
3 6 Q
4 5 Q
5 8 0

X 4

C d
<lgl> <dbl>
NA 35
NA 23
NA NA
NA NA
NA NA

A: Using an agent with validation functions and then interrogate():

Validate that all values in column c are NA (they would be NULL in a database context, which isn’t
the case here). We’ll determine if this validation has any failing test units (there are 5 test units,
one for each row).
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agent <-
create_agent(tbl = tbhl) %>%
col_vals_null(columns = c) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
col_vals_null(columns = c) %>%
dplyr::pull(c)

#> [1] NA NA NA NA NA

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_null(tbl, columns = c)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_vals_null(columns = c)
#> [1] TRUE

Function ID
2-15

See Also

The analogue to this function: col_vals_not_null().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(), col_vals_increasing(), col_vals_1t(),
col_vals_1te(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_regex(),
col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), thl_match()
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col_vals_regex

Do strings in column data match a regex pattern?

Description

The col_vals_regex() validation function, the expect_col_vals_regex() expectation function,
and the test_col_vals_regex() test function all check whether column values in a table corre-
spond to a regex matching expression. The validation function can be used directly on a data table
or with an agent object (technically, a ptblank_agent object) whereas the expectation and test
functions can only be used with a data table. Each validation step or expectation will operate over
the number of test units that is equal to the number of rows in the table (after any preconditions
have been applied).

Usage

col_vals_regex(

)

X,

columns,

regex,

na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE

expect_col_vals_regex(

)

object,

columns,

regex,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

test_col_vals_regex(

object,

columns,

regex,

na_pass = FALSE,
preconditions = NULL,
threshold = 1



col_vals_regex 215

Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

regex Regex pattern
scalar<character> // required
A regular expression pattern to test for a match to the target column. Any regex
matches to values in the target columns will pass validation.

na_pass Allow missing values to pass validation
scalar<logical>// default: FALSE
Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
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label

brief

active

object

threshold
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of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data.frame) and tibbles (tb1_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.
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The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 10@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
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e "{.step}": The validation step name
e "{.col}": The current column name
* "{.seg_col}": The current segment’s column name

* "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)3}")
as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_regex() is represented in YAML (under the top-
level steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of col_vals_regex() as a validation step is expressed
in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_regex(
columns = a,
regex = "[0-9]-[a-z]1{3}-[0-91{3}",
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_regex()* step.”,
active = FALSE

YAML representation:

steps:

- col_vals_regex:
columns: c(a)
regex: '[0-9]1-[a-z]{3}-[0-91{3}'
na_pass: true

preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
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stop_fraction: 0.2
label: The ‘col_vals_regex()"‘ step.
active: false

In practice, both of these will often be shorter as only the columns and regex arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function.

Examples

The small_table dataset in the package has a character-based b column with values that adhere to
a very particular pattern. The following examples will validate that that column abides by a regex
pattern.

small_table

#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA  3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9  838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE 1low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

This is the regex pattern that will be used throughout:

pattern <- "[0-9]-[a-z]{3}-[0-91{3}"

A: Using an agent with validation functions and then interrogate():

Validate that all values in column b match the regex pattern. We’ll determine if this validation
has any failing test units (there are 13 test units, one for each row).

agent <-
create_agent(tbl = small_table) %>%
col_vals_regex(columns = b, regex =
interrogate()

pattern) %>%

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
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B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

small_table %>%
col_vals_regex(columns = b, regex = pattern) %>%
dplyr::slice(1:5)

#> # A tibble: 5 x 8

#> date_time date ab o de f

#>  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_regex(small_table, columns = b, regex = pattern)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

small_table %>% test_col_vals_regex(columns = b, regex = pattern)
#> [1] TRUE

Function ID

2-17

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(),col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(),col_vals_1t(),
col_vals_1te(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), thl_match()
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col_vals_within_spec Do values in column data fit within a specification?

Description

The col_vals_within_spec() validation function, the expect_col_vals_within_spec() ex-
pectation function, and the test_col_vals_within_spec() test function all check whether col-
umn values in a table correspond to a specification (spec) type (details of which are available in the
Specifications section). The validation function can be used directly on a data table or with an agent
object (technically, a ptblank_agent object) whereas the expectation and test functions can only
be used with a data table. Each validation step or expectation will operate over the number of test
units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_within_spec(
X,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,

brief = NULL,

active = TRUE
)
expect_col_vals_within_spec(

object,

columns,

spec,

na_pass = FALSE,
preconditions = NULL,
threshold = 1

)

test_col_vals_within_spec(
object,
columns,
spec,
na_pass = FALSE,
preconditions = NULL,
threshold = 1
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Arguments

X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_x>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().

columns The target columns
<tidy-select>// required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

spec Specification type
scalar<character> // required
A specification string for defining the specification type. Examples are "email”,
"url”, and "postal[USA]". All options are explained in the Specifications
section.

na_pass Allow missing values to pass validation

scalar<logical> // default: FALSE

Should any encountered NA values be considered as passing test units? By de-
fault, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 1@) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
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index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

e data frames (data. frame) and tibbles (tbl_df)
» Spark DataFrames (tb1l_spark)
* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL : :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Specifications

A specification type must be used with the spec argument. This is a character-based keyword that
corresponds to the type of data in the specified columns. The following keywords can be used:

e "isbn": The International Standard Book Number (ISBN) is a unique numerical identifier
for books, pamphletes, educational kits, microforms, and digital/electronic publications. The
specification has been formalized in ISO 2108. This keyword can be used to validate 10- or
13-digit ISBNs.

e "VIN": A vehicle identification number (VIN) is a unique code (which includes a serial num-
ber) used by the automotive industry to identify individual motor vehicles, motorcycles, scoot-
ers, and mopeds as stipulated by ISO 3779 and ISO 4030.

* "postal_code[<country_code>]": A postal code (also known as postcodes, PIN, or ZIP
codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation)
included in a postal address to aid in sorting mail. Because the coding varies by coun-
try, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3)
formats needs to be supplied along with the keywords (e.g., for postal codes in Germany,
"postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be
used for US ZIP codes.

* "credit_card"”: A credit card number can be validated and this check works across a large
variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC
7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key
validation performed here is the usage of the Luhn algorithm.



226

col_vals_within_spec

e "iban[<country_code>]": The International Bank Account Number (IBAN) is a system of
identifying bank accounts across different countries for the purpose of improving cross-border
transactions. IBAN values are validated through conversion to integer values and performing
a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding
varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1
alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany,
"iban[DE]" or "iban[DEU]" can be used).

e "swift": Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are
defined in a standard format as described by ISO 9362. These codes are unique identifiers
for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide
Interbank Financial Telecommunication. These numbers are used when transferring money
between banks, especially important for international wire transfers.

non

e "phone”, "email”, "url”, "ipv4", "ipv6", "mac”: Phone numbers, email addresses, Internet
URLSs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective
keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

‘When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will deter-
mine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).
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Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.col}": The current column name

e "{.seg_col}": The current segment’s column name
"

seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When col_vals_within_spec() is represented in YAML (under
the top-level steps key as a list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of col_vals_within_spec() as a validation
step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_within_spec(
columns = a,
spec = "email”,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(b < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘col_vals_within_spec()" step.”,
active = FALSE

YAML representation:

steps:

- col_vals_within_spec:
columns: c(a)
spec: email
na_pass: true

preconditions: ~. %>% dplyr::filter(b < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1

stop_fraction: 0.2
label: The ‘col_vals_within_spec()" step.
active: false

In practice, both of these will often be shorter as only the columns and spec arguments require val-
ues. Arguments with default values won’t be written to YAML when using yaml_write() (though
it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by
using the yaml_agent_string() function
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Examples

The specifications dataset in the package has columns of character data that correspond to each
of the specifications that can be tested. The following examples will validate that the email_addresses
column has 5 correct values (this is true if we get a subset of the data: the first five rows).

spec_slice <- specifications[1:5, ]

spec_slice

#> # A tibble: 5 x 12

#> isbn_numbers vin_numbers zip_codes credit_card_numbers iban_austria
#>  <chr> <chr> <chr> <chr> <chr>

#>1 978 1 85715 201 2 4UZAANDH85CV12329 99553 340000000000009 AT582774098~
#> 2 978-1-84159-362-3 JM1BL1S59A1134659 36264 378734493671000 AT220332087~
#> 3 978 1 84159 329 6 1GCEK14R3WZ274764 71660 6703444444444449 AT328650112~
#> 4 978 1 85715 202 9 2B7JB21Y0XK524370 85225 6703000000000000003 AT193357281~
#>5 978 1 85715 198 5 4UZAANDH85CV12329 90309 4035501000000008  AT535755326~
#> # i 7 more variables: swift_numbers <chr>, phone_numbers <chr>,

#> # email_addresses <chr>, urls <chr>, ipv4_addresses <chr>,

#> #  ipv6_addresses <chr>, mac_addresses <chr>

A: Using an agent with validation functions and then interrogate():

Validate that all values in the column email_addresses are correct. We’ll determine if this
validation has any failing test units (there are 5 test units, one for each row).

agent <-
create_agent(tbl = spec_slice) %>%
col_vals_within_spec(
columns = email_addresses,

spec = "email”
) %%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

spec_slice %>%
col_vals_within_spec(
columns = email_addresses,
spec = "email”
) %%
dplyr::select(email_addresses)
#> # A tibble: 5 x 1
#> email_addresses
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#>  <chr>

#> 1 test@test.com

#> 2 mail+mail@example.com

#> 3 mail.email@e.test.com

#> 4 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ@letters-in-local.org
#> 5 01234567890@numbers-in-local.net

C: Using the expectation function:

With the expect_x*() form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_col_vals_within_spec(
spec_slice,
columns = email_addresses,
spec = "email”

)

D: Using the test function:

With the test_%() form, we should get a single logical value returned to us.

spec_slice %>%
test_col_vals_within_spec(
columns = email_addresses,
spec = "email”
)
#> [1] TRUE

Function ID

2-18

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(),col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(), col_vals_1t(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex (), conjointly(), row_count_match(), rows_complete(), rows_distinct(),

serially(), specially(), thl_match()
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conjointly Perform multiple rowwise validations for joint validity

Description

The conjointly() validation function, the expect_conjointly() expectation function, and the
test_conjointly() test function all check whether test units at each index (typically each row) all
pass multiple validations. We can use validation functions that validate row units (the col_vals_x()
series), check for column existence (col_exists()), or validate column type (the col_is_x*() se-
ries). Because of the imposed constraint on the allowed validation functions, the ensemble of test
units are either comprised rows of the table (after any common preconditions have been applied)
or are single test units (for those functions that validate columns).

Each of the functions used in a conjointly() validation step (composed using multiple validation
function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass
for the same test units. In practice, an example of a joint validation is testing whether values for
column a are greater than a specific value while adjacent values in column b lie within a specified
range. The validation functions to be part of the conjoint validation are to be supplied as one-sided
R formulas (using a leading ~, and having a . stand in as the data object). The validation function
can be used directly on a data table or with an agent object (technically, a ptblank_agent object)
whereas the expectation and test functions can only be used with a data table.

