
A Topology-Aware Overlay Multicast Approach for
Mobile Ad-Hoc Networks

Mohamed Ali Kaafar, Cyrine Mrabet, and Thierry Turletti

INRIA Sophia Antipolis
2004 route des lucioles, 06902 Sophia Antipolis, France

{mkaafar, cmrabet, turletti}@sophia.inria.fr

Abstract. AOMP (Ad-hoc Overlay Multicast Protocol) is a novel approach for
application-layer multicast in ad-hoc networks. We introduce in this paper a new
algorithm that exploits a few properties of IP-routing to extract underlying topol-
ogy information. The basic idea is to match nodes’ path to the source in order to
detect near neighbors in the physical topology. Then, in a dynamic and decentral-
ized way, we construct a minimum cost mobility-aware delivery tree, connecting
nodes that are close to each other. We design a tree improvement algorithm in
order to enhance the global performance of AOMP during data distribution. Our
simulations results show that, compared to previously proposed application-layer
multicast structures, AOMP yields trees with lower cost and traffic redundancy.
In addition, it performs well in terms of packet losses, especially in case of node
mobility.

1 Introduction

Using mobile and wireless devices is becoming ubiquitous. In recent years, the study
and developments of wireless networks have been very popular, leading to flexible and
efficient wireless devices. In particular, Mobile Ad-hoc NETworks (MANETs) are dy-
namically reconfigurable wireless networks with no fixed infrastructure, where nodes
act as hosts as well as routers. MANETs are deployed in applications such as disas-
ter recovery, distributed collaborative computing, vehicular communication, data and
information sharing in difficult terrain, extension of the infrastructure-based networks
and video-conferences.

Multicasting provides a mean for group communication by enabling applications to
seemingly communicate with a set of nodes. Traditionally a well suited tool for collab-
orative applications, multicasting is especially useful in ad-hoc networks where tasks
may be carried out by groups of nodes. Due to scarcity of bandwidth, varying net-
work connectivity and frequent topology changes caused by node mobility and tran-
sient availability, routing algorithms tailored for wired networks will not operate well
if directly transposed to MANET. All the more so with multicasting, which adds to the
difficulties of unicast routing the complexity of maintaining and handling dynamic mul-
ticast group membership changes. Multicast routing protocols have been proposed for
MANET. These protocols assume however, that even non member nodes actively par-
ticipate in maintaining multicast state information and replicating multicast packets. If
some non member nodes are fast moving or refusing multicast cooperation, they affect
all the involved multicast sessions.

K. Cho and P. Jacquet (Eds.): AINTEC 2006, LNCS 4311, pp. 31–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

32 M.A. Kaafar, C. Mrabet, and T. Turletti

Application Layer Multicasting has been proposed as the possible solution for this
scenario. In this case, multicast group members organize themselves to form an over-
lay topology; multicast communication between end systems is implemented by for-
warding messages through the overlay links over unicast IP. By moving the multicast
functionality to the end systems, we solve the problems associated with fast moving
intermediate nodes in maintaining multicast state information. But we pay the penalty
of increase in end-to-end latency due to duplication of packets flowing over underlying
network, and significant bandwidth consumption by proximity measurements overhead
or application-level topology adaptation, etc.

Existing studies focus then on the differentiation between application layer multicast
protocols and routing (network layer) protocols. This differentiation stands in the tra-
ditional Internet, because overlays are built to circumvent the fact that router-assisted
approaches are not feasible, and thus message routing is done at the application layer.
In contrast, because nodes in MANETs are end hosts as well as routers, all nodes in
MANETs are effectively involved in supporting P2P overlay abstractions, and thus P2P
overlay abstractions in MANETs have the option of being implemented either at the
network layer or above, that is, at the application layer. However, built separately, these
two options would cumulate each other disadvantages and would induce overhead, due
to inefficient communication between both layers. What is implemented in network
layer would be designed and run in a redundant way, by application layer, and vice
versa.

In this paper, we propose a new scheme, named AOMP(Ad-hoc Overlay Multicast
Protocol), to construct an efficient topology-aware overlay multicast without inducing
measurements overhead. In our proposal, while building an overlay multicast struc-
ture, we rely first on information provided by the network layer to construct a virtual
topology closer to the actual underlying network topology. Adaptation to nodes’ mo-
bility is also detected and triggered by the network layer. Routing information needed
by AOMP, means “shortest” IP paths that mobile nodes maintain. Actually, “shortest”
depends on the particular routing protocol employed, but typically denotes shortest in
terms of delay or number of hops. AOMP relies thus on reactive routing protocols, that
maintain route paths from a source to a destination.

In a first stage (section 4), we introduce a novel algorithm that connects newcomers
to the underlying topology-aware overlay, namely the path matching algorithm. The al-
gorithm is similar to the concept of car pooling. Suppose that your friend is, more or
less, on your way home, so giving him/her a ride will not excessively delay you, and
you can reduce overall traffic by car pooling. If he/she is out of your way, however,
you decide to drive separately. The major strengths of the path matching algorithm are
that it exploits path information provided by already-run reactive routing protocols, to
construct a topology-aware overlay. It ensures that no specific (costly) route discov-
ery mechanism is deployed, and no end-to-end measurements are exchanged, and thus
avoids channel overhead and improves scalability. Moreover, the constructed overlay
network has a low delay penalty and avoids “useless” duplication of packets sent on the
same link.

