�EMWAC

Computing Services

The University of Edinburgh

Mayfield Road

Edinburgh EH9 3LA

��

����European Microsoft Windows NT Academic Centre

Microsoft Exchange Report

Sandy Shaw

November 1995

�

����European Microsoft Windows NT Academic Centre

Microsoft Exchange Report

Abstract

This report is intended for a technical audience and contains an evaluation of Microsoft Exchange within the context of the various developments in messaging technology that have taken place over the last twenty years. The close relationship between Microsoft Exchange and the standards on which it is based (in particular, X.400) is examined and possible further developments considered.

Copyright

�SYMBOL 211 \f "Symbol"� Computing Services, The University of Edinburgh.

All rights reserved. No part of this publication may be reproduced in any material form without the written permission of the copyright holder.

These rights are waived in two particular circumstances. First, Academic Institutions may freely use and copy the material herein for any academic (i.e. non-commercial) purpose. Second, the sponsors of EMWAC may freely use the material for their own purposes.

�CONTENTS

� TOC \o "1-2" �1 Introduction	� GOTOBUTTON _Toc349010928 � PAGEREF _Toc349010928 �1��

2 Summary	� GOTOBUTTON _Toc349010929 � PAGEREF _Toc349010929 �1��

3 Messaging Standards	� GOTOBUTTON _Toc349010930 � PAGEREF _Toc349010930 �1��

3.1 Early standards	� GOTOBUTTON _Toc349010931 � PAGEREF _Toc349010931 �1��

3.2 X.400 1984 and 1988	� GOTOBUTTON _Toc349010932 � PAGEREF _Toc349010932 �2��

3.3 Current Internet standards	� GOTOBUTTON _Toc349010933 � PAGEREF _Toc349010933 �2��

3.4 Proprietary standards	� GOTOBUTTON _Toc349010934 � PAGEREF _Toc349010934 �4��

3.5 APIs	� GOTOBUTTON _Toc349010935 � PAGEREF _Toc349010935 �4��

3.6 X.500 Directory	� GOTOBUTTON _Toc349010936 � PAGEREF _Toc349010936 �5��

4 Messaging Architectures	� GOTOBUTTON _Toc349010937 � PAGEREF _Toc349010937 �5��

4.1 Host-based systems	� GOTOBUTTON _Toc349010938 � PAGEREF _Toc349010938 �5��

4.2 Shared filesystem	� GOTOBUTTON _Toc349010939 � PAGEREF _Toc349010939 �6��

4.3 Client/server	� GOTOBUTTON _Toc349010940 � PAGEREF _Toc349010940 �7��

4.4 Connectivity products	� GOTOBUTTON _Toc349010941 � PAGEREF _Toc349010941 �8��

5 Microsoft Exchange Specification	� GOTOBUTTON _Toc349010942 � PAGEREF _Toc349010942 �8��

5.1 Windows NT Server	� GOTOBUTTON _Toc349010943 � PAGEREF _Toc349010943 �8��

5.2 MAPI	� GOTOBUTTON _Toc349010944 � PAGEREF _Toc349010944 �9��

5.3 Connectivity Issues	� GOTOBUTTON _Toc349010945 � PAGEREF _Toc349010945 �10��

5.4 Additional Capabilities	� GOTOBUTTON _Toc349010946 � PAGEREF _Toc349010946 �11��

6 X.400 Developments	� GOTOBUTTON _Toc349010947 � PAGEREF _Toc349010947 �11��

6.1 Message correlation	� GOTOBUTTON _Toc349010948 � PAGEREF _Toc349010948 �11��

6.2 Rules for submitted messages	� GOTOBUTTON _Toc349010949 � PAGEREF _Toc349010949 �11��

6.3 Message logging	� GOTOBUTTON _Toc349010950 � PAGEREF _Toc349010950 �12��

6.4 Auto-action logging	� GOTOBUTTON _Toc349010951 � PAGEREF _Toc349010951 �12��

6.5 Message lifetime	� GOTOBUTTON _Toc349010952 � PAGEREF _Toc349010952 �12��

6.6 Structured message body	� GOTOBUTTON _Toc349010953 � PAGEREF _Toc349010953 �12��

6.7 Attachments	� GOTOBUTTON _Toc349010954 � PAGEREF _Toc349010954 �13��

6.8 Action status	� GOTOBUTTON _Toc349010955 � PAGEREF _Toc349010955 �13��

6.9 Heading field mapping	� GOTOBUTTON _Toc349010956 � PAGEREF _Toc349010956 �13��

6.10 Information sharing	� GOTOBUTTON _Toc349010957 � PAGEREF _Toc349010957 �14��

6.11 Divergence of the Exchange and X.400 service models	� GOTOBUTTON _Toc349010958 � PAGEREF _Toc349010958 �14��

7 Conclusions	� GOTOBUTTON _Toc349010959 � PAGEREF _Toc349010959 �14��

Acknlowledgements	� GOTOBUTTON _Toc349010960 � PAGEREF _Toc349010960 �15��

Annex A - Abbreviations	� GOTOBUTTON _Toc349010961 � PAGEREF _Toc349010961 �16��

��1	Introduction

Microsoft(Exchange is a client/server based product designed to bring high-quality messaging and information management services to the LAN user. Microsoft Exchange was not conceived in a vacuum, and to understand the thinking behind the design of the product, it is necessary to consider the context within which it was developed. This concerns the standards, architectures, and platforms that have been used to support messaging services over the past twenty years.

The paper also considers the extent to which Microsoft Exchange is well placed to meet the demands that will arise from future developments in messaging.

2	Summary

The messaging market today is undergoing rapid change, with developments in the relevant technologies and in the manner in which organizations wish to conduct their internal communication. Few organizations have a messaging infrastructure which fully supports the broad set of user and organizational requirements now apparent: these include full interoperability; scalability; clients for all standard platforms, a choice of server platforms; centralised management; configurability; advanced functionality (rich content messaging); intuitive user interfaces.

