
Alter
Programmer’s

Reference Manual

Legal Notices Copyright © 1992 – 1999 by Honeywell Inc.

This is version 5.2 of the DoME Alter Programmer’s Reference Manual.

Email: dome-info@htc.honeywell.com
Web: www.htc.honeywell.com/dome

The information contained in this document is subject to change without
notice. Neither Honeywell nor the developers of DoME make any warranty
of any kind with regard to this guide or its associated products, including but
not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither shall Honeywell nor the developers be liable for
errors contained herein, or direct, indirect, special, incidental, or
consequential damages in connection with the performance or use of this
guide or its associated products.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Trademarks Interleaf is a registered trademark of Interleaf, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft Windows 95, and Windows NT are trademarks of Microsoft Corp.
Microsoft and Windows are registered trademarks of Microsoft Corp.

VisualWorks ia a registered trademarks of ObjectShare, Inc.

FrameMaker, PostScript and Adobe are registered trademarks of Adobe
Systems Inc. Adobe also owns copyrights related to the PostScript language
and PostScript interpreter. The trademark PostScript is used herein only to
refer to material supplied by Adobe or to Adobe-defined programs written
in the PostScript language.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System and X11 are trademarks of X Consortium, Inc.

Other products or services mentioned herein are identified by trademarks
designated by the companies that market those products or services. Make
inquiries concerning such trademarks directly to those companies.

Contents

1 Introduction..1

2 Syntax...3

3 Reserved Words ...5

4 Notation Conventions ...7

5 Arithmetic...9

6 Collections ...15

7 Colors ...17

8 Control..19

9 Converting ...27

10 Defining ..33

11 Dictionaries ..41

12 Document Generation......................................45

13 Enumerating...51

14 File...53

15 Font Descriptions ...55

16 Graphics...57

17 I/O...59

18 Lists..65

19 Logic ...69

20 Math Functions ..71

21 Miscellaneous..73

22 Model:Accessing ..75

23 Model:Creation ...85

24 Model:Dependencies87

25 Model:Generating...89

26 Model:Testing...91

27 Model:User-Interface..93
 Alter Reference Manual iii

Contents
28 Modules ... 95

29 OS Interface... 97

30 Packages... 99

31 Points .. 101

32 Printer Driver... 105

33 Rectangles... 107

34 Registry... 109

35 Rpc ... 111

36 Strings ... 113

37 Testing .. 115

38 Testing Characters .. 123

39 Testing Geometric Objects 125

40 Testing Numbers .. 127

41 Testing Strings .. 129

42 Types .. 131

43 User Requests .. 133

44 Vectors ... 135
iv

Introduction 1

Alter is a variant of the Scheme language as defined by the
R4 report1 and this manual is derived from that same
report, although the resemblence is remote. We offer here
our sincere gratitude to the “Scheme team” for designing
and describing a very useful language that is also easy to
implement.

Alter came out of our desire to get out of the business of
writing hard-wired back ends for DoME. We used to write
them in Smalltalk-80, DoME’s host language, and this kept
us busy but not very motivated. Every user wanted to
generate something slightly different from his or her DoME
models, and they soon flooded us with special requests. We
needed to give our user’s a way of doing this sort of thing
themselves. Thus, Alter was born.

Our selection of a Scheme variant was influenced by the
CAD Framework Initiative’s (CFI) selection of Scheme as
their offical extension language. At that time, CFI was
specifying interfaces for an object-oriented framework
covering many of the same services we envisioned for
DoME. Naturally, then, many of the selection criteria cited
by CFI were also appropriate for us: simple syntax, well-
defined semantics, extensibility, implementability, and
adaptability to a variety of programming paradigms (e.g.,
functional, object-oriented, declarative). Our familiarity
with the implementation of functional languages, esp.
Common Lisp, also nudged us toward Scheme.

Alter is a nearly complete implementation of Scheme sitting
within DoME. We say “nearly”, because there are a few
things that we have omitted from the R4 definition, most
notably proper tail recursion and continuations. Future
versions of Alter may remove these limitaions

Alter differs from R4 Scheme in a few other ways, too.

• Complex numbers are not yet implemented.

• Several primitives have been added to support the
manipulation of graph structures built with DoME.

• Alter operates in a windowed, graphics-capable
environment, and has some extra primitives to support
this.

• Alter code can be used in several settings within DoME,

1 Clinger, W. and Rees, J. (eds), “Revised4 Report on the
Algorithmic Language Scheme”
 Alter Reference Manual 1

Introduction
including printing, displaying, animation, constraint-
checking, model analysis, and interprocess
communication.

This last point is very important. Alter is much more than a
medium for writing code-generators or document generators.
It is a general-purpose programming language that can be
used within DoME in a variety of ways. One key to making
better use of Alter is understanding DoME’s architecture,
especially the object structures used to represent graphs and
their annotations. This information can be found in the GrapE
Programmer’s Reference Manual.

There are several ways to invoke Alter operations and
procedures. These are all described in detail in the DoME
Extension Manual.

• Directly through an Alter evaluator window

• Each time DoME starts up, by creating a DoME startup
script

• As a user-defined plug-in function

• As a printer driver

• In a ProtoDoME model
2

Syntax 2

alpha1 identifier
+ - . * / < = > ! ? : $ % _ & ~ ^

additional valid identifier characters
17 integer
3.1415927 float
‘foo symbol
(. . .) list
‘(. . .) list constant
‘() empty list (different from nil)
#(. . .) vector constant
“a string” string constant
“xy\”z” string with special character
#\c character constant
#\space space character (also delete, formfeed,

backspace, escape, newline, tab)
#rn alternate radix numeric constant, where r

is b=binary, o=octal, d=decimal, or
x=hexadecimal

#t true value
#f false value
nil undefined value
 Alter Reference Manual 3

Syntax
4

Reserved Words 3

List of Alter Reserved Words2

2 Some of these reserved words are not yet supported

=>
add-method
and
begin
case
cond
define
delay

do
else
find-operation
if
lambda
let
let*

letrec
or
quasiquote
quote
set!
unquote
unquote-splicing
 Alter Reference Man
ual
 5

Reserved Words
6

Notation Conventions 4

(procedure-name argument-specification) ⇒ return-type

(operation-name argument-specification) ⇒ return-type

An argument specification is a series of the following forms:
argtype — type of the argument
[arg1 arg2 . . .] — optional arguments
[n1..n2] — numeric range (return value only)
argtype . . . — zero or more arguments of type argtype
 Alter Reference Manual 7

Notation Conventions
8

Arithmetic 5

(* numbers...) ⇒ number

This procedure return the product of its arguments. This
procedure is exactness preserving.

(* 2 17.5) => 35.0

(* 4) => 4

(*) => 1

(+ numbers...) ⇒ number
This procedure returns the sum of its arguments. This
procedure is exactness preserving.

(+ 3 4) => 7

(+ 3 4.0) => 7.0

(+ 3) => 3

(+) => 0

(- number rest...) ⇒ number
With two or more arguments, this procedure returns the
difference of its arguments, associating to the left. With
one argument, however, it returns the additive inverse of
its argument. This procedure is exactness preserving.

(- 3 4) => -1

(- 3 4 5) => -6

(- 3) => -3

(/ number rest...) ⇒ number
With two or more arguments, this procedure returns the
quotient of its arguments, associating to the left. With one
argument, however, it returns the multiplicative inverse
of its argument.

This procedure is exactness preserving, except that divi-
sion may coerce its result to inexact in implementations
that do not support ratnums.

(/ 3 4 5) => 3/20

(/ 3) => 1/3

(/ 1.5 3) => 0.5

(< num1 num2 num3...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally increasing. < is transitive.

The traditional implementations of < in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
 Alter Reference Manual 9

Arithmetic
<, the results may be unreliable because a small inaccu-
racy may affect the result.

(<= num1 num2 num3...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally nondecreasing. <= is transitive.

The traditional implementations of <= in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
<=, the results may be unreliable because a small inaccu-
racy may affect the result.

(> num1 num2 num3...) ⇒ #t or #f
This procedures returns #t if its arguments are monotoni-
cally decreasing. > is transitive.

The traditional implementations of > in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
>, the results may be unreliable because a small inaccu-
racy may affect the result.

(>= num1 num2 num3...) ⇒ #t or #f
This procedure returns #t if its arguments are monotoni-
cally nonincreasing. >= is transitive.

The traditional implementations of >= in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
>=, the results may be unreliable because a small inaccu-
racy may affect the result.

(abs number) ⇒ number
Abs returns the magnitude of its argument. Abs is exact-
ness preserving when its argument is real.

(abs -7) => 7

(ceiling number) ⇒ number
Ceiling returns the smallest integer not smaller than
number. The result is always exact.

(ceiling -4.3) => -4

(ceiling 3.5) => 4

(denominator fraction) ⇒ integer
This procedure returns the denominator of its argument;
the result is computed as if the argument was represented
as a fraction in lowest terms. The denominator is always
positive. The denominator of 0 is defined to be 1.

(denominator (/ 6 4))=> 2

(denominator (exact->inexact (/ 6 4)))=> 2.0
10

Arithmetic
(floor number) ⇒ number
Floor returns the largest integer not larger than number.
The result is always exact.

(floor -4.3) => -5

(floor 3.5) => 3

(gcd number...) ⇒ number
This procedure returns the greatest common divisor of its
arguments. The result is always non-negative. This pro-
cedure is exactness preserving.

(gcd 32 -36) => 4

(gcd) => 0

(lcm number...) ⇒ number
This procedure returns the greatest least common multi-
ple of its arguments. The result is always non-negative.
This procedure is exactness preserving.

(lcm 32 -36) => 288

(lcm 32.0 -36) => 288.0 ; inexact

(lcm) => 1

(max number rest...) ⇒ number
This procedure returns the maximum of its arguments.

(max 3 4) => 4 ; exact

(max 3 4.1) => 4.1 ; inexact

(min number rest...) ⇒ number
This procedure returns the minimum of its arguments.

(min 3 4) => 3 ; exact

(min 3.9 4) => 3.9 ; inexact

If any argument is inexact, then the result will also be
inexact. If min is used to compare numbers of mixed
exactness, and the numerical value of the result cannot be
represented as an inexact number without loss of accu-
racy, then the procedure may report a violation of an
implementation restriction.

(modulo numerator divisor) ⇒ integer
This exactness-preserving procedure implement number-
theoretic (integer) division: For positive integers n1 and
n2, if n3 and n4 are integers such that n1=n2*n3+n4 and 0
<= n4 < n2, then

(modulo n1 n2)=> n4

provided all numbers involved in that computation are
exact.

Remainder and modulo differ on negative arguments---
 Alter Reference Manual 11

Arithmetic
the remainder is either zero or has the sign of the divi-
dend, while the modulo always has the sign of the divi-
sor:

(modulo 13 4) => 1

(remainder 13 4)=> 1

(modulo -13 4)=> 3

(modulo 13 -4)=> -3

(modulo -13 -4)=> -1

(numerator fraction) ⇒ integer
This procedure returns the numerator of its argument; the
result is computed as if the argument was represented as
a fraction in lowest terms. The denominator is always
positive.

(numerator (/ 6 4))=> 3

(quotient numerator divisor) ⇒ integer
This exactness-preserving procedure implements num-
ber-theoretic (integer) division: For positive integers n1
and n2, if n3 and n4 are integers such that n1=n2*n3+n4
and 0 <= n4 < n2, then

(quotient n1 n2)=> n3

For integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))

 (remainder n1 n2)))=> #t

provided all numbers involved in that computation are
exact.

The value returned by quotient always has the sign of the
product of its arguments.

(remainder numerator divisor) ⇒ integer
This exactness-preserving procedure implements num-
ber-theoretic (integer) division: For positive integers n1
and n2, if n3 and n4 are integers such that n1=n2*n3+n4
and 0 <= n4 < n2, then

(remainder n1 n2)=> n4

For integers n1 and n2 with n2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))

 (remainder n1 n2)))=> #t

provided all numbers involved in that computation are
exact.

Remainder and modulo differ on negative arguments---
the remainder is either zero or has the sign of the divi-
dend, while the modulo always has the sign of the divi-
sor:
12

Arithmetic
(remainder 13 4)=> 1

(modulo -13 4)=> 3

(remainder -13 4)=> -1

(remainder 13 -4)=> 1

(remainder -13 -4)=> -1

(remainder -13 -4.0)=> -1.0 ; inexact

(round number) ⇒ integer
Round returns the closest integer to number, rounding to
even when number is halfway between two integers.
Round rounds to even for consistency with the default
rounding mode specified by the IEEE floating point stan-
dard. The result is always exact.

(round -4.3) => -4

(round 3.5) => 4

(round 7/2) => 4

(round 7) => 7

(sqrt number) ⇒ number
Returns the principal square root of number. The result
will have either positive real part, or zero real part and
non-negative imaginary part.

(truncate number) ⇒ integer
Truncate returns the integer closest to number whose
absolute value is not larger than the absolute value of
number. The result is always exact.

(truncate -4.3) => -4

(truncate 3.5) => 3
 Alter Reference Manual 13

Arithmetic
14

Collections 6

(append string1 string2...) ⇒ string

(append list1 list2...) ⇒ list
Append is an operation defined on both strings and lists.
(This is an extension to Scheme R4, which defines append
as a procedure defined only on lists.)

Given list arguments, append returns a list consisting of
the elements of the first argument list followed by the ele-
ments of the remaining argument lists.

Given string arguments, append returns a string consist-
ing of the elements of the first string followed by the ele-
ments of the remaining string arguments.

(append ’(x) ’(y))=> (x y)

(append ’(a) ’(b c d))=> (a b c d)

(append ’(a (b)) ’((c)))=> (a (b) (c))

(append "a" "bcd")=> "abcd"

The resulting list or string is always newly allocated,
except that in the case of lists, the result shares structure
with the last list argument. With lists, the last argument
may actually be any object; an improper list results if the
last argument is not a proper list.

(append ’(a b) ’(c . d))=> (a b c . d)

(append ’() ’a) => a

(copy-without list object) ⇒ newlist
Returns a copy of the list with all top-level references to
object removed (using eq? test).

(copy-without ’(a b c) ’b)=> (a c)

(copy-without ’(a b c b) ’b)=> (a c)

(copy-without ’(b) ’b)=> ()

(copy-without ’(a b . c) ’b)=> (a . c)

(copy-without ’(b . c) ’b)=> (nil . c)

(copy-without ’(nil nil nil . c) ’nil)=> (nil . c)

(copy-without ’("a" "b" "c") "b")=> ("a" "b" "c")

(copy-without ’(a (b c)) ’b)=> (a (b c))

(flatten list) ⇒ list
Returns a list whose members are those elements that are
either atoms or members of the result of applying flatten
to an element that is a list.
 Alter Reference Manual 15

Collections
(length string) ⇒ integer

(length list) ⇒ integer

(length vector) ⇒ integer
Length is an operation in Alter, defined on strings, vec-
tors and lists. (This is an extension to Scheme R4, which
specifies ’length’ as a procedure defined only on lists.) For
strings, length behaves exactly like string-length. For
vectors, length behaves exactly like vector-length.

(length "abcde")=> 5

(length #(1 2 3))=> 3

For lists, length returns the number of topmost cells in the
argument list, as the following examples illustrate.

(length ’(a b c))=> 3

(length ’(a (b) (c d e)))=> 3

(length ’()) => 0

(substitute string substring replacement) ⇒ string
Return a copy of the string such that all occurrences of
substring are replaced with the replacement string.

(trim string) ⇒ string
Returns a copy of the string with all white space removed
from its end. White space characters include space,
car<riage return, tab, line feed, null, and form feed.

(word-wrap string [width [ignorecrs]]) ⇒ list-of-string
Word-wrap converts a string into a list of strings, each
being at most n characters long, where n is the first
optional argument (75 by default). If a second boolean
argument is given and is true, then carriage returns are
converted to spaces before the string is word-wrapped. If
the second optional argument missing or false, a carriage
return is represented as a zero-length string in the
result. Regardless of the optional arguments, the trailing
white space is ignored and not represented in the result-
ing list.
16

Colors 7

(blue color-type) ⇒ number

Returns a number between 0 and 1 representing the blue
component of the given color value (see also red, green).

(brightness color-type) ⇒ number
Returns a number between 0 and 1 representing the
brightness level of the given color value (see also hue, sat-
uration). Color values are usually obtained via a Graphic-
sContext instance used when printing graphs through
user-supplied print drivers.

(cyan color-type) ⇒ number
Returns a number between 0 and 1 representing the cyan
component of the given color value (see also magenta,
yellow). Color values are usually obtained via a Graphic-
sContext instance used when printing graphs through
user-supplied print drivers.

(green color-type) ⇒ number
Returns a number between 0 and 1 representing the green
component of the given color value (see also red, blue).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-sup-
plied print drivers.

(hue color-type) ⇒ number
Returns a number between 0 and 1 representing the hue
component of the given color value (see also brightness,
saturation). Color values are usually obtained via a
GraphicsContext instance used when printing graphs
through user-supplied print drivers.

(magenta color-type) ⇒ number
Returns a number between 0 and 1 representing the
magenta component of the given color value (see also
cyan, yellow). Color values are usually obtained via a
GraphicsContext instance used when printing graphs
through user-supplied print drivers.

(make-cmy-color cyan magenta yellow) ⇒ color
Creates a color value object whose cyan value is the first
argument, magenta value is the second argument and yel-
low value is the third argument.

(make-color red green blue) ⇒ color
Creates a color value object whose red value is the first
argument, green value is the second argument and blue
value is the third argument.
 Alter Reference Manual 17

Colors
(make-hsb-color hue saturation brightness) ⇒ color
Creates a color value object whose hue value is the first
argument, saturation value is the second argument and
brightness value is the third argument.

(make-rgb-color red green blue) ⇒ color
Creates a color value object whose red value is the first
argument, green value is the second argument and blue
value is the third argument.

(red color-type) ⇒ number
Returns a number between 0 and 1 representing the red
component of the given color value (see also blue, green).
Color values are usually obtained via a GraphicsContext
instance used when printing graphs through user-sup-
plied print drivers.

(saturation color-type) ⇒ number
Returns a number between 0 and 1 representing the satu-
ration component of the given color value (see also hue,
brightness). Color values are usually obtained via a
GraphicsContext instance used when printing graphs
through user-supplied print drivers.

(yellow color-type) ⇒ number
Returns a number between 0 and 1 representing the yel-
low component of the given color value (see also cyan,
magenta). Color values are usually obtained via a Graph-
icsContext instance used when printing graphs through
user-supplied print drivers.
18

Control 8

(apply proc list) ⇒ object

Calls proc with the elements of list as the actual argu-
ments.

