
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999 603

Toward the Software Realization
of a GSM Base Station

Thierry Turletti, Member, IEEE, Hans J. Bentzen, and David Tennenhouse,Member, IEEE

Abstract—Recent advances in processor and analog-to-digital
conversion technology have made the software approach an
increasingly attractive alternative for implementing radio-based
systems. For mobile telephony base stations, the advantages with
the new architecture are obvious: great cost savings by using
one transceiver per base transceiver station (BTS) instead of
one per channel, tremendous flexibility by moving system-specific
parameters to the digital part, and allowing the support of a wide
range of modulation and coding schemes.

This paper considers the software implementation of a GSM
BTS, and analyzes the performance of each of its radio interface
modules. The performance of each software module is evalu-
ated using both a % CPU metric and a processor-independent
metric based on SPEC benchmarks. The results can be used
to dimension systems, e.g., to estimate the number of software-
based GSM channels that can be supported by a given processor
configuration, and to predict the impact of future processor
enhancements on BTS capacity. Two novel aspects of this work
are the portability of the software modules and the platform-
independent evaluation of their computational requirements.

Index Terms—Base station, digital signal processing, GSM,
software complexity, software radio, SPEC.

I. INTRODUCTION

H ISTORICALLY, the use of software within radio sys-
tems has been restricted to low-bandwidthout-of-band

tasks, such as signaling, operations, and management. Im-
plementation of thein-band radio interface functionality has
leveraged analog front ends that partition the band into indi-
vidual FDMA channels, and digital components that perform
the time-division and speech-processing functions. The design
of the digital portion is typically based on a compromise
between a full application-specific integrated circuit (ASIC)
implementation and programmable digital signal processors
(DSP’s). In particular, past efforts to developprogrammable
radios [9], [11], [21] use some general-purpose processor for
embedded control and internetworking functions, but leave the
computationally intensive radio functions part to ASIC, field
programmable gate array (FPGA), or DSP devices.

In contrast, thevirtual radio approach [18], [20] involves the
reexamination of the overall system from a software designer’s
perspective, with specific emphasis on thevirtualizationof RF

Manuscript received November 13, 1977; revised April 15, 1998 and
August 23, 1998. This work was supported by DARPA under Contract
F30602-92-C-0019 (monitored by AFSC, Rome Laboratory) and Contract
DABT-6395-C-0060 (monitored by U.S. Army, Fort Huachuca).

T. Turletti is with the High Speed Networking RODEO Group, INRIA, BP
93, 06902 Sophia Antipolis, France.

H. J. Bentzen is with McKinsey and Co., Zurich, Switzerland.
D. Tennenhouse is with the Software Devices and Systems (SDS) Group,

LCS, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
Publisher Item Identifier S 0733-8716(99)02975-3.

sources. Advances in processor [16] and analog-to-digital con-
version technology [7], combined with recent improvements in
memory and I/O bandwidth, have enabled a complete software
solution. In particular, wide-band analog-to-digital converters
(ADC’s) can now be used to sample an entire RF band, and
the resultant sample stream can be directly deposited into
memory for software-based analysis. This eliminates the need
for dedicated per-channel frequency partitioning hardware.
Furthermore, the temporal decoupling of the sample stream,
using large memory buffers, allows conventional operating
systems and networks to bridge the gap between the ADC
and the software processing modules. Accordingly, both the
frequency partitioning and the digital processing (previously
performed by ASIC’s and DSP’s) can be implemented in
portable software modules that execute on general-purpose
processing platforms. This approach is being pioneered by
the SpectrumWare1 project, whose aim is to extend the reach
of application software as close as possible to the analog-to-
digital conversion boundary [17], [18].

This paper focuses on the design and performance of a
library of software modules that can be used to implement
the in-bandportions of a GSM BTS. GSM, the global system
for mobile communications, is a digital cellular telephony
system that has gained worldwide acceptance.2 Besides its
widespread adoption, GSM is an ideal experimental vehicle
because its complexity is high enough to generate a variety of
interesting problems; it is a real system whose implementations
are worthy opponents, i.e., they use state-of-the-art analog and
DSP technology; and its design is well documented.

The structure of the paper is as follows. Section II briefly
describes the hardware and software environment in which we
are developing the software BTS. Sections III and IV describe
the implementation of the sending side and the receiving side
of the BTS, respectively, and evaluate the computational re-
quirements of each of the individual modules. In Section V, we
discuss the overall computational requirements of a complete
BTS and a potential system configuration for its realization.