Microsoft’s biggest single advantage in developing Microsoft Exchange was the relative absence of design constraints posed by legacy problems. The previous generation product, Microsoft Mail 3.x is relatively simple, and could be readily subsumed within Microsoft Exchange (although, arguably, the apparent simplicity of the end result may not reflect the actual effort). However, in key areas of the design: message transport, message database design, directory design, user interface, client/server API, there were relatively few constraints on selecting the obvious choices. Hence client/server architecture, X.400 for message transport, X.500 for the Directory information base, MAPI and CMC as the client/server APIs, the Windows(GUI for the user interface (borrowing experience from the Mail 3.x client), Windows NT(as a server platform, and an object-oriented approach for centrally managed administration.

There is considerable complexity in each of these system components and Microsoft Exchange is clearly a very substantial product. However, the overall specification of Microsoft Exchange appears to be very close to what is required today to enable organizations to make a step-change in the quality of their messaging service provision.

As this paper is based on the evaluation of a beta version of Microsoft Exchange, further development of the product over the next few months is anticipated. Some recent developments in X.400 messaging are reviewed which may have some influence on the future direction of Microsoft Exchange in the longer term.

3	Messaging Standards

The motivation for developing standards arises from commercial necessity. International commerce simply cannot operate without standardized procedures for the exchange of information and goods. Equally, for messaging (other than for strictly local use), interoperability is essential, and this in turn depends on the adoption of standards.

Unfortunately, there is no shortage of standards to choose from, arising from the attempts by ISO and ITU to establish global standards, and the strategies adopted by vendors attempting to safeguard market share by promoting proprietary standards. The most significant of these standards are described below.

3.1	Early standards

The earliest computer-based messaging systems were located in time-shared host computers, and allowed users to exchange simple text messages with other users on the local machine. The establishment of the ARPA computer network in the 1970s, based on the development of packet-switching technology, lead to the establishment of communications protocols to support services such as remote terminal access and file transfer. It was realised that the synthesis of these two types of service, local message exchange, and host-to-host network services, provided the basis for a much more powerful form of person-to-person communication: the exchange of messages among a large, geographically dispersed community of users.

The early services supported messaging using existing tools, such as editors for message composition and display, and file transfer services for message transport. However, to take best advantage of the new medium, it was necessary to develop a standardized message transfer protocol and message format: RFC-821 (SMTP) and RFC-822. These are still in use today as the basic Internet messaging standards.

These early standards were, to some extent, prototyping exercises, intended to explore the possibilities of the new medium with tools that could be quickly developed and adapted. Considerable experience was gained in messaging in the ARPA environment, and by 1979 a new forum, IFIP Working Group 6.5, was working to promote the development of the next generation of messaging standards. This group formulated the model for Message Handling Systems that formed the basis of the X.400 Recommendations that were subsequently produced in the 1980s.

3.2	X.400 1984 and 1988

By 1980, CCITT, the organization responsible for the standards governing the international telephone and public data networks, had been persuaded that the opportunity existed for the creation of a new and uniquely powerful international communications medium. This lead to the publication of the CCITT X.400-series Recommendations in 1984.

The goal of this work was the definition of a highly functional Message Handling System, offering numerous service capabilities to the end-user, supported internationally by public service providers, and exploiting all the possibilities of a computer-based communications medium.

X.400 (1984) generated great technical and commercial interest, but was, in many ways, an immature standard. It embodied many novel concepts and utilized new specification techniques, but represented, essentially, a first attempt at solving the problem. Consequently, a fully revised version of X.400 was produced in 1988, with the expectation that a migration from X.400(1984) would be completed within four years. In practice, the substantial effort invested in implementing the 1984 Recommendations made many organizations reluctant to accept this migration. Even today, 1984 systems in operation still outnumber 1988 systems.

The 1988 edition of X.400 maintained a level of backwards compatibility with the 1984 edition, but embodied substantial differences. The specification techniques which had been pioneered in 1984 were refined and extended; new services were defined for security, use of Directory, use of distribution lists, transparent extensibility, and the definition of the Message Store. A further change in emphasis was brought about by the moves towards deregulation in the telecommunications sector, and the involvement of ISO (which unlike CCITT is a user organization, rather than an organization of service providers) in the standardization process; this change acknowledges the possible use of X.400 for the international transfer of messages between private organizations directly, rather than only via public service providers.

Since 1988, work on X.400 has continued, by a collaborative effort of ITU (as CCITT is now known) and ISO. The major change since 1988 has been a complete revision and extension of the X.413 Message Store. This was published as ISO/IEC 10021-5 : 1994. An ITU/ISO common text republication of the complete X.400-series Recommendations is expected in 1995; this consolidates the many revisions and enhancements agreed in the last four years.

3.3	Current Internet standards

One of the effects of the existence of the X.400 standard was to inhibit development of Internet messaging protocols throughout the 1980s. The expectation was that X.400 implementations would replace Internet implementations and so there was little incentive to enhance these protocols. However, towards the end of the decade, disillusion had set in with the ISO Reference Model in general, and, by association, X.400 (ISO/IEC 10021), and the Internet community concluded that their own protocols had distinct advantages over X.400 and merited further development effort to satisfy some of the new requirements. Consequently, a variety of developments to extend RFC�821 and RFC�822 have already been completed or are currently underway:

MIME:	for multi-part body and binary attachments;

PEM:	for mail security services;

PGP:	another candidate solution for security;

NOTARY:	for delivery reports;

RECEIPT:	an IETF working group is considering the development of receipt notification.

An ongoing debate exists, within the academic world in particular, on the relative quality of Internet messaging protocols (RFC�821, RFC�822) and X.400. For Internet messaging, there is the distinct advantage of having many more users than X.400. While the majority of users are found in North America and Western Europe, Internet connections exist world wide. In addition, it is much easier to implement the Internet protocols for message transfer (RFC�821) and message format (RFC�822). Internet messages are encoded in clear ASCII text and are therefore simple to manipulate. For the majority of Internet users, the view is that it is cheap, and it works.

On the other hand organizations for whom messaging is business-critical are wary of Internet’s reputation as providing a ‘best-effort’ rather than guaranteed quality of service. It is regarded (rightly or wrongly) as lacking accountability, reliability, and security, and is widely thought inappropriate for business use. It is certainly weak in the area of delivery reporting and receipt notification (though these shortcomings are currently being addressed within the IETF), and is effectively limited to the English language alphabet.