(apply + (list 3 4))=> 7

(define compose

 (lambda (f g)

 (lambda args

 (f (apply g args)))))

((compose sqrt *) 12 75)=> 30

(begin body...) ⇒ object or nil
The expression are evaluated sequentially from left to
right, and the value of the last expression is returned.
This expression type is used to sequence side effects such
as input and output.

(define x 0)

(begin (set! x 5)

 (+ x 1)) => 6

(begin (display "4 plus 1 equals ")

 (display (+ 4 1)))=> unspecified

. . . and prints 4 plus 1 equals 5

(call-with-current-continuation proc) ⇒ value
Proc must be a procedure of one argument. The proce-
dure call-with-current-continuation packages up the cur-
rent continuation (see the rationale below) as an ‘‘escape
procedure’’ and passes it as an argument to proc. The
escape procedure is a Scheme procedure of one argument
that, if it is later passed a value, will ignore whatever con-
tinuation is in effect at that later time and will give the
value instead to the continuation that was in effect when
the escape procedure was created.

In standard Scheme, the escape procedure that is passed
to proc has unlimited extent just like any other procedure
in Scheme. But this is not the case in Alter, where the
escape procedure’s extent is limited to the duration of the
activation of the call-with-current-continuation that
defined it. The escape procedure may be stored in vari-
ables or data structures.

The following examples show only the most common
uses of call-with-current-continuation. If all real pro-
grams were as simple as these examples, there would be
 Alter Reference Manual 19

Control
no need for a procedure with the power of call-with-cur-
rent-continuation.

(call-with-current-continuation

 (lambda (exit)

 (for-each (lambda (x)

 (if (negative? x)

 (exit x)))

 ’(54 0 37 -3 245 19))

 #\t)) => -3

(define list-length

 (lambda (obj)

 (call-with-current-continuation

 (lambda (return)

 (letrec ((r

 (lambda (obj)

 (cond ((null? obj) 0)

 ((pair? obj)

 (+ (r (cdr obj)) 1))

 (else (return #f))))))

 (r obj))))))

(list-length ’(1 2 3 4))=> 4

(list-length ’(a b . c))=> #f

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bod-
ies, but in fact call-with-current-continuation is
extremely useful for implementing a wide variety of
advanced control structures.

Whenever a Scheme expression is evaluated there is a
continuation wanting the result of the expression. The
continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level,
for example, then the continuation might take the result,
print it on the screen, prompt for the next input, evaluate
it, and so on forever. Most of the time the continuation
includes actions specified by user code, as in a continua-
tion that will take the result, multiply it by the value
stored in a local variable, add seven, and give the answer
to the top level continuation to be printed. Normally
these ubiquitous continuations are hidden behind the
scenes and programmers don’t think much about them.
On rare occasions, however, a programmer may need to
20

Control
deal with continuations explicitly. Call-with-current-con-
tinuation allows Scheme programmers to do that by cre-
ating a procedure that acts just like the current
continuation.

Most programming languages incorporate one or more
special-purpose escape constructs with names like ’exit’,
’return’, or even ’goto’. In 1965, however, Peter Landin
invented a general purpose escape operator called the J-
operator. John Reynolds described a simpler but equally
powerful construct in 1972. The "catch" special form
described by Sussman and Steele in the 1975 report on
Scheme is exactly the same as Reynolds’s construct,
though its name came from a less general construct in
MacLisp. Several Scheme implementors noticed that the
full power of the "catch" construct could be provided by a
procedure instead of by a special syntactic construct, and
the name call-with-current-continuation was coined in
1982. This name is descriptive, but opinions differ on the
merits of such a long name, and some people use the
name call/cc instead.

(call/cc proc) ⇒ value
Proc must be a procedure of one argument. The proce-
dure call-with-current-continuation packages up the cur-
rent continuation (see the rationale below) as an ‘‘escape
procedure’’ and passes it as an argument to proc. The
escape procedure is a Scheme procedure of one argument
that, if it is later passed a value, will ignore whatever con-
tinuation is in effect at that later time and will give the
value instead to the continuation that was in effect when
the escape procedure was created.

In standard Scheme, the escape procedure that is passed
to proc has unlimited extent just like any other procedure
in Scheme. But this is not the case in Alter, where the
escape procedure’s extent is limited to the duration of the
activation of the call-with-current-continuation that
defined it. The escape procedure may be stored in vari-
ables or data structures.

The following examples show only the most common
uses of call-with-current-continuation. If all real pro-
grams were as simple as these examples, there would be
no need for a procedure with the power of call-with-cur-
rent-continuation.

(call-with-current-continuation

 (lambda (exit)

 (for-each (lambda (x)

 (if (negative? x)
 Alter Reference Manual 21

Control
 (exit x)))

 ’(54 0 37 -3 245 19))

 #\t)) => -3

(define list-length

 (lambda (obj)

 (call-with-current-continuation

 (lambda (return)

 (letrec ((r

 (lambda (obj)

 (cond ((null? obj) 0)

 ((pair? obj)

 (+ (r (cdr obj)) 1))

 (else (return #f))))))

 (r obj))))))

(list-length ’(1 2 3 4))=> 4

(list-length ’(a b . c))=> #f

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bod-
ies, but in fact call-with-current-continuation is
extremely useful for implementing a wide variety of
advanced control structures.

Whenever a Scheme expression is evaluated there is a
continuation wanting the result of the expression. The
continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level,
for example, then the continuation might take the result,
print it on the screen, prompt for the next input, evaluate
it, and so on forever. Most of the time the continuation
includes actions specified by user code, as in a continua-
tion that will take the result, multiply it by the value
stored in a local variable, add seven, and give the answer
to the top level continuation to be printed. Normally
these ubiquitous continuations are hidden behind the
scenes and programmers don’t think much about them.
On rare occasions, however, a programmer may need to
deal with continuations explicitly. Call-with-current-con-
tinuation allows Scheme programmers to do that by cre-
ating a procedure that acts just like the current
continuation.

Most programming languages incorporate one or more
special-purpose escape constructs with names like ’exit’,
’return’, or even ’goto’. In 1965, however, Peter Landin
invented a general purpose escape operator called the J-
22

Control
operator. John Reynolds described a simpler but equally
powerful construct in 1972. The "catch" special form
described by Sussman and Steele in the 1975 report on
Scheme is exactly the same as Reynolds’s construct,
though its name came from a less general construct in
MacLisp. Several Scheme implementors noticed that the
full power of the "catch" construct could be provided by a
procedure instead of by a special syntactic construct, and
the name call-with-current-continuation was coined in
1982. This name is descriptive, but opinions differ on the
merits of such a long name, and some people use the
name call/cc instead.

(cond clause...) ⇒ object or nil
Each clause should be of the form

(test expression . . .)

where test is any expression. The last clause may be an
‘‘else clause,’’ which has the form

(else expression1 expression2 . . .)

A cond expression is evaluated by evaluating the test
expressions of successive clauses in order until one of
them evaluates to a true value. When a test evaluates to a
true value, then the remaining expressions in its clause
are evaluated in order, and the result of the last expres-
sion in the clause is returned as the result of the entire
cond expression. If the selected clause contains only the
test and no expressions, then the value of the test is
returned as the result. If all tests evaluate to false values,
and there is no else clause, then the result of the condi-
tional expression is unspecified; if there is an else clause,
then its expressions are evaluated, and the value of the
last one is returned.

(cond ((> 3 2) ’greater)

 ((< 3 2) ’less))=> greater

(cond ((> 3 3) ’greater)

 ((< 3 3) ’less)

 (else ’equal))=> equal

(do bindings terminator body...) ⇒ object or nil
Detailed syntax is as follows:

(do ((variable1 init1 step1)

 . . .)

 (test expression . . .)

 command . . .)

Do is an iteration construct. It specifies a set of variables
to be bound, how they are to be initialized at the start,
 Alter Reference Manual 23

Control
and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a spec-
ified result value.

Do expressions are evaluated as follows:

The init expressions are evaluated (in some unspecified
order), the variables are bound to fresh locations, the
results of the init expressions are stored in the bindings of
the variables, and then the iteration phase begins.

Each iteration begins by evaluating test; if the result is
false, then the command expressions are evaluated in
order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh
locations, the results of the steps are stored in the bind-
ings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are
evaluated from left to right and the value of the last
expression is returned as the value of the do expression.
If no expressions are present, then the value of the do
expression is unspecified.

The region of the binding of a variable consists of the
entire do expression except for the inits. It is an error for
a variable to appear more than once in the list of do vari-
ables.

A step may be omitted, in which case the effect is the
same as if (variable init variable) had been written instead
of (variable init).

(do ((vec (make-vector 5))

 (i 0 (+ i 1)))

 ((= i 5) vec)

 (vector-set! vec i i))=> #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

 (do ((x x (cdr x))

 (sum 0 (+ sum (car x))))

 ((null? x) sum)))=> 25

(eval object) ⇒ object
Evaluates the expression (a second time) and returns the
result of that evaluation.

(eval 5) => 5

(eval ’eq?) => a procedure

(eval (list ’+ 2 7))=> 9

(for-each proc list1 list2...) ⇒ nil
The arguments to for-each are like the arguments to map,
24

Control
but for-each calls proc for its side effects rather than for its
values. Unlike map, for-each is guaranteed to call proc
on the elements of the lists in order from the first element
to the last, and the value returned by for-each is unspeci-
fied.

(let ((v (make-vector 5)))

 (for-each (lambda (i)

 (vector-set! v i (* i i)))

 ’(0 1 2 3 4))

 v) => #(0 1 4 9 16)

(if test consequence [alternate]) ⇒ object or nil
Test, consequent, and alternate may be arbitrary expres-
sions.

An if expression is evaluated as follows: first, test is eval-
uated. If it yields a true value (any value which is not #f),
then consequent is evaluated and its value is returned.
Otherwise alternate is evaluated and its value is returned.
If test yields a false value and no alternate is specified,
then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no)=> yes

(if (> 2 3) ’yes ’no)=> no

(if (> 3 2)

 (- 3 2)

 (+ 3 2)) => 1

(in-new-environment-do body...) ⇒ nil
Creates a new, parent-less environment in which to eval-
uate the supplied body expressions.

(map proc list1 list2...) ⇒ list
Map applies proc element-wise to the elements of the
lists and returns a list of the results, in order from left to
right. The dynamic order in which proc is applied to the
elements of the lists is unspecified.

(map cadr ’((a b) (d e) (g h)))=> (b e h)

(map (lambda (n) (expt n n))

 ’(1 2 3 4 5)) => (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6))=> (5 7 9)

(let ((count 0))

 (map

 (lambda (ignored)

 (set! count (+ count 1))

 count)
 Alter Reference Manual 25

Control
 ’(a b c))) => unspecified

(show-progress-begin label body...) ⇒ object or nil
Show-progress-begin is just like begin, except that a
progress meter is displayed during its execution. The
meter displays the message supplied as a string as the
first argument and a partially-filled circle. The circle
shows the percentage of expressions that have been eval-
uated. Note that this, at best, only approximates the
actual proportions involved, since show-progress-begin
has no clues about how long it will take to evaluate each
expression..

(show-progress-for-each message proc list1 list2...) ⇒ nil
Show-progress-for-each is just like for-each, except that a
progress meter is displayed during its execution. The
meter displays the message supplied as a string as the
first argument and a partially-filled circle. The circle
shows the percentage of top-level list elements that have
been processed by the given procedure. Note that this, at
best, only approximates the actual proportions involved,
since show-progress-for-each has no clues about how
long it will take to process each set of elements.

(^super type operation object...) ⇒ object
This is just like (operation object . args) except that the
method search begins at type rather that the type of
object. It is required that type be an immediate supertype
of the type that the method this call appears in is added
to, although the current implementation does not yet
enforce this restriction. ^super is analogous to the Small-
talk-80 mechanism of the same name, except that due to
Alter’s multiple inheritance it is necessary for the pro-
grammer to explicitly state which supertype is to be dis-
patched to.
26

Converting 9

(char->integer char) ⇒ integer

Given a character, char->integer returns an exact integer
representation of the character. This procedure imple-
ments an injective order isomorphism between the set of
characters under the char<=? ordering and some subset of
the integers under the <= ordering. That is, if

(char<=? a b) => #t, and

(<= x y) => #t

and x and y are in the domain of integer->char, then

(<= (char->integer a)

 (char->integer b))=> #t

(char-downcase char) ⇒ character
This procedure return a character c such that (char-ci=?
char c) is true. In addition, if char is alphabetic, then the
result of char-downcase is lower case. See also char-
upcase.

(char-upcase char) ⇒ character
This procedure returns a character c such that (char-ci=?
char c) is true. In addition, if char is alphabetic, then the
result of char-upcase is upper case. See also char-down-
case.

(exact->inexact number) ⇒ float
Exact->inexact returns an inexact representation of arg.
The value returned is the inexact number that is numeri-
cally closest to the argument.

For exact arguments which have no reasonably close inex-
act equivalent, Alter may signal an error.

This procedure implements the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range.

(filename->string filename-type) ⇒ string
Converts the argument filename into an Alter string. See
also string->filename.

(inexact->exact number) ⇒ integer
Inexact->exact returns an exact representation of arg. The
value returned is the exact number that is numerically
closest to the argument.

For inexact arguments which have no reasonably close
exact equivalent, Alter may signal an error.
 Alter Reference Manual 27

Converting
This procedure implements the natural one-to-one corre-
spondence between exact and inexact integers through-
out an implementation-dependent range.

(integer->char int) ⇒ character
Given an exact integer that is the image of a character
under char->integer, integer->char returns that charac-
ter. This procedure implements an injective order iso-
morphism between the set of characters under the
char<=? ordering and some subset of the integers under
the <= ordering. That is, if

(char<=? a b) => #t, and

(<= x y) => #t

and x and y are in the domain of integer->char, then

(char<=? (integer->char x)

 (integer->char y))=> #t

(list->string listofchars) ⇒ string
List->string returns a newly allocated string formed from
the characters in the list of args. String->list and list-
>string are inverses so far as equal? is concerned.

(list->vector list) ⇒ vector
List->vector returns a newly created vector initialized to
the elements of the list arg. See also vector->list.

(list->vector ’(dididit dah))=> #(dididit dah)

(number->string number [radix]) ⇒ string
Radix must be an exact integer, either 2, 8, 10, or 16. If
omitted, radix defaults to 10.

The procedure number->string takes a number and a
radix and returns as a string an external representation of
the given number in the given radix such that

(let ((number n)

 (radix r))

 (eqv? n

 (string->number

 (number->string n r) r)))

is true. It is an error if no possible result makes this
expression true.

If n is inexact, the radix is 10, and the above expression
can be satisfied by a result that contains a decimal point,
then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of expo-
nent and trailing zeroes) needed to make the above
expression true; otherwise the format of the result is
28

Converting
unspecified.

The result returned by number->string never contains an
explicit radix prefix.

The error case can occur only when n is not a complex
number or is a complex number with a non-rational real
or imaginary part.

(object->string object) ⇒ string
Returns a string representation of sexpr by the same
mechanism that display formulates a string to display.
c.f. display.

(string->filename string resolve...) ⇒ filename
Converts the argument string into a filename object. This
procedure does not require the corresponding file to exist,
but an error may result if the syntax of the name is not
appropriate for the host operating system. Alternatively,
certain "adjustments" may be made when converting the
string to a filename that make it more palatable to the
host. See also construct, filename->string.

(string->list string) ⇒ list
String->list returns a newly allocated list of the characters
that make up the String->given string. String->list and
list->string are inverses so far as String->equal? is con-
cerned.

(string->number string [radix]) ⇒ number
Returns a number of the maximally precise representa-
tion expressed by the given string. Radix must be an exact
integer, either 2, 8, 10, or 16. If supplied, radix is a default
radix that may be overridden by an explicit radix prefix
in string (e.g. "#o177"). If radix is not supplied, then the
default radix is 10. If string is not a syntactically valid
notation for a number, then string->number returns #f.

(string->number "100")=> 100

(string->number "100" 16)=> 256

(string->number "1e2")=> 100.0

Although string->number is an essential procedure, an
implementation may restrict its domain in the following
ways. String->number is permitted to return #f when-
ever string contains an explicit radix prefix. If all numbers
supported by an implementation are real, then string-
>number is permitted to return #f whenever string uses
the polar or rectangular notations for complex numbers.
If all numbers are integers, then string->number may
return #f whenever the fractional notation is used. If all
numbers are exact, then string->number may return #f
whenever an exponent marker or explicit exactness prefix
 Alter Reference Manual 29

Converting
is used, or if a # appears in place of a digit. If all inexact
numbers are integers, then string->number may return #f
whenever a decimal point is used.

(string->symbol string) ⇒ symbol
Returns the symbol whose name is arg. This procedure
can create symbols with names containing special charac-
ters or letters in the non-standard case, but it is usually a
bad idea to create such symbols because in some imple-
mentations of Scheme they cannot be read as themselves.
See symbol->string.

The following examples assume that the implementa-
tion’s standard case is lower case:

(eq? ’mISSISSIppi ’mississippi)=> #t

(string->symbol "mISSISSIppi")=> the symbol
with name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))=> #f

(eq? ’JollyWog

 (string->symbol

 (symbol->string ’JollyWog)))=> #t

(string=? "K. Harper, M.D."

 (symbol->string

 (string->symbol "K. Harper, M.D.")))=> #t

(string-capitalize string) ⇒ string
This procedure returns a string of equal length to the
argument string such that the first character of the string
is now uppercase (char-ci=? is true).

(string-downcase string) ⇒ string
This procedure returns a string of equal length to the
argument string such that char-ci=? is true for each corre-
sponding character of the argument and the result. In
addition, if a given character in the argument string is
alphabetic, the corresponding character in the result
string is lower case. See also string-upcase.

(string-upcase string) ⇒ string
This procedure returns a string of equal length to the
argument string such that char-ci=? is true for each corre-
sponding character of the argument and the result. In
addition, if a given character in the argument string is
alphabetic, the corresponding character in the result
string is upper case. See also string-downcase.

(symbol->string symbol) ⇒ string
Returns the name of symbol as a string. If the symbol
was part of an object returned as the value of a literal
30

Converting
expression or by a call to the read procedure, and its
name contains alphabetic characters, then the string
returned will contain characters in the implementation’s
preferred standard case---some implementations will pre-
fer upper case, others lower case. If the symbol was
returned by string->symbol, the case of characters in the
string returned will be the same as the case in the string
that was passed to string->symbol. It is an error to apply
mutation procedures like string-set! to strings returned
by this procedure.

