
Implementation of an Esterel-based Toolkit for Designing DSP
Software Applications

Hahnsang Kim and Thierry Turletti

INRIA -Sophia Antipolis
2004, Route des Lucioles BP 93

06902 Sophia Antipolis Cedex France
Tel: +33 4 92 38 75 77 Fax: +33 4 92 38 79 78
{Hahnsang.Kim, Thierry.Turletti}@sophia.inria.fr

Abstract
Designing real-time DSP (Digital Signal Process-

ing) applications is a complex task. It requires a soft-
ware programming environment capable of putting to-
gether DSP modules and providing facilities to debug,
verify and validate the code. Pspectra was one of
the first toolkits available to design basic software ra-
dio applications on standard PC workstations. In this
paper, we present EPspectra: an Esterel-based ex-
tension of Pspectra that makes the design and im-
plementation of portable DSP applications easier. It
allows one to drastically reduce the testing/verification
time while requiring relatively few expertise in formal
verification methods. In addition, for the performance,
the scheduling model in EPspectra has been replaced
by a scheduling model called Data-Reactive scheduling
Model, which is well suited to describe complex control-
paths in the control part of Pspectra. The perfor-
mance analysis of the scheduling model applied to EP-

spectra is finally presented and the performance re-
sults are promising.

1 Introduction
Software radios are wireless communication appli-

cations in which all of the physical layer functions
are implemented in software. The software approach
brings many advantages: flexibility, re-usability of re-
sources and easy upgrades of applications. The great-
est advantage is the tremendous flexibility of software
applications. It allows one to implement applications
in which any aspect of the signal processing can be
dynamically changed to adapt to varying channel con-
ditions, traffic constraints, user requirements and in-
frastructure limitations. However, the design of such
real-time DSP applications is very complex and re-
quires multi-disciplinary knowledge: software archi-

tecture, signal processing (modulation, channel cod-
ing, etc.), real-time scheduling, networking protocols
(error control, congestion control, etc.), verification,
validation, etc.

The aim of this work is to make the implementation
of software DSP applications easier by accelerating the
development time, especially by supporting the debug-
ging and verification phases. In order not to reinvent
the wheel, we have used the Pspectra [1, 2] program-
ming environment developed by the SpectrumWare
project 1. Pspectra provides a signal processing pro-
gramming environment to implement portable DSP
applications on general-purpose workstations. It is es-
pecially targeted to develop software radios and pro-
vides the API for developers to make DSP applications
on general-purpose workstations.

In this paper, we present EPspectra: an Es-

terel extension we have built upon Pspectra, which
has been developed in order to provide the debug-
ging and verification phases by means of the Es-

terel [3] environment including Xes and Xeve [4].
It allows the developing/testing time to drastically be
reduced since the debugging and testing phases are
known to be the most time consuming operations.
For the performance, we would like to focus on the
scheduling model and design a scheduling model called
the Data-Reactive scheduling Model, while the real-
time scheduling of Pspectra is based on Data-Pull
Model [1].

The Data-Pull Model in the Pspectra program-
ming environment was designed to overcome some of
the limitations of a traditional Data-Flow Model im-
plementation. In a typical data flow approach, the
data is pushed from the place taking raw data to

1See http://www.sds.lcs.mit.edu/SpectrumWare/

the place producing the corresponding final data, but
in the Data-Pull Model, the execution is driven by
needs which request data. Even though the Data-
Pull approach has significant advantages (see subsec-
tion 3.1), it is not well suitable for the implementation
of scheduling in the synchronous Esterel language
for implementing EPspectra. The control part of
EPspectra is built on the basis of the Data-Reactive
Model upon a data flow approach [5]. The Data-
Reactive Model takes advantage of two features: a
software pipelining scheduling method and the virtual
sizing technique. These features will be discussed fur-
ther in subsection 3.3.