For such organizations, X.400 has the advantage that it is supported by carriers who are prepared to offer guaranteed quality of service agreements, and take responsibility for message routing. Usage costs are commensurably higher than for Internet messages, but accepted as the price of the technology. In addition, X.400 was designed from the outset for international use, and is capable of supporting a wide range of alphabets.

The market is now sufficiently mature that the need for interoperability is widely understood, and consequently the benefits of reducing the number of protocols in use. Most commercial organizations favour X.400 as their standard message transfer solution, although it is very common to find Internet in use in technical divisions. In fact, there has been much study to resolve the problems of Internet/X.400 interworking (MIXER), and develop Internet equivalents to components of X.400 functionality (e.g., MIME). Despite the inherent problems in gatewaying between systems with quite different service definitions, there is likely to be sustained user demand for such interworking capabilities.

According to the differing service requirements of different classes of user, both X.400 and Internet messaging are likely to remain in use for the foreseeable future, with the former predominant in the commercial sector and the latter in the academic and research communities. Whereas it was originally envisaged that X.400 messages would be carried over a standardized OSI communications stack, there is now increasing use of the Internet IP infrastructure to carry X.400 messages.

In recognizing the existence of these two message transport technologies, Microsoft Exchange comes equipped with ‘connectors’ for both X.400 and Internet messaging, and can use either mechanism for the transfer of messages to foreign systems. However, as certain Microsoft Exchange services are not supported in Internet messaging, full functionality requires the use of X.400 for message transport.

There has been an explosion of interest in other services supported over the Internet, notably, the World Wide Web. This is likely to increase the exposure of Internet messaging and is leading to the emergence of integrated Web browsers and mail user agents.

3.4	Proprietary standards

The widespread use of proprietary messaging systems (based on proprietary standards) runs counter to the apparently obvious requirement for messaging products to interwork. In fact, for some time this was not recognised as a requirement. An enterprise-wide host-based system would be expected to serve the needs of the organization, but not necessarily to support external communication; equally, LAN e-mail systems were originally seen as satisfying purely local communication requirements.

Certainly, a vendor who is able to establish its proprietary standard as a de facto standard is in a strong competitive position, with a safe market share and a locked-in customer base.

A number of proprietary messaging standards were developed as part of office automation suites (e.g., IBM’s PROFS() and were designed for use as communication tools within the organization, rather than between organizations. Others were developed to exploit the capabilities of LAN filestore products, and again, were originally envisaged for localised use.

A major drawback of proprietary systems is the isolation of their users from users of other systems. This is a particular problem within large organizations, where there is commonly a mixed infrastructure of various proprietary LAN systems and legacy host systems. Message gatewaying products which provide connectivity capabilities between proprietary systems have been developed to address these problems, but often can offer only a partial solution.

For several years there was fierce competition among vendors, each championing its proprietary solution, but it became clear that these incompatible solutions impeded what users were coming to demand: interoperability. A major requirement for many organizations is for an enterprise messaging solution which accommodates communication between their existing proprietary systems by means of standardized protocols.

3.5	APIs

Application Programming Interfaces for messaging provide a standardised interface between a client application and the underlying messaging service provider. APIs were initially developed as a means of promoting interoperability, by establishing open, high-level messaging interfaces that could be implemented on most operating systems and support most messaging products. For clients, the use of a standardized interface conceals arbitrary differences between different message store, message transport, and directory implementations.

APIs are important architecturally, as a means of partitioning the messaging system into discrete components which intercommunicate using standardized interfaces; i.e., they bring modularity to the messaging subsystem. This means, for example, that the same MAPI-compliant client can interwork with quite different MAPI providers (and vice versa). This brings benefits of flexibility and compatibility both to client messaging applications and service providers: all parties share a common messaging model, and utilize the same data structures and objects. In effect, the development of APIs has been complementary to the development of a client/server infrastructure for messaging.

Although originally envisaged as open standards, warfare broke out in the early 1990s among vendors promoting their own proprietary APIs, and thereby attempting to achieve dominance in the messaging market. This appeared to be taking APIs down the same unproductive path as had been beaten by proprietary messaging products, which ran counter to users’ preference for standard solutions. Fortunately, a level of mutual tolerance has been achieved, with some agreement between vendors to support each other’s APIs.

There are two broad classes of APIs, designed to satisfy different requirements. Firstly, basic APIs (such as simple MAPI or CMC) allow an application, such as a word processor or spreadsheet, to become mail-aware, i.e., capable of performing simple message submission and reception tasks as an additional (but not required) feature of its main function. Secondly, a more complex API (e.g., Extended MAPI) is required for an application whose central function depends on messaging (known as a mail-enabled application). In fact, APIs exist at various levels in the messaging architecture, according to the various product requirements, and act as the glue between system components. At the lowest level, for well-defined basic services such as X.400 and X.500, it is likely that the adoption of standard APIs will eventually displace the use of proprietary APIs.

Among the APIs currently in use are MAPI (Microsoft), CMC (XAPIA), MHS (Novell - not to be confused with X.400 MHS), AOCE (Apple), VIM and X/Open. The present version of Microsoft Exchange supports MAPI and CMC.

3.6	X.500 Directory

During the development of X.400 (1984), it was realized that a global, distributed Directory system was required if a global message handling system was to work effectively. This was a more ambitious goal than the development of the X.400 infrastructure (which, even now, is far from complete) as the concept was entirely new. Simple computer-based messaging services had been around from the early 1970s, but simple computer-based directory services for wide area use (such as the DNS, for host name resolution) were not developed until the mid-1980s.

As a general purpose service, the Directory is required to hold information about many different types of object: people, organizations, distribution lists, message stores, databases. A user might consult the Directory to identify an object by name (its Directory name) and retrieve some information about the object, e.g., an individual’s telephone number, fax number, or postal address. Equally, a computer process might consult the Directory to discover the members of a distribution list.

To satisfy this requirement, the CCITT X.500 Directory Recommendations were developed in parallel with the second round of X.400 development, and both sets of Recommendations were ratified in 1988.