Usage

conjointly(
X,

.list = list2(...),
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,

label = NULL,
brief = NULL,
active = TRUE

)

expect_conjointly(
object,

Jlist = list2(...),
preconditions = NULL,
threshold = 1

)

test_conjointly(
object,
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Jlist = list2(...),
preconditions = NULL,
threshold = 1

)
Arguments
X A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*>// required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent ().
Validation expressions
<validation expressions>// required (or, use .list)
A collection one-sided formulas that consist of validation functions that validate
row units (the col_vals_x() series), column existence (col_exists()), or col-
umn type (the col_is_x*() series). An example of thisis ~ col_vals_gte(., a, 5.5), ~ col_vals_no
.list Alternative to . . .

<list of multiple expressions>// required (or, use ...)
Allows for the use of a list as an input alternative to . . ..

preconditions Input table modification prior to validation
<table mutation expression>// default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr: :mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
<segmentation expressions>// default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions Thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
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index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

Optional label for the validation step
vector<character>// default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()’s lang argument (which defaults to "en” or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns () can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . %>%
has_columns(c(d, €))).

A data table for expectations or tests
obj:<tbl_x>// required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark)
that serves as the target table for the expectation function or the test function.

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between @ and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.
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Value

For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

¢ data frames (data. frame) and tibbles (tb1l_df)
e Spark DataFrames (tb1l_spark)
* the following database tables (tb1l_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
orc("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date"”) and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of ().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr: :mutate(col_b =col_a+ 1@)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b =col_a+ 10)).
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Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named "a_column”, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_x*()-type functions, using action_levels(warn_at =0.25) or
action_levels(stop_at = @.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:

e "{.step}": The validation step name

e "{.seg_col}": The current segment’s column name

* "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}")
as long as they return a length-1 string.
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Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an
agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be
automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). When conjointly() is represented in YAML (under the top-level
steps key as a list member), the syntax closely follows the signature of the validation function.
Here is an example of how a complex call of conjointly() as a validation step is expressed in R
code and in the corresponding YAML representation.

R statement:

agent %>%
conjointly(

~ col_vals_1t(., columns = a, value
~ col_vals_gt(., columns = c, value
~ col_vals_not_null(., columns = b),
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The ‘conjointly()‘ step.”,
active = FALSE

8),
vars(a)),

)

YAML representation:

steps:

- conjointly:
fns:
- ~col_vals_1t(., columns = a, value = 8)
- ~col_vals_gt(., columns = c, value = vars(a))
- ~col_vals_not_null(., columns = b)
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:

warn_fraction: 0.1
stop_fraction: 0.2
label: The ‘conjointly()‘ step.
active: false

In practice, both of these will often be shorter as only the expressions for validation steps are
necessary. Arguments with default values won’t be written to YAML when using yaml_write()
(though it is acceptable to include them with their default when generating the YAML by other
means). It is also possible to preview the transformation of an agent to YAML without any writing
to disk by using the yaml_agent_string() function.
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Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a
very basic table but it’ll be more useful when explaining things later.

tbl <-
dplyr::tibble(
a =c(5, 2, 6),

b =c(3, 4, 6),
c =1c(9, 8, 7)
)

tbl
#> # A tibble: 3 x 3
#> a b C
#>  <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

A: Using an agent with validation functions and then interrogate():

Validate a number of things on a row-by-row basis using validation functions of the col_valsx
type (all have the same number of test units): (1) values in a are less than 8, (2) values in c are
greater than the adjacent values in a, and (3) there aren’t any NA values in b. We’ll determine if
this validation has any failing test units (there are 3 test units, one for each row).

agent <-

create_agent(tbl = tbl) %>%

conjointly(
~ col_vals_1t(., columns = a, value = 8),
~ col_vals_gt(., columns = ¢, value = vars(a)),
~ col_vals_not_null(., columns = b)
) %>%

interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.

What’s going on? Think of there being three parallel validations, each producing a column of
TRUE or FALSE values (pass or fail) and line them up side-by-side, any rows with any FALSE
values results in a conjoint fail test unit.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should
stop() if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.

tbl %>%
conjointly(
~ col_vals_lt(., columns = a, value = 8),
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~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)

)
#> # A tibble: 3 x 3
#> a b C
#>  <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 6 6 7

C: Using the expectation function:

With the expect_* () form, we would typically perform one validation at a time. This is primarily
used in testthat tests.

expect_conjointly(
tbl,
~ col_vals_lt(., columns = a, value = 8),
~ col_vals_gt(., columns = ¢, value = vars(a)),
~ col_vals_not_null(., columns = b)

)

D: Using the test function:

With the test_x() form, we should get a single logical value returned to us.

tbl %>%
test_conjointly(
~ col_vals_1t(., columns = a, value = 8),
~ col_vals_gt(., columns = ¢, value = vars(a)),
~ col_vals_not_null(., columns = b)

)
#> [1] TRUE

Function ID

2-34

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(),col_is_numeric(),col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal (), col_vals_expr(),
col_vals_gt(),col_vals_gte(),col_vals_in_set(),col_vals_increasing(), col_vals_1t(),
col_vals_lte(), col_vals_make_set(),col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), row_count_match(), rows_complete(), rows_distinct(),
serially(), specially(), tbl_match()
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create_agent Create a pointblank agent object

Description

The create_agent() function creates an agent object, which is used in a data quality reporting
workflow. The overall aim of this workflow is to generate useful reporting information for as-
sessing the level of data quality for the target table. We can supply as many validation functions
as the user wishes to write, thereby increasing the level of validation coverage for that table. The
agent assigned by the create_agent () call takes validation functions (e.g., col_vals_between(),
rows_distinct(), etc.), which translate to discrete validation steps (each one is numbered and will
later provide its own set of results). This process is known as developing a validation plan.

The validation functions, when called on an agent, are merely instructions up to the point the
interrogate() function is called. That kicks off the process of the agent acting on the valida-
tion plan and getting results for each step. Once the interrogation process is complete, we can say
that the agent has intel. Calling the agent itself will result in a reporting table. This reporting of the
interrogation can also be accessed with the get_agent_report() function, where there are more
reporting options.

Usage

create_agent(
tbl = NULL,
tbl_name = NULL,
label = NULL,
actions = NULL,
end_fns = NULL,
embed_report = FALSE,
lang = NULL,
locale = NULL,
read_fn = NULL

)
Arguments

tbl Table or expression for reading in one
obj:<tbl_x>|<tbl reading expression>// required
The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at interrogation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,
which is a right-hand side (RHS) formula expression (e.g., ~ { <tbl reading code>}),
or (2) as a function (e.g., function() { <tbl reading code>}).

tbl_name A table name

scalar<character> // default: NULL (optional)
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label

actions

end_fns

embed_report

lang

locale

create_agent

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

An optional label for the validation plan
scalar<character> // default: NULL (optional)

An optional label for the validation plan. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
agent report).

Default thresholds and actions for different states
obj:<action_levels>// default: NULL (optional)

A option to include a list with threshold levels so that all validation steps can
react accordingly when exceeding the set levels. This is to be created with the
action_levels() helper function. Should an action levels list be used for a
specific validation step, the default set specified here will be overridden.

Functions to execute after interrogation
list // default: NULL (optional)

A list of expressions that should be invoked at the end of an interrogation. Each
expression should be in the form of a one-sided R formula, so overall this con-

struction should be used: end_fns = list(~ <R statements>, ~ <R statements>, ...).

An example of a function included in pointblank that can be sensibly used here
is email_blast(), which sends an email of the validation report (based on a
sending condition).

Embed the validation report into agent object?
scalar<logical>// default: FALSE

An option to embed a gt-based validation report into the ptblank_agent object.
If FALSE then the table object will be not generated and available with the agent
upon returning from the interrogation.

Reporting language

scalar<character> // default: NULL (optional)

The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1").

Locale for value formatting within reports
scalar<character> // default: NULL (optional)

An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES").
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read_fn Deprecated Table reading function
function // default: NULL (optional)

The read_fn argument is deprecated. Instead, supply a table-prep formula or
function to tb1.

Value

A ptblank_agent object.

Supported Input Tables
The types of data tables that are officially supported are:

 data frames (data. frame) and tibbles (tb1l_df)

* Spark DataFrames (tb1l_spark)

* the following database tables (tb1_dbi):
— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

— SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

The Use of an Agent for Validation Is Just One Option of Several

There are a few validation workflows and using an agent is the one that provides the most options.
It is probably the best choice for assessing the state of data quality since it yields detailed reporting,
has options for further exploration of root causes, and allows for granular definition of actions to be
taken based on the severity of validation failures (e.g., emailing, logging, etc.).

Different situations, however, call for different validation workflows. You use validation functions
(the same ones you would with an agent) directly on the data. This acts as a sort of data filter in that
the input table will become output data (without modification), but there may be warnings, errors,
or other side effects that you can define if validation fails. Basically, instead of this

create_agent(tbl = small_table) %>% rows_distinct() %>% interrogate()
you would use this:
small_table %>% rows_distinct()

This results in an error (with the default failure threshold settings), displaying the reason for the
error in the console. Notably, the data is not passed though.

We can use variants of the validation functions, the fest (test_x()) and expectation (expect_x())
versions, directly on the data for different workflows. The first returns to us a logical value. So this
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small_table %>% test_rows_distinct()

returns FALSE instead of an error.

In a unit testing scenario, we can use expectation functions exactly as we would with testthat’s
library of expect_*() functions:

small_table %>% expect_rows_distinct()

This test of small_table would be counted as a failure.

The Agent Report

While printing an agent (a ptblank_agent object) will display its reporting in the Viewer, we can
alternatively use the get_agent_report() to take advantage of other options (e.g., overriding the
language, modifying the arrangement of report rows, etc.), and to return the report as independent
objects. For example, with the display_table = TRUE option (the default), get_agent_report()
will return a ptblank_agent_report object. If display_table is set to FALSE, we’ll get a data
frame back instead.

Exporting the report as standalone HTML file can be accomplished by using the export_report()
function. This function can accept either the ptblank_agent object or the ptblank_agent_report
as input. Each HTML document written to disk in this way is self-contained and easily viewable in
a web browser.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list()
function on the agent. This font of information can be taken as a whole, or, broken down by the
step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts()
function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one
tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the “pass’ and ’fail” portions with the get_sundered_data()
function. A primary requirement is an agent that has had interrogate() called on it. In addition,

the validation steps considered for this data splitting need to be those that operate on values down a

column (e.g., the col_vals_x() functions or conjointly()). With these in-consideration valida-

tion steps, rows with no failing test units across all validation steps comprise the ’pass’ data piece,

and rows with at least one failing test unit across the same series of validations constitute the ’fail’

piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test
units), the all_passed() function could be used on the agent. However, in practice, it’s not often
the case that all data validation steps are free from any failing units.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how a complex call of create_agent()
is expressed in R code and in the corresponding YAML representation.
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R statement:

create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "An example.”,
actions = action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35,

fns = list(notify = ~ email_blast(
X,
to = "joe_public@example.com”,
from = "pb_notif@example.com”,

msg_subject = "Table Validation”,
credentials = blastula::creds_key(
id = "smtp2go”
)
))
),
end_fns = list(
~ beepr: :beep(2),
~ Sys.sleep(1)
),
embed_report = TRUE,
lang = "fr",
locale = "fr_CA"

YAML representation:

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: fr
locale: fr_CA
actions:
warn_fraction: 0.1
stop_fraction: 0.25
notify_fraction: 0.35
fns:
notify: ~email_blast(x, to = "joe_public@example.com”,
from = "pb_notif@example.com”,
msg_subject = "Table Validation”,
credentials = blastula::creds_key(id = "smtp2go"))
end_fns:
- ~beepr: :beep(2)
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- ~Sys.sleep(1)
embed_report: true
steps: []

In practice, this YAML file will be shorter since arguments with default values won’t be written to
YAML when using yaml_write() (though it is acceptable to include them with their default when
generating the YAML by other means). The only requirement for writing the YAML representation
of an agent is having tb1 specified as table-prep formula.