The formal language Esterel [3] is a synchronous
programming language dedicated to reactive systems.
Esterel programs perform an input-driven compu-
tation: wait for inputs and compute corresponding
outputs in a cyclic manner, referred to as a reac-
tion. Using Esterel, the following advantages are
expected. Firstly, it will be easier to write control-
paths of handling computation functions. Esterel

supports the strictness for control-handling functions
as well as the flexibility for data-handling functions
which makes it compatible with the C programming
language. Secondly, it is possible to use simulation
and verification techniques commonly used in such
areas as functional process or hardware design, and
to extend them to software/hardware applications.

The structure of this paper is as follows. Section 2
describes the Pspectra’s software architecture which
is divided into two parts: the data part and the con-
trol part. It also describes EPspectra that we have
added in which the control part is re-designed and im-
plemented in Esterel. Section 3 compares two differ-
ent scheduling models: the Data-Pull Model and the
Data-Reactive Model. Section 4 shows an example of
the application implemented using EPspectra. Sec-
tion 5 analyses the performance of two applications:
one that is included in Pspectra and the other that
has been re-implemented using EPspectra. The ex-
periment reflexes the features of the Data-Reactive
Model. Finally, the last section concludes this paper
and introduces future work.

2 Software Architecture
Pspectra is a real-time signal processing program-

ming environment used to implement portable DSP
applications like software radios on general-purpose
workstations. This environment includes a library of
portable (across platforms), DSP functions and a I/O
subsystem. With Pspectra, the hardware part is
minimal and the boundary between software and hard-

ware is shifted right up to the A/D converter. This
increases flexibility by bringing more functions under
software control.

The Pspectra architecture is partitioned into a
control part (out-of-band components) and a data part
(in-band components). This partitioning allows for a
maximal re-use of the computationally intensive DSP
modules. The data part is the place where the tem-
porally sensitive and computationally intensive work
takes place and all code relating to scheduling process-
ing modules is contained in the control part.
2.1 Data Part

The data part contains the code required to per-
form specific signal processing tasks, access functions
used by the control part to configure and monitor the
DSP tasks, and I/O functions that read data from
and write data into buffer. The data part consists of
two components: DSP modules and connectors. The
DSP modules perform the signal processing tasks and
communicate with the control part via the access func-
tions. A connector can be thought of as a wire that
carries signals from the output of one processing mod-
ule to the input of the following processing module.
The DSP modules are classified as follows:

• Sources are specialised modules that have one or
more output ports and no input ports.

• Sinks are specialised modules that have one or
more input ports and no output ports.

• Other intermediate modules have one or more in-
put ports and one or more output ports.

Each port must be connected to exactly one connector.
Each signal processing path has at least one source
beginning computation and at least one sink ending
it.
2.2 Control Part

The control part is responsible for creating topology
and modifying current data flow according to the sys-
tem needs, controlling the communications between
DSP modules, handling user interaction, and moni-
toring the data computation on each DSP module.
The data manipulated by the DSP modules flow from
sources to sinks. A DSP module reads input sample
data from the preceding DSP modules directly con-
nected by connectors, and performs some computation
on it.

To refer to the input and output data in the buffer,
a parameter called SampleRange is used by the DSP
modules. This parameter keeps track of a position of
the data that each DSP module’s accesses. As shown
in Figure 1, a SampleRange contains two pieces of

information: an index identifying a starting point from
which to read data in the buffer and a size identifying
the amount of data to read.

20 21 22 56 57 58 59

SampleRange :
index : 20
size : 40

I/O buffer

Figure 1: SampleRange: Each data block is referenced
with an index and a size

All DSP modules include an estimating method and
a computing method. Estimating methods in DSP
modules specify a SampleRange used by computing
methods with reference to the SampleRange parame-
ter of the preceding modules and inform the following
modules of their SampleRange parameter. In addi-
tion, estimating methods have to ensure that the same
data is not computed more than once. Computing
methods start when estimating methods successfully
return, and they manipulate the data that estimating
methods have scheduled.

2.3 Esterel-based Architecture

Even though Pspectra provides features such as
dynamic flexibility, portability, and re-usability by
software implementations, it lacks the functionality
of simulation, testing, and formal models accessible
to developers. Data-intensive activities and control-
driven handling activities, respectively, require differ-
ent programming techniques.