Except where specifically noted in the text, little time has
been spent optimizing the code of the individual modules, so
it is likely that the reported performance can be improved.
On this basis, within three years, it will be possible to
implement aminicell that supports 7–15 speech channels,
i.e., one–two FDMA channels, using a commercially avail-
able multiprocessor server or a small cluster of workstations.

1See URL http://www.sds.lcs.mit.edu/SpectrumWare/.
2By the end of 1997, GSM networks accounted for more than 66 million

customers of the world (110 countries/areas)—equivalent to 31% of the
world’s wireless market; see URL www.gsmworld.com/.

0733–8716/99$10.00 1999 IEEE

604 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

Channel partitioning, equalization, and demodulation modules
are those most in need of further development and optimiza-
tion.

Two novel aspects of this work are the portability of the
software modules and the platform-independent evaluation
of their computational requirements. For each module, one
must first determine the fraction of CPU it requires when
executing3 on a range of workstation platforms. One must then
normalize these individual results with respect to the known
performance of the workstations, using the industry-standard
SPEC4 benchmarks. This gives an estimate of the module’s
computational requirements in SPECmarks. Although this is
far from a precise characterization, it has the benefit of being
platform independent. Furthermore, it allows one to predict
module performance on future platforms, based on anticipated
improvements in the SPECmark ratings of next-generation
workstations and servers.

In summary, the software realization of a GSM BTS is
becoming a viable alternative to present designs. A software-
only approach has the potential of offering many benefits: a
software BTS can support several modulation schemes and
otherwise incompatible standards (e.g., AMPS, NA-TDMA,
CDMA, GSM). Furthermore, the elimination of dedicated
hardware reduces the complexity of the BTS, and introduces
tremendous flexibility and platform independence into the
overall system.

II. SYSTEM OVERVIEW

This section gives a brief description of the minimal hard-
ware required to support a software BTS, and describes the
software environment for development of the GSM modules.

A. Simple Wide-Band RF Transceivers

Wide-band ADC technology allows the construction of
simple RF transceivers, consisting of only an antenna, a
preamplifier, a bandpass filter, and a wide-band ADC in the
receive path; and a digital-to-analog converter (DAC) and an
amplifier in the transmit path. Today, state-of-the-art ADC’s
and DAC’s are about to comply with GSM performance
requirements [6]—the critical issue is the high dynamic range
in both receiver and transmitter, and especially the multicarrier
power amplifier.

The sampled signal data are directly transferred into the
memory of the workstation via a direct memory access (DMA)
interface, such as the general-purpose PCI interface (GuPPI)
developed at M.I.T. This PCI expansion board provides an
efficient means for the continuous streaming of sample data
to/from the host memory [2].

B. The Software Environment

The prototype software is based on the VuSystem, a pro-
gramming system for the dynamic manipulation of temporally
sensitive data [10]. This programming system runs on a

3See details in Section II-C.
4SPEC stands for system performance evaluation cooperative; see URL

www.specbench.org/spec/.

Fig. 1. VuSystem programming environment.

standard Unix platform not specifically designed for the ma-
nipulation of digital media, such as audio and video. The
VuSystem implements a two-level strategy, in which programs
are partitioned along anin-band axis, that supports the flow
of temporally sensitive information, and anout-of-bandaxis
that supports the event-driven program components, including
the user interface and the configuration and control of the in-
band processing pipeline (see Fig. 1). In-band processing and
out-of-band processing are best handled in separate partitions
instead of together because choices of language and architec-
ture can then be made for each partition separately (e.g., C
for in-band and Tcl scripting language [15] for out-of-band
processing). The in-band processing partition is arranged into
processingmoduleswhich logically pass dynamically typed
datapayloadsthrough input and output ports. The payload ab-
straction is an efficient way to hide the implementation details
such as shared-memory data regions, so that the designer of
in-band processing modules needs only to know a few simple
rules about payload handling.

The following sections describe the software implemen-
tation of the in-band5 portion of a GSM BTS; for further
detail concerning GSM, see [12]. The in-band modules may
be classified into two classes: the downlink modules that
correspond to the sending side of the BTS, and the uplink
modules corresponding to functions performed in the reverse
path. For each module, the section briefly reviews the func-
tionality provided, the algorithm chosen, and the performance
obtained.