What typically follows this chunk of YAML is a steps part, and that corresponds to the addition
of validation steps via validation functions. Help articles for each validation function have a YAML
section that describes how a given validation function is translated to YAML.

Should you need to preview the transformation of an agent to YAML (without any committing
anything to disk), use the yaml_agent_string() function. If you already have a .yml file that
holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent
with yaml_agent_show_exprs().

Writing an Agent to Disk

An agent object can be written to disk with the x_write_disk() function. This can be useful for
keeping a history of validations and generating views of data quality over time. Agents are stored
in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_agent().
In this way, when an agent is read from disk through x_read_disk(), it can be reused to access the
target table (which may change, hence the need to use an expression for this).

Combining Several Agents in a multiagent Object

Multiple agent objects can be part of a multiagent object, and two functions can be used for this:
create_multiagent() and read_disk_multiagent(). By gathering multiple agents that have
performed interrogations in the past, we can get a multiagent report showing how data quality
evolved over time. This use case is interesting for data quality monitoring and management, and,
the reporting (which can be customized with get_multiagent_report()) is robust against changes
in validation steps for a given target table.

Examples

Creating an agent, adding a validation plan, and interrogating:

Let’s walk through a data quality analysis of an extremely small table. It’s actually called small_table
and we can find it as a dataset in this package.

small_table
#> # A tibble: 13 x 8

#> date_time date ab ¢ de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
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#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7  284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

We ought to think about what’s tolerable in terms of data quality so let’s designate proportional
failure thresholds to the warn, stop, and notify states using action_levels().

al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)

Now create a pointblank agent object and give it the al object (which serves as a default for all
validation steps which can be overridden). The static thresholds provided by al will make the re-
porting a bit more useful. We also provide a target table and we’ll use pointblank: : small_table.

agent <-
create_agent(
tbl = pointblank::small_table,

tbl_name = "small_table”,
label = "‘“create_agent()' example.”,
actions = al

)

Then, as with any agent object, we can add steps to the validation plan by using as many valida-
tion functions as we want. then, we use interrogate() to actually perform the validations and
gather intel.

agent <-
agent %>%
col_exists(columns =
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z1{3}-[0-91{3}"
) %%
rows_distinct() %>%
col_vals_gt(columns = d, value =
col_vals_lte(columns = ¢, value =
col_vals_between(
columns = ¢,
left = vars(a), right =
na_pass = TRUE
) %>%
interrogate()

date, date_time) %>%

100) %%
5) %%

vars(d),
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The agent object can be printed to see the validation report in the Viewer.
agent

If we want to make use of more report display options, we can alternatively use the get_agent_report()
function.

report <-
get_agent_report(
agent = agent,

arrange_by = "severity",
title = "Validation of ‘small_table‘”
)
report

Post-interrogation operations:

We can use the agent object with a variety of functions to get at more of the information collected
during interrogation.

We can see from the validation report that Step 4 (which used the rows_distinct() validation
function) had two test units, corresponding to duplicated rows, that failed. We can see those rows
with get_data_extracts().

agent %>% get_data_extracts(i = 4)
## # A tibble: 2 x 8

##  date_time date ab c de f

#H  <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
## 1 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
## 2 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high

We can get an x-list for the entire validation process (7 steps), or, just for the 4th step with
get_agent_x_list().

x1_step_4 <- agent %>% get_agent_x_list(i = 4)
And then we can peruse the different parts of the list. Let’s get the fraction of test units that failed.
x1_step_4%$f_failed
#> [1] 0.15385
An x-list not specific to any step will have way more information and a slightly different structure.
See help(get_agent_x_list) for more info.

Function ID

1-2

See Also

Other Planning and Prep: action_levels(), create_informant(), db_tb1(),draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()
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create_informant Create a pointblank informant object

Description

The create_informant() function creates an informant object, which is used in an information
management workflow. The overall aim of this workflow is to record, collect, and generate useful
information on data tables. We can supply any information that is useful for describing a particular
data table. The informant object created by the create_informant () function takes information-
focused functions: info_columns(), info_tabular(), info_section(), and info_snippet().

The info_x*() series of functions allows for a progressive build up of information about the target
table. The info_columns() and info_tabular () functions facilitate the entry of info text that con-
cerns the table columns and the table proper; the info_section() function allows for the creation
of arbitrary sections that can have multiple subsections full of additional info text. The system al-
lows for dynamic values culled from the target table by way of info_snippet(), for getting named
text extracts from queries, and the use of {<snippet_name>} in the info text. To make the use of
info_snippet() more convenient for common queries, a set of snip_x() functions are provided
in the package (snip_list(), snip_stats(), snip_lowest(), and snip_highest()) though you
are free to use your own expressions.

Because snippets need to query the target table to return fragments of info text, the incorporate()
function needs to be used to initiate this action. This is also necessary for the informant to up-
date other metadata elements such as row and column counts. Once the incorporation process is
complete, snippets and other metadata will be updated. Calling the informant itself will result in a
reporting table. This reporting can also be accessed with the get_informant_report() function,
where there are more reporting options.

Usage

create_informant(
tbl = NULL,
tbl_name = NULL,
label = NULL,
agent NULL,
lang = NULL,
locale = NULL,
read_fn = NULL

Arguments

tbl Table or expression for reading in one
obj:<tbl_x>|<tbl reading expression>// required
The input table. This can be a data frame, a tibble, a tbl_dbi object, or a
tbl_spark object. Alternatively, an expression can be supplied to serve as in-
structions on how to retrieve the target table at incorporation-time. There are
two ways to specify an association to a target table: (1) as a table-prep formula,



248 create_informant

which is a right-hand side (RHS) formula expression (e.g., ~ { <tbl reading code>}),
or (2) as a function (e.g., function() { <tbl reading code>}).

tb1l_name A table name
scalar<character> // default: NULL (optional)

A optional name to assign to the input table object. If no value is provided, a
name will be generated based on whatever information is available.

label An optional label for the information report
scalar<character> // default: NULL (optional)
An optional label for the information report. If no value is provided, a label will
be generated based on the current system time. Markdown can be used here to
make the label more visually appealing (it will appear in the header area of the
information report).

agent The pointblank agent object
obj:<ptblank_agent>// default: NULL (optional)
A pointblank agent object. The table from this object can be extracted and used
in the new informant instead of supplying a table in tb1l.
lang Reporting language
scalar<character> // default: NULL (optional)

The language to use for the information report (a summary table that provides
all of the available information for the table. By default, NULL will create
English ("en") text. Other options include French ("fr"), German ("de"),
Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese
("zh™), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("n1").

locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)

An optional locale ID to use for formatting values in the information report
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").

read_fn Deprecated Table reading function
function // default: NULL (optional)
The read_fn argument is deprecated. Instead, supply a table-prep formula or

function to tbl.
Value

A ptblank_informant object.

Supported Input Tables

The types of data tables that are officially supported are:

¢ data frames (data. frame) and tibbles (tb1_df)
» Spark DataFrames (tbl_spark)
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* the following database tables (tb1l_dbi):

PostgreSQL tables (using the RPostgres: :Postgres() as driver)
MySQL tables (with RMySQL: :MySQL())

Microsoft SQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())

DuckDB tables (through duckdb: :duckdb())

SQLite (with RSQLite: :SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an informant (with yaml_read_informant()) or perform the ’incorporate’
action using the target table (via yaml_informant_incorporate()). Here is an example of how
a complex call of create_informant() is expressed in R code and in the corresponding YAML
representation.

R statement:

create_informant(
thl = ~ small_table,
tbl_name = "small_table”,

label = "An example.",
lang = "fr",
locale = "fr_CA”

)

YAML representation:

type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
name: small_table
_columns: 8
_rows: 13.0
_type: tbl_df
columns:
date_time:
_type: POSIXct, POSIXt
date:
_type: Date
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_type: integer
b:
_type: character
_type: numeric
d:
_type: numeric
_type: logical
f:
_type: character
The generated YAML includes some top-level keys where type and tbl are mandatory, and, two
metadata sections: table and columns. Keys that begin with an underscore character are those
that are updated whenever incorporate() is called on an informant. The table metadata section
can have multiple subsections with info text. The columns metadata section can similarly have
have multiple subsections, so long as they are children to each of the column keys (in the above
YAML example, date_time and date are column keys and they match the table’s column names).
Additional sections can be added but they must have key names on the top level that don’t duplicate

the default set (i.e., type, table, columns, etc. are treated as reserved keys).

Writing an Informant to Disk

An informant object can be written to disk with the x_write_disk() function. Informants are
stored in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tb1 argument of create_informant ().
In this way, when an informant is read from disk through x_read_disk(), it can be reused to access
the target table (which may changed, hence the need to use an expression for this).

Examples

Let’s walk through how we can generate some useful information for a really small table. It’s

actually called small_table and we can find it as a dataset in this package.

small_table

#> # A tibble: 13 x 8

#> date_time date ab C de f

#> <dttm> <date> <int> <chr> <dbl> <dbl> <1gl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
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#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Create a pointblank informant object with create_informant() and the small_table dataset.

informant <-
create_informant(
tbl = pointblank::small_table,
tbl_name = "small_table”,
label = "‘create_informant()‘ example."”

)

This function creates some information without any extra help by profiling the supplied table object.
It adds the COLUMNS section with stubs for each of the target table’s columns. We can use the
info_columns() or info_columns_from_tb1l() to provide descriptions for each of the columns.
The informant object can be printed to see the information report in the Viewer.

informant

If we want to make use of more report display options, we can alternatively use the get_informant_report()
function.

report <-
get_informant_report(
informant,
title = "Data Dictionary for ‘small_table‘”

)

report

Function ID

1-3

See Also

Other Planning and Prep: action_levels(), create_agent(), db_tbl(), draft_validation(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), thl_store(), validate_rmd()
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create_multiagent

Create a pointblank multiagent object

Description

Multiple agents can be part of a single object called the multiagent. This can be useful when

gathering multiple
with x_write_dis
quality evolved ov

agents that have performed interrogations in the past (perhaps saved to disk
k()). When be part of a multiagent, we can get a report that shows how data
er time. This can be of interest when it’s important to monitor data quality

and even the evolution of the validation plan itself. The reporting table, generated by printing
a ptblank_multiagent object or by using the get_multiagent_report() function, is, by de-

fault, organized by

the interrogation time and it automatically recognizes which validation steps are

equivalent across interrogations.