The 1988 edition of X.500 was not a complete specification of all the features required for truly serviceable implementation of the Directory (such as an access control mechanism), and a further round of standardization was necessary to complete the specification (it appears that the need for a second development phase for large standards is the rule, not the exception). The work was effectively completed in 1993, but due to unexplained delays in the publication process, the new standard is still not available (although the final draft text is available from ISO as ISO/IEC 9594 DIS). Consequently, it is not surprising that there are relatively few X.500 products, and none that could be said to be fully mature.

While the number of interoperating X.500 Directory implementations is insignificant, the X.500 design has been very influential, and forms the basis of many proprietary Directory implementations. The Directory is an essential component of messaging systems, and can be an effective mechanism for integrating the multiple databases maintained by organizations for the various aspects of their internal and external communications.

While the term ‘X.500-compatible’ is infinitely flexible, in the case of Microsoft Exchange, the internal directory information base is indeed structured as specified in X.500. The incorporation of Directory access (DAP) and system (DSP) protocols in future versions of Microsoft Exchange should be possible without substantial modification to the present implementation. There is much potential in the future development of Directory services and Microsoft Exchange is well placed to realize these future possibilities.

4	Messaging Architectures

4.1	Host-based systems

From the early 1980s the largest e-mail user base has been served by host-based office automation products, typically offered on mid-range platforms. These products offer well-integrated application suites suited to the requirements of large organizations.

Many of these systems predate the 1988 editions of X.400 and X.500 and so, originally, were purely proprietary. The inability of these systems to interconnect directly, and the interworking problems associated with gatewaying technology has been the motivation for the gradual incorporation of standard network protocols. While protocols such as X.25 and TCP/IP have commonly been incorporated, and support for gatewaying to external services has continued as part of an ongoing enhancement programme, many of these products are nevertheless beginning to show their age.

At the same time, many of these host-based systems are mature, highly functional, and are well integrated with existing networking infrastructures.

A major challenge to vendors of host-based systems has been to update their user interfaces. Initially, these systems employed simple terminal display protocols to allow the user to communicate with the application running on the remote host. With the success of the GUI concept, the simple display protocol approach has been rendered obsolete, and traditional systems which still rely on it are likely to disappear. Some vendors are addressing this problem by re-engineering their products towards a client/server architecture, but this type of development is far from easy.

While host-based systems still represent the most common platform for messaging service provision, their importance is eventually likely to diminish in favour of systems that employ client/server architecture. In this approach, the client and server components partition responsibility for the task, and communicate by means of an access protocol which may be realized as a procedural interface (e.g., MAPI) conveyed by RPC calls, or by the use of Remote Operations (X.880) for the exchange of protocol data units (e.g., the X.413 P7 protocol).

4.2	Shared filesystem

From the time of their introduction, LAN filestore products offered e-mail capabilities, aimed at the small departmental user base. These systems are very simple architecturally, and have in their basic form only a single active component, the client. The sending client exchanges messages with the receiving client by writing the message to a suitable location in a shared filestore (the postoffice), with additional information for indexing and linkage written to associated files. For a limited number of co-operating users with common access to a shared filestore, this is all that is required. This basic scenario results in the formation of islands of connected users, whose ability to communicate is limited to their own workgroup.

For communication among larger number of users, where several filestores possibly remote from one other are in use, a server (‘External’ in the case of Microsoft Mail 3.x) is required to transfer messages between postoffices. This normally runs on a separate DOS box and can be configured to switch messages among perhaps a dozen postoffices. In a complex network there might not always be a server configured to transfer messages between two given postoffices, and a message may progress to its destination postoffice indirectly, by several store-and-forward steps via intermediate servers.

Clearly, this design has problems in scaling, involving the configuration and management of many disparate server boxes. Whatever headaches these systems cause systems administrators, they have been popular with users because of their straightforward user interfaces, well integrated with the desktop applications environment. Paradoxically, the problems of management, configuration, and monitoring that had been solved in host-based systems, remained largely unsolved in the shared filestore systems which succeeded them.

A feature of the rapid growth in the LAN e-mail user base is that it has been driven largely by demand from below, rather than policy from above. This mirrors the shift in decision-making in equipment procurement, from the centre (the host mainframe), to the periphery (the departmental distributed system). Frequently, this has lead to a mixture of LAN systems, which must interoperate with one another, as well as with the legacy host messaging systems that are still commonly found. Hence the need for connectivity products is now widespread.

The intractable nature of the ‘n2’ interoperability problem for proprietary LAN e-mail systems has been a force for limiting the numbers of such systems permitted to operate within an organization (a trend which favours market leaders). However, shared filestore messaging will continue to be popular, particularly in the workgroup environment, because of its low cost and attractiveness to end-users. At the same time, solutions for enterprise messaging require a more substantial architectural base.

4.3	Client/server

In traditional host-based messaging, client software and server software is co-located on the same equipment. By contrast, simple LAN e-mail systems originally used a server-less architecture, with client software operating on the user’s PC accessing a shared filestore postoffice. For reasons of cost, quality of interface, and flexibility, the use of central mainframe systems is likely to diminish. At the same time, the functionality that is possible only when a server-based system is used is now a requirement. The solution is to decouple the client and server functionality of host-based systems, so that the user’s PC runs the client software which interacts with a remote server by means of some form of access protocol. This decoupling of function into client and server components allows each to optimize the performance of its distinct role.

Client/server architecture has a number of substantial advantages over other approaches. On the client side, GUI is now de rigueur for PC user applications, and the evolution of the Windows graphical user interface is a major attraction for many users. Growth in the use of the PC as a general purpose tool for business activity continues, and the present range of PC applications sets the standard in user expectations for functional desktop tools.

Server technology exploits the inherent flexibility of LAN architecture, and benefits from the hardware developments that favour the price/performance profile of multiple small RISC engines over that of single large host systems. Server technology is essential for highly functional applications which require processing activity in the absence of the client (e.g., taking delivery of a message and automatically performing functions such an auto-forwarding, or filing in the appropriate folder). The server is also necessary for remote access to the message database; messages stored locally on the desktop machine’s hard disc are not readily accessible remotely. The advantage long enjoyed by UNIX(systems in their ability to exploit a wide range of platform options to deliver good price/performance is now open to Windows NT servers.