The following examples assume that the implementa-
tion’s standard case is lower case:

(symbol->string ’flying-fish)=> "flying-fish"

(symbol->string ’Martin)=> "martin"

(symbol->string

 (string->symbol "Malvina"))=> "Malvina"

(type->symbol type) ⇒ symbol
Converts a type (e.g., grapething, color-type, procedure-
type) into a symbol. This is useful for dealing with GrapE
objects.

(vector->list vector) ⇒ list
Vector->list returns a newly allocated list of the objects
contained in the elements of arg. See also list->vector.

(vector->list ’#(dah dah didah))=> (dah dah
didah)
 Alter Reference Manual 31

Converting
32

Defining 10

(add-method interface body...) ⇒ procedure

Adds the specified procedure as a handler for the method
named in the interface argument. Alter’s implementation
of classes, operations and methods follows the OakLisp
style, as presented in the OOPSLA ’86 Proceedings.

The detailed form of the arguments to add-method are as
follows:

(add-method (operation (receiver-class) . argu-
ment-list) . body)

Add-method is a special form because the body and argu-
ment-list are not evaluated. However, the operation and
receiver-class ARE evaluated. They are typically symbols
bound to the objects of interest. This means, of course,
that the operation must previously exist before add-
method can be used to add to it (see find-operation,
make).

The argument-list is used to effectively build a procedure
that also includes the body. This procedure is returned as
the result of add-method.

When the operation is called with an instance of the
receiver-class (or a subclass) as the first argument, Alter
will forward the call to the procedure.

(bindings) ⇒ list
Returns a list of pairs that represent the user-defined
bindings within the active lexical environment. Each pair
has a car that is a symbol, and a cdr that is the value
bound to that symbol. Predefined procedures and opera-
tions are NOT included in this list (see ’predefined-bind-
ings’).

(copy object) ⇒ object
Returns a copy of the argument. Most things in Alter are
constants and so copy returns the argument itself.

Copying strings returns a string of equal length to the
argument string such that char=? is true for each corre-
sponding character of the argument and the result (equiv-
alent to string-copy).

Copying lists returns a list of equal length to the argu-
ment list such that eq? returns true for each correspond-
ing element of the argument and the result.

Copying vectors returns a vector of equal length to the
argument vector such that eq? returns true for each corre-
sponding element of the argument and the result.
 Alter Reference Manual 33

Defining
Copying dictionaries returns a dictionary of equal size to
the argument dictionary such that eq? returns true for
each corresponding key of the argument and the result
and eq? returns true for each corresponding value of the
argument and the result.

Copying grapethings is dependent on how the particular
subclass implements copying itself.

Copying instances of user-defined-types returns an object
whose instance variables are set to a copy of the object
that the argument’s instance variable was set to.

(define varspec valueorbody body...) ⇒ object or procedure
Definitions are valid in some, but not all, contexts where
expressions are allowed. They are valid only at the top
level of a program and, in some implementations, at the
beginning of a body.

A definition should have one of the following forms:

(define variable expression)

(define (variable formals) body)

Formals should be either a sequence of zero or more vari-
ables, or a sequence of one or more variables followed by
a space-delimited period and another variable (as in a
lambda expression). This form is equivalent to

(define variable

 (lambda (formals) body))

(define (variable . formal) body)

Formal should be a single variable. This form is equiva-
lent to

(define variable

 (lambda formal body))

At the top level of a program, a definition

(define variable expression)

has essentially the same effect as the assignment expres-
sion

(set! variable expression)

if variable is bound. If variable is not bound, however,
then the definition will bind variable to a new location
before performing the assignment, whereas it would be
an error to perform a set! on an unbound unbound vari-
able.

(define add3

 (lambda (x) (+ x 3)))
34

Defining
(add3 3) => 6

(define (add2 x) (+ x 2))

(add3 3) => 5

(define (sum . args) (apply + args))

(sum 1 2 3 4 5) => 15

(define first car)

(first ’(1 2)) => 1

(find-operation name) ⇒ operation
Find-operation is a special form. The argument is a sym-
bol that is intended to be bound to an operation. Alter
first checks the current lexical environment for a binding.
If one exists and the value is an operation, Alter returns
that value. If one exists and it is not an operation, an
error occurs. If a user-defined binding does not exist, but
a predefined binding does, Alter binds the symbol in the
current lexical environment to a surrogate operation that
allows the user to add methods without disrupting the
space of predefined symbols; a surrogate handles calls
just like a normal operation, except that it can forward
calls to the predefined operation if it is given an object
that falls outside of its interface range.

If neither a user-defined or predefined binding exists,
Alter creates a new operation and binds it to the given
symbol. The return value of find-operation is the new or
existing operation (or surrogate). See also add-method,
make.

(find-operation foo)=> a new, normal operation

(find-operation foo)=> the same normal operation

(find-operation length)=> a new, surrogate opera-
tion

(find-operation +)=> error; a procedure

(lambda formals body...) ⇒ procedure
Formals should be a formal arguments list as described
below, and body should be a sequence of one or more
expressions.

A lambda expression evaluates to a procedure. The envi-
ronment in effect when the lambda expression was evalu-
ated is remembered as part of the procedure. When the
procedure is later called with some actual arguments, the
environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the for-
mal argument list to fresh locations, the corresponding
actual argument values will be stored in those locations,
and the expressions in the body of the lambda expression
 Alter Reference Manual 35

Defining
will be evaluated sequentially in the extended environ-
ment. The result of the last expression in the body will be
returned as the result of the procedure call.

(lambda (x) (+ x x))=> a procedure

((lambda (x) (+ x x)) 4)=> 8

(define reverse-subtract

 (lambda (x y) (- y x)))

(reverse-subtract 7 10)=> 3

(define add4

 (let ((x 4))

 (lambda (y) (+ x y))))

(add4 6) => 10

Formals should have one of the following forms:

(variable . . .)

The procedure takes a fixed number of arguments; when
the procedure is called, the arguments will be stored in
the bindings of the corresponding variables.

variable

The procedure takes any number of arguments; when the
procedure is called, the sequence of actual arguments is
converted into a newly allocated list, and the list is stored
in the binding of the variable.

variable1 . . . variablen-1 . variablen

If a space-delimited period precedes the last variable,
then the value stored in the binding of the last variable
will be a newly allocated list of the actual arguments left
over after all the other actual arguments have been
matched up against the other formal arguments.

It is an error for a variable to appear more than once in
formals.

((lambda x x) 3 4 5 6)=> (3 4 5 6)

((lambda (x y . z) z)

 3 4 5 6) => (5 6)

Each procedure created as the result of evaluating a
lambda expression is tagged with a storage location, in
order to make eqv? and eq? work on procedures.

(let bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)
36

Defining
where each initi is an expression, and body should be a
sequence of one or more expressions. It is an error for a
variable to appear more than once in the list of variables
being bound.

The inits are evaluated in the current environment (in
some unspecified order), the variables are bound to fresh
locations holding the results, the body is evaluated in the
extended environment, and the value of the last expres-
sion of body is returned. Each binding of a variable has
body as its region.

(let ((x 2) (y 3))

 (* x y)) => 6

(let ((x 2) (y 3))

 (let ((x 7)

 (z (+ x y)))

 (* z x))) => 35

(let* bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)

and body should be a sequence of one or more expres-
sions.

Let* is similar to let, but the bindings are performed
sequentially from left to right, and the region of a binding
indicated by (variable init) is that part of the let* expres-
sion to the right of the binding. Thus the second binding
is done in an environment in which the first binding is
visible, and so on.

(let ((x 2) (y 3))

 (let* ((x 7)

 (z (+ x y)))

 (* z x))) => 70

(letrec bindings body...) ⇒ object
Bindings should have the form

((variablei initi) . . .)

and body should be a sequence of one or more expres-
sions. It is an error for a variable to appear more than
once in the list of variables being bound.

The variables are bound to fresh locations holding unde-
fined values, the inits are evaluated in the resulting envi-
ronment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the body
is evaluated in the resulting environment, and the value
 Alter Reference Manual 37

Defining
of the last expression in body is returned. Each binding
of a variable has the entire letrec expression as its region,
making it possible to define mutually recursive proce-
dures.

(letrec ((even?

(lambda (n)

 (if (zero? n)

#t

(odd? (- n 1)))))

 (odd?

(lambda (n)

 (if (zero? n)

 #f

 (even? (- n 1))))))

 (even? 88))

=> #t

One restriction on letrec is very important: it must be pos-
sible to evaluate each init without assigning or referring
to the value of any variable. If this restriction is violated,
then it is an error. The restriction is necessary because
Scheme passes arguments by value rather than by name.
In the most common uses of letrec, all the inits are lambda
expressions and the restriction is satisfied automatically.

(make type ivars supertypes) ⇒ type

(make type) ⇒ object
Creates an instance of the specified type. ’Make’ is most
useful for creating instances of type Operation, but can
also be used for creating instances of GrapEThing and its
subclasses (e.g., DoMENode, NetArc). See also add-
method, find-operation. Alter’s implementation of
classes, operations and methods follows the OakLisp
style, as presented in the OOPSLA ’86 Proceedings.

(methods operation) ⇒ list
Returns an alist (see assoc) containing the types and pro-
cedures currently defining the operation. Each alist com-
ponent is of the form (class . procedure).

(predefined-bindings) ⇒ list
Returns a list of pairs that represent the predefined bind-
ings. Each pair has a car that is a symbol, and a cdr that is
the value bound to that symbol. User-defined procedures
and operations are NOT included in this list (see ’bind-
ings’).
38

Defining
(quasiquote expression) ⇒ object
"Backquote" or "quasiquote" expressions are useful for
constructing a list or vector structure when most but not
all of the desired structure is known in advance. If no
commas appear within the <template>, the result of eval-
uating ‘<template> is equivalent to the result of evaluat-
ing ’<template>. If a comma appears within the
<template>, however, the expression following the
comma is evaluated ("unquoted") and its result is inserted
into the structure instead of the comma and the expres-
sion. If a comma appears followed immediately by an at-
sign (@), then the following expression must evaluate to a
list; the opening and closing parentheses of the list are
then "stripped away" and the elements of the elements of
the list are inserted in place of comma at-sign expression
sequence.

 ‘(list ,(+ 1 2) 4)=> (list 3 4)

 (let ((name ’a)) ‘(list ,name ’,name))=> (list a (quote a))

 ‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)=> (a 3 4 5 6 b)

 ‘((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))=> ((foo 7) .
cons)

 ‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)=> #(10 5 2 4 3 8)

Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same
nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquota-
tion, and decreases by one inside each unquotation.

 ‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=> (a ‘(b ,(+ 1 2) ,(foo 4 d) e) f)

 (let ((name1 ’x)

 (name2 ’y))

 ‘(a ‘(b ,,name1 ,’,name2 d) e))=> (a ‘(b ,x ,’y d) e)

The notations ‘<template> and (quasiquote <template>)
are identical in all respects. ,<expression> is identical to
(unquote <expression>), and ,@<expression> is identical
to (unquote-splicing <expression>). The external syntax
generated by write for two-element list whose car is one
of these symbols may vary between implementations.

 (quasiquote (list (unquote (+ 1 2)) 4))=> (list 3 4)

 ‘(quasiquote (list (unquote (+ 1 2)) 4))=> ‘(list ,(+ 1 2) 4)

(quote object) ⇒ object
Returns the argument. The argument may be any exter-
nal representation of an Alter object. This notation is
used to include literal constants in Alter code.
 Alter Reference Manual 39

Defining
(quote a) => a

(quote #(a b c))=> #(a b c)

(quote (+ 1 2)) => (+ 1 2)

(quote object) may be abbreviated as ’object. The two
notations are equivalent in all respects.

’a => a

’#(a b c) => #(a b c)

’() => ()

’(+ 1 2) => (+ 1 2)

’(quote a) => (quote a)

’’a => (quote a)

Numerical constants, string constants, character con-
stants, and boolean constants evaluate "to themselves";
they need not be quoted.

’"abc" => "abc"

"abc" => "abc"

’145932 => 145932

145932 => 145932

’#t => #t

#t => #t

It is an error to alter a constant (i.e the value of a literal
expression) using a mutation procedure like set-car! or
string-set!.

(set! variable expression) ⇒ object
Expression is evaluated, and the resulting value is stored
in the location to which variable is bound. Variable must
be bound either in some region enclosing the set! expres-
sion or at top level. The result of the set! expression is
unspecified.

(define x 2)

(+ x 1) => 3

(set! x 4) => unspecified

(+ x 1) => 5

(unquote expression) ⇒ object
See quasiquote.

(unquote-splicing expression) ⇒ object
See quasiquote.
40

Dictionaries 11

(dictionary->list dictionary) ⇒ list

Creates a list that is a projection of the given dictionary.
The list is of the form ((k1 . v1) (k2 . v2) ...) where each k is
a key from the dictionary and each v is the corresponding
value at that key. Note that the result list is in a conve-
nient form for using with assoc, assv and assq.

(dictionary-keys dictionary) ⇒ list
Returns a list of the keys defined in the given dictionary.
The keys appear in the list in no particular order, and that
order may change with the addition or removal of a single
key. In fact, there is no guarantee that successive calls to
dictionary-keys on the same dictionary will produce the
same ordering. See also make-dictionary, dictionary-ref,
dictionary-set!, dictionary-unset!, dictionary-values.

(let ((dict (make-dictionary ’eq?)))

 (dictionary-set! dict ’alpha "one")

 (dictionary-set! dict ’beta "two")

 (dictionary-keys dict))=> ’(alpha beta)

(dictionary-ref dictionary key [default]) ⇒ object
If the given dictionary has a value associated with the
given key, that value is returned. If the key has no associ-
ated value, either the default (if supplied) or nil is
returned. See also make-dictionary, dictionary-set!, dic-
tionary-keys, dictionary-unset!.

(define foo (make-dictionary ’eq?))

(dictionary-set! foo 10 "ten")

(dictionary-ref foo 10)=> "ten"

(dictionary-ref foo ’x)=> nil

(dictionary-ref foo ’x ’nothing)=> ’nothing

(dictionary-set! dictionary key obj) ⇒ #t or #f
Inserts the given object into the dictionary associated with
the given key. If the key previously had an associated
value in the dictionary, that previous association is broken
and the new association is established. Dictionary-set!
returns #f if there was no previous association for that
key, and returns #t if there was a previous association for
that key. See also make-dictionary, dictionary-ref, dictio-
nary-keys, dictionary-unset!.

(define table (make-dictionary ’eq?))

(dictionary-set! table ’small ’(helvetica 9 0))=> #f
 Alter Reference Manual 41

Dictionaries
(dictionary-set! table ’small ’(times 10 0.5))=> #t

(dictionary-unset! dictionary key) ⇒ #t or #f
Removes any association that may have previously
existed for the given key in the given dictionary. If an
association existed for the key at the time of call to the
dictionary-unset!, the procedure returns #t, otherwise it
returns #f. The comparison used to match the key is
either eq? or equal?, depending on how the dictionary
was created (see make-dictionary). See also dictionary-
ref, dictionary-set!, dictionary-keys.

(define sys-table (make-dictionary ’eq?))

(dictionary-unset! sys-table ’foo)=> #f

(dictionary-set! sys-table ’foo 97)

(dictionary-unset! sys-table ’foo)=> #t

(dictionary-values dictionary) ⇒ list
Returns a list of the values defined in the given dictio-
nary. The values appear in the list in no particular order,
and that order may change with the addition or removal
of a single key-value pair. In fact, there is no guarantee
that successive calls to dictionary-values on the same dic-
tionary will produce the same ordering. See also make-
dictionary, dictionary-ref, dictionary-set!, dictionary-
unset!, dictionary-keys.

(let ((dict (make-dictionary ’eq?)))

 (dictionary-set! dict ’alpha "one")

 (dictionary-set! dict ’beta "two")

 (dictionary-values dict))=> ’("one" "two")

(make-dictionary [comparison [size]]) ⇒ dictionary
Make-dictionary has two optional arguments. The first,
currently required to be either ’eq? or ’equal, specifies the
kind of comparison used on keys to search for and
retrieve values from the dictionary. (’Equal?does not cur-
rently work for keys that are lists.) ’Eq? is the default. If
the second argument is also given, it must be a positive
integer and indicates the allocation size of the dictionary
to create. The allocation size is the number of key->value
associations that may be made before the dictionary must
be automatically (and invisibly) enlarged. Since dictio-
nary enlargement can involve a lot of copying and may
significantly "overshoot" in size, you may gain some per-
formance for large dictionaries if you give a reasonably
close but conservative estimate in the second argument to
make-dictionary.

(define baz (make-dictionary))=> small dictionary
using ’eq? for key comparison
42

Dictionaries
(dictionary-set! baz "black" ’(0 0 0))

(define nob (make-dictionary ’equal?))=> small
dictionary using ’equal? for key comparison

(dictionary-set! nob "black" ’(0 0 0))

(dictionary-ref bar "black")=> nil

(dictionary-ref nob "black")=> ’(0 0 0)
 Alter Reference Manual 43

Dictionaries
44

Document Generation 12

(bottom-margin document-context) ⇒ inches

Returns the size of the bottom margin in inches for a page
generated by the document-context.

(cr document-context [integer]) ⇒ nil
Adds a carriage return (newline) to the document-con-
text’s stream. If the optional positive integer argument is
passed then a number of carriage returns equal to the
value of the integer are added to the document-context’s
stream.

(dec-indent-level! document-context) ⇒ nil
Decrements the document-context’s indent level counter.

(draw-grapething ps-context object [translation]) ⇒ nil

(draw-grapething document-context object [translation]) ⇒ nil
Renders the grapething at the specified position on the
graphics context.

(finalize ps-context) ⇒ nil

(finalize document-context) ⇒ nil
This is the call that is made to the document-context after
the document has been generated. It is used to close files,
etc.

(inc-indent-level! document-context) ⇒ nil
Increments the document-context’s indent level counter.

(indent document-context) ⇒ nil
Adds a number of spaces equal to the value of the
receiver’s indent-level multiplied by its indent-size to the
receiver’s stream.

(indent-level document-context) ⇒ nil
Returns the value of the receiver’s indent-level. The
indent-level is multiplied by the receiver’s indent-size to
determine the total number of spaces to use when indent-
ing.