Usage
create_multiagent(..., lang = NULL, locale = NULL)
Arguments
Pointblank agents
<series of obj:<ptblank_agent>>// required
One or more pointblank agent objects.
lang Reporting language
scalar<character> // default: NULL (optional)
The language to use for any reporting that will be generated from the multia-
gent. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and
Dutch ("nl1").
locale Locale for value formatting within reports
scalar<character> // default: NULL (optional)
An optional locale ID to use for formatting values in the reporting outputs
according the locale’s rules. Examples include "en_US" for English (United
States) and "fr_FR" for French (France); more simply, this can be a language
identifier without a country designation, like "es" for Spanish (Spain, same as
"es_ES").
Value

A ptblank_multiagent object.
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Examples

For the example below, we’ll use two different, yet simple tables.

First, tb1_1:
thl_1 <-
dplyr::tibble(

a=c(, 5 5,5, 5, 5)

b=c@, 1,1, 2, 2, 2)

c=c(1, 1,1, 2, 3, 4

d = LETTERS[a],

e = LETTERS[b],

f = LETTERS[c]

)

tb1_1
#> # A tibble: 6 x 6
#> a b cd e f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1E A A
#> 2 5 1 1E A A
#> 3 5 1 1E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D

And next, tbl_2:

thl_2 <-
dplyr::tibble(

)

a

=c(5,7,6,5,8,7),

b = LETTERS[1:6]

tbl_2

#>
#>
#>
#>
#>
#>
#>
#>
#>

Next, we’ll create two different agents, each interrogating a different table.

First up, is agent_1:

# A tibble:

SOl w N =

a
<dbl>

~N o0 U1 OO N O

b
<chr>

Mmoo W >

6 x 2

253
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agent_1 <-
create_agent(
tbl = tbl_1,

tbl_name = "tbl_1",

label = "Example table 1."
) %>%
col_vals_gt(columns = a, value = 4) %>%
interrogate()

Then, agent_2

agent_2 <-
create_agent(
tbl = tbl_2,

tbl_name = "tbl_2",

label = "Example table 2."
) %%
col_is_character(columns = b) %>%
interrogate()

create_multiagent

Now, we’ll combine the two agents into a multiagent with the create_multiagent() function.
Printing the "ptblank_multiagent” object displays the multiagent report with its default options

(i.e., a’long’ report view).

multiagent <- create_multiagent(agent_1, agent_2)

multiagent

To take advantage of more display options, we could use the get_multiagent_report() function.
The added functionality there allows for a *wide’ view of the data (useful for monitoring validations
of the same table over repeated interrogations), the ability to modify the title of the multiagent

report, and a means to export the report to HTML (via export_report()).

Function ID

10-1

See Also

Other The multiagent: get_multiagent_report(), read_disk_multiagent()



db_tbl 255

db_tbl Get a table from a database

Description

If your target table is in a database, the db_tb1() function is a handy way of accessing it. This
function simplifies the process of getting a tbl_dbi object, which usually involves a combination
of building a connection to a database and using the dplyr::tbl() function with the connection
and the table name (or a reference to a table in a schema). You can use db_tb1() as the basis
for obtaining a database table for the tbl parameter in create_agent() or create_informant().
Another great option is supplying a table-prep formula involving db_tb1() to tbl_store() so that
you have access to database tables though single names via a table store.

The username and password are supplied through environment variable names. If desired, values
for the username and password can be supplied directly by enclosing such values in I().

Usage
db_tb1(

table,

dbtype,

dbname = NULL,
host = NULL,
port = NULL,
user = NULL,

password = NULL,
bg_project = NULL,
bg_dataset = NULL,
bg_billing = bg_project

Arguments

table The name of the table, or, a reference to a table in a schema (two-element vector
with the names of schema and table). Alternatively, this can be supplied as a
data table to copy into an in-memory database connection. This only works if:
(1) the db is chosen as either "sqlite” or "duckdb”, (2) the dbname was is set
to ":memory: ", and (3) the object supplied to table is a data frame or a tibble
object.

dbtype Either an appropriate driver function (e.g., RPostgres: :Postgres()) or a short-
name for the database type. Valid names are: "postgresql”, "postgres”,
or "pgsql” (PostgreSQL, using the RPostgres: :Postgres() driver function);
"mysql” (MySQL, using RMySQL : :MySQL ()); bigquery or bq (BigQuery, using
bigrquery: :bigquery()); "duckdb” (DuckDB, using duckdb: :duckdb());
and "sqlite” (SQLite, using RSQLite: :SQLite()).

dbname The database name.

host, port The database host and optional port number.
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user, password The environment variables used to access the username and password for the
database. Enclose in I() when using literal username or password values.

bg_project, bg_dataset, bg_billing
If accessing a table from a BigQuery data source, there’s the requirement to
provide the table’s associated project (bg_project) and dataset (bq_dataset)
names. By default, the project to be billed will be the same as the one pro-
vided for bg_project but the bq_billing argument can be changed to reflect
a different BigQuery project.

Value

A tbl_dbi object.

Examples

Obtaining in-memory database tables:

You can use an in-memory database table and by supplying it with an in-memory table. This works
with the DuckDB database and the key thing is to use dbname = " :memory" in the db_tb1 () call.

small_table_duckdb <-
db_tb1(

table =

dbtype = "duckdb”,

dbname =

)

small_table_duckdb

" :memory:"

small_table,

## # Database: duckdb_connection

## # Source:

#it date_time
## <dttm>

## 1 2016-01-04
## 2 2016-01-04
## 3 2016-01-05
## 4 2016-01-06
## 5 2016-01-09
## 6 2016-01-11
## 7 2016-01-15
## 8 2016-01-17
## 9 2016-01-20
## 10 2016-01-20
#o# ...

11

00:
13:
17:
12:
06:
18:

1

04:
04:
with more rows

:00:
32:
32:
23:
36:
15:
46:
:27:
30:
30:

00
00
00
00
00
00
00
00
00
00

date
<date>
2016-01-04
2016-01-04
2016-01-05
2016-01-06
2016-01-09
2016-01-11
2016-01-15
2016-01-17
2016-01-20
2016-01-20

table<small_table> [?? x 8]

a
<int>

W w s N OONOOWDN

high
low
high
mid
low
mid
high
low
high

b C de f
<chr> <dbl> <dbl> <lgl> <chr>
1-bc. . . 3 3423. TRUE
5-eg. . . 8 10000. TRUE
8-kd. . . 3 2343. TRUE
5-jd. . . NA 3892. FALSE
3-1d. . . 7 284. TRUE
2-dh. . . 4 3291. TRUE
1-kn. . . 3 843. TRUE
5-bo. . . 2 1036. FALSE
5-bc. . . 9 838. FALSE
5-bc. . . 9 838. FALSE

high

The in-memory option also works using the SQLite database. The only change required is setting

the dbtype to "sqlite":

small_table_sqlite <-
db_tb1(

table =

small_table,
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"sqlite”,
":memory:"

dbtype
dbname =

)

small_table_sqglite

## # Source: table<small_table> [?? x 8]

## # Database: sqlite 3.37.0 [:memory:]

#i# date_time date ab C d e f
## <dbl> <dbl> <int> <chr> <dbl> <dbl> <int> <chr>
## 1 1451905200 16804 2 1-bcd-345 3 3423. 1 high
## 2 1451867520 16804 3 5-egh-163 8 10000. 1 low
## 3 1452000720 16805 6 8-kdg-938 3 2343. 1 high
## 4 1452100980 16806 2 5-jdo-903 NA 3892. @ mid
## 5 1452342960 16809 8 3-1dm-038 7 284. 1 low
## 6 1452492900 16811 4 2-dhe-923 4 3291. 1 mid
## 7 1452883560 16815 7 1-knw-093 3 843. 1 high
## 8 1453030020 16817 4 5-boe-639 2 1036. 0 low
## 9 1453264200 16820 3 5-bce-642 9 838. @ high
## 10 1453264200 16820 3 5-bce-642 9  838. @ high
## # . .. with more rows

It’s also possible to obtain a table from a remote file and shove it into an in-memory database. For
this, we can use the all-powerful file_tbl() + db_tb1l() combo.

all_revenue_large_duckdb <-

db_tb1(
table = file_tbl(
file = from_github(
file = "sj_all_revenue_large.rds",
repo = "rich-iannone/intendo”,
subdir = "data-large”
)
),
dbtype = "duckdb”,
dbname = ":memory:"
)

all_revenue_large_duckdb

## # Source: table<sj_all_revenue_large.rds> [?? x 11]

## # Database: duckdb_connection

## player_id session_id  session_start time

## <chr> <chr> <dttm> <dttm>

## 1 IRZKSAOYUIME796 IRZKSAOYUJM. . . 2015-01-01 00:18:41 2015-01-01 00:18:53
## 2 CIVYRASDZTX0674 CJVYRASDZTX. .. 2015-01-01 01:13:01 2015-01-01 01:13:07
## 3 CJVYRASDZTX0674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:23:37
## 4 CIJVYRASDZTX0674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:24:37
## 5 CJVYRASDZTX0674 CJVYRASDZTX. . . 2015-01-01 01:13:01 2015-01-01 01:31:01
## 6 CJVYRASDZTX0674 CJVYRASDZTX. . . 2015-01-01 ©01:13:01 2015-01-01 01:31:43
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## 7 CIJVYRASDZTX0674 CJVYRASDZTX. .. 2015-01-01 01:13:01 2015-01-01 01:36:01
## 8 ECPANOIXLZHF896 ECPANOIXLZH. . . 2015-01-01 01:31:03 2015-01-01 01:31:27
## 9 ECPANOIXLZHF896 ECPANOIXLZH. .. 2015-01-01 01:31:03 2015-01-01 01:36:57
## 10 ECPANOIXLZHF896 ECPANOIXLZH. 2015-01-01 01:31:03 2015-01-01 ©01:37:45

## # ... with more rows, and 7 more variables: item_type <chr>,
## #  item_name <chr>, item_revenue <dbl>, session_duration <dbl>,
## #  start_day <date>, acquisition <chr>, country <chr>

And that’s really it.