In a second stage (section 5), we construct the multicast spanning tree. We pro-
pose runtime adaptation mechanisms that allows to enhance efficiency during data

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 33

distribution. These are non-greedy link adjustments designed to optimize the overall
overlay performance, and not a few particular nodes. Moreover, AOMP adapts to nodes
mobility (section 5.4). AOMP does not track nodes mobility at the application level,
since this issue is totally handled by the underlying unicast protocol. A mobility adap-
tation procedure is then triggered by a link status change raised by the routing protocol.
This procedure connects nodes to the “next” closest overlay member within a local pre-
defined search scope. It allows to adapt smoothly to frequent and continuous topology
changes in ad-hoc networks. The main advantages of our procedure are to maintain
virtual-physical topology mapping, while avoiding much overhead resultant from clas-
sical ’leave/join’ operations used by most of application layer multicast protocols.

Taken into consideration overlay messages control overhead, mobility management
and difference that may exist between reactive routing protocols, we evaluated our pro-
posed scheme using extensive simulations, comparing it to previously proposed overlay
and network-based multicast protocols. Our findings can be summarized in the follow-
ing points:

– AOMP outperforms the previous best-performing application layer multicast in
terms of delay, packets duplication and reliability.

– AOMP performs favorably even when compared with network layer multicast pro-
tocols, more specifically ODMRP [LEE 02]. For ad-hoc groups where 20% to 40%
of nodes are part of the multicast group, AOMP exhibits better results in terms of
packet delivery ratio.

– AOMP achieves promising delivery ratio in different mobility scenarios, outper-
forming other proposed protocols.

In the following section, we outline the related literature. We describe the general
architecture of AOMP in section 3. The path matching algorithm used in the initial
connection of nodes to the AOMP overlay is described in section 4. The second phase
of AOMP is presented in section 5. We introduce mechanisms to construct and manage
the delivery tree, then we discuss how AOMP adapts to nodes mobility. In section 6, we
demonstrate and study the performance of AOMP, through extensive simulations, by
providing comparison with several previous approaches. Section 7 concludes the paper.

2 Multicasting in MANETs

In this section, we mention existing ad-hoc multicast protocols and summarize their ba-
sic operations. Research efforts can be classified whether they adopt multicasting tech-
niques on the networking layer with multicast routing protocols or on the application
layer with overlay multicast schemes.

2.1 Multicast Routing Protocols

As with unicast routing, multicast routing comes in proactive, reactive, or a combina-
tion of the two flavors (hybrid). Reactive algorithms represented by MAODV [ROG 99],
ADMR [JET 01], OLAM [BAS 00] and ODMRP [LEE 02] present reduced mainte-
nance overhead by maintaining state information only when a multicast session is ac-
tive. The drawback is decreased responsiveness. Proactive algorithms such as CAMP

34 M.A. Kaafar, C. Mrabet, and T. Turletti

[GAR 99] and FGMP [CHI 98] react faster since multicast routing information is read-
ily available, but at the price of introducing high overhead for maintaining multicast
group structure even when no multicast session is active. The hybrid approach repre-
sented by MZR [DEV 01] aims at obtaining a satisfactory balance among the charac-
teristics of both methods by limiting the scope of the proactive procedures to the local
neighborhood of nodes and implementing reactive procedures for longer distances.

State management is one of the most important issues of these multicast protocols.
State management involves timely updating of the multicast routing tables at all the
nodes (including nodes that are not involved in the multicast session) to maintain the
correctness of the multicast routing structure, tree or mesh, according to the current
network topology. Even under moderate node mobility and multicast member size, state
management incurs considerable amount of control traffic. To address the scalability
issues, we need to reduce the protocol states and constrain their distribution, or even
use methods that do not need to have protocol state. A number of research efforts have
adopted this method, which leads to overlay multicasting.

2.2 Overlay Multicast Protocols

A recent shift towards stateless multicasting is represented by DDM [JI 01], LGT
[CHE 02] and RDG [PAT 03]. In overlay multicast, a virtual infrastructure is built to
form an overlay network on top of the physical network. Each link in the virtual in-
frastructure is a unicast tunnel in the physical network. IP layer implements a best-effort
unicast datagram service, while the overlay network implements multicast functionali-
ties such as dynamic membership maintenance, packet duplication and multicast routing.
All these protocols do not require maintenance of any routing structure at the forwarding
nodes. These protocols use different techniques to achieve stateless multicasting. LGT
builds an overlay packet delivery tree on top of the underlying unicast routing protocol,
using geometric distances between member nodes. Multicast packets are encapsulated
in a unicast envelop and unicasted between the group members. When an overlay node
receives a data packet from its parent node, it gets the identities of its children from the
information included in the header of the packet. For RDG, a probabilistically controlled
flooding technique, termed as gossiping, is used to deliver packets to all the group mem-
bers. In DDM, a source encapsulates a list of destination addresses in the header of each
data packet it sends out. When an intermediate node receives the packet, its DDM agent
queries the unicast routing protocol about which next-hop node to forward the packet
towards each destination in the packet header. DDM is intended for small groups. When
group size is large, placing the addresses of all members into the packet headers will
not be efficient. The protocol has a caching mode, so that only the difference from the
previous states is actually placed in the headers. However, as the forwarding set at the
on-route nodes inevitably grow large, each intermediate node needs to keep routes for a
large set of destinations. This poses a heavy burden on the supporting unicast protocol
even under moderate mobility.