C. Estimation of Computational Requirements

The functionality and performance of the downlink and
uplink modules will be discussed in detail in Sections III and
IV, respectively. The following describes the methodology
used to measure the performance of the individual modules.

To measure performance, each module is isolated and runs
separately in a loop, processing ms of audio chunk
each time through the loop.6 Consider the speech coder module
in detail. To estimate the module’s execution time, measure

5Currently, we have not implemented any signaling functions.
6In GSM, speech is transmitted using groups of 260 bits every 20 ms; see

Section III-A.

TURLETTI et al.: SOFTWARE REALIZATION OF GSM BASE STATION 605

Fig. 2. Block diagram of a GSM sender BTS (downlink).

the time needed to process chunks of audio data on each
platform, allowing the module to sequentially process these

chunks of data as fast as possible (i.e., without pausing
between processing the individual chunks of data). Use the
-shell time function to measure the overall amount of time

needed.7 Dividing this execution time by (times the
required periodicity of the process) gives the fraction of
the CPU that the module consumes when performing the
processing associated with a single GSM channel. In order
to get an accurate measure of time, thevalue is chosen
high enough8 to get at least 10 s of processing time on the
fastest platform.

To measure performance of the channel coder module, run
the speech coder module once to get the 256 input bits, and
then run the channel coder module times over these data.
The execution time of the speech coder module is subtracted
from the overall execution time measured to give the overall
channel coder execution time. Then, the ratio ofdivided
by yields the corresponding fraction of CPU used by this
module, etc.

The resultant “% CPU/GSM channel” is a good metric
to report the performance of each module on a given plat-
form. However, these results will rapidly become outdated
as new generations of processors appear. Quantification of
computational requirements in aprocessor-independentway
is critical for a vision of plug-and-play telecommunications.
Accordingly, the SPEC benchmark is adopted as a vehicle for
the normalization of our results. SPEC benchmarks have been
designed to provide a comparable measure of performance of
a system executing a known compute-intensive workload. The
benchmarks SPEC92 are included because they still have high
popularity in the computer community. Since 1995, SPEC is
replacing SPEC92 with an improved SPEC95, with the sub-
components CINT95 (focusing on integer/nonfloating-point
compute-intensive activity) and CFP95 (focusing on floating-
point compute-intensive activity). The benchmark of the soft-
ware modules normalize the % CPU results with respect to the
SPEC92 and SPEC95 ratings of each platform, as presented
in Tables XIV and XV, respectively. This gives an estimate
of the module’s computational requirements in SPECmarks.
Although the mapping to a module’s SPECmark requirement
is not entirely platform independent, the SPECmark range
can provide a basis for performance predictions. This generic
metric is not precise, but it is nonetheless an improvement on
platform-dependent measures of computational requirements.

III. FROM SPEECH TO RADIO (DOWNLINK)

The sequence of downlink modules is shown in Fig. 2.
Basically, the GSM speech coder compresses speech into
digital blocks. Channel coding adds redundancy to the blocks,

7Thec-shell time function ensures that the application uses the whole CPU.
8For example, we choseN = 104 for the speech coder module measure-

ment.

Fig. 3. Block diagram of the GSM speech coder.

TABLE I
GSM SPEECH CODING PERFORMANCE

which are then interleaved and spread into pieces called bursts.
Finally, after the ciphering operation, the bursts are used to
modulate the phase of a carrier.

A. GSM Speech Coding

The GSM full-rate speech coding algorithm is called
RPE–LTP, which stands for regular pulse excitation with
long-term prediction [5]. The analog voice is first digitized
in an ADC to 8000 samples/s, uniformly coded at 13 bits
each. Then, the encoder divides the speech into a short-
term predictable part, a long-term predictable part, and the
remaining residual pulse (see Fig. 3). Finally, it encodes the
residual pulse and parameters describing the two predictors.
The speech coding algorithm produces a speech block of 260
bits every 20 ms. These 260 bits are classified into three
classes (Ia, Ib, and II) according to their importance.

The software implementation of this vocoder was imple-
mented by Degener and Bormann from the Technical Univer-
sity of Berlin.9 The performance10 of this vocoder on a number
of platforms is shown in Table I.