In an Esterel-based approach, as shown in Fig-
ure 2, the first part described in Esterel corresponds
to the control part, which creates the components of
DSP modules, initialises them and performs schedul-
ing. The second part described in C/C++ is used as
an interface to link Esterel-written control part to
C++-written data part. The last part described in
C++ is the data part in which DSP algorithms are
performed.

Figure 3 illustrates the Esterel-based Pspectra

software environment. The control part is written in
Esterel and the data part is written in C/C++.
The component package is a package that provides
for the data part a library where computational func-
tions are described. The General Purpose PCI Inter-
face (GuPPI) developed at MIT along with the Linux
operating system allows the sampled signal data to
be directly transferred in and out of memory of the
workstation via Direct Memory Access (DMA).

Module2Module1Source Sink

Interface in C/C++

Data Part

Extended Part

Control Part in Esterel

Figure 2: Architecture of EPspectra

Control Part

Data Part

GuPPI &
Operating SystemDMA DMA

Pspectra
Esterel−based

Source Coding

Modulation Summation

Sink

16−QAM

Component Package

Figure 3: The Esterel-based Pspectra

3 Scheduling Techniques
Before describing the statistical real-time model, it

is useful to review existing definitions of real-time sys-
tems. Although there are many different definitions of
real-time constraints in the literature, we can gener-
ally classify them into hard real-time and soft real-time
constraints [6]. In hard real-time systems, the overall
time consumption of all DSP modules is strictly lim-
ited. In other words, all the time critical functions
have deadlines which must always be met in order for
the system to function properly. Safety-critical real-
time applications are used in domains including space
rockets, aircraft automatic pilots, air traffic control,
car vital systems, and some medical equipment. On
the other hand, soft real-time systems are not well
defined. They are generally thought of as real-time
systems that can still function reasonably well even if
deadlines are occasionally missed. Indeed, the reliabil-
ity of a system relies on the accuracy of the estimates.

The Pspectra system as well as EPspectra runs
on general-purpose workstations in an operating sys-
tem (Linux OS) without explicit real-time support. By
taking advantage of the ability to sometimes process
data faster than in real-time, jitter in the computation
time of some functions can be absorbed. This provides
a mechanism for dealing with the frequent, small scale
time variability. Resource unpredictability may result
in the processing time occasionally exceeding the real-
time rate, but the average processing rate can still be

well below the real-time threshold. Thus, there is a
trade-off between higher average throughput and jit-
ter in the computation time. In order to deal with the
larger variations, the concept of statistical real-time
performance is introduced, in which an application is
characterised by:

• the cumulative distribution of the number of cy-
cles required to complete the task,

• a desired real-time bound, and

• a specification of the action that must be per-
formed when the deadline is not met.

This is a kind of soft real-time constraint, since dead-
lines can be missed without disastrous consequences.
The probability that the task will be completed within
the desired time bound can be expressed from the cu-
mulative distribution of cycles required by a given ap-
plication. This is possible since the statistics associ-
ated with the execution time are consistent. Note that
if the task completes with a probability of one, then
the system can provide hard real-time constraints.
3.1 DPM: Data-Pull Model

Before looking into the Data-Reactive Model
(DRM), let us account for the Data-Pull Model
(DPM) on which the control part of Pspectra is
based. The DPM is implemented according to a “lazy
evaluation approach” [7]. Lazy evaluation (call by
need) has been proposed as a method for executing
functional programs. The advantages of using the
DPM in Pspectra include: improved computational
efficiency resulting from the ability of lazy evaluation,
rapid response to changes in the processing require-
ments, and the caching benefits with good locality of
data reference by means of lazy evaluation. The more
details of these advantages are described in [1].