PAST-DM (Progressively Adapted Sub-Tree in Dynamic Mesh) [GUI 03] and
ALMA (Application Layer Multicast Algorithm) [GE 04], are two recent overlay mul-
ticast approaches. With PAST-DM, each node implements an expanded ring search al-
gorithm [PER 99] to become aware of neighboring member nodes. Nodes periodically

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 35

exchange the link-state table with their neighbors in a non flooding manner such that,
after several exchanges, a given nodes link state reaches distant nodes. Thus, by look-
ing at each nodes link state, a node can view the entire network. PAST-DM suffers from
scalability issues, considering the important overhead caused by control and measure-
ment messages during neighbors discovery and the exchange of link state tables.

ALMA constructs a multicast tree in a decentralized and incremental way. This ap-
proach is based on RTT (Round Trip Time) measurements in order to detect and manage
nodes’ mobility. When periodic RTT measurements towards its parent exceed a thresh-
old, a node has to perform a reconfiguration procedure of its delivery tree. ALMA is
also based on an ‘expanded ring search’ technique limited by a maximum hop count,
to detect neighbors. This makes ALMA running over costly positioning systems, that
incur considerable amount of control traffic, and thus is more likely to contribute to the
overall congestion in the network.

3 AOMP: General Description

In the following, we describe the basic model of AOMP. We have designed a topology-
aware overlay multicast architecture to provide a scalable and efficient multicast distri-
bution service to mobile ad-hoc end users. Basically, the AOMP overlay construction is
divided into two processes: (1) initial connection to a backbone Tree, and (2) delivery
tree construction and management.

The initial connection process consists in finding the closest neighbor of each new-
comer. It constructs gradually the backbone tree, which is a low cost spanning tree
rooted at the source node, and connecting nodes that are topologically close together.
The process is based on a path matching algorithm that consists in matching the over-
lay path of a newcomer to the source, with those of other existing overlay members.
Each new member of a multicast session first extracts the path (route) from the root
(source as a primary sender) of the session to itself. The overlap among this path and
other paths from the root is used to partially traverse the overlay data delivery tree, and
determine the best parent and children for the new member. We denote the newcomer’s
parent in the backbone tree, the principal parent. The heuristic used in the path matching
algorithm is subject to both capacity or node’s fan-out (referring back to the car pool-
ing example, space in your car) and delay (e.g., car pooling will not make the journey
excessively long) constraints.

As a spanning tree uses the minimal number of links, additional links can be in-
cluded in the overlay to improve the delay properties of the low cost backbone tree. The
resultant mesh is degree-bounded based on each individual nodes capacity constraint
(fan-out). The second process aims thus, in a first step, to derive the delivery tree from
the mesh, while respecting the degree constraints of each overlay node. Figure 1 shows
a sample AOMP overlay. In the figure, s is the data source and the rest of the nodes are
receivers. The dashed lines define the mesh links, and the backbone and delivery tree
links are shown as respectively arc and solid lines connecting a parent node to its child.

In a second step, the delivery tree management process aims to periodically refine the
delivery tree links. Basically, this is done by adding/deleting links to/from the overlay
using a set of local rules running at each node. The rules prioritize the minimization of

36 M.A. Kaafar, C. Mrabet, and T. Turletti

Fig. 1. Example of an overlay tree

each node subtree delay, weighted by the number of its descendants, over a greedy delay
minimization of a unique node. Each add/delete link operation involves only the end-
points of the link, and requires no global coordination with other nodes in the overlay.

4 AOMP: Connection Process

The AOMP connection protocol is based on the path matching algorithm. Typically, it
uses the following heuristic: a newcomer selects, as a parent in the backbone tree, the
node whose shortest path from the source has maximal overlap with its own path from
the source. This minimizes the increase in number of hops (and hence delay [SIK 04])
over the unicast path, and interestingly decreases the number of duplicated packets on
the same physical link.

The path matching algorithm is initiated by every newcomer joining the overlay. The
algorithm traverses the overlay data delivery tree to determine the best parent for a new
node. The main goal is to build a tree connecting the neighboring nodes (proximity
in the physical topology), i.e. the backbone Tree (see figure 1). In the following, we
present terminology and notation to be used throughout this paper. We then describe
the path matching algorithm process.

We denote the path between two nodes x and y by P (x, y). It is the sequence of
nodes comprising the shortest path from node x to node y according to the reactive
underlying routing protocol. |P (x, y)| is the number of hops in P (x, y). A path P (x, y)
is a prefix of P (x, y′) if and only if P (x, y) is included in P (x, y′). This property is
denoted as: P (x, y) ↪→ P (x′, y′). In figure 1, P (s, t) is a prefix of P (s, q).

The path matching algorithm is a decentralized process that determines the overlay
node, y that shares the longest path prefix (from the source) with the newcomer, x. In
other words, the algorithm has to search for y satisfying:

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 37

(P (s, y) ↪→ P (s, x)) and � z , P (s, z) ↪→ P (s, x), suchthat |P (s, z)| > |P (s, y)|
(1)

Let n be a new member wishing to join a multicast session. n sends then a “Join-
ing Request” to s. Upon being requested, the source node s extracts its path to the new-
comer, and executes the path algorithm. If s estimates itself as the principal parent of
n, then the process is terminated and s answers the newcomer accordingly. Otherwise,
the request, is forwarded to the child of s of which the path satisfies equation 1. The
path of the newcomer to the source is piggybacked in the forwarded request. The algo-
rithm is then processed by the overlay node that has been transmitted the (propagated)
“Joining Request”, say y. The algorithm considers three mutually exclusive conditions,
as depicted in figure 2.