Obtaining remote database tables:

For remote databases, we have to specify quite a few things but it’s a one-step process nonethe-
less. Here’s an example that accesses the rna table (in the RNA Central public database) using
db_tb1(). Here, for the user and password entries we are using the literal username and pass-
word values (publicly available when visiting the RNA Central website) by enclosing the values
inIQ.

rna_db_tbl <-
db_tb1(
table = "rna",
dbtype = "postgres”,
dbname = "pfmegrnargs”,
host = "hh-pgsql-public.ebi.ac.uk”,
port = 5432,

user = I("reader"),
password = I("NWDMCE5xdipIjRrp")
)

rna_db_tbl

## # Source: table<rna> [?? x 9]
## # Database: postgres
## #  [reader@hh-pgsqgl-public.ebi.ac.uk:5432/pfmegrnargs]

#i# id upi timestamp userstamp crcé4 len seqg_short

## <int64> <chr> <dttm> <chr> <chr> <int> <chr>

## 1 25222431 URSQO. . . 2019-12-02 13:26:46 rnacen E65C. . . 521 AGAGTTTG. . .
## 2 25222432 URSQOQ. . . 2019-12-02 13:26:46 rnacen 6B91. . . 520 AGAGTTCG. . .
## 3 25222433 URSQ0Q. . . 2019-12-02 13:26:46 rnacen 03B8. . . 257 TACGTAGG. . .
## 4 25222434 URSQ0Q. . . 2019-12-02 13:26:46 rnacen E925. . . 533 AGGGTTTG. . .
## 525222435 URSQQ. . . 2019-12-02 13:26:46 rnacen C2D@. . . 504 GACGAACG. . .
## 6 25222436 URSQQ. . . 2019-12-02 13:26:46 rnacen 9EF6. . . 253 TACAGAGG. . .
## 7 25222437 URSQOQ. . . 2019-12-02 13:26:46 rnacen 685A. . . 175 GAGGCAGC. . .
## 8 25222438 URSQ0Q. . . 2019-12-02 13:26:46 rnacen  4228. . . 556 AAAACATC. . .
## 9 25222439 URSQ0Q. . . 2019-12-02 13:26:46 rnacen B7CC. .. 515 AGGGTTCG. . .
## 10 25222440 URSQQ. . . 2019-12-02 13:26:46 rnacen 0Q38B. . . 406 ATTGAACG. . .
## # ... with more rows, and 2 more variables: seq_long <chr>, md5 <chr>

You’d normally want to use the names of environment variables (envvars) to more securely ac-
cess the appropriate username and password values when connecting to a DB. Here are all the
necessary inputs:
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example_db_tbl <-

db_tb1(
table = "<table_name>",
dbtype = "<database_type_shortname>",
dbname = "<database_name>",
host = "<connection_url>",
port = "<connection_port>",

user = "<DB_USER_NAME>",
password = "<DB_PASSWORD>"
)

Environment variables can be created by editing the user .Renviron file and the usethis: :edit_r_environ()
function makes this pretty easy to do.

DB table access and prep via the table store:

Using table-prep formulas in a centralized table store can make it easier to work with DB tables
in pointblank. Here’s how to generate a table store with two named entries for table preparations
involving the tb1l_store() and db_tb1() functions.

store <-
thl_store(
small_table_duck ~ db_tbl(
table = pointblank::small_table,
dbtype = "duckdb”,
dbname = ":memory:"
),
small_high_duck ~ {{ small_table_duck }} %>%
dplyr::filter(f == "high")
)

Now it’s easy to obtain either of these tables via tbl_get(). We can reference the table in the
store by its name (given to the left of the ~).

tbl_get(tbl = "small_table_duck”, store = store)

## # Source: table<pointblank::small_table> [?? x 8]
## # Database: duckdb_connection

## date_time date ab C de

## <dttm> <date> <int> <chr> <dbl> <dbl> <lgl>

## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
## 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-. . . 7  284. TRUE
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE

## # ... with more rows, and 1 more variable: f <chr>
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The second table in the table store is a mutated version of the first. It’s just as easily obtainable
via tbl_get():

tbl_get(tbl = "small_high_duck”, store = store)

## # Source:  lazy query [?? x 8]

## # Database: duckdb_connection

## date_time date ab C de

#  <dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE
## 2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE
## 3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE
## 4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
## 5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
## 6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE
#i # with more rows, and 1 more variable: f <chr>

The table-prep formulas in the store object could also be used in functions with a tbl argument
(like create_agent() and create_informant()). This is accomplished most easily with the
tbl_source() function.

agent <-
create_agent(
tbl = ~ tbl_source(
tbl = "small_table_duck”,
store = tbls
)
)

informant <-
create_informant(
tbl = ~ tbl_source(
tbl = "small_high_duck”,
store = tbls

Function ID

1-6

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(),draft_validation(),
file_tb1(), scan_data(), thl_get(), tbl_source(), tbl_store(), validate_rmd()
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deactivate_steps Deactivate one or more of an agent’s validation steps

Description

Should the deactivation of one or more validation steps be necessary after creation of the validation
plan for an agent, the deactivate_steps() function will be helpful for that. This has the same
effect as using the active = FALSE option (active is an argument in all validation functions) for
the selected validation steps. Please note that this directly edits the validation step, wiping out any
function that may have been defined for whether the step should be active or not.

Usage

deactivate_steps(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required

A pointblank agent object that is commonly created through the use of the
create_agent () function.

i A validation step number
scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step in the
order of definition. If NULL (the default) then step deactivation won’t occur by
index.

Value

A ptblank_agent object.

Function ID

9-6

See Also

For the opposite behavior, use the activate_steps() function.

Other Object Ops: activate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(),
x_write_disk()
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Examples

T

Create an agent that has the
‘small_table‘ object as the
target table, add a few
validation steps, and then use
‘interrogate()"

agent_1 <-

T

create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”
) %%
col_exists(columns = date) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-9]1"
) %>%
interrogate()

The second validation step is
now being reconsidered and may
be either phased out or improved
upon; in the interim period it
was decided that the step should
be deactivated for now

agent_2 <-

agent_1 %>%
deactivate_steps(i = 2) %>%
interrogate()

draft_validation

draft_validation

Draft a starter pointblank validation .R/.Rmd file with a data table

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this
workflow, the data table will be scanned to learn about its column data and a set of starter validation
steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at

least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particu-
lar domain. While column inference is used to generate reasonable validation plans, it is difficult to
infer the acceptable values without domain expertise. However, using draft_validation() could
get you started on floor 10 of tackling data quality issues and is in any case better than starting with
an empty code editor view.
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Usage

263

draft_validation(

tbl,
tbl_name
filename

NULL,
tbl_name,
path = NULL,

lang = NULL,

output_type = c("R", "Rmd"),

add_comments

overwrite

Arguments

tbl

tbl_name

filename

path

lang

output_type

= TRUE,

FALSE,
quiet = FALSE

A data table

obj:<tbl_x>// required

The input table. This can be a data frame, tibble, a tb1_dbi object, or a tbl_spark
object.

A table name

scalar<character> // default: NULL (optional)

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

File name

scalar<character> // default: tbl_name

An optional name for the .R or .Rmd file. This should be a name without an
extension. By default, this is taken from the tb1_name but if nothing is supplied
for that, the name will contain the text "draft_validation_" followed by the
current date and time.

File path

scalar<character> // default: NULL (optional)

A path can be specified here if there shouldn’t be an attempt to place the gener-
ated file in the working directory.

Commenting language

scalar<character> // default: NULL (optional)

The language to use when creating comments for the automatically- generated
validation steps. By default, NULL will create English ("en") text. Other options
include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Por-
tuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"),
Danish ("da"), Swedish ("sv"), and Dutch ("nl1").

The output file type

singl-kw: [R|Rmd] // default: "R"

An option for choosing what type of output should be generated. By default, this

is an .R script ("R") but this could alternatively be an R Markdown document
(”Rmd ll).
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add_comments

overwrite

quiet

Value

Add comments to the generated validation plan
scalar<logical> // default: TRUE

Should there be comments that explain the features of the validation plan in the
generated document?

Overwrite a previous file of the same name
scalar<logical>// default: FALSE

Should a file of the same name be overwritten?

Inform (or not) upon file writing
scalar<logical>// default: FALSE
Should the function not inform when the file is written?

Invisibly returns TRUE if the file has been written.

Supported Input Tables

The types of data tables that are officially supported are:

¢ data frames (data.frame) and tibbles (tb1l_df)

» Spark DataFrames (tb1l_spark)

* the following database tables (tb1l_dbi):

— PostgreSQL tables (using the RPostgres: :Postgres() as driver)
— MySQL tables (with RMySQL : :MySQL())

Microsoft SOQL Server tables (via odbc)

BigQuery tables (using bigrquery: :bigquery())
DuckDB tables (through duckdb: :duckdb())
SQLite (with RSQLite: :SQLite())

draft_validation

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Examples

Let’s draft a validation plan for the dplyr: : storms dataset.

dplyr::storms
#> # A tibble: 19,537 x 13

#>
#>
#>
#>
#>
#>
#>
#>
#>

name year month day hour

<chr> <dbl> <dbl> <int> <dbl>
1 Amy 1975 6 27 0
2 Amy 1975 6 27 6
3 Amy 1975 6 27 12
4 Amy 1975 6 27 18
5 Amy 1975 6 28 0
6 Amy 1975 6 28 6
7 Amy 1975 6 28 12

lat long status
<dbl> <dbl> <fct>

27.5 =79  tropical
28.5 -79  tropical
29.5 -79 tropical
30.5 -79 tropical
31.5 -78.8 tropical
32.4 -78.7 tropical
33.3 -78 tropical

category wind pressure
<dbl> <int>

NA
NA
NA
NA
NA
NA
NA

25
25
25
25
25
25
25

<int>
1013
1013
1013
1013
1012
1012
1011
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#>
#>
#>
#>
#>
#>

8 Amy 1975 6
9 Amy 1975 6
10 Amy 1975 6
# 1 19,527 more rows

# 1 2 more variables: tropicalstorm_force_diameter <int>,

28
29
29

18 34

-77 tropical d~

@ 34.4 -75.8 tropical s~

6 34

#  hurricane_force_diameter <int>

-74.8 tropical s~

NA
NA
NA

30
35
40

265

1006
1004
1002

The draft_validation() function creates an .R file by default. Using just the defaults with
dplyr::storms will yield the "dplyr__storms.R" file in the working directory. Here are the
contents of the file:

1i

brary(pointblank)

agent <-

create_agent(

tbl = ~ dplyr::storms,

actions = action_levels(

warn_at = 0.05,
stop_at = 0.10
),

tbl_name = "dplyr::storms”,

label = "Validation plan generated by ‘draft_validation()‘."