(indent-size document-context) ⇒ nil
Returns the value of the receiver’s indent-size. The
indent-size is multiplied by the receiver’s indent-level to
determine the total number of spaces to use when indent-
ing.

(left-margin document-context) ⇒ inches
Returns the size of the left margin in inches for a page
generated by the receiver.
 Alter Reference Manual 45

Document Generation
(next-multilevel-tag document-context level [separator [key]]) ⇒ string
Bumps the multilevel counter at the indicated level and
returns a string consisting of the current state of each
level separated by the specified separator string. If sepa-
rator is not specified, a period "." is used. If the optional
key is present, then the multilevel counter associated
with that key is affected (’para is the default key). See
also reset-multilevel-counter and supports-native-para-
graph-numbering?

(next-put document-context string) ⇒ nil
Adds the string argument to the receiver’s output stream.

(open ps-context [output]) ⇒ nil

(open document-context [output]) ⇒ nil
Sets the receiver’s port to an output-port. If the optional
output argument is not provided then a window is open
and the port is set to the window. If the optional output
argument is passed it must be a string, filename or out-
put-port. If it is a string, the string is converted to a file-
name, the file is opened and the port is set to the resulting
output-port. If it is a filename, the file is opened and the
port is set to the resulting output-port. If it is an output-
port, the port is set to it. An error results if any other type
of argument is passed.

(page-height document-context) ⇒ inches
Returns the size of the height of a page generated by the
receiver in inches.

(page-width document-context) ⇒ inches
Returns the size of the width of a page generated by the
receiver in inches.

(port document-context) ⇒ port
Returns the receiver’s current output port.

(print-size document-context) ⇒ number
Returns the maximum dimension in inches of printed
data when drawing graphics.

(put-string ps-context string [font-description]) ⇒ nil
Add the string to the context’s current paragraph using
font if specified.

(reset-multilevel-counter document-context [key]) ⇒ nil
Resets the multilevel counter. If key is given, the multi-
level counter associated with that key is reset (default key
is ’para).

(right-margin document-context) ⇒ inches
Returns the size of the right margin in inches for a page
46

Document Generation
generated by the receiver.

(scale document-context) ⇒ point
Returns a point representing the scale factor for all points
used when drawing graphics.

(scale-to! document-context rectangle) ⇒ nil
Sets the scale and translation using the rectangle argu-
ment. The scale is set to a point whose x and y coordi-
nates are equal to the larger of the print size divided by
the rectangle’s width or the print size divided by the rect-
angle’s height. The translation is set to the rectangle’s
upper left corner point negated.

(set-bottom-margin! document-context inches) ⇒ nil
Sets the size of the bottom margin for a page generated by
the document-context. The size is in inches.

(set-face! document-context string) ⇒ nil
Sets the name of the font family that the reliever should
use when drawing strings with the draw-string opera-
tion.

(set-indent-level! document-context indent-level) ⇒ nil
Sets the value of the receiver’s indent-level. The indent-
level is multiplied by the receiver’s indent-size to deter-
mine the total number of spaces to use when indenting.

(set-indent-size! document-context indent-level) ⇒ nil
Sets the value of the receiver’s indent-size. The indent-
size is multiplied by the receiver’s indent-level to deter-
mine the total number of spaces to use when indenting.

(set-left-margin! document-context inches) ⇒ nil
Sets the size of the left margin for a page generated by the
receiver. The size is in inches.

(set-line-style! document-context symbol) ⇒ nil
This operation sets the context’s line style to the symbol
argument. The symbol represents the current dash pat-
tern to be used when drawing lines. The symbol is one of
{normal simpledash longdash dot dashdot dashdotdot
phantom chain shortdash hidden}.

(set-line-width! document-context width) ⇒ nil
Sets the line width of the context to the integer argument.
The value indicates how many pixels wide the pen is for
drawing lines.

(set-page-height! document-context inches) ⇒ nil
Sets the width a page generated by the receiver. The size
is in inches.
 Alter Reference Manual 47

Document Generation
(set-page-width! document-context inches) ⇒ nil
Sets the size of the width of a page generated by the
receiver. The size is in inches.

(set-paint-color! document-context color-value) ⇒ nil
Given a graphics context instance, sets the context’s cur-
rent paint color to the color value argument. The argu-
ment is a colorvalue instance representing the current pen
color for drawing objects. See make-rgb-color, make-hsb-
color, and make-cmy-color for making a colorvalue
instance.

(set-paint-style! document-context symbol) ⇒ nil
Given a graphicscontext instance, sets the context’s cur-
rent paint style to the symbol argument. The argument is
a symbol representing the current pen drawing style
(’solid or ’gray). See also set-paint-color!.

(set-port! document-context port) ⇒ nil
Sets the receiver’s current output port to the argument.

(set-print-size! document-context inches) ⇒ nil
Sets the maximum dimension in inches of printed data
when drawing graphics.

(set-relative-scale! document-context factor) ⇒ nil
Sets a value like 1.0 or 1.5 (150%), etc that can scale fonts
or other values.

(set-right-margin! document-context inches) ⇒ nil
Sets the size of the right margin for a page generated by
the receiver. The size is in inches.

(set-scale! document-context point) ⇒ nil
Sets the point used by the receiver to scale points when
drawing graphic objects.

(set-top-margin! document-context inches) ⇒ nil
Sets the size of the top margin for a page generated by the
document-context. The size is in inches.

(set-translation! document-context point) ⇒ nil
Sets the point used by the receiver to translate points
when drawing graphic objects.

(start-para ps-context [style]) ⇒ nil

(start-para document-context [style]) ⇒ nil
Starts a new paragraph. If the optional style parameter is
passed, a new paragraph with that style is created, other-
wise the receiver’s current style is used.
48

Document Generation
(supports-native-paragraph-numbering? document-context) ⇒ boolean
Answers #t if the given document context represents a
format that has native support for multi-level paragraph
numbering (e.g., Maker Interchange Format). Otherwise
returns #f. See also next-multilevel-tag and reset-multi-
level-counter.

(top-margin document-context) ⇒ inches
Returns the size of the top margin in inches for a page
generated by the document-context.

(translation document-context) ⇒ point
Returns the point used by the receiver to translate points
when drawing graphic objects.

(write-postamble document-context) ⇒ nil
Writes a postamble on the receiver’s stream.

(write-preamble document-context) ⇒ nil
Writes a preamble on the receiver’s stream.
 Alter Reference Manual 49

Document Generation
50

Enumerating 13

(assoc obj list) ⇒ pair or #f

This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its
car, then #f (not the empty list) is returned. Assoc uses
equal? to compare arg1 with the car fields of the pairs in
list.

See also assq, assv.

(assoc (list ’a) ’(((a)) ((b)) ((c))))=> ((a))

(assq obj list) ⇒ pair or #f
This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its
car, then #f (not the empty list) is returned. Assq uses eq?
to compare arg1 with the car fields of the pairs in list.

See also assv, assoc.

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) => (a 1)

(assq ’b e) => (b 2)

(assq ’d e) => #f

(assq (list ’a) ’(((a)) ((b)) ((c))))=> #f

(assq 5 ’((2 3) (5 7) (11 13)))=> unspecified

(assv obj list) ⇒ pair or #f
This procedure finds the first pair in list whose car field is
obj, and returns that pair. If no pair in list has obj as its
car, then #f (not the empty list) is returned. Assv uses
eqv? to compare arg1 with the car fields of the pairs in list.

See also assq, assoc.

(assv 5 ’((2 3) (5 7) (11 13)))=> (5 7)

(detect list predicate [none]) ⇒ object
Detect is similar to select except that it returns the first
object in the list that satisfies the predicate. If no objects
satisfy the predicate then the optional none argument is
returned. If the none argument is not specified then nil is
returned.

(member obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail arg2 k) for k less than the length of
list. If obj does not occur in list, then #f (not the empty
list) is returned. Member uses equal? to compare arg with
 Alter Reference Manual 51

Enumerating
the elements of list.

See also memq, memv.

(member (list ’a) ’(b (a) c))=> ((a) c)

(memq obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length of list.
If obj does not occur in list, then #f (not the empty list) is
returned. Memq uses eq? to compare obj with the ele-
ments of list.

See also memv, member.

(memq ’a ’(a b c))=> (a b c)

(memq ’b ’(a b c))=> (b c)

(memq ’a ’(b c d))=> #f

(memq (list ’a) ’(b (a) c))=> #f

(memq 101 ’(100 101 102))=> unspecified

(memv obj list) ⇒ list or #f
This procedure returns the first sublist of list whose car is
obj, where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length of list.
If obj does not occur in list, then #f (not the empty list) is
returned. Memv uses eqv? to compare obj with the ele-
ments of list.

See also memq, member.

(memv 101 ’(100 101 102))=> (101 102)

(select list predicate) ⇒ list
Select returns a new list containing references to the top-
level members of the given list that cause the specified
one-argument procedure to answer a true value (a true
value in Alter is any value that is not eq? with #f).

(select ’("alpha" "beta" "gamma")

 (lambda (s) (string<? s "c")))=> ’("alpha" "beta")
52

File 14

(as-backup filename-type) ⇒ string

Returns a string that is derived from the given filename
and can be used as a backup for that filename. The
behavior of this operation is host-specific.

(construct filename rest...) ⇒ filename
Returns a new filename instance whose head is the given
filename, and whose tail consists of the given string. The
precise behavior of this operation is host-specific.

(copy-to filename destination) ⇒ nil
Copies filename to destination (another filename). Desti-
nation may be a completely different pathname. It is an
error if destination cannot be opened for writing or file-
name cannot be opened for reading.

(current-directory) ⇒ filename
Returns a filename instance that represents the directory
in which DoME was started. The behavior of this proce-
dure is host- and installation-specific. For Macintosh
installations, (current-directory) is the same as (dome-
home).

(dates filename) ⇒ dictionary
Returns a dictionary with the file’s access dates.

(delete filename-type) ⇒ filename
Deletes the file represented by the given filename.

(dome-home) ⇒ filename
Returns a filename instance that represents the directory
containing DoME’s library and support files. The behav-
ior of this procedure is host- and installation-specific. On
Unix and Windows NT systems, the pathname comes
from the environment variable "DoMEHOME"; if it is not
set then the start up directory is used. On DOS machines,
the start up directory is used. On Macintosh systems,
Alter uses the pathname of the directory containing the
DoME application.

(exists filename-type) ⇒ #t or #f
Returns #t if the specified file exists, otherwise returns #f.

(exists? filename-type) ⇒ #t or #f
Returns #t if the specified file exists, otherwise returns #f.

(head filename-type) ⇒ string
Returns a string representing the given filename with the
 Alter Reference Manual 53

File
last component removed. If the filename represents a file,
the directory path is returned. If the filename represents
a directory, the parent directory path is returned.

(load-path) ⇒ filename
Returns the current path used by dome to resolve filena-
mes. This path is the concatenation of any user specified
path (the value of *dome-load-path*) with the default
load path.

(make-directory filename-type) ⇒ filename
Causes the host to create the directory represented by file-
name. The behavior of this function is host-specific.
Everything but the last component of filename must
already exist before make-directory is called; it is an error
otherwise.

(move-to filename destination) ⇒ nil
Renames filename to destination (another filename).
Destination may be a completely different pathname, but
the behavior of move-to is host-specific if filename and
destination are on different devices. It is an error if desti-
nation cannot be opened for writing or filename cannot
be opened for reading.

(resolve filename) ⇒ filename
Returns the full path of a file if it exists along the dome-
load-path, otherwise returns the filename unaltered.

(tail filename-type) ⇒ string
Returns a string representing the given filename with all
but the last component removed.

(temporary-filename) ⇒ filename
Returns a filename that can be opened for writing to save
temporary data, such as a file to print. The composition
of the filename may be host-specific.

(user-home) ⇒ filename
Returns a filename instance that represents the home
directory of the user. The behavior of this procedure is
host- and installation-specific. Note: Macintosh and Win-
dows hosts do not ordinarily support the concept of user
home directories. For Macintosh installations, (user-
home) is the same as (dome-home). In Windows and
Unix installations, if the HOME environment variable is
set, that is used to form the filename, otherwise "C:\" is
used for Windows, and "/" is used for Unix.
54

Font Descriptions 15

(bold font-description) ⇒ boolean

Returns a boolean indicating whether the font is bold or
not.

(default-font-description) ⇒ font-description
Returns the system’s default font-description.

(family font-description) ⇒ string
Returns a string or a vector representing the font’s family.
If a vector is returned, it is a vector of strings representing
alternative names for the font family.

(fixed-width font-description) ⇒ boolean
Returns a boolean that indicates whether all characters in
the font can be expected to be the same width.

(italic font-description) ⇒ boolean
Returns a boolean indicating whether the font is italic or
not.

(serif font-description) ⇒ boolean
Returns a boolean indicating whether the font is serif or
not.

(set-bold! font-description boolean) ⇒ nil
Sets the value of the font’s bold property to the boolean
argument.

(set-family! font-description string) ⇒ nil
Sets the receiver’s family to the string argument.

(set-fixed-width! font-description boolean) ⇒ nil
Sets the value of the font’s fixed-width property to the
boolean argument. The font’s set-width property indi-
cates whether all characters in the font can be expected to
be the same width.

(set-italic! font-description boolean) ⇒ nil
Sets the value of the font’s italic property to the boolean
argument.

(set-serif! font-description boolean) ⇒ nil
Sets the value of the font’s serif property to the boolean
argument.

(set-strikeout! font-description boolean) ⇒ nil
Sets the value of the font’s strikeout property to the bool-
ean argument.
 Alter Reference Manual 55

Font Descriptions
(set-underline! font-description boolean) ⇒ nil
Sets the value of the font’s underline property to the bool-
ean argument.

(size font-description) ⇒ points
Returns the size of the font in pixels.

(strikeout font-description) ⇒ boolean
Returns a boolean indicating whether the font is repre-
sented with a strikeout.

(underline font-description) ⇒ boolean
Returns a boolean indicating whether the font is repre-
sented with an underline.
56

Graphics 16

(draw-arc context bounding-rectangle start-angle sweep-angle [fill]) ⇒ nil

(draw-arc document-context bounding-rectangle start-angle sweep-angle [fill]) ⇒
nil

Draws an arc on the given graphics context. If the fill-flag
is true, the arc will be filled in a pie-wedge fashion. The
arc is drawn to inscribe the specified rectangle. The start
and sweep angles are in degrees. Zero degrees is right-
ward along the x axis, and the sweep angle proceeds
clockwise.

(draw-line context from-point to-point) ⇒ nil

(draw-line document-context from-point to-point) ⇒ nil
Draws a line on the given graphics context between the
two supplied points (see "point?"). This primitive is used
mainly in user-defined DoME Tool Specification/
ProtoDoME methods.

(draw-polyline context point-list [fill]) ⇒ nil

(draw-polyline document-context point-list [fill]) ⇒ nil
Draws a polyline on the given graphics context between
the supplied points (see "point?"). This primitive is used
mainly in user-defined DoME Tool Specification/
ProtoDoME methods.

(draw-rectangle context rectangle [fill]) ⇒ nil

(draw-rectangle document-context rectangle [fill]) ⇒ nil
Draws a rectangle on the given graphics context. If the
fill-flag is true, the rectangle will be filled; otherwise only
the border will be drawn.

(draw-string context string point) ⇒ nil

(draw-string document-context string alignment loc extent) ⇒ nil
Renders the string at the specified position on the graph-
ics context. The position specifies the location of the left
side and baseline of the first character.
 Alter Reference Manual 57

Graphics
58

I/O 17

(char-ready? [port]) ⇒ #t or #f

Returns #t if a character is ready on the input port and
returns #f otherwise. If char-ready returns #t then the
next read-char operation on the given port is guaranteed
not to hang. If the port is at end of file then char-ready?
returns #t. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(close port) ⇒ nil
Closes the file associated with port, rendering the port
incapable of generating characters. This routine has no
effect if the port has already been closed. The value
returned is unspecified.

(close-input-port port) ⇒ nil
Closes the file associated with port, rendering the port
incapable of generating characters. This routine has no
effect if the port has already been closed. The value
returned is unspecified.

(close-output-port port) ⇒ nil
Closes the file associated with port, rendering the port
incapable of generating characters. This routine has no
effect if the port has already been closed. The value
returned is unspecified.

(commit port) ⇒ nil
Force all buffered output to be committed so no output is
left buffered.

(contents filename) ⇒ string

(contents port) ⇒ string
Returns the contents of the specified filename. If the file
does not exist, Alter will raise an error.

(current-input-port) ⇒ input-port or nil
Returns the current default input port. Alter does not
always have a default input port, so the return value may
be nil. See with-input-from-file.

(current-output-port) ⇒ output-port
Returns the current default input or output port. See
with-output-to-file.

(display object [port]) ⇒ nil
Writes a representation of sexpr to the given port. Strings
that appear in the written representation are not enclosed
in doublequotes, and no characters are escaped within
 Alter Reference Manual 59

I/O
those strings. Character objects appear in the representa-
tion as if written by write-char instead of by write. Dis-
play returns an unspecified value. The port argument
may be omitted, in which case it defaults to the value
returned by current-output-port.

(edit graphmodel) ⇒ unspecified

(edit filenameorstring) ⇒ nil
Given a GraphModel instance, the edit operation forces
the given graphmodel instance to be assigned an editor
window (if it doesn’t already have one), and then forces
that window to be popped to the front. If the graph does
not already have a window, the behavior of the edit oper-
ation follows what is described in the DoME User’s Man-
ual for the preferences setting ’Use Same Editor’.

Given a string, the edit operation treats the string as the
name of a file and attempts to open an editor on the file’s
contents. If the file contains a DoME model, the opera-
tion is the same as (edit (load string)). If the file contains
Alter text (and the first character in the file is a semico-
lon), DoME will open an Alter evaluator window on the
file’s contents. If neither of the above is true, DoME gives
the user the option of opening the file into a text editing
window.

(flush port) ⇒ nil
Flushes any output that may have been buffered for the
specified output port but not yet written to the device
(either a file or window). The port is not closed. It is an
error to apply flush to an output port that has already
been closed.

(load filenameorstring [loudly [modified]]) ⇒ object or grapething
The load procedure reads expressions and definitions
from the file and evaluates them sequentially. It is
unspecified whether the results of the expressions are
printed. The load procedure does not affect the values
returned by current-input-port and current-output-port.
Load returns an unspecified value. The argument may be
either a string or a filename instance (see string->file-
name).