B. Channel Coding

Class Ia bits are first protected by three CRC bits for error
detection. The Class Ib bits are then added to this result. A
convolutional code with rate and constraint length

is then applied to this complete class I sequence.
The resulting 378 bits are used in conjunction with the 78
unprotected Class II bits, to form a complete coded speech
frame of 456 bits (see Fig. 4).

1) Error-Detecting Codes:As indicated in Fig. 4, the most
sensitive portion of the speech frame (i.e., the 50 bit category

9The implementation is available in the URL www.cs.tu-berlin.
de/˜jutta/toast.html.

10All C and C++ modules are compiled with gcc v2.7.2 using the�O2
optimization flag.

606 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

Fig. 4. TCH/FS transmission mode.

Fig. 5. Interleaving.

TABLE II
CHANNEL CODING PERFORMANCE

Ia) is protected by three CRC bits used for error detection.
These bits are computed using the polynomial generator11:

. The 3-bit remainder of this division is
transmitting along with input data.

2) Convolutional Coding:The convolutional step involves
the padding out of the class I sequence with four extra bits
and a convolution using the two following polynomials:

(1)

(2)

The result of this step is two 189 bit sequences, which are
multiplexed with the (unprotected) type II bits to yield a 456
bit coding block, see Fig. 4. The performance of this channel
coding algorithm is summarized in Table II.

C. Interleaving

The aim of interleaving is to decorrelate the relative po-
sitions of the coded bits within the code words and in the
modulated radio bursts. GSM coding blocks are interleaved
on eight bursts: the 456 bits of one block are split into eight

11Note that the “�” operation stands for the XOR logical operation.

TABLE III
INTERLEAVING PERFORMANCE

groups of 57 bits. Each group of 57 bits is then carried in a
different burst (see Fig. 5).

The performance of the software implementation is shown
in Table III.

D. Ciphering

Ciphering is achieved by performing an XOR (exclusive
OR) operation between a pseudorandom bit sequence and the
114 bits of each burst. The deciphering operation is identical
to ciphering. The pseudorandom sequence is derived12 from
the burst number and a session key that itself is determined
through signaling when a call is established. The performance
of the algorithm is shown in Table IV.

E. Modulation

GSM uses Gaussian modulation shift keying (GMSK) [13]
with modulation index , (filter bandwidth times
bit period) equal to 0.3, and a modulation rate of 271 kbaud.
There are many ways to implement a GMSK modulator. A
block diagram of such a modulator is shown in Fig. 6. A

12Note that the algorithm used to generate the pseudorandom sequence is
not fully included in the public GSM specification.

TURLETTI et al.: SOFTWARE REALIZATION OF GSM BASE STATION 607

Fig. 6. GMSK modulation block diagram.

Fig. 7. Block diagram of a GSM receiver BTS (uplink).

TABLE IV
CIPHERING AND DECIPHERING PERFORMANCE

TABLE V
GMSK MODULATOR PERFORMANCE

previous modulator reported in [20] used an IIR algorithm
to process the Gaussian filtering. In the current algorithm, the
Gaussian filter is achieved by directly using the phase-shaping
response of the Gaussian filter . Basically, consists of
a step function, smoothed in order to have a more narrow
spectrum than if the step were steeper. The new algorithm
precomputes the function , and then obtains the sum over
all input bits using (3)

may take any value (3)

Theoretically, a bit influences the output infinitely long.
However, in practice [3], this influence becomes negligible
outside a period. So, the algorithm can precompute pieces
of outputs of bit sequences of length 3, and find the whole
output by assembling pieces together. The speedup compared
to the IIR-based algorithm is about 9 [3]. Table V reports the
performance of the new modulator.

IV. FROM RADIO TO SPEECH (UPLINK)

The sequence of uplink modules is shown in Fig. 7. First,
the demodulator reconstitutes the GSM bursts. Then, after

TABLE VI
POLYPHASE TRANSFORM PERFORMANCE

(200 kHz SPACING BETWEEN CHANNELS)

the deciphering and the deinterleaving operations, the channel
decoder recovers the transmitted blocks of data. Finally, a
GSM speech decoder converts them into audio samples.