) %%

# Expect that column ‘name‘ is of type: character

col_is_character(
columns = name

) %%

# Expect that column

col_is_numeric(
columns = year

) %>%

# Expect that values

col_vals_between(
columns = year,

left = 1975,
right = 2020
Y %%

# Expect that column

col_is_numeric(
columns = month

) %>%

# Expect that values

col_vals_between(
columns = month,
left =1,
right = 12

) %>%

# Expect that column

col_is_integer(

‘year® is of type: numeric

in ‘year" should be between ‘1975 and ‘2020°

*month* is of type: numeric

in

*‘month" should be between 1% and “12°

‘day® is of type: integer
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columns = day

) %%

# Expect that values

col_vals_between(
columns = day,
left =1,
right = 31

) %>%

# Expect that column

col_is_numeric(
columns = hour

) %%

# Expect that values

col_vals_between(
columns = hour,
left = 0,
right = 23

) %%

# Expect that column

col_is_numeric(
columns = lat

) %%

# Expect that values

col_vals_between(
columns = lat,

left = -90,
right = 90
) %>%

# Expect that column

col_is_numeric(
columns = long

) %%

# Expect that values

col_vals_between(

columns = long,
left = -180,
right = 180

) %%

# Expect that column

col_is_character(
columns = status

) %%

# Expect that column

col_is_factor(
columns = category

) %>%

# Expect that column

col_is_integer(

draft_validation

in ‘day‘ should be between 1% and ‘31°

“hour® is of type: numeric

in “hour" should be between ‘@' and ‘23°

*lat® is of type: numeric

in “lat® should be between *-90‘ and ‘90"

*long® is of type: numeric

in ‘“long" should be between *-180‘ and ‘180"

‘status' is of type: character

‘category® is of type: factor

‘wind® is of type: integer
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columns = wind
) %%
# Expect that values in ‘wind‘ should be between ‘10 and ‘160°
col_vals_between(

columns = wind,

left = 10,
right = 160
) %>%

# Expect that column ‘pressure’ is of type: integer
col_is_integer(
columns = pressure
) %%
# Expect that values in ‘pressure‘ should be between ‘882" and “1022*
col_vals_between(
columns = pressure,

left = 882,
right = 1022
) %>%

# Expect that column ‘tropicalstorm_force_diameter® is of type: integer
col_is_integer(

columns = tropicalstorm_force_diameter
) %%
# Expect that values in ‘tropicalstorm_force_diameter® should be between
# 0" and ‘870"
col_vals_between(

columns = tropicalstorm_force_diameter,

left = 0,

right = 879,

na_pass = TRUE
) %>%

# Expect that column ‘hurricane_force_diameter® is of type: integer
col_is_integer(

columns = hurricane_force_diameter
) %%
# Expect that values in ‘hurricane_force_diameter* should be between
# 0% and ‘300
col_vals_between(

columns = hurricane_force_diameter,

left = 0,

right = 300,

na_pass = TRUE
) %>%

# Expect entirely distinct rows across all columns
rows_distinct() %>%
# Expect that column schemas match
col_schema_match(
schema = col_schema(
name = "character”,
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year = "numeric”,
month = "numeric”,
day = "integer",
hour = "numeric”,
lat = "numeric”,
long = "numeric”,
status = "character”,
category = c("ordered”, "factor"),
wind = "integer",
pressure = "integer",
tropicalstorm_force_diameter = "integer”,
hurricane_force_diameter = "integer”
)
) %>%
interrogate()
agent

email blast

This is runnable as is, and the promise is that the interrogation should produce no failing test units.
After execution, we get the following validation report:

All of the expressions in the resulting file constitute just a rough approximation of what a validation
plan should be for a dataset. Certainly, the value ranges in the emitted col_vals_between() may
not be realistic for the wind column and may require some modification (the provided left and
right values are just the limits of the provided data). However, note that the 1at and long (latitude
and longitude) columns have acceptable ranges (providing the limits of valid lat/lon values). This is
thanks to pointblank’s column inference routines, which is able to understand what certain columns

contain.

For an evolving dataset that will experience changes (either in the form of revised data and addi-
tion/deletion of rows or columns), the emitted validation will serve as a good first step and changes
can more easily be made since there is a foundation to build from.

Function ID

1-11

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant (), db_tb1(),
file_tb1l(), scan_data(), thl_get(), tbl_source(), tbl_store(), validate_rmd()

email_blast

Conditionally send email during interrogation
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Description

The email_blast() function is useful for sending an email message that explains the result of a
pointblank validation. It is powered by the blastula and glue packages. This function should
be invoked as part of the end_fns argument of create_agent(). It’s also possible to invoke
email_blast() as part of the fns argument of the action_levels() function (i.e., to send multi-
ple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with email_blast(), the analogous email_create() function
can be used with a pointblank agent object.

Usage

email_blast(
X,
to,
from,
credentials = NULL,
msg_subject = NULL,
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer(),
send_condition = ~TRUE %in% x$notify

)
Arguments
X A reference to the x-list object prepared internally by the agent. This version
of the x-list is the same as that generated via get_agent_x_list(<agent>)
except this version is internally generated and hence only available in an internal
evaluation context.
to, from The email addresses for the recipients and of the sender.

credentials A credentials list object that is produced by either of the blastula: :creds(),
blastula::creds_anonymous(), blastula: :creds_key(), orblastula::creds_file()
functions. Please refer to the blastula documentation for information on how to
use these functions.

msg_subject The subject line of the email message.

msg_header, msg_body, msg_footer
Content for the header, body, and footer components of the HTML email mes-
sage.

send_condition An expression that should evaluate to a logical vector of length 1. If evaluated
as TRUE then the email will be sent, if FALSE then that won’t happen. The ex-
pression can use x-list variables (e.g., x$notify, x$type, etc.) and all of those
variables can be explored using the get_agent_x_list () function. The default
expression is ~ TRUE %in% x$notify, which results in TRUE if there are any TRUE
values in the x$notify logical vector (i.e., any validation step that results in a
"notify’ state).
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Value

Nothing is returned. The end result is the side-effect of email-sending if certain conditions are met.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can
be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via
yaml_agent_interrogate()). Here is an example of how the use of email_blast() inside the
end_fns argument of create_agent() is expressed in R code and in the corresponding YAML
representation.

R statement:

create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "An example.”,
actions = al,
end_fns = list(
~ email_blast(

X’
to = "joe_public@example.com”,
from = "pb_notif@example.com”,

msg_subject = "Table Validation”,
credentials = blastula::creds_key(
id = "smtp2go”
)
)
)
) %%
col_vals_gt(a, 1) %>%
col_vals_lt(a, 7)

YAML representation:

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
warn_count: 1.0
notify_count: 2.0

end_fns: ~email_blast(x, to = "joe_public@example.com”,
from = "pb_notif@example.com”, msg_subject = "Table Validation”,
credentials = blastula::creds_key(id = "smtp2go"),
)

embed_report: true
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steps:

- col_vals_gt:
columns: c(a)
value: 1.0

- col_vals_l1t:
columns: c(a)
value: 7.0

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to
create an action_levels() list object since this is useful for demonstrating an emailing scenario.
It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units,
respectively, for the two states).

al <-
action_levels(
warn_at = 1,
notify_at = 2
)

Validate that values in column a from small_tbl are always greater than 1 (with the col_vals_gt()
validation function), and, that values in a or are always less than 7.

The email_blast() function call is used in a list given to the end_fns argument of create_agent ().
The email_blast() call itself has a send_condition argument that determines whether or not an
email will be sent. By default this is set to ~ TRUE %in% x$notify. Let’s unpack this a bit. The
variable x is a list (we call it an x-list) and it will be populated with elements pertaining to the agent.
After interrogation, and only if action levels were set for the notify state, x$notify will be present
as a logical vector where the length corresponds to the number of validation steps. Thus, if any of
those steps entered the notify state (here, it would take two or more failing test units, per step, for
that to happen), then the statement as a whole is TRUE and the email of the interrogation report will
be sent. Here is the complete set of statements for the creation of an agent, the addition of validation
steps, and the interrogation of data in small_table:

agent <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”,
actions = al,
end_fns = list(
~ email_blast(

X,
to = "a_person@example.com”,
from = "pb_notif@example.com”,

msg_subject = "Table Validation”,
credentials = blastula::creds_key(id = "smtp2go"”),
send_condition = ~ TRUE %in% x$notify
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)
)
) %>%
col_vals_gt(a, value = 1) %>%
col_vals_lt(a, value = 7) %>%

interrogate()

The reason for the ~ present in the statements:

e ~email_blast(...) and
e ~TRUE %in% x$notify

is because this defers evocation of the emailing functionality (and also defers evaluation of the
send_condition value) until interrogation is complete (with interrogate()).
Function ID

4-1

See Also

Other Emailing: email_create(), stock_msg_body(), stock_msg_footer()

email_create Create an email object from a pointblank agent

Description

The email_create() function produces an email message object that could be sent using the blas-
tula package. By supplying a pointblank agent, a blastula email_message message object will be
created and printing it will make the HTML email message appear in the Viewer.

Usage

email_create(
X7
msg_header = NULL,
msg_body = stock_msg_body(),
msg_footer = stock_msg_footer()

Arguments

X The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent () function.

msg_header, msg_body, msg_footer
Content for the header, body, and footer components of the HTML email mes-
sage.
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Value

A blastula email_message object.

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to
create an action_levels() list object since this is useful for demonstrating an emailing scenario.
It will have absolute values for the warn and notify states (with thresholds of 1 and 2 ’fail’ units,
respectively, for the two states).

al <-
action_levels(
warn_at = 1,
notify_at = 2
)

In a workflow that involves an agent object, we can make use of the end_fns argument and pro-
grammatically email the report with the email_blast () function. However, an alternate workflow
that is demonstrated here is to produce the email object directly. This provides the flexibility to
send the email outside of the pointblank API. The email_create() function lets us do this with
an agent object. We can then view the HTML email just by printing email_object. It should
appear in the Viewer.

email_object <-
create_agent(
tbl = small_table,
tbl_name = "small_table”,
label = "An example.”,
actions = al
) %%
col_vals_gt(a, value
col_vals_lt(a, value
interrogate() %»>%
email_create()

1) %>%
7) %>%

email_object

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()
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export_report

export_report

Export an agent, informant, multiagent, or table scan to HTML

Description

The agent, informant, multiagent, and the table scan object can be easily written as HTML with
export_report(). Furthermore, any report objects from the agent, informant, and multiagent (gen-
erated using get_agent_report(), get_informant_report(), and get_multiagent_report())
can be provided here for HTML export. Each HTML document written to disk is self-contained
and easily viewable in a web browser.

Usage

export_report(x, filename, path = NULL, quiet = FALSE)

Arguments

X

filename

path

quiet

Value

One of several types of objects

<object>// required

An agent object of class ptblank_agent, an informant of class ptblank_informant,
amultiagent of class ptblank_multiagent, atable scan of class ptblank_tbl_scan,
or, customized reporting objects (ptblank_agent_report, ptblank_informant_report,
ptblank_multiagent_report.wide, ptblank_multiagent_report.long).

File name

scalar<character> // required

The filename to create on disk for the HTML export of the object provided. It’s
recommended that the extension ".html" is included.

File path

scalar<character> // default: NULL (optional)

An optional path to which the file should be saved (this is automatically com-
bined with filename).

Inform (or not) upon file writing

scalar<logical>// default: FALSE

Should the function not inform when the file is written?

Invisibly returns TRUE if the file has been written.

Examples

A: Writing an agent report as HTML:

Let’s go through the process of (1) developing an agent with a validation plan (to be used for the
data quality analysis of the small_table dataset), (2) interrogating the agent with the interrogate()
function, and (3) writing the agent and all its intel to a file.

Creating an action_levels object is a common workflow step when creating a pointblank agent.
We designate failure thresholds to the warn, stop, and notify states using action_levels().
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al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = .35
)

Now create a pointblank agent object and give it the al object (which serves as a default for all
validation steps which can be overridden). The data will be referenced in the tb1l argument with
a leading ~.

agent <-
create_agent(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "‘export_report()*",
actions = al

)

As with any agent object, we can add steps to the validation plan by using as many validation
functions as we want. Then, we interrogate().

agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
columns = b,
regex = "[0-9]-[a-z]{3}-[0-91{3}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5) %>%
interrogate()

The agent report can be written to an HTML file with export_report().

export_report(
agent,
filename = "agent-small_table.html”

)

If you’re consistently writing agent reports when periodically checking data, we could make use of
affix_date() or affix_datetime() depending on the granularity you need. Here’s an example
that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.html".

export_report(
agent,
filename = affix_datetime(
"agent-small_table.html”
)
)
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B: Writing an informant report as HTML:

Let’s go through the process of (1) creating an informant object that minimally describes the
small_table dataset, (2) ensuring that data is captured from the target table using the incorporate()
function, and (3) writing the informant report to HTML.