If the file name is a relative pathname, DoME searches a
sequence of directories. The sequence is determined by
the contents of the global symbol *dome-load-path* plus
the default directories obtained through the expression

(construct (construct (construct dome-home
"tools") "*") "lib")

The directories given in *dome-load-path*, if any, are
searched first in order, followed by the default directo-
60

I/O
ries. You can set *dome-load-path* in your DoME initial-
ization file (see the DoME User’s Manual).

(name namednode) ⇒ string

(name package) ⇒ string

(name graphmodel) ⇒ string

(name graphobjectattribute) ⇒ string

(name port) ⇒ string

(name nameddirarc) ⇒ string

(name user-defined-type) ⇒ string
Returns a string representing the name of the given gra-
pething instance. The name operation is defined on
classes NamedNode, GraphObjectAttribute, Named-
DirArc, GraphModel, and their subclasses. See also set-
name!.

When given a package it returns the name of the package.

(newline [port]) ⇒ nil
Writes an end of line to port. Exactly how this is done dif-
fers from one operating system to another. Returns an
unspecified value. The port argument may be omitted, in
which case it defaults to the value returned by current-
output-port.

(open-input-file filename) ⇒ input-port

(open-input-file string) ⇒ input-port
Takes a string or filename representing an existing file
and returns an input port capable of delivering characters
from the file. If the file cannot be opened, an error is sig-
nalled.

(open-input-string string) ⇒ input-port
Opens an input port on the string argument.

(open-output-file filename) ⇒ output-port

(open-output-file string) ⇒ output-port
Takes a string or filename representing an output file to
be created and returns an output port capable of writing
characters to a new file by that name. If the file cannot be
opened, an error is signalled. If a file with the given
name already exists, the effect is unspecified. If the string
"" is passed as the argument then a transcript window is
opened and its port is returned.

(open-output-string) ⇒ output-port
Opens an output port on the string argument.
 Alter Reference Manual 61

I/O
(peek-char [port]) ⇒ character
Returns the next character available from the input port,
without updating the port to point to the following char-
acter. If no more characters are available, an end of file
object is returned. Port may be omitted, in which case it
defaults to the value returned by current-input-port.

The value returned by a call to peek-char is the same as
the value that would have been returned by a call to read-
char with the same port. The only difference is that the
very next call to read-char or peek-char on that port will
return the value returned by the preceding call to peek-
char. In particular, a call to peek-char on an interactive
port will hang waiting for input whenever a call to read-
char would have hung.

(read [port]) ⇒ expression
Read converts external representations of Scheme objects
into the objects themselves. That is, it is a parser for the
nonterminal datum. Read returns the next object pars-
able from the given input arg, updating arg to point to the
first character past the end of the external representation
of the object.

If an end of file is encountered in the input before any
characters are found that can begin an object, then an end
of file object is returned.

The port argument may be omitted, in which case it
defaults to the value returned by current-input-port. It is
an error to read from a closed port.

(read-char [port]) ⇒ character
Returns the next character available from the input port,
updating the port to point to the following character. If
no more characters are available, an end of file object is
returned. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(read-through-char char [port]) ⇒ string
Return a string from the current position of the port to the
first occurrence of char inclusive. If char is not encoun-
tered then return the entire string from port.

(reset port) ⇒ nil
Reset the position to the beginning.

(with-input-from-file string proc) ⇒ object
The file is opened for input, an input port connected to it
is made the default value returned by current-input-port,
and the thunk (procedure or operation) is called with no
arguments. When the thunk returns, the port is closed
and the previous default is restored. With-input-from-file
62

I/O
returns the value yielded by thunk.

If an escape procedure is used to escape from the continu-
ation of this procedure, the port is closed.

(with-output-to-file string proc) ⇒ object
The file is opened for output, an output port connected to
it is made the default value returned by current-output-
port, and the thunk (procedure or operation) is called
with no arguments. When the thunk returns, the port is
closed and the previous default is restored. With-output-
to-file returns the value yielded by thunk.

If an escape procedure is used to escape from the continu-
ation of these procedures, the port is closed.

(write object [port]) ⇒ nil
Writes a written representation of sexpr to the given port.
Strings that appear in the written representation are
enclosed in doublequotes, and within those strings back-
slash and doublequote characters are escaped by back-
slashes. Write returns an unspecified value. The port
argument may be omitted, in which case it defaults to the
value returned by current-output-port.

(write-char char [port]) ⇒ nil
Writes the character (not an external representation of the
character) to the given port and returns an unspecified
value. The port argument may be omitted, in which case
it defaults to the value returned by current-output-port.
 Alter Reference Manual 63

I/O
64

Lists 18

(car list) ⇒ object

Returns the contents of the car field of the pair. Note that
it is an error to take the car of the empty list.

(car ’(a b c)) => a

(car ’((a) b c d))=> (a)

(car ’(1 . 2)) => 1

(car ’()) => error

(cdr list) ⇒ object
Returns the contents of the cdr field of the pair. Note that
it is an error to take the cdr of the empty list.

(cdr ’((a) b c d))=> (b c d)

(cdr ’(1 . 2)) => 2

(cdr ’()) => error

(cons obj1 obj2) ⇒ pair
Returns a newly allocated pair whose car is obj1 and
whose cdr is obj2. The pair is guaranteed to be different
(in the sense of eqv?) from every existing object.

(cons ’a ’()) => (a)

(cons ’(a) ’(b c d))=> ((a) b c d)

(cons "a" ’(b c))=> ("a" b c)

(cons ’a 3) => (a . 3)

(cons ’(a b) ’c) => ((a b) . c)

(list items...) ⇒ list
Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c)=> (a 7 c)

(list) => ()

(list-head list index) ⇒ list
Returns a copy of the list including only the first k ele-
ments. List-tail could be defined by

(define list-head

 (lambda (x k)

 (if (or (zero? k) (null? x))

 (list)

 (set-cdr! (list (car x)) (list-head (cdr x) (- k 1))))))

(list-last list) ⇒ sexpr
Returns the last element of list. (This is the same as (list-
 Alter Reference Manual 65

Lists
ref list (- (length list) 1)).)

(list-ref ’(a b c d)) => d

(list-ref ’()) => nil

(list-ref list index) ⇒ sexpr
Returns the kth element of list. (This is the same as the
car of (list-tail list k).)

(list-ref ’(a b c d) 2)=> c

(list-ref ’(a b c d)

 (inexact->exact (round 1.8)))=> c

(list-tail list index) ⇒ list
Returns the sublist of list obtained by omitting the first k
elements. List-tail could be defined by

(define list-tail

 (lambda (x k)

 (if (zero? k)

 x

 (list-tail (cdr x) (- k 1)))))

(remove-from-list! list object) ⇒ list
Returns the argument list with all top-level references to
object removed (using eq? test). Note that the return
value will not be the same as the list passed in if the first
element is eq? to object. This operation is destructive to
the argument list, so any references to list may also be
affected. The structure and values of the resulting list are
the same as defined for copy-without.

(define foo ’(a b c))

(remove-from-list! foo ’b)=> (a c)

foo => (a c)

(define foo ’(a b a c))

(remove-from-list! foo ’a)=> (b c)

foo => (a b c)

(remove-from-list! ’(a b c b) ’b)=> (a c)

(remove-from-list! ’(b) ’b)=> ()

(remove-from-list! ’(a b . c) ’b)=> (a . c)

(remove-from-list! ’(b . c) ’b)=> (nil . c)

(remove-from-list! ’(nil nil nil . c) ’nil)=> (nil . c)

(remove-from-list! ’("a" "b" "c") "b")=> ("a" "b" "c")

(remove-from-list! ’(a (b c)) ’b)=> (a (b c))
66

Lists
(reverse list) ⇒ list
Returns a newly allocated list consisting of the elements
of list in reverse order.

(reverse ’(a b c))=> (c b a)

(reverse ’(a (b c) d (e (f))))=> ((e (f)) d (b c) a)

(set-car! list obj) ⇒ object
Stores arg in the car field of the pair. The value returned
by set-car! is unspecified.

(define f (list ’not-a-constant-list))

(define g ’(constant-list))

(set-car! f 3) => unspecified

(set-car! g 3) => error

(set-cdr! list obj) ⇒ object
Stores arg in the cdr field of pair. The value returned by
set-cdr! is unspecified.

(sort list proc) ⇒ list
Return a new list that contains the same elements but
ordered by the comparison procedure. The comparison
procedure should accept two parameters and return #t if
the first parameter should be ordered before the second,
#f otherwise.

(sort ’(12 56 2 100 8) (lambda (a b) (<= a b)))

=> (2 8 12 56 100)

(sort ’(("foo" . 56) ("bar" . 100) ("zip" . 8))

 (lambda (a b) (<= (cdr a) (cdr b))))

=> (("zip" . 8) ("foo" . 56) ("bar" . 100))

(sort ’(("foo" . 56) ("bar" . 100) ("zip" . 8))

 (lambda (a b) (string<=? (car a) (car b))))

=> (("bar" . 100) ("foo" . 56) ("zip" . 8))

Sort will fail to terminate if it is given a circular list. The
sort procedure uses a quicksort algorithm.
 Alter Reference Manual 67

Lists
68

Logic 19

(and args...) ⇒ object or #f

The test expressions are evaluated from left to right, and
the value of the first expression that evaluates to a false
value is returned. Any remaining expressions are not
evaluated. If all the expressions evaluate to true values,
the value of the last expression is returned. If there are no
expressions then #t is returned.

(and (= 2 2) (> 2 1))=> #t

(and (= 2 2) (< 2 1))=> #t

(and 1 2 ’c ’(f g))=> #t

(and) => #t

(not object) ⇒ #t or #f
Not returns #t if obj is false, and returns #f otherwise.

(not #t) => #f

(not 3) => #f

(not (list 3)) => #f

(not #f) => #t

(not ’()) => #f

(not (list)) => #f

(not ’nil) => #f

(or expressions...) ⇒ object or #f
The test expressions are evaluated from left to right, and
the value of the first expression that evaluates to a true
value is returned. Any remaining expressions are not
evaluated. If all expressions evaluate to false values, the
value of the last expression is returned. If there are no
expressions then #f is returned.

(or (= 2 2) (> 2 1))=> #t

(or (= 2 2) (< 2 1))=> #t

(or #f #f #f) => #f

(or (memq ’b ’(a b c))

 (/ 3 0)) => (b c)
 Alter Reference Manual 69

Logic
70

Math Functions 20

(acos number) ⇒ number

This procedure computes the usual transcendental func-
tion.

(asin number) ⇒ number
This procedure computes the usual transcendental func-
tion.

(atan y [x]) ⇒ number
This procedure computes the usual transcendental func-
tion.

(cos number) ⇒ number
This procedure computes the usual transcendental func-
tion.

(exp number) ⇒ number
Exp computes e^number. The result is a real number.

(expt base exponent) ⇒ number
Returns base raised to the power exponent: num-
ber^exponent = e^(exponent log base).

0^0 is defined to be equal to 1.

(log number) ⇒ number
Log computes the natural logarithm of arg (not the base
ten logarithm).

(sin number) ⇒ number
This procedure computes the usual transcendental func-
tion.

(tan number) ⇒ number
This procedure computes the usual transcendental func-
tion.
 Alter Reference Manual 71

Math Functions
72

Miscellaneous 21

(category thunk [category]) ⇒ string

Given a procedure or operation, returns its category as a
string. This category is where the procedure or operation
can be found in the various browsers that are part of the
Projector/Alter programming environment. If a second
optional argument is given, it must be a string, and it is
used to set the category of the procedure or operation.

(date-today) ⇒ vector
Returns a list containing a representation of the current
system date. The list is interpreted as follows: (year day-
of-year).

(dome-version) ⇒ string
Returns a string that represents the version of DoME
being used.

(error error-message) ⇒ string
This procedure stops execution and displays the Alter
Environment Browser (Activation Stack) with the argu-
ment as the text in the message box.

(interface proc) ⇒ list
Given a procedure, interface returns a string representing
its interface. Given an operation, interface returns a list of
the classes that the operation is defined on.

(message-to-user message) ⇒ string
Writes the specified string to the DoME message pane in
the DoME Launcher window, followed by a newline.

(platform) ⇒ association
Return an association where the association is made up of
a symbol representing the kind of operating system of the
platform (’win32, ’unix, ’mac) and a string that provides
more detail about the platform such as version or detailed
operating system name.

(random [low high]) ⇒ number
Returns a random number. With no arguments, the
returned value is a floating point number evenly distrib-
uted between 0.0 and 1.0. With two integer arguments,
the returned value is an integer evenly distributed
between the two given values (inclusive). The first argu-
ment must be less than the second argument.

(reset-environment) ⇒
Resets the registry, default input port, default output port
 Alter Reference Manual 73

Miscellaneous
and execution stack of the current environment to their
default values.

(return-spec proc) ⇒ string
Returns a string representing the type of object typically
returned by the given procedure.

(sleep milliseconds) ⇒ nil
Causes the DoME process to go inactive for the specified
number of milliseconds. This is useful for animation and
other related purposes.

(time-now) ⇒ vector
Returns a list containing a representation of the current
system time. The list is interpreted as follows: (hours
minutes seconds).
74

Model:Accessing 22

(accessories graphobject) ⇒ list

Answer a list of nodes that are accessories of the node.
Accessories are nodes that are usually attached to the
boundary of the node.

(add-binding-named graphobject configuration graphmodel) ⇒ modelbinding

(add-binding-named graphmodel configuration graphobject) ⇒ modelbinding
For a graphobject add a binding with the given name
from the graphobject to the specified graphmodel.

For a graphmodel add a binding with the given name
from the specified graphobject to the graphmodel.

(add-child graphobject graphmodel) ⇒ graphmodel
Checks to see if aGraphModel is a subdiagram of aGraph-
Object. If it is NOT a subdiagram it adds aGraphModel to
aGraphObject’s subdiagrams and returns aGraphModel.
Otherwise returns nil.

(archetype graphobject) ⇒ graphobject

(archetype domenode) ⇒ node
Given an instance of a node, the archetype operation
returns either nil (if the node has no archetype), or the
node instance that serves as the argument’s archetype.
An archetype is a node that resides on the shelf (see the
DoME User’s Manual). By definition, the archetype of an
archetype is itself.

(archetype-shelf graphmodel) ⇒ graphmodel
Answer the archetype page associated with the graph-
model.

(archetype? graphobject) ⇒ #t or #f

(archetype? graphmodel) ⇒ #t or #f

(archetype? remotegraphobject) ⇒ #t or #f
Is the object an archetype?

(archetypifiable? graphobject) ⇒ #t or #f
Answer #t if instances of the grapething’s class can be
archetypes.

(arcs graphmodel) ⇒ list
Given a GraphModel instance, the arcs operation returns
a list of the arcs present in the graph. The list includes
only the arcs at the top level within the given graph; it
does NOT contain any arcs from subdiagrams. See also
nodes.
 Alter Reference Manual 75

Model:Accessing
(baseline graphobject) ⇒ integer

(baseline graphmodel) ⇒ integer
Answer the distance from the top of the line to the bottom
of most of the characters (by convention, bottom of A) in
the current style used by the model to render text.

(binding-named grapething string) ⇒ modelbinding
Answer the binding whose configuration is as specified.

(border-bounds domenode) ⇒ rectangle
Returns a rectangle (list of the form ((x1 . y1) . (x2 . y2))
that is used as a starting point for drawing the object’s
outline. Units are pixels.

(bounds grapething) ⇒ rectangle
Returns a rectangle (see "rectangle?") that represents the
node’s outer dimensions, including the name, if any.
Units are pixels.

(color graphobject) ⇒ color-value

(color font-description) ⇒ color-value
Returns a color-value representing the color of the font or
graph object.

(components grapething) ⇒ list
Given a GrapeThing instance, the components operation
returns a list of the components contained within the
instance. For GraphModels, the list will contain nodes
and arcs. For nodes, the list will contain nodes. For arcs,
the list may contain nodes and a GrapEArcName.

(configurations graphmodel) ⇒ list

(configurations grapething) ⇒ list
Answer the configurations that are available to be used
throughout the model.

(container graphobject) ⇒ visualgrapething
The container operation is an inverse to the components
method. Given a GrapEThing instance, it returns the
object that contains it. The returned object may be a
DoMENode, NetArc or GraphModel instance. See com-
ponents.

(current-binding graphmodel) ⇒ modelbinding
Answer the modelbinding that matches the graphmodel’s
current state.

(current-configuration graphmodel) ⇒ string
Answer the configuration string that the graphmodel has
active.
76

Model:Accessing
(default-child-type graphobject) ⇒ graphmodel-class
Returns the default type of graphmodel created when a
new subdiagram is added.

(description proc [string]) ⇒ string

(description grapething) ⇒ string
If the first argument is an instance of GrapEThing,
description returns the value (a string) of the description
property of the object. If the first argument is a procedure
or operation, and the optional second argument is miss-
ing, description returns a string describing it. Normally
the description text is retrieved from the file (construct
(construct (dome-home) ’lib’) ’alterdsc.txt’), but if the
optional argument is supplied, it becomes the description
for the procedure or operation.

(destination netarc) ⇒ node

(destination graphobjectreference) ⇒ node
Given an arc, the destination operation returns the node
object that is at the destination end of the arc. See also
origin.

Given a GraphObjectReference, destination returns the
node for which the argument is a surrogate.

(direction graphboundary) ⇒ symbol
Returns a symbol representing the semantic direction of
the given boundary node in a graph. The possible values
are ’in, ’out and ’inout.

(do-over-model grapething thunk) ⇒ nil
Traverse the grapething’s model and apply the thunk to
each object contained in the model.

(elements graphobject) ⇒ list
Answer a list of nodes that are elements of the node. Ele-
ments are nodes that are contained within the node.

(face alter-graphics-context) ⇒ string

(face grapething) ⇒ string

(face document-context) ⇒ string
Given a graphics context instance, the face operation
returns a string representing the current typeface for dis-
playing text objects. This operation is useful primarily in
user-defined DoME printer drivers. (See appendix.) The
possible return values are: "Helvetica", "Times", "Courier"
and "Palatino".

(filename graphmodel) ⇒ filename-type
Given a graph model instance, the filename operation
 Alter Reference Manual 77

Model:Accessing
returns an instance of filename-type that represents the
file the model was last saved in.

(find-vacant-position graphmodel width height) ⇒ point
Answer a position (point) in the graph that can contain an
object with the given width and width.

(frozen-color graphobject) ⇒ #t or #f
Answer #t if the color of the graphobject should not
change through indirect means.