However, the DPM fails to take advantage of par-
allel computing between the DSP scheduling modules.
That is the fact that Pspectra makes use of paral-
lel processing for data computation of DSP modules
by means of multiple threads. Nevertheless, the over-
head of synchronisation between threads which share
the same data processed may degrade the performance
of parallel processing. Suppose that there is an appli-
cation as follows: it consists of two sources, two sinks,
and several intermediate modules where there exists
an intermediate module connected to two sinks and
there is nothing to do in between the two sinks. Ac-
cording to the DPM, only one of the two sinks can
be processed in an alternative manner, that is, the
other sink does nothing regardless of no constraint on
the current performing sink. In addition, when the

sequential processing chain is created, a sample data
is processed by passing it through this chain and the
next sample data will be processed after the compu-
tation of the corresponding sample data is completed.
Namely, it is not possible to interleave the computa-
tion chain of the current sample data and that of the
next sample data.
3.2 DRM: Data-Reactive Model

In contrast to the DPM, the DRM makes the most
of a software pipelining method [8], which allows one
to reduce the idle time between the beginning and
the end of computation operations. It leads to the
speed up of computation operations and acceleration
of computation-intensive scheduling. Figure 4 shows
the architecture of the DRM specified in Esterel.
All the modules wait for input signals and compute
corresponding output signals. It allows us to bene-
fit from the well-formed semantic properties of Es-

terel such as parallel composition and hierarchical
automata, which is introduced in [3].

scheduler

signal signal signalsignal signal signal signal signal

source module 1 module 2 sink

Figure 4: Data-Reactive Model

The data computed from the source is pushed into
the sink through the operations of the intermediate
modules. When all DSP modules react on available
data, the relation among DSP modules is determined
by a scheduler that decides which DSP module starts
and stops its computation. The scheduling approach
is as follows:

• data computation starts on the source.

• whenever data on DSP modules are available,
they start computing it.

• the corresponding data is completed on the sink.

All DSP modules communicate with each other by
passing signals controlled by the scheduler. As soon as
sources finish computing the data, they emit some sig-
nals triggering the computation of the corresponding
data on the following modules and then wait for ack
(acknowledgment) signals from them. DSP modules
wait for two events: available data from the preceding
modules and ack signals from the following modules
that indicate the completion of computation of the
previous data. Having received both, the DSP mod-
ules compute the available data, and then transmit the

computed data for the following modules, and emit ack
signals to the preceding modules simultaneously. The
corresponding data are finally consumed on the sinks.
3.3 Features of the DRM

Scheduling in the DRM starts from the source and
ends upto the sink, while the DPM’s scheduling starts
from the sink to the source and turns back to the sink.
The DRM has two features of scheduling: a software
pipelining scheduling method and the virtual sizing
technique of the sinks.

The software pipelining scheduling method utilises
parallel processing among DSP modules at the
operation-scheduling level, not at the instruction level.
Let us look at the loop body of Figure 5(a). Each set
M 2 of an iteration depends on the previous set of op-
erations as well as the previous iteration. As shown by
the execution schedule of Figure 5(b), the set of opera-
tions of the 2nd iteration of M1 depends on the set of
operations of the 1st iteration of M2. That is, the set
of operations of the 2nd iteration of M1 must follow
the set of operations of the 1st iteration of M2. From
this basic software pipelining scheduling method, it is
expected to obtain the speed-up of the execution rate.

M1 M2 M3 M4

1

1

1

12

2

23

T
IM

E

(a)

(b)

M4: d = C4(c);
M3: c = C3(b);
M2: b = C2(a);
M1: a = C1(a);

for i:

Figure 5: (a) Loop body code. (b) Execution schedule
of iterations.

Each DSP module and the sink have a fixed unit
size for computation. In terms of the sink, the sched-
uler makes a call to the sink in order to consume an
available input data. Each call activated by the sched-
uler allows the sink to consume the same amount of
the available data as a computing unit size of the sink.
If the size of the available data is twice more than the
computing unit size of the sink, at least two schedul-
ing calls are required to compute it. The scheduling
call overloads the scheduler which is in proportion to

2Note that M represents a set of operations of each module,
not an operation itself.

the difference between the size of the available data
and the computing unit size of the sink.