Create a pointblank informant object with create_informant() and the small_table dataset.
Use incorporate() so that info snippets are integrated into the text.

informant <-
create_informant(
tbl = ~ small_table,
tbl_name = "small_table”,
label = "‘export_report()*"

) %%
info_snippet(

snippet_name = "high_a",

fn = snip_highest(column = "a")
) %>%
info_snippet(

snippet_name = "low_a",

fn = snip_lowest(column = "a")
) %>%

info_columns(
columns = a,
info = "From {low_a} to {high_a}.”
) %%
info_columns(
columns = starts_with("date"),
info = "Time-based values."
) %%
info_columns(
columns = date,
info = "The date part of ‘date_time"“."
) %>%
incorporate()

The informant report can be written to an HTML file with export_report(). Let’s do this with
affix_date() so the filename has a datestamp.

export_report(
informant,
filename = affix_date(
"informant-small_table.html”
)
)

C: Writing a table scan as HTML:
We can get a report that describes all of the data in the storms dataset.

tbl_scan <- scan_data(tbl = dplyr::storms)
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The table scan object can be written to an HTML file with export_report().

export_report(
tbl_scan,
filename = "tbl_scan-storms.html”

Function ID
9-3

See Also

Other Object Ops: activate_steps(), deactivate_steps(), remove_steps(), set_tb1(), x_read_disk(),
x_write_disk()

file_tbl Get a table from a local or remote file

Description

If your target table is in a file, stored either locally or remotely, the file_tb1() function can make
it possible to access it in a single function call. Compatible file types for this function are: CSV
(.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory
tbl_df object, which can be used as a target table for create_agent() and create_informant().
Another great option is supplying a table-prep formula involving file_tb1() to tbl_store() so
that you have access to tables based on flat files though single names via a table store.

In the remote data use case, we can specify a URL starting with http://, https://, etc., and
ending with the file containing the data table. If data files are available in a GitHub repository then
we can use the from_github() function to specify the name and location of the table data in a

repository.
Usage
file_tbl(file, type = NULL, ..., keep = FALSE, verify = TRUE)
Arguments
file The complete file path leading to a compatible data table either in the user sys-
tem or at a http://, https://, ftp://, or ftps:// URL. For a file hosted in
a GitHub repository, a call to the from_github() function can be used here.
type The file type. This is normally inferred by file extension and is by default NULL to

indicate that the extension will dictate the type of file reading that is performed
internally. However, if there is no extension (and valid extensions are .csv,
.tsv, .rda, and .rds), we can provide the type as either of csv, tsv, rda, or
rds.
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Options passed to readr’s read_csv () or read_tsv() function. Both functions
have the same arguments and one or the other will be used internally based on
the file extension or an explicit value given to type.

keep In the case of a downloaded file, should it be stored in the working directory

(keep = TRUE) or should it be downloaded to a temporary directory? By default,
this is FALSE.

verify If TRUE (the default) then a verification of the data object having the data. frame

Value

class will be carried out.

A tbl_df object.

Examples

Producing tables from CSY files:

A local CSV file can be obtained as a tbl object by supplying a path to the file and some CSV
reading options (the ones used by readr: :read_csv()) to the file_tbl() function. For this
example we could obtain a path to a CSV file in the pointblank package with system.file().

csv_path <-
system.file(
"data_files”, "small_table.csv”,
package = "pointblank”
)
Then use that path in file_tbl() with the option to specify the column types in that CSV.
tbl <-
file_tbl(

file = csv_path,
col_types = "TDdcddlc”

)
tbl
## # A tibble: 13 x 8
## date_time date ab C de f
## <dttm> <date> <dbl> <chr> <dbl> <dbl> <1lgl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. .. 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-. . . 7 284. TRUE 1low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. .. 9 838. FALSE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. .. 9 838. FALSE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE 1low
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mx-. . 8 108. FALSE low

## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx- .
1 3-dka-. . . NA 2230. TRUE high

## 13 2016-01-30 11:23:00 2016-01-30

Now that we have a ‘tbl* object that is a tibble it could be introduced to create_agent() for
validation.

agent <- create_agent(tbl = tbl)

A different strategy is to provide the data-reading function call directly to create_agent():

agent <-
create_agent(
tbl = ~ file_tbl(
file = system.file(
"data_files"”, "small_table.csv",
package = "pointblank”
),
col_types = "TDdcddlc"
)
) %>%

col_vals_gt(columns = a, value = 0)

All of the file-reading instructions are encapsulated in the tbl expression (with the leading ~) so
the agent will always obtain the most recent version of the table (and the logic can be translated
to YAML, for later use).

Producing tables from files on GitHub:

A CSV can be obtained from a public GitHub repo by using the from_github() helper function.
Let’s create an agent a supply a table-prep formula that gets the same CSV file from the GitHub
repository for the pointblank package.

agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank”
),
col_types = "TDdcddlc"
),
tbl_name = "small_table”,
label = "*file_tbl1()" example.",
) %%
col_vals_gt(columns = a, value = @) %>%
interrogate()

agent

This interrogated the data that was obtained from the remote source file, and, there’s nothing to
clean up (by default, the downloaded file goes into a system temp directory).
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File access, table creation, and prep via the table store:

Using table-prep formulas in a centralized table store can make it easier to work with tables
from disparate sources. Here’s how to generate a table store with two named entries for table
preparations involving the tbl_store() and file_tbl() functions.

store <-
tbl_store(
small_table_file ~ file_tbl(
file = system.file(
"data_files”, "small_table.csv”,
package = "pointblank”
),
col_types = "TDdcddlc"
),
small_high_file ~ {{ small_table_file }} %>%
dplyr::filter(f == "high")
)

Now it’s easy to access either of these tables via tbl_get(). We can reference the table in the
store by its name (given to the left of the ~).

tbl_get(tbl = "small_table_file", store = store)

## # A tibble: 13 x 8

## date_time date ab C de f

## <dttm> <date> <dbl> <chr> <dbl> <dbl> <1gl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. .. 8 10000. TRUE low
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
## 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
## 5 2016-01-09 12:36:00 2016-01-09 8 3-1dm-. . . 7 284. TRUE 1low
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE mid
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
## 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE low
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. .. 9 838. FALSE high
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. .. 9 838. FALSE high
## 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE 1low
## 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE low
## 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE high

The second table in the table store is a mutated version of the first. It’s just as easily obtainable
via tbl_get():

tbl_get(tbl = "small_high_file"”, store = store)

## # A tibble: 6 x 8

## date_time date ab C de f

##  <dttm> <date> <dbl> <chr> <dbl> <dbl> <1gl> <chr>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## 2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high

## 3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
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## 4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## 6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

The table-prep formulas in the store object could also be used in functions with a tbl argument
(like create_agent() and create_informant()). This is accomplished most easily with the
tbl_source() function.

agent <-
create_agent(
tbl = ~ tbl_source(

tbl = "small_table_file"”,
store = store
)
)

informant <-
create_informant(
tbl = ~ tbl_source(
tbl = "small_high_file",
store = store

Function ID

1-7

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tb1(),
draft_validation(), scan_data(), tbl_get(), tbl_source(), tbl_store(), validate_rmd()

from_github Specify a file for download from GitHub

Description

The from_github() function is helpful for generating a valid URL that points to a data file in
a public GitHub repository. This function can be used in the file argument of the file_tbl()
function or anywhere else where GitHub URLSs for raw user content are needed.

Usage

from_github(file, repo, subdir = NULL, default_branch = "main")
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Arguments
file The name of the file to target in a GitHub repository. This can be a path leading
to and including the file. This is combined with any path given in subdir.
repo The GitHub repository address in the format username/repo[/subdir][@ref |#pull|@xrelease].
subdir A path string representing a subdirectory in the GitHub repository. This is com-

bined with any path components included in file.

default_branch The name of the default branch for the repo. This is usually "main” (the default
used here).
Value

A character vector of length 1 that contains a URL.

Function ID

13-6

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), has_columns(),
stop_if_not()

Examples
# A valid URL to a data file in GitHub can be
# obtained from the HEAD of the default branch
# from_github(
# file = "inst/data_files/small_table.csv",
# repo = "rstudio/pointblank”
#)
# The path to the file location can be supplied
# fully or partially to ‘subdir®
# from_github(
# file = "small_table.csv"”,
# repo = "rstudio/pointblank”,
#  subdir = "inst/data_files”
#)
# We can use the first call in combination with
# “file_tbl()" and ‘create_agent()"‘; this
# supplies a table-prep formula that gets
# a CSV file from the GitHub repository for the
# pointblank package
# agent <-
# create_agent(
# tbl = ~ file_tbl(
# file = from_github(
# file = "inst/data_files/small_table.csv”,
# repo = "rstudio/pointblank”
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),
col_types = "TDdcddlc”
)
) %>%
col_vals_gt(a, @) %>%
interrogate()

E T T S

ES

The “from_github()"* helper function is
pretty powerful and can get at lots of
different files in a repository

* 3%

A data file from GitHub can be obtained from
a commit at release time
from_github(
file = "inst/extdata/small_table.csv”,
repo = "rstudio/pointblank@ve.2.1"
)

Hod ¥ o O

A file may also be obtained from a repo at the
point in time of a specific commit (partial or
full SHA-1 hash for the commit can be used)
from_github(

file = "data-raw/small_table.csv",

repo = "rstudio/pointblank@e@4a71"
)

T R R

A file may also be obtained from an
*open* pull request
from_github(
file = "data-raw/small_table.csv”,
repo = "rstudio/pointblank#248"
)

o o oH H

game_revenue A table with game revenue data

Description

This table is a subset of the sj_all_revenue table from the intendo data package. It’s the first
2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

game_revenue

Format

A tibble with 2,000 rows and 11 variables:
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player_id A character column with unique identifiers for each user/player.
session_id A character column that contains unique identifiers for each player session.

session_start A date-time column that indicates when the session (containing the revenue event)
started.

time A date-time column that indicates exactly when the player purchase (or revenue event) oc-
curred.

item_type A character column that provides the class of the item purchased.
item_name A character column that provides the name of the item purchased.
item_revenue A numeric column with the revenue amounts per item purchased.

session_duration A numeric column that states the length of the session (in minutes) for which
the purchase occurred.

start_day A Date column that provides the date of first login for the player making a purchase.
acquisition A character column that provides the method of acquisition for the player.

country A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table, small_table_sqlite(), specifications

Examples

# Here is a glimpse at the data
# available in ‘game_revenue®
dplyr::glimpse(game_revenue)

game_revenue_info A table with metadata for the game_revenue dataset

Description

This table contains metadata for the game_revenue table. The first column (named column) pro-

vides the column names from game_revenue. The second column (info) contains descriptions for

each of the columns in that dataset. This table is in the correct format for use in the info_columns_from_tbl ()
function.

Usage

game_revenue_info
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Format

A tibble with 11 rows and 2 variables:

column A character column with unique identifiers for each user/player.

info A character column that contains unique identifiers for each player session.

Function ID

14-5

See Also

Other Datasets: game_revenue, small_table, small_table_sqlite(), specifications

Examples

# Here is a glimpse at the data
# available in ‘game_revenue_info*
dplyr::glimpse(game_revenue_info)

get_agent_report Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the get_agent_report() func-

tion.