(a) case 1. (b) case 2. (c) case 3.

Fig. 2. The three cases for the path matching

If possible, node y selects, one of its children yi, such as P (y, yi) is the longest prefix
of P (y, n). If such a child exists, the algorithm proceeds to traverse the sub-tree rooted
by yi (Case 1 in figure 2(a)). Otherwise, if there are children yi of y such that the path of
n is a prefix of those of yi for some i, n becomes a child of y with yi as its children (Case
2 in figure 2(b)). In case no child of y satisfying the first or second conditions exists, n
becomes a child of y (Case 3 in figure 2(c)). It is important to note that no more than
one child of y satisfying the first condition can exist, since the algorithm searches for
the node corresponding for the longest path matching. The “Joining Request” is then
propagated on a unique subtree rooted by a unique child.

Next, we describe the multicast delivery tree management protocol. We specifically
discuss the following issues with regards to AOMP:

– Creating and maintaining the multicast tree, i.e. member joins and data distribution.
– Improving efficiency by run-time refinements in mobile scenarios or when mem-

bers experienced poor performances.
– Ensuring packet level reliability during reconfigurations and mobility.

38 M.A. Kaafar, C. Mrabet, and T. Turletti

5 AOMP: Tree Management Process

After the connection process terminates, a newcomer connects to its principal parent in
the backbone tree. It is important to notice that at this stage, connection to the backbone
tree does not consider any capacity constraints. This allows to define for each newcomer
its closest node in the backbone tree, and delay fan-out constraints to its process of
connection to the delivery tree. This process starts by constructing a mesh structure
from which the delivery tree would be derived.

Maintaining a mesh has several advantages over maintaining only the delivery tree
structure. First, a mesh topology consists of multiple paths to the data source, and hence
is more robust than a tree structure which can be partitioned even with a single node
failure. The multiple paths property is also useful for the overlay optimization. The
routing protocol also automatically handles the potential looping problem in distributed
tree maintenance1. Next, we provide a description of the AOMP mesh structure, and
how the newcomer joins the mesh.

5.1 The Mesh Structure

The backbone tree, constructed during the connection process, constitutes the main
skeleton of the mesh. This structure is ever since added with additional links to evolute
towards a mesh connecting each newcomer to not only its principal parent (or one of
its descendants as described in section 5.2), but also to a few specific nodes that may
improve the delay properties of the delivery tree. Adding such links is established as
follows: as soon as a newcomer connects to its principal parent, it is informed of the ad-
dresses of its grand parent as well as those of its uncles. The newcomer then establishes
connections with theses considered nodes, constituting the mesh links. Specifically, two
nodes are said to have a neighboring (or peering) relationship when the overlay link be-
tween them exists in the constructed mesh. The link may appear in one or both or none
of the backbone and delivery trees.

5.2 Joining the Mesh

The connection process terminates when the path matching algorithm is executed by
the principal parent of a newcomer. The principal parent sends then a response message
to the “Joining Request” of the newcomer. The response includes position of the new-
comer according to the three path matching cases described above. It also contains the
principal parent acceptance or not in the delivery tree, as a child. If it is not accepted,
the list of the parent’s children in the delivery tree is transmitted to the newcomer,
“Join DeliveryTree” messages will be transmitted to each descendant recursively until
it can be attached to the delivery tree. Thus, despite the path matching-based connection
process that allows the newcomer to detect the closest node in the underlying topology,
that one can yield its position in case its principal parent has not the capacity to connect
it to the delivery tree (fan-out constraints). Indeed, all the children of a unique principal
parent are worth in terms of the metric number of hops. A newcomer will then concede

1 In [FRA 00], Francis et al. provide a detailed discussion on the looping problem in an overlay
tree.

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 39

(a) Fan-out constraints prevent full adaptabil-
ity to underlying topology: non adapted de-
livery tree.

(b) Local search scope for node n.

Fig. 3. Run-time refinements example

its position in the delivery tree to other overlay nodes that already exist. Figure 3(a)
illustrates the case where the newcomer does not connect in the delivery tree to its prin-
cipal parent, but to the child x2. The refinement procedure will allow it thereafter to go
up in the tree, if ever it acquires a superior weight in the delivery tree, as and when few
nodes connect to it or if its performance impose that, as described in the next paragraph.

5.3 Delivery Tree Refinement

We described above how refinements are necessary for nodes that conceded their po-
sitions in the delivery tree, due to capacity constraints. The refinement procedure is
also important to reorganize the overlay due to the changes in the overlay memberships
(when members join, leave or fail) and in the underlying network conditions.