A. Channel Partitioning

The number of frequency channels used by a GSM BTS
depends mainly on the density of the network and the type of
cells used (micro cells, urban, rural or road cells). It can be
one in a low-density area, and two–four in high-density areas.
Typically, adjacent channels are not used within the same cell
to avoid spectral recovering, and a GSM BTS uses every
second channel (i.e., 200 kHz spacing) to avoid high level
interferences. In the GSM terminology, a logical user channel
corresponds to a speech channel (defined by its frequency and
its time slot number), whereas a physical channel stands for
an FDMA channel (which contains eight logical channels).

Multichannel receivers for digitized data can be synthesized
using a polyphase transform algorithm [7], [22]. Basically,
this algorithm performs the following tasks: 1) frequency
translation (each center frequency to baseband), 2) bandwidth
reduction of the translated spectrum to match the signal
bandwidth, and 3) resampling of the output to match the
reduced channel bandwidth.

Table VI reports the percentage of CPU per platform re-
quired to partition GSM frequency channels ()
at a sampling rate equals to 2.5 times the maximal frequency
and with a 200 kHz spacing scheme. The filter used in the
implementation has 255 coefficients. The corresponding SPEC
performances are shown13 in Table XII, Section V-A.

13Note that the SPECint numbers are not very significant since the
partitioning algorithm mainly executes floating-point multiplications.

608 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

Fig. 8. Deinterleaving.

Fig. 9. GSM channel decoding.

The high CPU requirement14 is due to the high input data
rate and the need to compute imaginary and real components of
output samples for each frequency channel (requiring multiple
floating-point operations).

B. Demodulation and Equalization

The GSM specifications do not impose a particular demodu-
lation algorithm. However, they impose minimal performance
criteria, and the algorithm used is expected to cope with two
multipaths of equal power received at intervals of up to 16s
(i.e., more than four symbols). With such a level of intersymbol
interference, simple demodulation techniques are ineffective,
and an equalizer is required. We are currently implementing
an equalizer based on the Viterbi algorithm [4], [14], and this
module is expected to be processor intensive15 [3].

C. Deciphering

Deciphering performs the same operation as the ciphering
module described in Section III-D, and hence its performance
is summarized by the results in Table IV.

D. Deinterleaving

Deinterleaving performs the inverse operation to the inter-
leaving described in Section III-C. Every 40 ms, eight 114 bit
bursts are merged into a 456 bit buffer as shown in Fig. 8.

The performance of this module is shown in Table VII.

14The software implementation of this algorithm has been optimized in C.
15It has previously been shown that a GSM BTS equalizer can be imple-

mented using a full TMS 320/C40 DSP, i.e., consuming 50 MIPS.

TABLE VII
DEINTERLEAVING PERFORMANCE

E. Channel Decoding

Channel decoding involves the retrieval of the original
compressed speech data from the (possibly corrupted) received
flow.

Fig. 9 shows the different steps of the channel decoding
algorithm. The deinterleaving algorithm generates a 456 bit
data buffer from eight GSM bursts. Some of these bits (the
378 bits corresponding to the Type I data bits) are fed into the
convolutional decoder, which tries to reconstitute the 189 bits
corresponding to the original sequence. After a bit-reordering
step, the 50 bits that have the highest priority (Type Ia) are
checked using an error control algorithm. If there is no error,
a final bit reordering is performed. These steps are further
described in the following paragraphs.

1) Convolutional Decoding:Convolutional decoding can
be performed using the Viterbi algorithm. The encoder
memory is limited to bits; a Viterbi decoder in steady-state
operation takes only paths. Its complexity increases
exponentially with the constraint length, which is equal to
5 for the GSM convolutional code; see Section III-B.

TURLETTI et al.: SOFTWARE REALIZATION OF GSM BASE STATION 609

TABLE VIII
CHANNEL DECODING PERFORMANCE

Fig. 10. Block diagram of the GSM speech decoder.

The present implementation is a modified version of the
Viterbi decoder16 developed by Karn for the NASA standard
code () [8].

2) Reordering Algorithm:The 189 bits generated by the
Viterbi decoder () consist of
182 information bits of class 1 (), three
CRC bits, and four tail bits. The relation betweenbits and

bits is defined by (4):

and
(4)

3) Error-Detecting Codes:The polynomial operation de-
scribed in Section III-B is applied to the CRC-protected data.
If the remainder differs with the received CRC bits, an error
is detected, and the audio frame is ignored and eventually
discarded.