The virtual sizing technique allows the available
data given to the sink to be consumed with a schedul-
ing call by the scheduler. It is based on the differ-
ence between the computing unit size of the sink and
the preceding modules in that the size of the avail-
able data produced by the preceding modules corre-
sponds to the maximal computing unit size of what
they have. The virtual sizing technique is particularly
applied to the sink. So, the sink has two different
units: one is the virtual unit that the scheduler refers
to for making calls to the sink and the other is the
unit that the sink initially contains for computation.
Therefore, the scheduler make a call to the sink in ref-
erence with the virtual unit size of the sink and the
sink performs to make implicitly repeated computa-
tions according to the unit size of its own until the
given available data ends up to consume. The defi-
nition of Compute virtual unit function involved in
this technique is as follows:

Compute_virtual_unit(){
p_u: the computing unit size of the preceding

module
u: the computing unit size of the sink
u’: the virtual unit size of the sink

if (u < p_u)
for (i=2; u*i =< p_u; i++);

u’ = u*(--i);
}

The function provides a virtual unit size of the cor-
responding sink for the scheduler and The scheduler
regards the virtual unit size as the computing unit
size of the sink. Let us look at Figure 6 showing the
comparison of a different data measurement depend-
ing on the DPM and the DRM. The preceding module
has the computation unit p u=80000 and the compu-
tation unit of the sink is 600. Scheduler on the DPM,
as shown in Figure 6(a), performs i=133 iterations of
processing loop to produce the output data amount to
79800 because of having the unit of 600. In contrast,
Figure 6(b) shows that performing only an iteration of
processing loop on the DRM allows the sink to produce
an amount to 79800 with a virtual unit u’=79800 cal-
culated using the above Compute virtual unit func-
tion.
3.4 Data Dependencies

Two features of the DRM are dependent on data
related to DSP modules of which a DSP application is
composed. A dependence [8] exists between two oper-
ations if interchanging their order changes the results.

(b)

sink (u=600)

79800

159600
79800

i=133

79800

159600

i=1

sink (u’=79800)

(a)

159800
159600

(p_u=80000)
module
preceding

Figure 6: (a) data measurement on the DPM. (b) data
measurement on the DRM.

Dependencies constrain what can be done in parallel.
Let O1 and O2 be operations such that O1 precedes
O2. O2 must follow O1 if O2 reads data written by
O1. O2 is said to be data dependent on O1. Data de-
pendence between two operations is extended to data
dependence between two operational modules. There
is another reason that one operation must wait for an-
other operation. A control dependence exists between
S1 and S2 if the execution of statement S1 determines
whether or not statement S2 is executed. Therefore,
even though S2 is able to execute because of the avail-
able data, it may not execute because it is not known
whether it is needed.

The current scheduling model based on the DRM
considers data dependencies, not control dependen-
cies. Look at an example of Figure 7. This is part of
such audio receiver application that switches between
AM and FM demodulators. It has data dependencies
represented as (1), (2), (3), (4), and (5) and all the
statement pertaining to the execution of all modules
is able to execute as soon as all the data is available.
The control program is required to change the exe-
cution topology with the establishment of either (1)
and (3) or (2) and (4) after Channel Filter is done.
Thus, it is necessary to have control dependencies as
well as data dependencies between Channel Filter and
AM demodulator or between Channel Filter and FM
demodulator. It requires the dynamic reconfiguration
that enables the execution topology to be adapted to
the changeable environment.

In the current DRM, the topology requiring dy-
namic control dependencies among modules is not yet

considered in that Esterel is much suited to describe
complex and static fixed control-paths.

AM
Demod

FM
Demod

MUXFilter

(3)

(4)(2)

(1)

Sink
(5)

Figure 7: A diagram showing dependencies

4 Example of a DSP application:
udp tx

The udp tx application has two functionalities: one
is to modulate 3 input sample data and then transfer
them through the network, and the other is to display
the corresponding modulated sample data through a
software oscilloscope (see Figure 8.).

module UDP_TX_PROGRAM:
input <the program inputs>;
output <the program outputs>;
[...
run source/SOURCE
||
run coding/P_MOD
||
run modulation/P_MOD1to2
||
run scopesink/MAINSINK
||
run summation/P_MOD
||
run udpsink/SINK
...]

end module

This application is composed of different modules:
source, coding, modulation, summation, and two sinks
(udpsink and scopesink). It gets input sample data
from the source and performs the series of signal pro-
cessing functions such as coding, modulation, and
summation. Then, it is dispatched to the scopesink
and the udpsink.