The cessation of the API wars, and the mutual agreement among vendors to support one another’s APIs, means that in principle, it will become possible to use a mail client supplied by one vendor with a server supplied by another. This possibility, if realized, will offer users great flexibility, and will encourage the uptake of new messaging solutions.

The cost of this approach is higher than that of simple shared filestore technology, but it provides an architectural basis for the provision of essential features (security, user management, configurability, logging, information management, proactive behaviour, scaling) that cannot be achieved by shared filestore messaging. The emergence of powerful platforms for Windows NT (such as the Sequent Winserver and Digital Alpha) ensures that servers will have the muscle necessary to support substantial user bases. Until now, the ability to support messaging services on an organization-wide basis has been largely the preserve of host-based systems.

Some vendors have attempted to extend the life of their host-based messaging products by re-engineering them as client/server products. While this ensures good integration with the applications suite which operates on the host system, it does not give such good integration with other applications running on the desktop machine.

For messaging, the challenge has been to reproduce, using client/server architecture on distributed systems, the high functionality, good management and configurability of the best of the traditional host-based systems.

4.4	Connectivity products

The existence of the many proprietary host-based and LAN e-mail systems has created the need for connectivity products that permit interworking between heterogeneous systems, both within the organization and between organizations.

To date, connectivity/backbone products have occupied a niche market created by the requirements of large organizations to integrate their heterogeneous messaging systems. The importance of the capabilities of systems of this type is likely to grow.

There are severe constraints on the quality of service that can be realized between users who communicate by means of a gateway. This follows from the incompatibility of the information models adopted by different systems. In some cases there is simply no mapping for some particular service request. In these cases, gatewaying entails a loss of information, and causes a confusing inconsistency in service operation (a component of the service which is effective when communicating with one user is ineffective when communicating with another, who happens to be reached via a gateway). In other cases, there may be some possible mapping with somewhat different semantics, which again, is confusing for the user. Whereas even the best engineered gateways cause problems of loss of information, loss of functionality, and have an unfavourable impact on the quality of service, some gateway products introduce additional problems all of their own. This can arise most easily where the service definition being mapped from or to is either not well defined, or is imperfectly understood.

The problems of gatewaying are minimized if the backbone technology through which all the connected services are linked is well defined, has high functionality, and is supported by mature implementations. The technology most commonly selected for this backbone function is X.400.

Gatewaying can be regarded as a necessary evil; given the heterogeneous nature of the messaging market, and the likelihood that diversity will remain a persistent feature of it, the need for connectivity functionality will continue to exist, regardless of its impact on the quality of service.

5	Microsoft Exchange Specification

A major advantage for Microsoft Exchange has been its ‘green field’ origin; it was not adapted or evolved from an existing product, but was developed from scratch. Consequently it was possible to select the most effective technical solutions available for the various components of a high-specification messaging product for the latter 1990s: client/server architecture, X.400, X.500, MAPI (and other) APIs, and Windows GUI. The legacy of the Microsoft Mail 3.x product range appears to have imposed relatively few constraints (except, arguably, for some limitations on client functionality).

A further advantage for Microsoft Exchange Server is that it runs on the Windows NT operating system, which is in itself a major new development, and provides capabilities and services which Microsoft Exchange is able to exploit directly.

5.1	Windows NT Server

The cost of developing and launching a new operating system is enormous (which explains why they appear so infrequently). Clearly, for Microsoft, there was a pressing need to leave DOS behind, and develop a system that satisfied a number of key requirements:

Portability: Windows NT runs on a variety of hardware platforms (including Intel(x86, MIPS(R4000, and Digital Alpha). It is implemented in C (rather than assembler), and is structured such that hardware-dependent code is isolated below an abstract hardware interface layer. Porting to other machines with 32 bit addressing and virtual memory is intended to be straightforward.

Security: Windows NT embodies security features for the PC similar to those familiar to users of mainframe machines. Access to user accounts is controlled by name and password, and each account is granted a specific set of rights, which determine the operations that can be performed by that user. A new file system (NTFS) supports discretionary access control, which allows permission to be granted to a particular user or group for a specific type of access to a given file or directory.

Client/server architecture: The operating system is structured into discrete processes, each of which implements a single set of services, e.g., process creation, memory management, filestore access, high-level APIs. A client (either an application or another system process) makes a request of a server by sending it a message, which is conveyed to the server via a message switching mechanism. After the server has performed the operation, the result is returned to the client in another message using the same message switching mechanism. This approach leads to small, self-contained system components, which execute largely in non-privileged mode and hence can fail without crashing the whole system. Different servers may run on different processors (in the case of a multi-processor computer), or even on different computers. This extends the API concept to include services normally regarded as embedded components of the operating system. The relevance of this architecture for LAN-based distributed computing is clear.

Distributed computing: The move from host systems to multiple discrete distributed systems has been dependent the provision of highly functional networked communication services. Networking capabilities have been built directly into the NT operating system so that distributed applications can be supported, with multiple networking technologies used interchangeably, loaded and unloaded as required.

Multi-tasking: Windows NT is a ‘real’ (pre-emptive) multi-tasking operating system, suitable as a vehicle for a variety of network-accessible services. It represents a competitor to UNIX as an applications server platform.

As Microsoft Exchange Server runs on the Windows NT operating system, the user management facilities of NT are available for managing the accounts and access rights of Microsoft Exchange users. NT employs a domain model to partition organizations into semi-autonomous units, so providing centralised management with control devolved as required.

5.2	MAPI

The use of MAPI is a central design feature of Microsoft Exchange. The various components of MAPI are embedded in the Microsoft Windows Messaging System (WMS), which defines the environment within which these components interwork. The main components are:

a)	MAPI client applications, including both simple mail-aware applications and more complex mail-enabled applications;

b)	MAPI message spooler, which mediates between the clients and the service provider components during message submission and retrieval;

c)	Three types of MAPI service provider: message store providers, address book providers, and message transport providers.