State at an AOMP node. During data transmission, each node is able to maintain its
current latency, denoted Li induced by the overlay routing from the delivery tree source,
s. It is computed as the difference between transmission and reception time stamps of
data packets. Based on the latency time, each node i estimates its weight wi in the
delivery tree. Typically, a node weight is the sum of latencies of all its descendants to
their parents. We notice that a high value of a node’s weight implies that the subtree
rooted by this node is poorly served in the delivery tree. In other words, this indicates
that the subtree members suffer from a significant increase of transmission delay. The
weight is computed as:

wi = Li +
∑

j∈Children(i)

wj (2)

where wl, denoting the weight of a leaf node l is equal to its latency Lf . Equation 2
implies that the computation of node’s weight is decentralized and recursively trans-
mitted from the children to their respective parents. Moreover, the weight information

40 M.A. Kaafar, C. Mrabet, and T. Turletti

is shared between each parent and their children, through “Keep Alive” messages used
for the overlay maintenance. In this paper, we will not focus on the mechanisms of
maintenance well studied in previous works.

Which node is concerned by the refinement, and when? Refinement procedures are
periodically executed by all overlay nodes, except the source. However, the setting of
the refinement interval represents a trade-off between the overhead and the accuracy of
the delivery tree. To be conservative, by default a node executes a refinement procedure
only once every 1200 received data packets (approximately every 5 minutes). However,
we use a more aggressive strategy for nodes that concede their position, returned by
the connection process, in the delivery tree. Actually, this type of nodes execute the
refinement procedure once per 60 seconds, during the 5 first minutes. The refinement
procedure is triggered for further reasons, such as drastic change in the network topol-
ogy, nodes failures, etc. Each node that is concerned by the refinement, estimates its
performance while substituting itself to one randomly selected node in its search scope.
The latter is composed of the node’s parent and uncles, as depicted by figure 3(b).

Refinement decisions. Once a node i selects a node in its local search scope, say j,
it computes what would be its potential weight, it connects directly to its grand parent,
gp. The potential weight is computed as follows:

wpotential
i = wi + (Ni + 1) · [d(gp, i) − d(i, j) − d(j, gp)] (3)

where Ni is the number of nodes in the subtree rooted by i. Node i sends then this
information to node j, as a “Refinement Request” message. Upon receiving such re-
quest, node j considers henceforth its weight while eliminating the subtree rooted by i,
w′

j = wj − wi. Requested node j computes then its potential weight if ever it yields its
position in the delivery tree to the requesting node i:

wpotential
j = w′

j + (Nj − Ni) · [d(gp, i) + d(i, j) − d(gp, j)] (4)

The substitution is processed (and accepted by node j) only if the potential weight of
the requesting node i is greater than to the potential weight computed by the requested
node j: wpotential

i > wpotential
j .

5.4 Adaptation to Mobility of Nodes

In an ad-hoc environment, it is necessary that the delivery tree adapts to mobility of
nodes. A basic adaptation in the AOMP overlay, would result in periodic operations to
check if paths to the source have changed or not. An initial connection process would
be imposed to the concerned nodes. Nevertheless, such a mechanism may incur high
overhead, as well as eventual overload of the source.

We propose a mechanism that allows intermediary overlay nodes (in the path of each
node to the source), to take part in the detection of mobility and reconnection to the
backbone tree and thus to the delivery tree. First, this would induce less overhead and
less sollicitation of the source. Second, the adaptation process would be faster, while
relying on the first overlay node that is aware of the topology change due to mobility.

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 41

Our mechanism exploits yet another time path information provided by the underly-
ing reactive routing protocol. In fact, we use the route maintenance, automatically (and
continuously) processed by the routing protocol, that detects any route changes, caused
by nodes mobility. The route to the source change in the routing layer triggers a pro-
cedure of adaptation to mobility at the application level. The basic idea is to proceed
locally with a connection to the backbone tree in a first step, then reconfigure links of
the delivery tree. Let us take the example of the figure 1, and suppose that node w moves
towards node v in a way that P (s, w) changes. This change will be noticed at the level
of not only the routing layer of w, but also of its parent x, since the latter maintains IP
addresses as well as routes to its children, during data transmission. First, x verifies the
impact of such movement. Typically, it checks in the new path generated by its child
movement, whether it contains at least an overlay node in its neighborhood or not. If
no such nodes exist, x reconfigures only its IP path to its child w without imposing any
change in overlay structure. Otherwise, connections to the backbone tree are carried out
by both w and its children. The request to reconnect to the backbone tree is imposed by
x to w, which forwards the request to its children. Reconnection to the backbone differs
from the initial connection, in the fact that it is local and is initiated at the first overlay
node met in the new path (v in our example for a reconnection of w). Like the initial
connection, the reconnection to the backbone applies the path matching algorithm, with
v as a source, rather than s. It is finally important to note that the delivery tree is mod-
ified only when all connections of w and its children are established in the backbone
tree.

6 Performance Evaluation of AOMP

We evaluate the performance of AOMP by carrying out various simulation studies.
AOMP is based on both DSR [JOH 03] and AODV [PER 99], as underlying routing
protocols, and is denoted respectively AOMP-DSR and AOMP-AODV. For AODV, we
extract from the routing tables, the source route accumulation (feature of DSR) to run
the path matching algorithm.

We performed simulations to provide quantitative performance analysis according to
group members in terms of packet delivery ratio, control overhead as well as average
end-to-end delay. We also observe the behavior of AOMP in case of mobility of nodes.

We compared AOMP to both ALMA [GE 04] and PAST-DM [GUI 03] as overlay
multicast approaches. For reference purpose, we also compare it to an IP-layer multicast
protocol: the On-Demand Multicast Routing Protocol, namely ODMRP [LEE 02]. The
detailed parameters on each protocol are described in Table 1.