The table can be provided in two substantially different forms: as a gt based display table

(the default), or, as a tibble. The amount of fields with intel is different depending on whether
or not the agent performed an interrogation (with the interrogate() function). Basically, before
interrogate() is called, the agent will contain just the validation plan (however many rows it has
depends on how many validation functions were supplied a part of that plan). Post-interrogation,
information on the passing and failing test units is provided, along with indicators on whether cer-
tain failure states were entered (provided they were set through actions). The display table variant
of the agent report, the default form, will have the following columns:

i (unlabeled): the validation step number.
STEP: the name of the validation function used for the validation step,
COLUMNS: the names of the target columns used in the validation step (if applicable).

VALUES: the values used in the validation step, where applicable; this could be as literal
values, as column names, an expression, etc.

TBL: indicates whether any there were any changes to the target table just prior to interroga-
tion. A rightward arrow from a small circle indicates that there was no mutation of the table.
An arrow from a circle to a purple square indicates that preconditions were used to modify
the target table. An arrow from a circle to a half-filled circle indicates that the target table has
been segmented.
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* EVAL: a symbol that denotes the success of interrogation evaluation for each step. A check-
mark indicates no issues with evaluation. A warning sign indicates that a warning occurred
during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover
over the symbol for details on each condition.

» UNITS: the total number of test units for the validation step

* PASS: on top is the absolute number of passing test units and below that is the fraction of
passing test units over the total number of test units.

» FAIL: on top is the absolute number of failing test units and below that is the fraction of failing
test units over the total number of test units.

* W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset
states appear as dashes, states that are set with thresholds appear as unfilled circles when not
entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and
blue)

e EXT: a column that provides buttons to download data extracts as CSV files for row-based
validation steps having failing test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL,
and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

The ptblank_agent_report can be exported to a standalone HTML document with the export_report ()
function.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

* i: the validation step number.
* type: the name of the validation function used for the validation step.
* columns: the names of the target columns used in the validation step (if applicable).

* values: the values used in the validation step, where applicable; for a conjointly() validation
step, this is a listing of all sub-validations.

» precon: indicates whether any there are any preconditions to apply before interrogation and,
if so, the number of statements used.

* active: a logical value that indicates whether a validation step is set to "active” during an
interrogation.

* eval: a character value that denotes the success of interrogation evaluation for each step. A
value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning
occurred during evaluation. The "ERROR” VALUES indicates that evaluation failed due to an
error. With "W+E" both warnings and an error occurred during evaluation.

* units: the total number of test units for the validation step.
* n_pass: the number of passing test units.
 f_pass: the fraction of passing test units.

* W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be
NA for states that are unset.

e extract: an integer value that indicates the number of rows available in a data extract. Will be
NA if no extract is available.
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Usage
get_agent_report(
agent,
arrange_by = c("i", "severity"),

keep = c("all”, "fail_states”),

display_table = TRUE,
size = "standard”,
title = ":default:”,
lang = NULL,
locale = NULL
)
Arguments
agent The pointblank agent object
obj:<ptblank_agent>// required
A pointblank agent object that is commonly created through the use of the
create_agent () function.
arrange_by Method of arranging the report’s table rows
singl-kw:[i|severity]// default: "i"
A choice to arrange the report table rows by the validation step number (1", the
default), or, to arrange in descending order by severity of the failure state (with
"severity").
keep Which table rows should be kept?

display_table

size

title

singl-kw:[all|fail_states] // default: "all"

An option to keep "all” of the report’s table rows (the default), or, keep only
those rows that reflect one or more "fail_states"”.

Return a display-table report via gt

scalar<logical>// default: TRUE

Should a display table be generated? If TRUE, and if the gt package is installed,
a display table for the report will be shown in the Viewer. If FALSE, or if gt is
not available, then a tibble will be returned.

Size option for display-table report

scalar<character> // default: "standard"

The size of the display table, which can be either "standard” (the default) or
"small"”. This only applies to a display table (where display_table = TRUE).

Title customization options

scalar<character>// default: ":default:”

Options for customizing the title of the report. The default is the keyword
":default:"” which produces generic title text that refers to the pointblank
package in the language governed by the 1ang option. Another keyword option
is ":tbl_name:", and that presents the name of the table as the title for the re-
port. If no title is wanted, then the " : none: " keyword option can be used. Aside
from keyword options, text can be provided for the title and glue: : glue () calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
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transformation, use text in I() to explicitly state that the supplied text should
not be transformed.

Reporting language

scalar<character> // default: NULL (optional)

The language to use for automatic creation of briefs (short descriptions for
each validation step) and for the agent report (a summary table that provides
the validation plan and the results from the interrogation. By default, NULL
will create English ("en") text. Other options include French ("fr"), German
("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chi-
nese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"),
and Dutch ("nl"). This lang option will override any previously set language
setting (e.g., by the create_agent() call).

Locale for value formatting

scalar<character>// default: NULL (optional)

An optional locale ID to use for formatting values in the agent report sum-
mary table according the locale’s rules. Examples include "en_US" for English
(United States) and "fr_FR" for French (France); more simply, this can be a
language identifier without a country designation, like "es" for Spanish (Spain,
same as "es_ES"). This locale option will override any previously set locale
value (e.g., by the create_agent () call).

A ptblank_agent_report objectif display_table = TRUE or atibble if display_table = FALSE.

Examples

For the example here, we’ll use a simple table with a single numerical column a.

tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

th
#>
#>
#>
#>
#>
#>
#>

# A tibble: 4 x 1

1
a
<dbl>
1 5
2 7
3 8
4 5

Let’s create an agent and validate that values in column a are always greater than 4.

agent <-
create_agent(
tbl = tbl,

tbl_name = "small_table”,
label = "An example.”
) %%
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col_vals_gt(columns = a, value = 4) %>%
interrogate()

We can get a tibble-based report from the agent by using get_agent_report() withdisplay_table
= FALSE.

agent %>% get_agent_report(display_table = FALSE)

## # A tibble: 1 x 14

## i type columns values precon active eval units n_pass

##  <int> <chr> <chr> <chr> <chr> <lgl> <chr> <dbl> <dbl>

## 1 1 col_va. .. a 4 NA TRUE  OK 4 4
## # ... with 5 more variables: f_pass <dbl>, W <lgl>, S <lgl>,

# # N <lgl>, extract <int>

The full-featured display-table-based report can be viewed by printing the agent object, but, we
can geta "ptblank_agent_report” object returned to us when using display_table = TRUE (the
default for get_agent_report).

report <- get_agent_report(agent)
report

What can you do with the report object? Print it at will wherever, and, it can serve as an input to
the export_report() function.

However, the better reason to use get_agent_report() over just printing the agent for display-
table purposes is to make use of the different display options.

The agent report as a gt display table comes in two sizes: "standard” (the default, 875px wide)
and "small” (575px wide). Let’s take a look at the smaller-sized version of the report.

small_report <-
get_agent_report(
agent = agent,
size = "small”

)
small_report

We can use our own title by supplying it to the title argument, or, use a special keyword like
":tbl_name:" to get the table name (set in the create_agent() call) as the title.

report_title <- get_agent_report(agent, title = ":tbl_name:")

report_title

There are more options! You can change the language of the display table with the lang argu-
ment (this overrides the language set in create_agent()), validation steps can be rearranged us-

ing the arrange_by argument, and we can also apply some filtering with the keep argument in
get_agent_report().
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Function ID

6-2

See Also

Other Interrogate and Report: interrogate()

get_agent_x_list Get the agent’s x-list

Description

The agent’s x-list is a record of information that the agent possesses at any given time. The x-list
will contain the most complete information after an interrogation has taken place (before then, the
data largely reflects the validation plan). The x-list can be constrained to a particular validation step
(by supplying the step number to the i argument), or, we can get the information for all validation
steps by leaving i unspecified. The x-list is indeed an R list object that contains a veritable
cornucopia of information.

For an x-list obtained with i specified for a validation step, the following components are available:

time_start: the time at which the interrogation began (POSIXct [0 or 1])
time_end: the time at which the interrogation ended (POSIXct [@ or 1])
label: the optional label given to the agent (chr [1])

tbl_name: the name of the table object, if available (chr [1])

tbl_src: the type of table used in the validation (chr [1])

tbl_src_details: if the table is a database table, this provides further details for the DB
table (chr [1])

tbl: the table object itself

col_names: the table’s column names (chr [ncol(tbl)])

col_types: the table’s column types (chr [ncol(tbl)])

i: the validation step index (int [1])

type: the type of validation, value is validation function name (chr [1])

columns: the columns specified for the validation function (chr [variable lengthl)
values: the values specified for the validation function (mixed types [variable lengthl)
briefs: the brief for the validation step in the specified 1ang (chr [1])

eval_error, eval_warning: indicates whether the evaluation of the step function, during
interrogation, resulted in an error or a warning (1gl [1])

capture_stack: a list of captured errors or warnings during step-function evaluation at inter-
rogation time (list [1])

n: the number of test units for the validation step (num [1])

n_passed, n_failed: the number of passing and failing test units for the validation step (num

1Dh
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* f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])
» f_failed: the fraction of failing test units for the validation step, n_failed/n (num [1])

* warn, stop, notify: a logical value indicating whether the level of failing test units caused
the corresponding conditions to be entered (1gl [1])

* lang: the two-letter language code that indicates which language should be used for all briefs,
the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one com-
ponents in the x-list will be expanded to the total number of validation steps (these are: i, type,
columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed,
f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components
when 1 is NULL, which are:

* report_object: a gt table object, which is also presented as the default print method for a
ptblank_agent
* email_object: a blastula email_message object with a default set of components

* report_html: the HTML source for the report_object, provided as a length-one character
vector

e report_html_small: the HTML source for a narrower, more condensed version of report_object,
provided as a length-one character vector; The HTML has inlined styles, making it more suit-
able for email message bodies

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent The pointblank agent object
obj:<ptblank_agent>// required
A pointblank agent object that is commonly created through the use of the
create_agent () function.
i A validation step number
scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step in the
order of invocation. If NULL (the default), the x-list will provide information
for all validation steps. If a valid step number is provided then x-list will have
information pertaining only to that step.

Value

An x_list object.

Examples

Create a simple data frame with a column of numerical values.
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tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl

#> # A tibble: 4 x 1
#> a

#>  <dbl>

#> 1 5

#> 2 7

#> 3 8

#> 4 5

Create an action_levels() list with fractional values for the warn, stop, and notify states.

al <-
action_levels(

warn_at = 0.2,
stop_at = 0.8,
notify_at = 0.345
)
Create an agent (giving it the tbl and the al objects), supply two validation step functions, then
interrogate.
agent <-
create_agent(
tbl = tbl,
actions = al
) %%

col_vals_gt(columns = a, value = 7) %>%
col_is_numeric(columns = a) %>%
interrogate()

Get the f_passed component of the agent x-list.

x <- get_agent_x_list(agent)

x$f_passed

#> [1] .25 1.00

Function ID

8-1

See Also

Other Post-interrogation: all_passed(), get_data_extracts(), get_sundered_data(),write