The source module continuously reads raw data un-
til all of it is consumed. The coding module trans-
forms “bits” from the source into “symbols”, whereas
the modulation module performs a modulation algo-
rithm. The scopesink module displays a waveform on
the screen. The summation module adds input sam-
ple data to history data. Then, the udpsink sends
the corresponding sample data as a UDP packet to

3Possible modulations are: BPSK, 4-PAM, 8-PAM, QPSK,
8-PSK, 16-QAM

the destination that will visualise the constellation di-
agram.

Figure 8: A screen-shot of the udp tx application

4.1 Scenario of scheduling on the DRM
Figure 9 illustrates the computing procedure on the

basis of the DRM. The scheduler triggers on the source
the estimating method which sets a SampleRange with
index=a and size=400 in reference with its input sam-
pling frequency and the previously computed Sam-
pleRange, and its maximum output size. Then the
SampleRange on the source starts to compute and
at the same time the coding module is informed of
the estimated SampleRange. A SampleRange [a, 400]
on the coding module is estimated according to the
SampleRange received from the source and the in-
formation of the coding module (which corresponds
the input sampling frequency, the last computed Sam-
pleRange, and the maximum output size.) and is
computed. The completion of computation on the
coding module allows the source to manipulate the
following [a + 400, 400] SampleRange and the modu-
lation module to start computing the corresponding
[b, 80000] SampleRange. On the modulation module,
the information being transfered to the coding mod-
ule is delayed until both the scopesink and the sum-
mation module consume an input SampleRange corre-
sponding to [b, 80000] of the modulation module. The
sinks finally consume the [b, 80000] SampleRange cor-
responding to [a, 400] of the source.

Hereby, the first iteration to obtain the first com-
puted data block is done. According to the software
pipelining scheduling method, it is expected that at
the end of computing the first data block on the cod-

[b, 500]−>

a
a+400

a
a+400

b

b+80000a+1200

b

b+80000

[b+160000,0]

scopesink

udpsink
[b,80000]−>

[b+80000,80000]
[b, 80000]−> [b+160000,0]

[b+80000,80000]
[b, 80000]−>[a, 400]−>

a=b/200

[a+400, 400]−>
[a, 400]−>

[a+800, 400]

source

scheduler

b+500

b

b+80000

b+160000

b+80000

b

[a+400, 400]
a+800a+800

b+160000

b+160000

b+160000

first computed data
second computed data
third computed data

coding

summation

modulation

computed point
ack flow
control flow

Figure 9: Scheduling Process with the DRM : schedul-
ing starts from source.

ing module, the source may begin to compute the sec-
ond data block corresponding to [a + 400, 400]. Fur-
thermore, when the modulation module is processing
the second data block of the [b + 80000, 80000] Sam-
pleRange, the source may process the third data block
of the [a+ 800, 400] SampleRange.

Look at the data block computation of the
scopesink. The computation unit of the scopesink is
500, but the 80000 amount of the data block coming
from the modulation module is uninterruptedly com-
puted since the virtual unit is set as 80000 by the
Compute virtual unit function. Therefore, it allows
one to decrease the overhead of repetitions of the func-
tion call required to consume all the data. 160 repeti-
tions of call are reduced into one.

5 Performance analysis
Our performance analysis has been carried out on

both a PIII 600MHz machine with 256MBytes RAM
and a SMP machine with two PII 390MHz and with
256MBytes RAM, on Linux kernel 2.2.15, respectively.
We provide a performance comparison of our EPspec-

tra based on DRM (EDRM) and the Original Pspec-

tra based on DPM (ODPM). Note that the udp tx
application uses the 16-QAM modulation algorithm
in this experiment. The udp tx application based on
the EDRM is compiled by the version 6.03 of the Es-

terel compiler 4 and are optimised by Remlatch [9]
and Sis [10]. The Remlatch processor is called to op-
timise the state encoding of the circuit and Sis is used
to reduce the combinational logic introduced by the
sequential optimisation of Remlatch.