(get-property object propname) ⇒ object

(get-property propname object) ⇒ object
Gets the value of the named property from the given
object. The object is usually an instance of grapething or
one of its subclasses, but get-property will also work on
instances of other GrapE classes. It is an error if the prop-
erty name is not valid for the given class of object. The
DoME Tool Specifications define the properties on the
various DoME objects. The property name which IS case
sensitive can either by a string or a symbol.

(get-property-definition grapething propertyname) ⇒ propertydefinition or nil

(get-property-definition grapething-class propertyname) ⇒ propertydefintion or
nil

Return the property definition for the named property.

(get-property-definitions grapething [categoryname]) ⇒ dictionary

(get-property-definitions grapething-class) ⇒ dictionary
Return all (or those that have a category of catego-
ryname) of the property definitions for the specified
object.

(graph grapething) ⇒ graphmodel
Returns the graphmodel containing the object, if any.
Returns nil if the object cannot be traced back to any
graph. The graph of a graphmodel is itself.

(graph-label graphmodel) ⇒ node
Answer the graphlabel of the graphmodel.

(has-archetype? graphobject) ⇒ #t or #f
Answer #t if the graphobject has an archetype.

(has-binding-named? grapething string) ⇒ #t or #f
Answer #t if the grapething has a modelbinding with a
configuration as specified.

(has-binding? grapething) ⇒ #t or #f
Answer #t if the grapething has at least one modelbind-
ing.
78

Model:Accessing
(has-child? graphobject) ⇒ #t or #f
Answer #t if the graphobject has subdiagrams.

(has-parent-connection? grapething) ⇒ #t or #f
Answer #t if the grapething has a parent connection.

(has-parent? grapething) ⇒ #t or #f
Answer #t if the grapething has a parent

(has-property-set? grapething propname) ⇒ boolean

(has-property-set? propname grapething) ⇒ boolean
Returns #t if the given grapething object has a value set
for the named property. It is an error if the property
name is not valid for the given class of object. The DoME
Tool Specifications define the properties on the various
DoME objects. The property name which IS case sensi-
tive can either by a string or a symbol.

(identifier grapething) ⇒ number
Answer a number that uniquely identifies the grapething
in the model.

(implementations graphobject) ⇒ list
If aGraphObject has an archetype then this returns the
archetypes’s implementations. Otherwise it returns
aGraphObject’s subdiagrams.

(incoming-arcs domenode) ⇒ list
Given a node instance, the incoming-arcs operation
returns a list of the arcs entering the node. See also out-
going-arcs.

(instances domenode) ⇒ list
The argument to the instances operation must be an
archetype, that is, a node that resides on the shelf (see the
DoME User’s Manual). The instances operation will
return a list of all of the archetype’s instances. See also
archetype.

(logical-top-graph graphmodel) ⇒ graphmodel
Answer the logical top graphmodel. The logical top
graphmodel corresponds to the topmost graphmodel in a
hierarchy whose subtree of graphmodels forms one
’model’, that is, a cohesive set of (interrelated) graphmod-
els that are all from the same notation family.

(master grapething) ⇒ grapething
Returns the instance that serves as the master for the
given object. The following expression will always be
true:

(memq self (views (master self)))
 Alter Reference Manual 79

Model:Accessing
where self is a graphobject instance and (not (nil? (master
self))).

(name-set! namednode string) ⇒ string

(name-set! graphmodel string) ⇒ string

(name-set! graphobjectattribute string) ⇒ string

(name-set! user-defined-type string) ⇒ string

(name-set! nameddirarc string) ⇒ string
Obsolete. Use set-name! instead.

(name-source grapething) ⇒ grapething
Answer the grapething from which the name is really
coming from.

(nodes graphmodel) ⇒ list
The nodes operation retrieves the list of nodes contained
in the given graphmodel instance. Only the nodes at the
top level within the given graphmodel are returned; the
list does NOT contain any nodes from subdiagrams. See
also arcs.

(open-models) ⇒ list
This procedure returns a list of graphmodel instances that
are currently open (but not necessarily displayed) within
DoME.

(origin netarc) ⇒ node
Given an arc, the origin operation returns the node object
that is at the origin end of the arc. See also destination.

(outgoing-arcs domenode) ⇒ list
Given a node instance, the outgoing-arcs operation
returns a list of the arcs emanating from the node. See
also incoming-arcs.

(parent graphmodel) ⇒ graphobject
Returns the parent of the given graph, if any. If the argu-
ment has no parent, nil is returned.

(parent-connection graphobject) ⇒ graphobject
Parent-connection is an operation defined on nodes and
arcs that returns the corresponding object in the parent
diagram (if any). For example, the parent-connection of a
boundary point on a DFD graph is an arc whose destina-
tion is the process node being refined. In some cases, the
parent-connection may be part of an archetype.

(position graphobject) ⇒ point
Returns the absolute position (in pixels) of the given
object as a point (x . y).
80

Model:Accessing
(property-schema-files grapething) ⇒ list
Answer the property schema files property which is a list
of filenames that represent UDP models.

(rationale grapething) ⇒ string
Returns the value of the rationale property of the given
grapething instance. The returned value is a string (pos-
sibly empty).

(relative-position domenode) ⇒ point
Returns the relative position (in pixels) of the given node
as a point (x . y). The returned value is relative to the
object’s container’s position. If the container is a Graph-
Model instance, the container’s position is taken to be (0 .
0).

(relative-scale graphmodel) ⇒ number

(relative-scale alter-graphics-context) ⇒ number
Returns a value like 1.0 or 1.5 (150%), etc that can scale
fonts or other values.

(remove grapething) ⇒ nil
Deletes the specified grapething from its container and
removes all other references to it.

(remove-child graphobject graphmodel) ⇒ graphmodel
Checks to see if aGraphModel is a subdiagram of aGraph-
Object. If it is a subdiagram it removes aGraphModel
from aGraphObject’s subdiagrams and returns aGraph-
Model. Otherwise returns nil.

(resolve-identity remotegraphobject) ⇒ grapething
Attempts to resolve the reference to the remote DoME
object. If successful, the operation answers the remote
object. If unsuccessful, DoME raises an error dialog and
the operation returns nil. During the attempt to resolve
the identity, DoME may cause the file containing the
object to be loaded into memory.

(route netarc) ⇒ list
Returns a list of points of the form (x . y) that represent
where the given arc bends. The endpoints (where the arc
attaches to the origin and destination nodes) are not
included in the list, therefore it may be the case that route
returns an empty list. Units are pixels.

(selected-components grapething) ⇒ list
Answer a list of graphobjects that are currently selected
in the graphmodel.

(set-border-bounds! domenode rectangle) ⇒ rectangle
Sets the rectangular border bounds of the given node to
 Alter Reference Manual 81

Model:Accessing
be the specified rectangle. See "rectangle?" for a specifica-
tion of the representation of a rectangle.

(set-color! graphobject color) ⇒ unspecified

(set-color! font-description color-value) ⇒ nil
Sets the color of the receiver to the color-value argument.

(set-configurations! graphmodel list) ⇒ unspecified
Set the configurations that are available to be used
throughout the model.

(set-container! grapething new-container) ⇒ #t or #f
Make grapething a component of new-container. See
components.

(set-current-binding! graphmodel modelbinding) ⇒ unspecified
Set the graphmodel’s current modelbinding to the speci-
fied modelbinding.

(set-current-configuration! graphmodel string) ⇒ unspecified
Set the configuration string that the graphmodel has
active.

(set-description! grapething string) ⇒ unspecified
Set the description of the object.

(set-destination! netarc node) ⇒ unspecified
Set the destination of the netarc.

(set-direction! graphboundary symbol) ⇒ unspecified
Set the direction of the graphboundary.

(set-frozen-color! graphobject boolean) ⇒ unspecified
Set the frozen color property of the graphobject. The fro-
zen color property prevents the color of the graphobject
from changing through indirect means.

(set-master! grapething grapething) ⇒ unspecified
The specified grapething should serve as the master of
the grapething.

(set-name! namednode string) ⇒ unspecified

(set-name! graphmodel string) ⇒ unspecified

(set-name! graphobjectattribute string) ⇒ unspecified

(set-name! nameddirarc string) ⇒ unspecified
Set the name of the object.

(set-origin! netarc node) ⇒ unspecified
Set the origin of the netarc.

(set-parent-connection! graphobject parent) ⇒ child-object
Set the parent connection of the node or arc to the corre-
82

Model:Accessing
sponding object in the parent diagram.

(set-position! domenode point) ⇒ point
Sets the absolution position of the node to be the point, if
possible. Units are in pixels, and the point is a pair of the
form (x . y). This operation can also be applied to arc
name tags and other accessories. It is an error to apply
this operation to instances of GraphObjectAttribute, since
their positions are determined completely automatically,
and are strictly relative to their containers. See also rela-
tive-position-set! and synchronize-display.

(set-property! object propname value) ⇒ nil

(set-property! propname object value) ⇒ nil
Sets the value of the propnamestring property on the gra-
pething object to the specified value. Set-property may
work on non-GrapEThing objects, but its behavior is
unspecified in those cases. It is an error if the property
name is not valid for the given class of object. The DoME
Tool Specifications define the properties on the various
DoME objects. The property name which IS case sensi-
tive can either by a string or a symbol.

(set-property-schema-files! grapething list) ⇒ unspecified
Set the property schema files property to the specified list
of filenames.

(set-rationale! grapething string) ⇒ unspecified
Set the rationale of the object.

(set-relative-position! domenode point) ⇒ point
Sets the relative position of the node to be the point, if
possible. Units are in pixels and the point is a pair of the
form (x . y). The position given is relative to the node’s
container (possibly the graph, whose position is consid-
ered to be (0 . 0). Some subclasses of DoMENode may
generate an error if set-relative-position! is applied to
them. In particular, subclasses of GraphObjectAttribute
typically resist attempts to manually adjust their relative
positions. See also set-position! and synchronize-display.

(set-route! netarc list) ⇒ unspecified
Set the route of the netarc. The route is a list of points.

(set-size! domenode point) ⇒ point

(set-size! font-description number) ⇒ nil
Sets the size of the font in pixels.

(subdiagrams graphobject) ⇒ list
Returns a list of graphmodel instances that are children of
the given graphobject instance. The returned list may be
 Alter Reference Manual 83

Model:Accessing
empty. See also parent-connection.

(text-line-height graphobject) ⇒ integer
Return the space between lines.

(top-model grapething) ⇒ grapething
Answer the graphmodel that is the root of all other
graphmodels in the model.

(unset-property! grapething propname [value]) ⇒ nil

(unset-property! propname grapething [value]) ⇒ nil
Removes any value bound to the specified property for
the given object. If the optional third argument is sup-
plied, the value is unbound only if the current binding is
eq? to the third argument. It is an error if the property
name is not valid for the given class of object. The DoME
Tool Specifications define the properties on the various
DoME objects. The property name which IS case sensi-
tive can either by a string or a symbol.

(views grapething) ⇒ list
Returns a list of views (at the next level only) of the given
grapething instance. The elements of the returned list
will be of the same type as the argument supplied to the
views operation. If there are no views, an empty list will
be returned. See also master. The following express will
always be true:

(memq self (views (master self)))

where self is some graphobject instance and (not (nil?
(master self)))

(what-are-you grapething) ⇒ string
Given a grapething instance, the what-are-you operation
returns a string describing the instance (e.g., a user-sensi-
ble rendering of its class name). This is mainly useful for
interacting with the user.
84

Model:Creation 23

(merge-file graphmodel file) ⇒ nil

Merge the model contained in the file (String or Filename)
into the graphmodel.

(new-child-model protodomespecwrapper graph-object) ⇒ graphmodel

(new-child-model graphmodel-class graph-object) ⇒ graphmodel

(new-child-model metadomegraph graphobject) ⇒ graphmodel
Creates a new instance of the given graphmodel class as a
child of the specified graphobject (node or arc). New-
child-model does NOT open an editor window on the
resulting instance. The ’edit’ operation will do this. See
also new-top-model, new-in, nodes and arcs.

(new-in metadomearcspec graph originnode destinationnode [route]) ⇒ arc

(new-in domenode-class graph [position]) ⇒ node

(new-in metadomenodespec graph [position]) ⇒ node

(new-in netarc-class graph originnode destinationnode [route]) ⇒ arc
New-in is an operation defined on node classes and arc
classes, and is used for creating new instances of nodes
and arcs. Both methods require the second argument to
be a graphmodel instance that is to contain the new
object.

The node class method accepts a third (optional) argu-
ment that specifies the pixel coordinates for the new node;
if it is omitted, GrapE will use a default position that
depends on the type of node. The position coordinate
must be supplied as a pair whose car is the x coordinate
and whose cdr is the y coordinate (y=0 is the top of the
window). Units are pixels.

The third and fourth arguments to the arc class method
must be node instances. The third argument specifies the
node that will serve as the new arc’s origin; the fourth
argument specifies the node that will serve as the new
arc’s destination. It is legal for the origin and destination
to be the same object. The fifth (optional) argument must
be a list of points (pairs) that serve as the intermediate
route (bend) points for the arc, proceeding from the origin
side to the destination side. If no route it supplied, the arc
will be a straight line automatically clipped to the bound-
aries of the origin and destination node. The form of each
point is a pair whose car is the x coordinate and whose
cdr is the y coordinate. Units are pixels, and y=0 is the
top of the editing area.
 Alter Reference Manual 85

Model:Creation
(define g (new-top-model DFDGraph))

(define n1 (new-in DFDProcess g ’(100 . 100)))=>
a process node

(define n2 (new-in DFDProcess g ’(300 . 100)))=>
a process node

(new-in DFDDataflow g n1 n2 ’((200 . 50)))=> a
dataflow arc with one bend point

(edit g)

(new-top-model graphmodel-class) ⇒ graphmodel
Creates a new instance of the given graphmodel class and
initializes it as a new top-level model (i.e., it has no par-
ent). New-top-model does NOT open an editor window
on the resulting instance. The edit operation will do this.
See also new-child-model, nodes, arcs, new-in.

(write-bitmap graphmodel filename format) ⇒ nil
Writes a bitmap of the graph into the specified filename
using the indicated format. Supported formats are cur-
rently ’gif, ’mif (Maker Interchange Format; ’frame and
’framemaker are aliases), ’xwd and ’eps (Encapsulated
PostScript; ’epsf is an alias).
86

Model:Dependencies 24

(add-interest grapething aspect lambda interestedobject [role]) ⇒ nil

Create a dependency on the first argument so that an
action is triggered when it changes. Specifically, the given
lambda expression is executed every time the specified
"aspect" of the object changes. The lambda expression is
passed the changed object, the aspect that changed (e.g.,
name) and the previous value (e.g., "foo") as parameters.

Two additional parameters are given to add-interest to
make it easier to remove the dependencies. The first of
these, the fourth argument to add-interest, is the depen-
dent. In typical usage, the lambda expression will execute
some behavior on the dependent, such as updating a
property or re-propagating the change in another direc-
tion. If the dependent goes away for some reason, DoME
will automatically remove the dependencies registered
against it.

If a dependent needs to be able to selectively remove
dependencies, the optional sixth argument may be used
to create such dependencies. This same symbol can be
given to remove-interest.

The second (aspect) and optional fifth (role) arguments
may be either strings or symbols.

Example: Display a message to the user when the descrip-
tion changes:

(add-interest self ’description

(lambda (changed-object changed-
aspect old-value)

(message-to-user

(append old-value " -> "

(description changed-object))))

self)

See also remove-interest.

(remove-interest grapething aspect interestedobject [role]) ⇒ nil
Remove a previously created dependency on the first
 Alter Reference Manual 87

Model:Dependencies
argument. The second argument indicates the aspect or
property of interest; all dependencies observing that
aspect and whose dependent matches the third argument
are removed. If the optional fourth argument is supplied,
the dependencies must also have been created with that
role.

If none of the dependencies match the pattern derived
from the arguments, no

dependencies are removed.

Example: Remove the interest expressed earlier (see add-
interest)

(remove-interest self ’description self)

See also add-interest.
88

Model:Generating 25

(document-generator-named grapething string) ⇒ generator

Return the first document generators applicable to the
receiver object whose name matches the string argument.

See also document-generators

(document-generators grapething) ⇒ list
Return the document generators applicable to the receiver
object (GrapEThing).

See also document-generator-named

(generate domegeneratorspec subject settings) ⇒ unspecified
Run the named document generator on the subject object
passed and given settings contained in the settings object.

Below is an simple example which outlines how this
might be used:

 (define test-generate

 (lambda (obj)

 (let ((generator nil) (settings nil))

 (set! generator (car (document-generators obj)))

 (set! settings (new-settings generator))

 (set-property! "outputType" settings ’window)

 (set-property! "outputFormat" settings "Text")

 (generate generator obj settings)

)

)

)

See also document-generators and new-settings.

(new-settings domegeneratorspec) ⇒ settings-object
Create and return a new settings object, the properties of
which determine how and where a generator will operate.
Common properties of the settings object include:

’filename

’outputFormat (’Text ’MIF)

’outputType (’window ’file ’directory)

See also generate
 Alter Reference Manual 89

Model:Generating
90

Model:Testing 26

(any-changes? graphmodel) ⇒ #t or #f

Answer #t if the graphmodel or any graphmodel in the
model has any changes.

(has-name? grapething) ⇒ #t or #f
Answer #t if the grapething has a name.

(input-and-output? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as both an
input and an output.

(input-only? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used only as an
input.

(input? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as an input.

(is-kind-of? grapething class) ⇒ #t or #f
Given an object and a class, is-kind-of? returns #t if the
object is an instance of the class, and returns #f if it is not.
Both the object must be an instance of some non-basic
class (a basic class is one of the Scheme predefined types,
e.g., integer, symbol, string). Is-kind-of? is not defined on
instances of basic classes.

(logical-top-graph? graphmodel) ⇒ #t or #f
Answer #t if the graphmodel is the logical top graph. See
logical-top-graph.

(moveable? graphobject) ⇒ #t or #f
Answer #t if the user may interactive move the graphob-
ject.

(output-only? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used only as an
output.

(output? graphboundary) ⇒ #t or #f
Answer #t if the graphboundary can be used as an output.

(resizable? graphobject) ⇒ #t or #f
Answer #t if the node may be resized by the user.

(selected? graphobject) ⇒ #t or #f
Answer #t if the graphobject is selected.

(top-model? graphmodel) ⇒ #t or #f
Answer #t if the graphmodel is the top model.
 Alter Reference Manual 91

Model:Testing
(visible? graphobject) ⇒ #t or #f
Answer #t if the graphobject is visible.
92

Model:User-Interface 27

(bring-to-focus grapevisualthing) ⇒ unspecified

Raise/open the graphmodel that has the grapething and
then select the grapething.