MAPI has two functional interfaces: the client interface, which presents MAPI services to applications; and the provider interface, which maps service requests to the underlying service providers. The MAPI system is, in effect, bounded by these two interface levels, and comprises a set of MAPI DLLs and the message spooler. Commonly, the client will establish access to some service provider resource via a MAPI call handled by a MAPI DLL; once established, further use of the resource is by direct communication between the client and the service provider.

Different service provider implementations provide access to different underlying messaging services, and can co-exist, such that the client uses a single interface to access multiple services, e.g., a single address book container can present the different services supported by several address book providers. This open architecture gives users great flexibility in the choice of service providers, possibly procured from different vendors.

Given the requirement that MAPI must be capable of mapping service requests to a range of message handling services, its design was dictated by the features of the service with the highest functionality, namely X.400. Hence it provides a complete mapping between X.400 message format (IPM) and MAPI data structures, and between X.400 submission operations and MAPI functions.

While the Microsoft Exchange Server implements the full extended MAPI functionality, the present client exploits only a subset of the features available. This follows from the different requirements of each of these service components. The Microsoft Exchange Server is obliged to implement the complete extended MAPI specification, in order to support the potential requirements of any MAPI client now, and in the future. The Microsoft Exchange Client, on the other hand, falls under two constraints: the desire to maintain compatibility with the existing Microsoft Mail 3.x clients (for interworking at service level and ease of user migration), and the limited capabilities of many external messaging systems (which discourages the exposure of services not widely supported elsewhere). The issue is to maintain consistency in service operation, by minimising the number of cases where a service which is effective when communicating with another Microsoft Exchange user is ineffective when communicating with an Internet or Mail 3.x user.

5.3	Connectivity Issues

Microsoft Exchange Server supports connectivity with the two backbone technologies in widespread use: SMTP and X.400. SMTP has the advantage that a routing infrastructure is in place (provided by DNS), and therefore a means exists today to transfer messages to a large number of external systems. On the other hand, Internet messaging supports only a basic set of messaging services, and it is not possible to translate every Microsoft Exchange message to an Internet message without some loss of information. For example, services such as ‘delivery receipt’ and ‘read receipt’ are not currently supported in Internet messaging.

By contrast, Microsoft Exchange messages can be mapped (almost) completely to X.400 messages, and service requests such as read receipt can be honoured by an X.400 recipient of a Microsoft Exchange message. The reverse is not quite true: an X.400 message may contain fields that are understood by the Microsoft Exchange Server, but are never displayed to the user, as the Microsoft Exchange Client does not consider them. Examples of this are reply-requested (an indication that a reply is requested), reply-time (the time by which a reply should be sent in order to be effective), and reply-recipients (a list of those to whom a reply should be sent). It is not clear whether future versions of the Microsoft Exchange Client will expose some of this additional functionality to the user, or whether the product is considered complete in its present form. The latter decision would be unfortunate, since users of native X.400 systems would expect services such as those described above to be honoured, e.g., any reply should be addressed to the reply-recipients indicated, not just to the originator. No conformance violation is implied here since client behaviour is not prescribed in the X.400 base standard. However, because the information contained in these fields is not made available to the end-user, Microsoft Exchange cannot claim conformance to the International Standardized Profile (ISO/IEC ISP 12062-2:1995) for basic or extended (AMH21) support for X.400 message content (IPM).

For routing over X.400, there is no equivalent to Internet’s DNS name/address mapping system. The choices are either to configure each required connection, possibly over IP, or to route via an ADMD (an X.400 public service provider), which will take responsibility for onward routing. The first approach has the advantage of low cost, but the disadvantage of requiring the maintenance of local routing tables. Moreover, as no independent service provider is involved, there is no contractual guarantee on the quality of service delivered. The second approach obviates the need to maintain local routing tables, and can provide a contractual guarantee on the quality of service, but will be more expensive. On the problem of maintaining routing tables, work is in hand to standardize use of the X.500 Directory to hold information for MHS routing. This scheme does not require that a global, fully interconnected X.500 Directory is in place (though it will scale to this extent), and is intended to be effective both for small and very large mail server domains.

Both the X.400 connector and SMTP connector are fully integrated with Microsoft Exchange. This is by contrast with earlier products such as Microsoft Mail 3.x, where connector functionality was provided by stand-alone gateways offering basic capabilities. While the Microsoft Exchange connectors are a great improvement on their predecessors (in reliability, configuration and management) they suffer from the same basic limitation: a service request cannot be honoured unless it is fully supported by each of the mail systems linked by the connector.

5.4	Additional Capabilities

While this paper has concentrated on the purely messaging properties of Microsoft Exchange, it should be noted that a variety of information management services, dependent upon the underlying messaging infrastructure, are also supported. These include workgroup activities such as information sharing by replicated public folders and distribution list expansion, and engagement scheduling. Workflow applications are supported by customised forms processing, which allows for the automation of standard business processes. These ancillary activities are fully integrated with the Microsoft Exchange information model.

6	X.400 Developments

The development of Microsoft Exchange took place around the same time as the development of the 1994 Message Store standard (to be republished as ITU-T Rec. X.413 (1995) and ISO/IEC 10021-5:1995). There are many similarities between the two, which is to be expected given the similarities in their intended purpose. The existence of these two related technologies, the X.413 standard and the Microsoft Exchange product is a healthy situation for both, permitting an interchange of ideas and experience that will be of mutual benefit.

Microsoft Exchange supports a number of services not currently defined for X.413, such as replicated public folders and auto-reply; these services may be the subject of future standardization. Equally, X.413 has standardized various services that may be considered for future versions of Microsoft Exchange.

6.1	Message correlation

Correlation services are a major addition to X.413 (1995). This development is in recognition that a message does not exist purely in isolation, but is frequently related to others; for example, a message sent in reply to, or received in reply to another message; a message which forwards another message; a message which indicates that it has rendered another message obsolete. It is convenient for the user to be able to identify messages related in these ways (it is not a simple matter to perform such correlation manually), such that all the messages in one thread can be isolated. One problem is that Exchange does not currently preserve the message-identifier values and the cross-referencing heading fields (Replied-to IPM, Obsoleted IPMs, Related IPMs) on which these services depend. The use of folder views in the Microsoft Exchange client provides a powerful tool for the dynamic grouping of messages related in various ways, but does not provide the same semantic linkage as the correlation services of X.413.