6.1 Simulation Model and Performance Metrics

The simulation model was built around the NS-2.28 [CAN 04] simulator. Our simula-
tion models a network of 140 mobile nodes placed randomly within a 1000 × 1000
meters square area. By varying the group size, we vary the percentage of mobile nodes
that are involved in the multicast session. The simulation duration is 900 seconds. Each
node has a transmission range of 200 meters and channel capacity is 2Mbit/sec. The
mobility model follows random waypoint model which has 50 seconds as pause time.

42 M.A. Kaafar, C. Mrabet, and T. Turletti

Table 1. Simulation parameters over each protocol

Protocol Parameter value

PAST-DM The period of virtual link exchange 15s

ALMA Tree reconfiguration period 20s

ODMRP Interval between join query floods 3s

Duration of group forwarding state 10s

The minimum speed is 0 m/s and the maximum speed is set to 20 m/s. For the experi-
ments for which no group size is specified a default size of 50 group members is used.
A default node’s speed of 2 m/s is set as a default mobility parameter. Traffic is gener-
ated as constant bit rate (4 packets/second) and packet size is set to 512 kbytes. Nodes
fan-out is uniformly distributed in [2..20]. Finally, we use IEEE 802.11 DCF as MAC
protocol. The following metrics are studied for comparing protocol performances:

1. Delivery Tree cost: The total number of the physical links that make up the logical
links in the multicast delivery tree. This metric represents the “goodness” of the
structure created by the overlay multicast.

2. Stress: The stress of a physical link is the number of identical copies of a multicast
packet that needs to traverse the link. This metric quantifies the efficiency of the
overlay multicast scheme.

3. Average Relative Delay Penalty (ARDP): The relative delay penalty is the relative
increase in delay between the source and an overlay member against unicast delay
between the source and the same member. ARDP is then the average ratio between
the overlay delay (d′) and the shortest path delay in the underlying network (d)
from s to all other nodes: 1

N−1

∑N−1
i=1

d′(s,i)
d(s,i) , where N is the number of nodes

in the overlay. This metric is used to quantify the relative cost of routing on the
overlay.

4. Control Overhead: The number of control packets for delivering per data packet.
It includes in AOMP the number of all control packets generated by path matching
during the connection to the backbone tree, establishing connections in the deliv-
ery tree and refinements. This metric evaluates the cost of the overlay structure
according to the overlay goodput.

5. Data Delivery Ratio: The ratio of the number of packets actually delivered to the
receivers versus the number of data packets that were expected. This metric is used
to quantify the reliability of the multicast protocol.

6.2 Performance Analysis

In the following, we detail our simulation results and provide explanations of the ob-
served behavior.

AOMP creates a less expensive delivery tree than PAST-DM and ALMA. Our pro-
posed protocol constructs a multicast delivery tree with a lower cost in terms of physical

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 43

Fig. 4. Tree Cost versus the Group Size Fig. 5. Tree cost var according to mobility

hop counts than PAST-DM and ALMA. In figure 4 , we plot the tree cost versus the size
of the group. We observe that AOMP (AOMP-DSR and AOMP-AODV) achieves de-
livery trees with an average cost of 42.8 for a group size of 50, i.e. 1.5 to 2.5 less
than PAST-DM and ALMA. First, we attribute the difference between PAST-DM and
both ALMA and AOMP to the “locally-adaptive” nature of these two protocols. Indeed,
PAST-DM creates a logical tree in somewhat centralized way; the decisions of any node
transmitting data (considered as a source) affect the creation of the tree globally. In both
ALMA and AOMP, the reconfigurations are handled by the receivers, and these local
decisions turn out to respond more efficiently to the effects of mobility, and topology
changes in case of group membership variation. Second, we observe that AOMP scales
better than ALMA. In fact, the ALMA tree cost increases drastically to more than 80
physical links making up the overlay links. This demonstrates that ALMA does not
scale to tens of overlay members. AOMP has almost a constant tree cost with a max-
imum of 51 for AOMP supported by the AODV protocol. Topology information is of
paramount importance in this observation, as data packets in AOMP are sent through
the shortest path defined by the underlying routing protocol. This fact makes the AOMP
overlay structure maps the routing (physical) structure that packets would be guided
through anyway. Exploiting this information allow then to build the delivery tree at a
minimum cost. In figure 5, we observe the tree cost as a function of mobility speed,
for both AOMP-DSR and ALMA. While tree cost is expected to increase with mobility
speed, this simulation shows how far a protocol could adapt to mobility. For AOMP, we
observe that the tree cost increases “smoothly” while this value drastically reaches high
values for ALMA. The ALMA tree cost is 91 for a group size of 20 nodes, under high
mobility, which oversteps the tree cost of a 50 nodes group in AOMP. The latter is less
affected by mobility and continues to construct less expensive trees, as and when nodes
are moving due to its reliance on the routing protocol to detect and extract the new path
of the mobile node.