4) Reordering Algorithm:The last step of the channel de-
coding regroups the 260 bits of the speech block from the
position that corresponds to the order of decreasing importance
() to the position that matches their
classification () as specified in
[5] and [12]. This operation (which requires no effort when
implemented in hardware) can be efficiently implemented in
software using lookup tables.

The performance of the whole channel decoding algorithm
is summarized in Table VIII.

F. GSM Speech Decoding

The decoder reconstructs the speech by passing the residual
pulse first through the long-term prediction filter, and then
through the short-term predictor (see Fig. 10). The perfor-
mance of this module is shown in Table IX.

V. PUTTING IT ALL TOGETHER

In this section, we discuss the overall computational re-
quirements of a generic BTS configuration and our efforts to
integrate the modules into an experimental platform.

16See URL http://people.qualcomm.com/karn/.

TABLE IX
GSM 06.10 DECODING PERFORMANCE

TABLE X
AGGREGATE GSM MODULE PERFORMANCE

A. Estimating a BTS’s Computational Requirements

Table X summarizes the performance of the modules re-
quired to encode and decode one GSM logical (TDM) channel,
exclusive of the demodulator (including equalizer) and parti-
tioner modules. We give the minimum and maximum SPEC
numbers we have obtained with the four different platforms.

Table XI (based on Table X) shows the computational re-
quirements for the encoding and decoding ofGSM physical
FDMA channels (), where each physical channel
supports eight logical user channels.

Here, again, the entries are exclusive of the partitioner and
demodulator/equalizer modules. Furthermore, it is assumed
that, for each group of up to four physical channels, one of the
derived logical channels is dedicated to signaling, and the re-
maining logical channels require speech processing. This table
suggests that a single Sun UltraSparc M170 or Pentium Pro
200 workstation can just about support the encoding/decoding
requirements of one physical GSM channel. Fig. 11 shows the
corresponding percentage of CPU required per GSM module
on the Pentium Pro 200 platform; a total of 93% of CPU is
used.

Table XII reports the SPEC-normalized performance of the
partitioning algorithm discussed in Section IV-A. The results
suggest that our current Sun UltraSparc M170 platform would
be sufficiently powerful to perform the partitioning of two
physical FDMA channels (i.e., 16 logical channels).

Table XIII provides a summary of computational demands,
including the partitioning algorithm and exclusive of the
demodulator/equalizer.

Taken together, the above tables suggest that aminicell
base station supporting two physical channels, i.e., up to 15
logical channels, could be assembled using one processor to
perform the partitioning of incoming samples; one processor to
multiplex the outgoing sample streams, two processors to per-

610 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

TABLE XI
GSM BTS PERFORMANCE (WITHOUT PARTITIONING AND EQUALIZATION)

Fig. 11. CPU requirement for eight logical channels on a Pentium Pro 200.

TABLE XII
PARTITIONING PERFORMANCE

form the encoding/decoding, and some number of additional
processors to realize the equalization/demodulation stages.
Even after allowing a considerable margin for management
and overhead,17 it will be possible to realize a complete
two channel system using a cluster of 8–15 workstations, or
possibly, a single multiprocessor server. Although this seems
rather expensive today, improvements in processor technology
suggest that this level of functionality will be available in a
standard server within three years.

B. Module Integration

With the exception of the equalizer, which is currently being
implemented, the modules described in this paper were imple-
mented in C and C . These modules have been incorporated
into the VuSystem programming environment, which supports
their integration into experimental applications. Fig. 12 shows
the flow graph of the VuSystem-based BTS application. The
next steps will be to tune the performance of the individual
modules, and to experiment with the system as a whole. The
project is moving towardreal-world experiments, initially us-
ing an RF channel simulator, such as the HP 11759c. The goal
is, eventually, to demonstrate interoperation of the uplink mod-

17The present analysis is somewhat optimistic concerning the level of CPU
utilization that can be attained in a practical system. On the other hand, little
effort has been spent tuning the code of the module implementations, which
are processor intensive and should be amenable to optimization.

ules with a production handset. Two key questions to be ad-
dressed involve: the multitasking and communication overhead
associated with the concurrent operation of the entire suite of
modules, and the latency characteristics of the software-based
system. The latter may be less of an issue here than in other
domains, given the built-in latency of the GSM speech coder.