An Esterel code is compiled into a Blif code by
Esterel compiler with -blif flag. The Blif code is op-
timised by Remlatch, and once more re-optimised by

46.0 or later version of Esterel compiler is now developed
and maintained by Esterel-Technologies Ltd.

Sis. The optimised Blif code is translated into stan-
dard C code by Esterel compiler. The executable
code 5 is built up by integrating the C++ code of the
data part into the C code.
5.1 Performance on a PIII/600MHz ma-

chine
Figure 10 shows the performance result of the

udp tx applications based on the EDRM and the
ODPM on PIII 600MHz machine. The number of
output sample data processed per second is compared
with different situations: with and without interfer-
ing process using a grep command 6. As of without
interfering process, the output sample data produced
by the EDRM version is about two times more com-
pared to the ODPM version. At t=30s, the EDRM
version produces 2.5Msps (4-bit samples per second)
(i.e. more than twice as many as the ODPM which
produce 1.3Msps). The EDRM version enhances the
performance about 45% over the ODPM version by
means of the software pipelining method and the vir-
tual sizing technique.

The interfering process, grep searches the entire file
system running concurrently. The disk activity in-
duced by grep is expected to interfere with the ram
disk access of the udp tx application. We see that
there is some jitter caused by grep. At t=25s, the
EDRM version produces about 2Msps, whereas the
ODPM version produces 1Msps. Grep degrades about
20% of the performance of both, which means that it
is required to satisfy resource requirements of the ap-
plications running on standard workstations (see Fig-
ure 11.).
5.2 Performance on bi-PII/392MHz SMP

machine
Figure 11 shows the performance result of the

udp tx applications on bi-PII 392MHz machine. The
comparison of the number of output sample data pro-
cessed per second is made according to with and
without interfering process. At t=30s, the EDRM
and ODPM versions produces about 1.7Msps and
600Ksps. We see that the grep process does not in-
terfere the process of the udp tx application because
resource requirements of two processes is satisfied on
the bi-processor machine.
5.3 Comparison of LoC (Lines of Code)

Table 1 gives the comparison of the loc of udp tx
based on two different versions for the control part.

5The executable code is obtained by gcc version egcs-2.91.66
with the -O2 optimisation flag.

6 A grep command that has a higher priority 10 than normal
priority 8 was utilised for a stress scenario in the experiment
settings of [11].

Table 1: Comparison of loc
code line\model EDRM ODPM
Esterel code 978 not used

generated C (non-opt) 5253 not used
generated C (opt) 4749 not used

C/C++ for interface 2520 not used
C++ for control part not used 8045

Sum Total (opt) 8247 8045

We note that this measurement includes the control
part of udp tx on the EDRM and the ODPM 7. . The
EDRM version has 978 lines of Esterel code which
is translated into C code with 5253 lines. We have
obtained about 9.6% code optimisation of the EDRM
version using the Remlatch and Sis optimisors.

In terms of the loc of the EDRM version, taking into
account that the advantage of a general-purpose sys-
tem is to utilise the large amount of memory, loc is not
an important issue for these applications, as opposed
to embedded applications. Instead, the cost of extra
loc can be considered as the benefit of Esterel: the
easy expression of preemption and broadcast as well
as synchrony, simulation, verification, etc.
5.4 Pros & Cons

EPspectra provides a solution to provide the de-
bugging and verification phases for designing and de-
veloping basic DSP software applications. In addition,
the DRM provides good performance results for DSP
software applications with a well-formed dependence
topology as it fully utilises a basic software pipelining
method and the virtual sizing technique of the sinks.

Nevertheless, since it is based on a basic technique,
the software pipelining method applied to our schedul-
ing model in Esterel is weak to applications which
have the topology with implicit control dependencies
that requires the dynamic reconfiguration of the exe-
cution topology. It has a hardness about the dynamic
reconfiguration in that Esterel is much suited to de-
scribe complex and static fixed control-paths.