Correlation services are also defined for the other two standard message types: delivery reports (delivery receipt) and receipt notifications (read receipt). Messages of these types are of little interest as isolated objects, and are more usefully regarded as properties of the submitted messages to which they are related. The semantic content of these reports and notifications can be more effectively displayed to the user within the message display window itself or in a dialog box reached through the message display window. Of course, while X.413 has devised the framework for these services, it does not concern itself with the non-trivial task of devising a formulation for the presentation of this information to the end-user.

6.2	Rules for submitted messages

A significant difference in the information models of Microsoft Exchange and X.413 is in the distinction drawn by the former between submitted and delivered messages. In Microsoft Exchange, a rule (a message filter with an associated action) applies only to delivered messages. Submitted messages are not considered (and so, for example, cannot automatically be assigned to an appropriate folder, based on properties such as subject or recipient name). In X.413, automatic filing can be applied both to delivered and submitted messages, and to stored draft messages. This appears a better strategy for folder maintenance, since a physical folder created to hold correspondence related to a specific topic would be expected to contain both the items sent and those received on the topic.

6.3	Message logging

This is regarded as an important service in certain service environments. It operates by analogy with the office postbook, which is used to record manually each item of correspondence received and despatched by the office (Inlog and Outlog). A message log entry is intended to persist for some period after the message referred to has been deleted, but holds only a subset of the information stored for the original message. Even where a copy of a submitted message is not saved, a log entry will still be created. These logs are maintained for the convenience of the users of the service, rather than as a service management tool, but are not a substitute for secure logs that may be used to support security and audit services.

6.4	Auto-action logging

Microsoft Exchange’s Inbox Assistant and Out of Office Assistant provide excellent facilities for the automatically processing of delivered messages. A message may be forwarded, stored in one or more folders, deleted, or automatically replied to. In X.413, the same facility is provided by enabling the user to register auto-action requests with the Message Store. One difference between the services (apart from the ability to apply auto-actions to submitted messages as well as those delivered) is the maintenance by the Message Store of a log, which records selected instances of auto-action execution. Again, the value of this facility will vary according to the service environment. It is less relevant for simple office memo switching; but for more formal use, it could be a useful extension to the existing Microsoft Exchange services.

6.5	Message lifetime

Microsoft Exchange supports an Expiry Time service, which enables the originator of a message to specify a time after which the message will be automatically deleted. X.413 supports this service (including a user toggle to enable or disable the automatic deletion) and also supports an additional service that allows the recipient to assign a storage period to any stored message (either delivered or submitted) after which it will be deleted (again subject to the setting of a user toggle). This message management facility is intended to assist users in keeping the size of their message database under control, by the automatic assignment of storage periods to messages based on the individual properties they contain.

6.6	Structured message body

In X.400 interpersonal messaging, the message body consists of a sequence of parts, each of which may contain any type of encoded information, e.g., a simple text document, a word processor document, or a spreadsheet file. There are no rules prescribing the way in which these body parts are to be displayed to the user (though there is an implication that the order of body parts should be preserved). Microsoft Exchange does not always preserve the order of body parts in X.400 messages sent to it, and at the present time, does not recognize some common body part types.

Microsoft Exchange Internet connection supports the use of MIME encoding for handling Internet messages with structured message body. However, the interchange of messages containing structured body among Microsoft Exchange users, other X.400 users, and Internet users (by means of MIME encoding) is not yet a fully reliable activity. This problem is not specific to Microsoft Exchange; for example, interworking problems exist between other MIME implementations, and between other X.400 implementations. Further work on all fronts will be required to improve the quality of message body interchange among users of these different technologies.

6.7	Attachments

The 1988 X.400 Recommendations provide a mechanism that allows any type of information object (e.g., a proprietary word processor or spreadsheet document) to be sent as an Externally Defined body part. Essentially, this consists of an identifier for the document type, plus the document data itself in the form of a string of octets (certain document type may also define a separate Parameters component). The industry found great difficulty in arriving at a common agreement on the use of this mechanism and has developed a profile for the use of the File Transfer body part type for this purpose. This does have the advantage that a filename may be conveyed along with the document, but does involve a more complex encoding. Its disadvantage as a general mechanism for holding attachments is that if a message is created using a word processor as a composition tool, the document may not possess a meaningful filename. The 1995/6 edition of X.400 clarifies the use of the Externally Defined body part and should encourage adoption of the originally intended solution for the conveyance of arbitrary document types.

6.8	Action status

This X.413 service enables the recipient of a delivered message to determine whether its originator requested a reply, or a receipt notification (or both) from this user. Hence, it acts as a reminder that some requested action is outstanding, or as a confirmation that a reply or notification has been sent.

6.9	Heading field mapping

As indicated in 5.3, MAPI supports a complete, and fully reversible mapping of X.400 Heading fields to internal MAPI structures. For Internet messages (RFC-822), the mapping is not complete, and there is likely to be loss of information in some instances when performing mapping in either direction. For example, there is no MAPI equivalent for the RFC-822 Sender field, just as there is no RFC-822 equivalent for the MAPI read receipt flag.

The problem here is that the information presented to the recipient may be misleading (either because a field cannot be mapped, or, even in cases where mapping is possible, because the Microsoft Exchange Client does not display that field). For example, an Internet message that has been the subject of distribution list expansion will appear to originate from the distribution list owner; there is no indication of the actual originator.

In the case of X.400 messages, there are a significant number of message fields whose contents or even existence is not revealed by the Microsoft Exchange client. A general solution for problems of this kind, the presence in a message of significant information that falls outwith the Microsoft Exchange display model, would be highly desirable, but would require a change to this model. As the Microsoft Exchange Server does support extended MAPI, and hence the full set of X.400 fields, the information in these fields is available to the Microsoft Exchange Client, and could be supported by enhancing client functionality.