VI. RELATED WORK

The Speakeasy multiband multimode radio is the most
aggressive implementation of a programmable radio [9]. That
project’s objective was to emulate more than 15 existing mil-
itary radios, operating in several frequency bands (HF, VHF,
and UHF). The Speakeasy system was designed to facilitate the
addition of new coding and modulation standards. However,
the effort put into the DSP processor design, coupled with the
low-level programming environment, limit the portability of
the system to other processing platforms.

In the commercial sector, one of the first products to
implement a programmable radio has been developed by
Securor in the U.K. Based on a 50 MHz DSP engine, the
radio allows intelligent programmable channeling between
5–25 kHz and adaptive data rate switching using dynamic
measurement of bit-error rates [21].

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented the design and implementation of
the in-band components of a software-only realization of a
GSM base station. The computational requirements of each of
the components has been evaluated. Modulation, equalization,
and demodulation stages have been identified as the key targets
for optimization and tuning.

This paper has introduced the SPEC benchmark metric as
a platform-independent means to estimate the requirements of
the individual modules. Although this method is not perfect,
it provides a very useful way to benchmark the algorithms

TURLETTI et al.: SOFTWARE REALIZATION OF GSM BASE STATION 611

TABLE XIII
GSM BTS PERFORMANCE (INCLUDING PARTITIONING AND WITHOUT EQUALIZATION)

Fig. 12. GSM BTS flow graph.

and to forecast module performance on future platforms.
This appears to be the first use of the SPEC metrics as a
means of benchmarking communications software to project
its performance on future programmable radio platforms.

This approach allows one to project the impact of software-
based processing on wireless communications. Within three
years, it may be possible to implement a complete BTS
on an off-the-shelf server. This suggests that organizations
embarking on new design efforts should be cognizant of the
software-only approach. As processor and wide-band ADC
technology continue to improve, it will be possible to im-
plement increasingly sophisticated and flexible processing on
ever wider bands of sampled RF spectrum.

The software approach provides tremendous flexibility for
mobile communications systems. For example, changing mod-
ulation schemes or frequency assignments only involves the
loading and/or configuration of software modules. Similarly,
the BTS software can be upgraded to support new modulation
schemes without having to upgrade hardware, especially the
RF components. At the same time, the scheme preserves the

vendor’s software investment, as modules can be ported to
higher performance platforms, e.g., to support increased cell
capacity. Finally, note that the software-only strategy can also
be applied to the design of the mobiles; units moving between
service providers, or continents, can be dynamically configured
to interoperate with local facilities.

The Vusystem programming environment was designed for
multimedia applications, and not specifically for virtual radios
[10]. A more flexible programming environment supporting
adaptive signal processing is currently being designed at
M.I.T: the SPECTRA programming environment [2]. SPEC-
TRA will adapt to the environment (e.g., adaptive channel
coding), the user requirements (e.g., AM/FM switch), and the
available resources (e.g., some robustness or accuracy may be
sacrificed if the CPU resources become scarce).

A future SPECTRA environment may include new func-
tionalities to help programmers implement the control-in-
tensive parts of the application. Most applications have both
data-intensive and control-intensive handling activities that
require different programming techniques. By linking a formal

612 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

TABLE XIV
SPEC92 BENCHMARKS

TABLE XV
SPEC95 BENCHMARKS

synchronous language such as Esterel [1] to SPECTRA, a large
set of GSM signaling functions could be directly implemented
from automata described in the GSM specifications.

Finally, one must be prepared to use FPGA’s if these
devices become available on future general-purpose worksta-
tions. They could significantly help with the most CPU-greedy
application functions. For example, speedups of close to
50 over strict software implementations have already been
achieved for computing the DCT [23].

VIII. SPECmarksFOR SEVERAL MACHINES

Tables XIV and XV report, respectively, SPEC92 and
SPEC95 benchmarks for the four platforms18 used in our
experiments.

ACKNOWLEDGMENT

The authors would like to thank J. Kurose and the Editors
for several comments and suggestions that have improved the
quality of this paper.

REFERENCES

[1] G. Berry and G. Gonthier, “The Esterel synchronous programming lan-
guage: Design, semantics, implementation,”Sci. Comput. Programming,
vol. 19, no. 2, pp. 87–152, 1992.

[2] V. Bose, M. Ismert, M. Welborn, and J. Guttag, “Virtual radios,” this
issue, pp. 591–602.