(clear-selection graphobject) ⇒ unspecified
De-select the graphobject.

(close-model graphmodel) ⇒ unspecified
Confirm any potential loss of data with the user and then
close all editor windows open on any portion of the
model.

(data-dictionary-edit grapething) ⇒ unspecified
Edit the grapething using the data dictionary editor.

(deletion-request? grapething) ⇒ #t or #f
Answer #t if the user should be allowed to delete this gra-
pething.

(deselect-all graphmodel) ⇒ unspecified
De-select all graphobjects in the graphmodel.

(display-errors list) ⇒ nil
The display-errors procedure displays the given list of
errors in a scrollable window so that the object with a
problem can be directly inspected or focussed on. The list
is an association list where the car of each association is a
GrapEVisualThing or a list of GrapEVisualThings, and
the cdr is an error message (a string).

(define g (new-top-model DFDGraph))

(display-errors (list (list g "Name Required")))

(edit-name grapevisualthing) ⇒ unspecified
Open a dialog to allow the user to rename the object.

(inspector-edit grapevisualthing) ⇒ unspecified
Edit the grapething using the inspector editor.

(move-to-back graphobject) ⇒ unspecified
Move the graphobject behind all other graphobjects.

(move-to-front graphobject) ⇒ unspecified
Move the graphobject in front of all other graphobjects.

(print graphmodel) ⇒ unspecified
Open a dialog to allow the user to print the graphmodel.

(refresh-display grapevisualthing) ⇒ unspecified
Redraw the given object.
 Alter Reference Manual 93

Model:User-Interface
(save graphmodel) ⇒ unspecified
Save the graphmodel. If the graphmodel has never been
saved then open a dialog to allow the user to save the
graphmodel.

(save-as graphmodel) ⇒ unspecified
Open a dialog to allow the user to save the graphmodel.

(set-selection graphobject) ⇒ unspecified
Select the graphobject.

(square-route netarc) ⇒ unspecified
Square the route of the netarc.

(synchronize-display graphmodel) ⇒ nil
If the given graphmodel has an editor window open, syn-
chronize-display brings it up to date by forcing all pend-
ing graphic operations to complete. The precise behavior
of this operation is host-specific.
94

Modules 28

(loaded-modules) ⇒ list

Returns a list of the modules currently loaded in the sys-
tem.

(provide module) ⇒ boolean
Each module has a unique name (a string). The provide
and require functions accept either a string or a symbol as
the module-name argument. If a symbol is provided, its
print-name is used as the module name.

The provide procedure adds a new module name to the
list of modules, thereby indicating that the module in
question has been loaded.

(require module) ⇒ boolean
Each module has a unique name (a string). The provide
and require functions accept either a string or a symbol as
the module-name argument. If a symbol is provided, its
print-name is used as the module name.

The require function tests whether a module is already
present; if the module is not present, require proceeds to
load the appropriate file or set of files. The pathname
argument, if present, is a single filename that is to be
loaded. If the pathname argument is not provided, the
system will attempt to determine which files to load by
searching along the DoME load-path as follows:

 - first, it will look for a file named module-name,

 - next, it will look for a file named module-name.alt,

 - last, it will look for a file named module-name.lib.

Alter also records the modified timestamp of a module’s
file when it loads it. If the module has already been
loaded, Alter will check the current timestamp of the file.
If it is later than the stored timestamp then Alter will re-
load the module.
 Alter Reference Manual 95

Modules
96

OS Interface 29

(shell command args...) ⇒ integer

Synchronously executes the command with the string
args and returns its exit status as an integer. Zero usually
means success; non-zero means failure.
 Alter Reference Manual 97

OS Interface
98

Packages 30

(all-packages) ⇒ list

Returns a list of all packages currently defined in the sys-
tem.

(current-package) ⇒ package
Answer the package that symbols are searched for and
created in by default.

(delete-package package-name) ⇒ package
The package argument may be either a package or the
name of a package. If the package specified for deletion is
currently used by other packages, unuse-package is per-
formed on all such packages so as to remove their depen-
dency on the specified package.

(export symbol [package]) ⇒ package
The symbols argument should be a list of symbols, or pos-
sibly a single symbol. These symbols become accessible as
external symbols in package.

(exported-symbols package-name) ⇒ list
Returns a list of all symbols exported by package.

(find-package package-name) ⇒ package
The package argument should be a string or symbol. The
package with argument as a name is returned; if no such
package exists an error is signaled. If the argument is a
package object then the argument is returned.

(import symbols exporting-package [importing-package]) ⇒ package
The symbols argument should be a list of symbols, or pos-
sibly a single symbol. The exporting-package argument is
the package that the symbols are being imported from.
These symbols become internal symbols in importing-
package and can therefore be referred to without having
to use qualified-name (colon) syntax.

(in-package package-name) ⇒ package
This procedure currently does nothing except yield a nil
return value. It is included for compatibility with emacs
lisp modes.

(make-package package-name) ⇒ package
This creates and returns a new package with the specified
package name. The argument may be either a string or a
symbol.
 Alter Reference Manual 99

Packages
(package-name package) ⇒ string
Answer the name of the package.

(package-use-list package) ⇒ package
Returns a list of packages used by package.

(package-used-by-list package) ⇒ package
Returns a list of packages the use package.

(rename-package package new-package-name) ⇒ package
The new argument should be a string or symbol. The
package argument is a string, symbol or package object.
The old name is eliminated and replaced by new.

(unexport symbol-or-list [package]) ⇒ package
The argument should be a list of symbols, or possibly a
single symbol. These symbols become internal symbols in
package.

(unuse-package package-to-unuse [unusing-package]) ⇒ package
The packages-to-unuse argument should be a list of pack-
ages or packages names, or possibly a single package or
package name. These packages are removed from the
use-list of package.

(use-package package-to-use [using-package]) ⇒ used-package
The packages-to-use argument should be a list of pack-
ages or package names, or possibly a single package or
package name. These packages are added to the use-list
of package if they are not there already. All external sym-
bols in the packages to use become accessible in package
as internal symbols.
100

Points 31

(point* point1 point2...) ⇒ point

This procedure returns the product of its argument
points. See "point?" for an explanation of how points are
represented in Alter.

(point* ’(5 . 2) ’(3 . 4))=> ’(15 . 8)

(point* #(5 2) #(3 4))=> #(15 8)

(point* ’(5 . 2) 3)=> ’(15 . 6)

(point* #(5 2) 4 ’(1 . 2))=> #(20 16)

(point+ point1 point2...) ⇒ point
This procedure returns the sum of its arguments, where
the first argument is a point and the rest of the arguments
are points or numbers. See "point?" for an explanation of
how points are represented in Alter.

(point+ ’(1 . 2) ’(3 . 4))=> ’(4 . 6)

(point+ #(1 2) #(3 4))=> #(4 6)

(point+ ’(1 . 2) 3 4)=> ’(8 . 9)

(point+ #(1 2) 3 4)=> #(8 9)

(point- point1 point2...) ⇒ point
This procedure returns the difference of its arguments,
where the first argument is a point and the rest of the
arguments are points or numbers. See "point?" for an
explanation of how points are represented in Alter.

(point+ ’(5 . 2) ’(3 . 4))=> ’(2 . -2)

(point- #(5 2) #(3 4))=> #(2 -2)

(point- ’(5 . 2) 3 4)=> ’(-2 . -5)

(point- #(5 2) 3 4)=> #(-2 -5)

(point-max point rest...) ⇒ point
Returns the lower right corner of the rectangle that con-
tains all of the points passed as arguments.

(point-min ’(2 . 2) ’(1 . 3))=> ’(2 . 3)

(point-min #(3 2) #(3 1) #(2 4))=> ’(3 . 4)

(point-min point rest...) ⇒ point
Returns the upper left corner of the rectangle that con-
tains all of the points passed as arguments.

(point-min ’(2 . 2) ’(1 . 3))=> ’(1 . 2)

(point-min #(3 2) #(3 1) #(2 4))=> ’(2 . 1)
 Alter Reference Manual 101

Points
(point/ point1 point2...) ⇒ point
This procedure returns the quotient of its argument
points. See "point?" for an explanation of how points are
represented in Alter.

(point/ ’(6 . 2) ’(3 . 2))=> ’(2 . 1)

(point/ #(6 2) #(3 2))=> #(2 1)

(point/ ’(16 . 32) 4)=> ’(4 . 8)

(point/ #(40 40) 4 ’(1 . 2))=> #(10 5)

(point< pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are less than the x and y coordinates of the second point
(see "point?"). Otherwise returns #f.

(point< ’(3 . 2) ’(4 . 5))=> #t

(point< ’(3 . 2) ’(2 . 2))=> #f

(point<= pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are less than or equal to the x and y coordinates of the sec-
ond point (see "point?"). Otherwise returns #f.

(point<= ’(3 . 2) ’(4 . 2))=> #t

(point<= ’(3 . 2) ’(3 . 1))=> #f

(point> pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are greater than the x and y coordinates of the second
point (see "point?"). Otherwise returns #f.

(point> ’(3 . 2) ’(2 . 2))=> #f

(point> ’(3 . 2) ’(2 . 1))=> #t

(point>= pt1 pt2 pt3...) ⇒ #t or #f
Returns #t if both the x and y coordinates of the first point
are greater than or equal to the x and y coordinates of the
second point (see "point?"). Otherwise returns #f.

(point>= ’(3 . 2) ’(2 . 2))=> #t

(point>= ’(3 . 2) ’(2 . 3))=> #f

(radius point) ⇒ number
Answer the polar coordinate system radius of the given
point.

(theta point) ⇒ number
Returns the angular component (in radians) of the ray
represented by the given point (see "point?").

(theta ’(2 . 0)) => 0.0

(theta ’(5 . 5)) => 0.785398
102

Points
(theta ’(-1 . 3)) => 1.89255

(theta ’(2 . -2)) => 5.49779

(x point) ⇒ number
Returns the x-coordinate of a point (see "point?").

(x ’(3 . 9)) => 3

(x #(2.5 7)) => 2.5

(y point) ⇒ number
Returns the y-coordinate of a point (see "point?").

(y ’(3 . 9)) => 9

(y #(2.5 7)) => 7
 Alter Reference Manual 103

Points
104

Printer Driver 32

(background-color alter-graphics-context) ⇒ colorvalue

Given a graphics context instance, the background-color
operation returns a color value object that represent the
current background color used by the context.

(landscape alter-graphics-context) ⇒ #t or #f
Given a graphics context instance, the landscape opera-
tion returns a boolean value indicating whether or not the
user selected landscape orientation in the print dialog.
This operation is useful primarily in user-defined DoME
printer drivers. (See appendix.)

(line-style alter-graphics-context) ⇒ symbol
This operation returns a symbol representing the current
dash pattern to be used when drawing lines. The symbol
returned is one of {normal simpledash longdash dot dash-
dot dashdotdot phantom chain shortdash hidden}.

(line-width alter-graphics-context) ⇒ integer
Given a graphics context instance, the line-width opera-
tion returns an integer value indicating how many pixels
wide the pen is for drawing lines. This operation is useful
primarily in user-defined DoME printer drivers. (See
appendix.)

(paint alter-graphics-context) ⇒ array
Given a graphics context instance, the paint operation
returns a two-element vector; the first value is a color-
value instance representing the current pen color for
drawing objects and the second value is a symbol repre-
senting the pen stroke style (’solid or ’gray). This opera-
tion is useful primarily in user-defined DoME printer
drivers. (See appendix.) See also paintcolor, paintstyle.
The result of the paint operation is the same as the follow-
ing (where gc is the graphicscontext instance):

(let ((p (make-vector 2)))

 (vector-set! p 1 (paintcolor gc))

 (vector-set! p 2 (paintstyle gc))

 p)

(paint-color alter-graphics-context) ⇒ colorvalue
Given a graphics context instance, the paint-color opera-
tion returns a colorvalue instance representing the current
pen color for drawing objects. This operation is useful
primarily in user-defined DoME printer drivers. (See
appendix.) See red, green, blue, hue, saturation, bright-
 Alter Reference Manual 105

Printer Driver
ness, cyan, magenta and yellow operations for extracting
color components from a colorvalue instance.

(paint-style alter-graphics-context) ⇒ symbol
Given a graphicscontext instance, returns a symbol repre-
senting the current pen drawing style (’solid or ’gray).
This operation is useful primarily for writing user-
defined DoME printer drivers (see appendix). See also
paintcolor, paint.
106

Rectangles 33

(center rectangle) ⇒ point

Returns the point that lines at the center of the supplied
rectangle. See "rectangle?" for a specification of how rect-
angles are represented.

(center ’((3 . 8) . (5 . 12)))=> ’(4 . 10)

(center #(#(3 8) #(5 12)))=> ’(4 . 10)

(expand-rectangle rectangle expansion) ⇒ rectangle
Returns a new rectangle which represents the given rect-
angle expanded by the specified expansion. The expan-
sion may be specified as a number, a point or a rectangle.
If it is a number, all sides of the rectangle are moved out-
ward by the specified amount. If it is a point, then the left
and right sides are expanded outward by the amount
specified in the x component of the point, and the top and
bottom sides are expanded outward by the amount speci-
fied in the y component of the point. If the expansion is a
rectangle, then the left, top, right and bottom sides of the
first argument are expanded by the amounts specified for
the left, top, right and bottom of the expansion.

(expand-rectangle ’((3 . 8) . (5 . 12)) 1)=> ’((2 . 7) . (6
. 13))

(expand-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((2 .
6) . (6 . 14))

(expand-rectangle ’((3 . 8) . (5 . 12)) ’((1 . 2) . (3 . 4))
=> ’((2 . 6) . (8 . 16))

(extent rectangle) ⇒ number
Returns the extent (a point whose x represents the width
and whose y represents the height) of the supplied rectan-
gle (see "rectangle?").

(extent ’((3 . 8) . (5 . 12)))=> ’(2 . 4)

(height rectangle) ⇒ number
Returns the extent of the image in the y (vertical) direc-
tion.

(lower-left rectangle) ⇒ number
Returns the lower left corner of the rectangle (see "rectan-
gle?").

(lower-left ’((3 . 8) . (5 . 12)))=> ’(3 . 12)

(lower-left #(#(3 8) #(5 12)))=> ’(3 . 12)

(lower-right rectangle) ⇒ number
Returns the lower right corner of the rectangle (see "rect-
 Alter Reference Manual 107

Rectangles
angle?").

(lower-right ’((3 . 8) . (5 . 12)))=> ’(5 . 12)

(lower-right #(#(3 8) #(5 12)))=> #(5 12)

(scale-rectangle rectangle scale) ⇒ rectangle
Returns a new rectangle which represents the given rect-
angle scaled by the specified amount. The scale is speci-
fied as a point or number. (See "rectangle?").

(scale-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((3 . 16)
. (5 . 24))

(scale-rectangle ’((3 . 8) . (5 . 12)) 5)=> ’((15 . 40) .
(25 . 60))

(translate-rectangle rectangle translation) ⇒ rectangle
Returns a new rectangle which represents the given rect-
angle translated by the specified amount. The translation
is specified as a point. (See "rectangle?"). The height and
width of the new rectangle are the same as the argument.

(translate-rectangle ’((3 . 8) . (5 . 12)) ’(1 . 2))=> ’((4
. 10) . (6 . 14))

(upper-left rectangle) ⇒ number
Returns the upper left corner of the rectangle (see "rectan-
gle?").

(upper-left ’((3 . 8) . (5 . 12)))=> ’(3 . 8)

(upper-left #(#(3 8) #(5 12)))=> #(3 8)

(upper-right rectangle) ⇒ number
Returns the upper right corner of the rectangle (see "rect-
angle?").

(upper-right ’((3 . 8) . (5 . 12)))=> ’(5 . 8)

(upper-right #(#(3 8) #(5 12)))=> ’(5 . 8)

(width rectangle) ⇒ number
Returns the width (in the x dimension) of the supplied
rectangle (see "rectangle?").

(width ’((3 . 8) . (5 . 12)))=> 2

(width #(#(3 8) #(5 12)))=> 2
108

Registry 34

(identity identifier) ⇒ object

Return the object from the registry that has the given
identifier.

(register object) ⇒ identifier
Add the object to the registry and return an identifier that
may be used later for lookup.

(unregister identifier) ⇒ nil
Remove the identifier and its associated object from the
registry.
 Alter Reference Manual 109

Registry
110

Rpc 35

(open-client-socket hostname port) ⇒ input-output-port

Open a connection to the given host on the given port.
 Alter Reference Manual 111

Rpc
112

Strings 36

(make-string length [char]) ⇒ string

Make-string returns a newly allocated string of the speci-
fied length. If char is given, then all elements of the string
are initialized to char, otherwise the contents of the string
are unspecified.

(string char rest...) ⇒ string
Returns a newly allocated string composed of the argu-
ments.

(string-append string1 string2...) ⇒ string
Returns a newly allocated string whose characters form
the concatenation of the given strings.

(string-append "a" "bc" "de")=> "abcde"

(string-copy string) ⇒ string
Returns a newly allocated copy of the given string.

(string-fill! string char) ⇒ string
Stores arg2 in every element of the given arg1 and returns
an unspecified value. See also make-string.

(string-length string) ⇒ integer
Returns the number of characters in the given string. See
also length.

(string-ref string index) ⇒ character
String-ref returns the indexth character of string using
zero-origin indexing.

(string-set! string index char) ⇒ string
String-set! stores char in the indexth position of string and
returns an unspecified value. String-set! uses zero-origin
indexing.

(define (f) (make-string 3 \#*))

(define (g) "***")

(string-set! (f) 0 #\?)=> unspecified

(string-set! (g) 0 #\?)=> error

(string-set! (symbol->string ’immutable) 0 #\?)=>
error

(substring string start end) ⇒ string
Substring returns a newly allocated string formed from
the characters of string beginning with index start (inclu-
sive) and ending with index end (exclusive).

(substring "abcdefg" 2 4)=> "cd"
 Alter Reference Manual 113

Strings
(substring "abc" 2 4)=> error

(substring "abc" 0 3)=> "abc"

(substring-index string substring [start]) ⇒ number-or-nil
Returns the zero-based index of the first occurrence of the
specified substring in the argument string. If start is spec-
ified, the search begins at that index rather than at the
beginning. Nil is returned if the substring does not occur
in the searched range, or if the specified start index is past
the end of the string.