The various problems of Internet/X.400 interworking are considered in RFC-1327. While this RFC does not fully resolve all interworking issues, it does propose a number of useful mappings that could be adopted in Exchange. For example, it defines a method for representing an X.400 OR-address in an Internet message. This mapping is not performed when Microsoft Exchange generates a message addressed to an Internet recipient and an X.400 recipient. In this case, the X.400 recipient name is simply omitted from the copy of the message sent to the Internet recipient. This violates a basic service requirement, that each recipient of a message is made aware of the other recipients (unless the originator requests otherwise).

The representation of Internet addresses in X.400 messages is supported in Microsoft Exchange by use of a perfectly valid encoding. However, the form of representation differs from that defined in RFC-1327. It is likely that this representation of Internet addresses will be standardized by ISO and ITU. Some alignment could usefully be attempted in this area.

6.10	Information sharing	

Microsoft Exchange enables users to share information by means of public folders. Again, this is a service provision whose value was proven on traditional host-based systems. An important feature is that the user employs the same tools for inspecting and managing public folders as are used to handle private folders.

This is a powerful facility for use within an organization. It is not clear whether broadcast facilities (such as UNIX News) and information interconnection (World Wide Web) will evolve or be adapted for use in future versions of Microsoft Exchange. These facilities are well established in their own environment, but appear more as steps towards some future development rather then ends in themselves. Possibly, whatever forms these future services take, these will result from further standardization.

Attempts by ISO to standardize various forms of information sharing, under the general term Group Communication, have not been successful to date. However, the renewed interest in this area may provide the motivation for further investigation.

6.11	Divergence of the Exchange and X.400 service models

The adoption of X.400 as a central component of Microsoft Exchange was, in part, motivated by the connectivity properties of X.400, as an effective backbone technology enabling an organization’s various messaging systems to communicate with one another. However, Microsoft Exchange has not adopted the complete X.400 service model, and regards it more as a carrier technology than as a service definition. Rather, Microsoft Exchange has developed its own service environment definition which overlaps with that of X.400.

In a sense, full interworking has been achieved at the syntactic level but not semantic level. In supporting a subset of the services defined in X.400, Microsoft Exchange gives its users a fully consistent local service. However, from the position of an external X.400 user, its behaviour is not fully consistent with that of other native X.400 systems. Given that X.400 embodies the most fully developed paradigm for global messaging, an incomplete adoption of its model may unnecessarily limit the richness of the service that Microsoft Exchange is perceived to provide.

7	Conclusions

Computer-based messaging has been in use for over twenty years, and, in common with all aspects of computing, has undergone major change over this period. Some of the milestones in the development of this technology have been described, to demonstrate the context within which Microsoft Exchange was produced.

Microsoft Exchange is an ambitious product with an advanced specification, and a clear set of goals. Its architecture, standards, and platforms are directly relevant to the messaging market requirements of the late 1990s.

The product addresses a number of market requirements:

for enterprise-wide messaging, with capabilities for centralized management, configuration, directory synchronization, remote access;

for standards-based messaging, notably X.400, X.500, SMTP, and relevant APIs;

for backbone messaging technology (supporting both X.400 and SMTP);

for messaging connectivity, supporting a variety of gateways to link the heterogeneous legacy systems commonly found in large organizations;

for client/server computing, as the appropriate architecture for LAN-based distributed computing;

for a robust server technology, portable to various platforms, and offering secure distributed computing;

for high-quality GUI clients, attractive to users, and productive in use;

for support of other mail-aware and mail-enabled desktop applications.

Given the significant developments that have taken place in messaging over the last twenty years, the only reasonable expectation is that change is a permanent fact of life, and should not be regarded as a temporary inconvenience. Mature products have the disadvantage that there are many constraints on their freedom to address new requirements, and practical limits on their ability to adopt new technologies. A new product, such as Microsoft Exchange, has a great advantage in this respect. It has been designed to address today’s market requirements, and is well placed to accommodate the inevitable further developments in messaging technology.

Acknlowledgements

This report was made possible through the sponsorship of Greg Levin of Microsoft Corporation, and by assistance rendered through Steve McMahon of Microsoft Ltd. Helpful comments on the text were received from Sophie Kilburn of Microsoft Ltd., and equipment for testing was loaned by Stewart Hutton and Hilary Lloyd of Research Machines plc.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

PROFS is a registered trademark of International Business Machines Corporation. UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company, Ltd. Intel is a registered trademark of Intel Corporation. MIPS is a registered trademark of MIPS Technologies, Inc.

�Annex A - Abbreviations

API	Application Programming Interface

CCITT	International Telegraph and Telephone Consultative Committee (now ITU)

CMC	Common Mail Call

DAP	Directory Access Protocol

DNS	Domain Name System

DSP	Directory System Protocol

GUI	Graphical User Interface

IEC	International Electrotechnical Commission

IETF	Internet Engineering Task Force

IFIP	International Federation for Information Processing

ISP	International Standardized Profile

IPM	Interpersonal Messaging (X.400 content type)

ISO	International Organization for Standardization

ITU	International Telecommunications Union

MAPI	Messaging Application Program Interface

MHS	Message Handling Systems (the formal title for X.400 and ISO/IEC 10021)

MHS	Messaging Handling Service (proprietary Novell)

MIME	Multipurpose Internet Mail Extensions

MIXER	MIME Internet X.400 Enhanced Relay (RFC 1327bis)

OSI	Open Systems Interconnection (ISO Standards)

P7	Message Store Access Protocol (X.413)

PEM	Privacy Enhanced Mail

PGP	Pretty Good Privacy

RPC	Remote Procedure Call

SMTP	Simple Mail Transport Protocol (RFC�821)

WMS	Windows Messaging System

VIM	Vendor Independent Messaging

�

(footnote continued)

EMWAC Microsoft Exchange Report Page � PAGE �14�

EMWAC Microsoft Exchange Report Page � PAGE �15�

.�.�.�.�.�.�.�.�.

.�.�.�.�.�.�.�.�.

.�.�.�.�.�..�.�.�.

..........

.�.�.�.�.�..�.�.�.

..........