The path matching algorithm of AOMP avoids “useless” packet duplications. Fig-
ure 6 shows average physical network stress for each of the overlays, namely PAST-DM,
ALMA and AOMP supported by DSR and AODV. The average stress in this simulation
is tracked 2 minutes after the last node joined the overlay. The average stress observed
in a delivery tree constructed by AOMP is much smaller than those with ALMA and

44 M.A. Kaafar, C. Mrabet, and T. Turletti

Fig. 6. Average Stress versus the Group Size

PAST-DM. This value stabilizes for AOMP between 2.62 and 2.88 for a group size of
50 members, while it exceeds 5 and 8 for other overlays. Besides the difference that
may exist between AOMP-DSR and AOMP-AODV, the results show the efficiency of
the path matching algorithm that avoids redundant packets over the same physical links,
by binding overlay nodes according to their proximity. Consequently, the possibility of
bottlenecks are much lower in AOMP, than in PAST-DM or ALMA. We attribute the
slight difference between AOMP-DSR and AOMP-AODV to the fact that while both
routing protocols share the on-demand behavior in that they initiate routing activities
only in the presence of data packets in need of a route, many of their routing mechan-
ics are very different. In particular, DSR uses source routing, whereas AODV uses a
table-driven routing framework and destination sequence numbers. The shortest path
extracted by AOMP to be exploited in the path matching algorithm is then different
from DSR to AODV. However, the simulation prove that for both cases, AOMP is able
to reduce considerably the amount of redundant flows traversing the ad-hoc network,
demonstrating the efficiency of the path matching algorithm heuristic.

AOMP achieves a much better ARDP as compared to PAST-DM and ALMA. We
characterize the average incurred delay observed by the receivers in a large populated
overlay by observing the ARDP variation according to the overlay size in figure 7.
In PAST-DM, the ARDP value increases drastically to more than 6 demonstrating
that this protocol does not scale to a few number of nodes. We note also that ALMA
has lower ARDP than the PAST-DM delivery tree, but suffers relatively poor perfor-
mance with ARDP ≥ 5.5 in a 50-nodes overlay. AOMP, for both DSR and AODV
as underlying routing protocol, maintains a stable ARDP value while the overlay size
is increasing. Thanks to the topology awareness of this protocol, ARDP values are
roughly maintained between 1.2 and 2.8.

AOMP incurs low control overhead. We ran simulations to evaluate the control over-
head in the overlay and analyse the protocol behavior under dynamic ad-hoc overlay.
We assumed a basic header size of 40 bytes per IP-packet and we measured the over-
all control message traffic sent and received by each node throughout a session. Figure
8 shows the average overhead per node when varying the speed of nodes. Additional
messages cost increases with mobility of nodes, particulary with PAST-DM. Recall that

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 45

Fig. 7. Average Relative Delay Penalty property
versus the Group Size

Fig. 8. Control overhead as function of mobility

PAST-DM creates a logical Steiner tree in a somewhat centralized way; the decisions at
the source affect the creation of the tree globally and generate an important cost of con-
trol messages. ALMA has a less important additional cost that PAST-DM but more im-
portant than AOMP when mobility increases (twice more control overhead messages).
The periodic measurements processed by ALMA nodes to know their RTT towards
their parent and neighbors make ALMA less efficient than AOMP in terms of control
overhead. By relying on the path matching mechanism, AOMP generates lower control
trafic. In fact, exploiting path information provided by either DSR or AODV ensures
that no costly end-to-end measurements are exchanged and thus alleviates nodes over-
head. AOMP-DSR and AOMP-AODV have almost identically shaped curves. However,
the absolute overhead required by AOMP-AODV is more important than AOMP-DSR
because each of its route discoveries typically propagates to every node in the ad-hoc
network. AOMP-DSR sends less overhead, but bigger control packets. In ODMRP, the
control overhead remains relatively constant because no updates are triggered by mo-
bility. JOIN QUERY refresh interval was set constant to three seconds and hence no
additional overhead is required as mobility increases.

AOMP is reliable. Figure 9 illustrates the packet delivery ratio for different protocols
as a function of varying movement speed with static group members. Since ODMRP
provides redundant routes with a mesh topology, it shows good performance event in
high dynamic situations. On the other hand, AOMP shows similar packets delivery ratio
to ODMRP. AOMP is even more reliable in high speed scenarios (> 10m/s), with a ratio
slightly decreasing from 0.8% to 0.73%. ALMA and AOMP are very close to each other
when nodes are static (lower than 4m/s), but ALMA is much less reliable than AOMP
when the speed exceeds 10m/s. ALMA uses the RTT metric to define closeness and to
detect topology changes. This may be sufficient when nodes are static, but could lead
to many losses in case of high dynamic network. AOMP detects topology changes by
exploiting information provided by the routing protocol. It then reacts better. Moreover,
if a mobile node moved away from its parent in the delivery tree, and cannot connect
anymore to its principal parent, the delivery tree is not modified until a new principal
parent has been found.

46 M.A. Kaafar, C. Mrabet, and T. Turletti

We vary the number of overlay nodes in figure 10 and observe the data delivery ratio.
ODMRP is not affected by the number of multicast members. The data delivery ratio
shows slightly better performance (less than 30 overlay nodes) than the case with small
group members. As the number of group members increases, more redundant routes
may be established, and thus many alternative paths remain available even though the
primary path is broken. Similar to ODMRP, the data delivery ratio in AOMP is improved
as the number of overlay nodes increases. In particular for groups were 20% to 40% of
nodes are part of the multicast session, AOMP exhibits better delivery ratios. In fact,
the larger the group size, the greater the probability to detect an overlay node in the path
to the source is.