[3] H. Bentzen, “A software GSM base station,” Master’s thesis, ETH
Zurich, M.I.T., Cambridge, Mar. 1997.

[4] G. D. Forney, Jr., “The Viterbi algorithm,”Proc. IEEE, vol. 61, pp.
268–278, Mar. 1973.

[5] “GSM 06.10—European digital cellular telecommunications system
(phase 2); Full rate speech transcoding,”ETS 300 580-2, European
Telecommunication Standard,Sept. 1994.

[6] B. Hedberg, “Technical challenges in introducing software radio for
mobile telephony base stations,” inACTS Software Radio Workshop’97,
Brussels, Belgium, May 1997.

[7] F. Harris and D. Steinbrecher, “Wireless interface design for digital
processors,” inICUPC’93 Tutorial 5, Oct. 1993.

[8] P. Karn, “Convolutional decoders for amateur packet radio,” inProc.
ARRL’1995 Digital Commun. Conf.,1995.

[9] L. Lackey and U. Upmal, “Speakeasy: The military software radio,”
IEEE Commun. Mag.,vol. 33, pp. 56–61, May 1995.

18Some SPECmarks are missing in the list of benchmarks available in the
public domain; see URL www.specbench.org/osg/cpu95/results/.

[10] C. J. Lindblad, D. Wetherall, and D. L. Tennenhouse, “The VuSystem:
A programming system for visual processing of digital video,” inProc.
ACM Multimedia 94,San Francisco, CA, Oct. 1994.

[11] J. Mitola, “Software radios survey, critical evaluation and future di-
rections,” in Proc. IEEE Nat. Telesys. Conf.,Washington, DC, May
1992.

[12] M. Mouly and M. B. Pautet,The GSM System for Mobile, ISBN 2-
9507190-0-7, 1992.

[13] K. Murota and K. Hirade, “GMSK modulation for digital radio tele-
phony,” IEEE Trans. Commun.,vol. COM-29, pp. 1044–1050, July
1981.

[14] S. Ono, H. Hayashi, T. Tanak, and N. Kondoh, “A MLSE receiver
for the GSM digital cellular system,” inProc. 44th IEEE Veh. Technol.
Conf., June 1994, pp. 230–233.

[15] J. K. Ousterhout,Tcl and the Tk Toolki(Addison-Wesley Professional
Computing Series). Reading, MA: Addison-Wesley, 1994.

[16] L. C. Steward, A. C. Payne, and T. M. Levergood, “Are DSP chips
obsolete?,” TR 92/10 DEC Cambridge Res. Lab., Cambridge, MA, Nov.
1992.

[17] D. L. Tennenhouse and V. G. Bose, “SpectrumWare—A software-
oriented approach to wireless signal processing,” inProc. ACM Mobile
Computing and Networking 95,Berkeley, CA, Nov. 1995.

[18] D. L. Tennenhouse, T. Turletti, and V. G. Bose, “The spectrumware
tesbed for ATM-based software radios,” inProc. ICUCP’96, Boston,
MA, Sept. 1996.

[19] T. Turletti, “A brief overview of the GSM radio interface,” Tech. Memo.,
TM 547, MIT, Mar. 1996.

[20] T. Turletti and D. L. Tennenhouse, “Estimating the computational re-
quirements of a software GSM base station,” inProc. ICC’97,Montreal,
Canada, June 1997, pp. 169–175.

[21] W. Tuttlebee, “The impact of software radio,” inACTS Software Radio
Workshop ’97,Brussels, Belgium, May 1997.

[22] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase
networks, and applications: A tutorial,”Proc. IEEE,vol. 78, Jan. 1990.

[23] R. D. Wittig and P. Chow, “OneChip: An FPGA processor with
reconfigurable logic,” inProc. IEEE Symp. FPGA’s for Custom Compute
Machines (FCCM’96),1996.

Thierry Turletti (M’97), for a photograph and biography, see this issue, p.
513.

Hans J. Bentzenreceived the M.Sc. degree in electrical engineering from
the Swiss Federal Institute of Technology, where he wrote his thesis on the
Software Devices and Systems Group. The thesis, “A software based GSM
basestation,” was part of the SpectrumWare project.

He is an Associate at McKinsey & Company. He joined the Zurich Office
of McKinsey & Company in early 1997. His interests include virtual radios
and cryptography.

David Tennenhouse(M’87), for a biography, see this issue, p. 513.