6 Conclusion
In this paper, we have presented EPspectra in

order to ease the work involved in the debugging and
verification phases of developing DSP software ap-
plications. Esterel not only suites for the spec-
ification of control-paths, but also provides simula-
tion and verification phases for the correctness prop-
erties of the system. The control part of EPspec-

7The code corresponding to the data part of the EDRM is
the same as is utilised in that of the ODPM

0

500

1000

1500

2000

2500

10 20 30 40 50 60

K
 s

am
pl

es
 /

se
c

Time(sec)

EDRM
ODPM

grep process - EDRM
grep process - ODPM

Figure 10: Comparison of number of processed
samples per second

0

500

1000

1500

2000

2500

10 20 30 40 50 60

K
 s

am
pl

es
 /

se
c

Time(sec)

EDRM
ODPM

grep process -EDRM
grep process -ODPM

Figure 11: Number of processed samples per second
without interfering process

tra is based on a Data-Reactive scheduling Model
(DRM) for scheduling DSP modules, instead of Data-
Pull model on which the control part of Pspectra

is based. The DRM utilises the software pipelining
scheduling method and the virtual sizing technique of
the sinks. These methods improve the performance of
DSP applications with a static scheduling configura-
tion since they have to obey strict scheduling rules.

In a separate article, we show the Esterel method-
ology, especially focusing on the verification issues:
the safety property (“something bad will never hap-
pen.”) and the bounded liveness property (“some-
thing good will eventually happen in a certain times
unit.”). Another aspect of verification that would be
interesting to investigate is to check timing-constraints
of scheduling DSP functions, which can be carried
out using a toolkit for verifying real-time properties,
Taxys [12] provided by France Telecom R&D.

Acknowledgments
We gratefully acknowledge discussions about

Pspectra with John C Ankcorn at MIT and about
Esterel methodology with Robert de Simone and
Amar Bouali at INRIA-Sophia Antipolis. This re-
search was supported by the DESS project associated
with Information Technology for European Advance-
ment (ITEA).

References
[1] Vanu G. Bose. Design and Implementation of

Software Radios Using a General Purpose Pro-
cessor. PhD thesis, MIT, June 1999.

[2] Brett W. Vasconcellos. Parallel signal-processing
for everyone. MS thesis MIT, February 2000.

[3] Gérard Berry. The constructive semantics of pure
esterel, 1999.

[4] Amar Bouali. Xeve: an esterel verification envi-
ronment. In the 10th International Conference
on Computer Aided Verification, volume 1427.
LNCS, 1998.

[5] R. Jagannathan. Dataflow models, 1995.

[6] E. Jensen. Eliminating the hard/soft real-time
dichotomy, 1994.

[7] T. Johnsson. Efficient compilation of lazy evalua-
tion. SIGPLAN Notices, 19(6):58–69, June 1984.

[8] Vicki H. Allan, Reese B. Jones, Randall M. Lee,
and Stephen J. Allan. Software pipeling. SIG-
PLAN Notices, 27(3):367–432, September 1995.

[9] E. Sentovitch, H. Toma, and G. Berry. Latch
optimization in circuits generated from high-level
descriptions, 1996.

[10] E. M. Sentovich, K. J. Singh and et al. SIS: A
system for sequential circuit synthesis. Technical
Report UCB/ERL M92/41, Univ. of California
Berkeley, 1992.

[11] Michael B. Jones and Stefan Saroin. Predictabil-
ity requirements of a soft modem. In ACM SIG-
METRICS Conference, Cambridge USA, June
2001.

[12] D. Weil, E. Closse and et al. Taxys: a tool for de-
veloping and verifying real-time properties of em-
bedded systems. In the 13th International Con-
ference on Computer Aided Verification, 2001.

	Introduction
	Software Architecture
	Data Part
	Control Part
	Esterel-based Architecture

	Scheduling Techniques
	DPM: Data-Pull Model
	DRM: Data-Reactive Model
	Features of the DRM
	Data Dependencies

	Example of a DSP application: udp_tx
	Scenario of scheduling on the DRM

	Performance analysis
	Performance on a PIII/600MHz machine
	Performance on bi-PII/392MHz SMP machine
	Comparison of LoC (Lines of Code)
	 Pros & Cons

	Conclusion