Fig. 9. Packet Delivery Ratio as function of
mobility

Fig. 10. Packet Delivery Ratio as function of
group size

7 Conclusion

In this paper, we proposed a new multicast overlay construction for mobile ad-hoc net-
works, named AOMP. Based on a path matching algorithm that is underlying routing-
aware, the protocol consists in a first step to connect the closest nodes in a backbone
tree. An efficient delivery tree is then generated. Run-time refinements are processed
during data distribution to adapt to both underlying network and membership changes,
and to optimize the overlay performance. The overlay construction process includes
also mechanisms to adapt to ad-hoc nodes mobility in a smooth and reliable manner.
We carry out simulations to quantify our protocol performance and demonstrate that
AOMP outperforms previously proposed overlay schemes. Our main findings prove that
exploiting path information at the connection process, allows AOMP to be highly effi-
cient by creating low cost delivery trees and avoiding useless packet duplication without
inducing high overhead. Furthermore, AOMP is reliable, achieving promising delivery
ratios in case of high mobility scenarios. Our future works consist first in adapting our
connection process to different routing protocols, in particular to proactive protocols.
The idea is to extract recursively routing information from overlay members tables, ex-
ploit it to gradually get a local view of the newcomer and locate it. In a second step,
we will focus on designing mechanisms to pro-actively manage nodes mobility in the
overlay, using mobility prediction models.

A Topology-Aware Overlay Multicast Approach for Mobile Ad-Hoc Networks 47

References

[BAS 00] BASAGNI S., ET AL., On-Demand Location Aware Multicast (OLAM) for Ad Hoc
Networks, Proceedings of IEEE Wireless Communications and Networking Confer-
ence (WCNC), Chicago, 2000.

[CAN 04] MCCANNE S., ET AL., NS network simulator, http://www.isi.edu/nsnam/ns/, 2004.
[CHE 02] CHEN K., NAHRSTEDT K., Effective Location - Guided Tree Construction Algorithm

for Small Group Multicast in MANET, Proceedings of IEEE Infocom’02, 2002.
[CHI 98] CHIANG C., GERLA M., ZHANG L., Forwarding group multicast protocol (FGMP)

for multihop mobile wireless networks, Proceedings of Cluster Computing, 1998.
[DEV 01] DEVARAPALLI V., SIDHU D., MZR: A multicast protocol for mobile ad hoc net-

works, Proceedings of IEEE International Conference on Communications, 2001.
[FRA 00] FRANCIS P., Yoid Tree Management Protocol (YTMP) Specification, Technical re-

port, AT&T Center for Internet Research at ICSI (ACIRI), 2000.
[GAR 99] GARCIA-LUNA-ACEVES J.J., ET AL., The Core-Assisted Mesh Protocol, Proceed-

ings of IEEE Journal on Selected Areas in Communications, 1999.
[GE 04] GE M., ET AL., Overlay multicasting for ad hoc networks, Proceedings of Third

Annual Mediterranean Ad Hoc Networking Workshop, 2004.
[GUI 03] GUI C., MOHAPATRA P., Efficient Overlay Multicast for Mobile ad-hoc Networks,

Proceedings of IEEE WCNC, 2003.
[JET 01] JETCHEVA J., JOHNSON D. B., Adaptive Demand-Driven Multicast Routing in

Multi-Hop Wireless Ad Hoc Networks, Proceedings of the Second Symposium on
Mobile Ad Hoc Networking and Computing, 2001.

[JI 01] JI L., CORSON S., Differential Destination Multicast–A MANET Multicast Routing
Protocol for Small Groups, Proceedings of IEEE INFOCOM, 2001.

[JOH 03] JOHNSON D.B., ET AL., The Dynamic Source Routing Protocol for Mobile ad-hoc
Networks (DSR),draft IETF MQNET 2003.

[LEE99] LEE S.J., GERLA M., CHIANG C.-C., On Demand Multicast Routing Protocol, Pro-
ceedings of IEEE WCNC99, pp. 1298-1302, September 1999.

[LEE 02] LEE S.J., ET AL., On-Demand Multicast Routing Protocol in Multihop Wireless Mo-
bile Networks, ACM/Baltzer Mobile Networks and Applications, Proceedings of
Communications in Wireless Mobile Networks, 2002.

[PAT 03] PATRICK J.L., EUGSTER T., Route driven gossip: Probabilistic reliable multicast in
ad hoc networks, Proceedings of IEEEINFOCOM, 2003.

[PER 99] PERKINS E. AND ROYER E.M., Ad hoc on-demand distance vector routing, In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Appli-
cations, pages 90100, Feb 1999.

[ROG 99] ROYER E., PERKINS C.E., Multicast Operations of the Ad-hoc On-Demand Dis-
tance Vector Routing Protocol, Proceedings of ACM/IEEE MOBICOM’99, 1999.

[SIK 04] SIKORA M., ET AL., On the Optimum Number of Hops in Linear Wireless Networks,
Proceedings of IEEE Information Theory Workshop, San Antonio, 2004.

	Introduction
	Multicasting in MANETs
	Multicast Routing Protocols
	Overlay Multicast Protocols

	AOMP: General Description
	AOMP: Connection Process
	AOMP: Tree Management Process
	The Mesh Structure
	Joining the Mesh
	Delivery Tree Refinement
	Adaptation to Mobility of Nodes

	Performance Evaluation of AOMP
	Simulation Model and Performance Metrics
	Performance Analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