(substring-index "abcdefg" "cd")=> 2

(substring-index "abcdabcd" "cd" 4)=> 6

(substring-index "qrs" "cd")=> nil
114

Testing 37

(boolean? object) ⇒ #t or #f

Boolean? returns #t if sexpr is either #t or #f and returns #f
otherwise.

(boolean? #f) => #t

(boolean? 0) => #f

(boolean? ’()) => #f

(bound? symbol) ⇒ #t or #f
Returns #t if the symbol is bound to a value in the current
lexical environment, otherwise returns #f.

(char? object) ⇒ #t or #f
Returns #t if sexpr is a character, otherwise returns #f.

(class? object) ⇒ #t or #f
Returns true if the given object represents a grapething-
class or one of

its subclasses; returns false otherwise.

(class? 5) => #f

(class? integer-type)=> #t

(class? grapething)=> #t

(class? ’node) => #f

(class? (make type ’() ’()))=> #f

(color? object) ⇒ #t or #f
Returns true if the given object is an instance of color-
type; returns false otherwise. See palette, colors.

(dictionary? object) ⇒ #t or #f
Returns true if the given object is a dictionary instance
(see make-dictionary); returns false otherwise.

(directory? filename-type) ⇒ #t or #f
Returns #t if the filename represents a directory on the
host system. Returns #f otherwise.

(eq? arg1 arg2) ⇒ #t or #f
Eq? is similar to eqv? except that in some cases it is capa-
ble of discerning distinctions finer than those detectable
by eqv?.

Eq? and eqv? are guaranteed to have the same behavior
on symbols, booleans, the empty list, pairs, and non-
empty strings and vectors. Eq?’s behavior on numbers
and characters is implementation-dependent, but it will
always return either true or false, and will return true
 Alter Reference Manual 115

Testing
only when eqv? would also return true. Eq? may also
behave differently from eqv? on empty vectors and
empty strings.

(eq? ’a ’a) => #t

(eq? ’(a) ’(a)) => unspecified

(eq? (list ’a)

 (list ’a)) => #f

(eq? "a" "a") => unspecified

(eq? "" "") => unspecified

(eq? ’() ’()) => #t

(eq? 2 2) => unspecified

(eq? #\A #\A) => unspecified

(eq? car car) => #t

(let ((n (+ 2 3)))

 (eq? n n)) => unspecified

(let ((x ’(a)))

 (eq? x x)) => #t

(let ((x ’#()))

 (eq? x x)) => #t

(let ((p (lambda (x) x)))

 (eq? p p)) => #t

(equal? arg1 arg2) ⇒ #t or #f
Equal? recursively compares the contents of pairs, vec-
tors, and strings, applying eqv? on other objects such as
numbers and symbols. A rule of thumb is that objects are
generally equal? if they print the same. Equal? may fail
to terminate if its arguments are circular data structures.

(equal? ’a ’a) => #t

(equal? ’(a) ’(a))=> #t

(equal? ’(a (b) c)

 ’(a (b) c)) => #t

(equal? "abc" "abc")=> #t

(equal? 2 2) => #t

(equal? (make-vector 5 ’a)

 (make-vector 5 ’a))=> #t

(equal? (lambda (x) x)

 (lambda (y) y))=> unspecified

(eqv? arg1 arg2) ⇒ #t or #f
The eqv? procedure defines a useful equivalence relation
on objects. Briefly, it returns #t if arg1 and arg2 should
116

Testing
normally be regarded as the same object. This relation is
left slightly open to interpretation, but the following par-
tial specification of eqv? holds for all implementations of
Scheme.

The eqv? procedure returns #t if:

 arg1 and arg2 are both #t or both #f.

 arg1 and arg2 are both symbols and

 (string=?

 (symbol->string arg1)

 (symbol->string arg2))

=> #t

 Note: This assumes that neither arg1 nor arg2 is an
‘‘uninterned symbol’’.

 arg1 and arg2 are both numbers, are numerically equal
(see =), and are either both exact or both inexact.

 arg1 and arg2 are both characters and are the same char-
acter according to the char=? procedure both arg1 and
arg2 are the empty list.

 arg1 and arg2 are pairs, vectors, or strings that denote
the same locations in the store.

 arg1 and arg2 are procedures whose location tags are
equal

The eqv? procedure returns #f if:

 arg1 and arg2 are of different types

 one of arg1 and arg2 is #t but the other is #f

 arg1 and arg2 are symbols but

 (string=?

 (symbol->string arg1)

 (symbol->string arg2))

=> #f

 one of arg1 and arg2 is an exact number but the other is
an inexact number.

 arg1 and arg2 are numbers for which the = procedure
returns #f.

 arg1 and arg2 are characters for which the char=? proce-
dure returns #f.

 one of arg1 and arg2 is the empty list but the other is not.

 arg1 and arg2 are pairs, vectors, or strings that denote
distinct locations.

 arg1 and arg2 are procedures that would behave differ-
ently (return a different value or have different side
effects) for some arguments.
 Alter Reference Manual 117

Testing
(eqv? ’a ’a) => #t

(eqv? ’a ’b) => #f

(eqv? 2 2) => #t

(eqv? ’() ’()) => #t

(eqv? 100000000 100000000)=> #t

(eqv? (cons 1 2) (cons 1 2))=> #f

(eqv? (lambda () 1)

 (lambda () 2))=> #f

(eqv? #f ’nil) => #f

(let ((p (lambda (x) x)))

 (eqv? p p)) => #t

The following examples illustrate cases in which the
above rules do not fully specify the behavior of eqv?. All
that can be said about such cases is that the value
returned by eqv? must be a boolean.

(eqv? "" "") => unspecified

(eqv? ’#() ’#()) => unspecified

(eqv? (lambda (x) x)

 (lambda (x) x))=> unspecified

(eqv? (lambda (x) x)

 (lambda (y) y))=> unspecified

The next set of examples shows the use of eqv? with pro-
cedures that have local state. Gen-counter must return a
distinct procedure every time, since each procedure has
its own internal counter. Gen-loser, however, returns
equivalent procedures each time, since the local state
does not affect the value or side effects of the procedures.

 (define gen-counter

 (lambda ()

 (let ((n 0))

 (lambda () (set! n (+ n 1)) n))))

 (let ((g (gen-counter)))

 (eqv? g g))=> #t

 (eqv? (gen-counter) (gen-counter))=> #f

 (define gen-loser

 (lambda ()

 (let ((n 0))

 (lambda () (set! n (+ n 1)) 27))))

 (let ((g (gen-loser))) (eqv? g g))=> #t
118

Testing
 (eqv? (gen-loser) (gen-loser))=> unspecified

 (letrec

 ((f (lambda () (if (eqv? f g) ’both ’f)))

 (g (lambda () (if (eqv? f g) ’both ’g))))

 (eqv? f g))=> unspecified

 (letrec

 ((f (lambda () (if (eqv? f g) ’f ’both)))

 (g (lambda () (if (eqv? f g) ’g ’both))))

 (eqv? f g))=> #f

Since it is an error to modify constant objects (those
returned by literal expressions), implementations are per-
mitted, though not required, to share structure between
constants where appropriate. Thus the value of eqv? on
constants is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) => unspecified

(eqv? "a" "a") => unspecified

(eqv? ’(b) (cdr ’(a b)))=> unspecified

(let ((x ’(a))) (eqv? x x))=> #t

The above definition of eqv? allows implementations lati-
tude in their treatment of procedures and literals: imple-
mentations are free either to detect or to fail to detect that
two procedures or two literals are equivalent to each
other, and can decide whether or not to merge representa-
tions of equivalent objects by using the same pointer or
bit pattern to represent both.

(grape? object) ⇒ #t or #f
Returns true if the given object is an instance of grapeth-
ing or one of its many subclasses. Returns false otherwise.

(input-port? object) ⇒ #t or #f
Returns #t if the given port is an input port, otherwise
returns #f. See open-input-file.

(is-a? object type) ⇒ #t or #f
Returns #t if object is an instance of type or one of its sub-
types. (is-a? object object-type) is always true.

(is-a? object-type type)=> #t

(is-a? type object-type)=> #t

(is-a? operation type)=> #t

(is-a? is-a? procedure-type)=> #t

(is-a? is-a? type)=> #f

(is-a? (make object-type) type)=> #f
 Alter Reference Manual 119

Testing
(list? object) ⇒ #t or #f
Returns #t if sexpr is a list, otherwise returns #f. By defini-
tion, all lists have finite length and are terminated by the
empty list. For this reason, it may take list? a fair amount
of time to determine its answer if given a very long list.

(list? ’(a b c)) => #t

(list? ’()) => #t

(list? ’(a . b)) => #f

(let ((x (list ’a)))

 (set-cdr! x x)

 (list? x)) => #f

(nil? object) ⇒ #t or #f
Returns true if the given object is eq? to the nil object
(there is only one in Alter). Returns false otherwise.

(null? object) ⇒ #t or #f
Returns #t if sexpr is the empty list, otherwise returns #f.

(number? object) ⇒ #t or #f
Number? can be applied to any kind of argument, includ-
ing non-numbers. It returns #t if the object is a number,
and otherwise it returns #f.

(number? ’a) => #f

(number? 3) => #t

(number? 3.1415)=> #t

(object? object) ⇒ #t or #f
Returns true for any Alter object.

(operation? object) ⇒ #t or #f
Returns true if the given object represents an operation,
as defined by make or find-operation; returns false other-
wise.

(operation? new-in)=> #t

(operation? car)=> #f

(output-port? object) ⇒ #t or #f
Returns #t if the given port is an output port, otherwise
returns #f. See open-output-file and terminal.

(pair? object) ⇒ #t or #f
Pair? returns #t if sexpr is a pair, and otherwise returns #f.
If (list? foo) is true, then (pair? foo) will be true.

(pair? ’(a . b)) => #t

(pair? ’(a b c)) => #t

(pair? ’()) => #f
120

Testing
(pair? ’#(a b)) => #f

(port? object) ⇒ #t or #f
Returns #t if the given object is either an input port or an
output port. Otherwise returns #f. See open-input-file,
open-output-file and terminal.

(procedure? object) ⇒ #t or #f
Returns #t if sexpr is a procedure, otherwise returns #f.

(procedure? car)=> #t

(procedure? ’car)=> #f

(procedure? (lambda (x) (* x x)))=> #t

(procedure? ’(lambda (x) (* x x)))=> #f

(call-with-current-continuation procedure?)=> #t

(string? object) ⇒ #t or #f
Returns #t if sexpr is a string, otherwise returns #f.

(subtype? object type) ⇒ #t or #f
Returns #t if object is type or a subtype of type. In Alter
types are subtypes of themselves.

(subtype? type type)=> #t

(subtype? object-type type)=> #f

(subtype? type object-type)=> #t

(subtype operation object-type)=> #t

(symbol? object) ⇒ #t or #f
Returns #t if sexpr is a symbol, otherwise returns #f.

(symbol? ’foo) => #t

(symbol? (car ’(a b)))=> #t

(symbol? "bar")=> #f

(symbol? ’nil) => #t

(symbol? ’()) => #f

(symbol? #f) => #f

(thunk? object) ⇒ #t or #f
Returns #t if the object is a procedure or operation, other-
wise it returns #f.

(thunk? car) => #t

(thunk? length)=> #t

(procedure? length)=> #f

(operation? length)=> #t

(type? object) ⇒ #t or #f
Returns true if the argument is a type.

(type? type) => #t
 Alter Reference Manual 121

Testing
(type? object-type)=> #t

(type? (make object-type))=> #f

(type? type?) => #f

(type? operation)=> #t

(type? (make type ’() ’(object-type)))=> #t

(vector? object) ⇒ #t or #f
Returns #t if sexpr is a vector, otherwise returns #f.

(writable? filename-type) ⇒ #t or #f
Returns #t if the filename represents a file than can be
opened for writing. Otherwise returns #f. The file must
exist, or Alter will raise an error.
122

Testing Characters 38

(char-alphabetic? char) ⇒ #t or #f

This procedure returns #t if its argument is alphabetic,
otherwise it returns #f. The alphabetic characters are the
52 upper and lower case letters. See also char-numeric?,
char-whitespace?, char-upper-case? and char-lower-case?.

(char-ci<=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char<=?, but treats upper case
and lower case letters as the same. For example, (char-
ci<=? #\a #\B) returns #t, whereas (char<=? #\a #\B)
returns #f.

(char-ci<? arg1 arg2) ⇒ #t or #f
This procedure is similar to char<?, but treats upper case
and lower case letters as the same. For example, (char-
ci<? #\a #\B) returns #t, whereas (char<? #\a #\B)
returns #f.

(char-ci=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char=?, but treats upper case
and lower case letters as the same. For example, (char-
ci=? #\A #\a) returns #t.

(char-ci>=? arg1 arg2) ⇒ #t or #f
This procedure is similar to char>=?, but treats upper case
and lower case letters as the same. For example, (char-
ci>=? #\a #\B) returns #t, whereas (char>=? #\a #\B)
returns #f.

(char-ci>? arg1 arg2) ⇒ #t or #f
This procedure is similar to char>?, but treats upper case
and lower case letters as the same. For example, (char-
ci>? #\A #\b) returns #t, whereas (char>? #\A #\b)
returns #f.

(char-lower-case? char) ⇒ #t or #f
The procedures return #t if its argument is a lower case
character, otherwise it returns #f. The alphabetic charac-
ters are the 52 upper and lower case letters. See also char-
whitespace?, char-numeric?, char-whitespace? and char-
upper-case?.

(char-numeric? char) ⇒ #t or #f
This procedure returns #t if its argument is numeric, oth-
erwise it returns #f. The numeric characters are the ten
decimal digits. See also char-alphabetic?, char-
whitespace?, char-upper-case? and char-lower-case?.
 Alter Reference Manual 123

Testing Characters
(char-upper-case? char) ⇒ #t or #f
This procedure returns #t if its argument is upper case,
otherwise it returns #f. The alphabetic characters are the
52 upper and lower case letters. See also char-
whitespace?, char-numeric?, char-whitespace? and char-
lower-case?

(char-whitespace? char) ⇒ #t or #f
This procedure returns #t if its argument is whitespace,
otherwise it returns #f. The whitespace characters are
space, tab, line feed, form feed and carriage return. See
also char-alphabetic?, char-numeric?, char-upper-case?
and char-lower-case?

(char<=? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argu-
ment is the same as or precedes the character represented
by the second argument, assuming a total ordering on the
set of characters.

(char<? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argu-
ment precedes the character represented by the second
argument, assuming a total ordering on the set of charac-
ters.

(char=? arg1 arg2) ⇒ #t or #f
Returns #t if the two arguments represent the same char-
acter.

(char>=? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argu-
ment is the same as or follows the character represented
by the second argument, assuming a total ordering on the
set of characters.

(char>? arg1 arg2) ⇒ #t or #f
Returns #t if the character represented by the first argu-
ment follows the character represented by the second
argument, assuming a total ordering on the set of charac-
ters.

(eof-object? object) ⇒ #t or #f
Returns #t if arg is an end of file object, otherwise returns
#f. The precise set of end of file objects will vary among
implementations, but in any case no end of file object will
ever be an object that can be read in using read.
124

Testing Geometric Objects 39

(point? object) ⇒ boolean

Answers #t if the argument is a point, #f otherwise. A
point is either a two-element vector of the form #(x y), or a
pair of the form (x . y), where x and y are both numbers.

(rectangle? object) ⇒ boolean
Answers #t if the argument is a rectangle, #f otherwise. A
rectangle is either a two-element vector whose first ele-
ment is the upper-left point and second element is the
lower-right point (i.e., #(#(<upper-left-x> <upper-left-y>)
#(<lower-right-x> <lower-right-y>))), or a pair whose car
is the upper left point and whose cdr is the lower right
point (i.e., ((<upper-left-x> . <upper-left-y>) . (<lower-
right-x> <lower-right-y>))). Alter uses the convention
that the x coordinates increase rightward, whereas y coor-
dinates increase downward (as do screen coordinates).
 Alter Reference Manual 125

Testing Geometric Objects
126

Testing Numbers 40

(= num1 num2 num3...) ⇒ #t or #f

This procedures returns #t if its arguments are equal. = is
transitive.

The traditional implementations of = in Lisp-like lan-
guages are not transitive.

While it is not an error to compare inexact numbers using
=, the results may be unreliable because a small inaccu-
racy may affect the result; this is especially true of =.

(even? object) ⇒ #t or #f
This procedure returns #t if its argument is even (a multi-
ple of 2). The result for inexact numbers may be unreli-
able because of small inaccuracies.

(exact? object) ⇒ #t or #f
Exact? provides a test for the exactness of a quantity. For
any Alter number, either exact? or inexact? is true, but not
both.

(inexact? object) ⇒ #t or #f
Exact? provides a test for the exactness of a quantity. For
any Alter number, either exact? or inexact? is true, but not
both.

(integer? object) ⇒ #t or #f
Integer? can be applied to any kind of argument, includ-
ing non-numbers. It returns #t if the object is an integer,
and otherwise it returns #f.

If integer? is true of a number then all higher type predi-
cates are also true of that number. Consequently, if inte-
ger? is false of a number, then all lower type predicates
are also false of that number.

If x is an inexact real number, then (integer? x) is true if
and only if (= x (round x)).

(integer? 3.0) => #t

(integer? 8/4) => #t

The behavior of integer? on inexact numbers is unreliable,
since any inaccuracy may affect the result.

See also number?, complex?, real?, and rational?

(negative? object) ⇒ #t or #f
This procedure returns #t if its argument is less than zero.
The result for inexact numbers may be unreliable because
of small inaccuracies.
 Alter Reference Manual 127

Testing Numbers
(odd? object) ⇒ #t or #f
This procedure returns #t if its argument is odd (exactly
halfway between two adjacent multiples of 2). The result
for inexact numbers may be unreliable because of small
inaccuracies.

(positive? object) ⇒ #t or #f
This procedure returns #t if its argument is greater than
zero. The result for inexact numbers may be unreliable
because of small inaccuracies.

(rational? object) ⇒ #t or #f
Rational? can be applied to any kind of argument, includ-
ing non-numbers. It returns #t if the object is a rational,
and otherwise it returns #f.

If rational? is true of a number then all higher type predi-
cates are also true of that number. Consequently, if ratio-
nal? is false of a number, then all lower type predicates
are also false of that number.

(rational? (/ 6 10))=> #t

(rational? (/ 6 3))=> #t

The behavior of rational? on inexact numbers is unreli-
able, since any inaccuracy may affect the result.

See also number?, complex?, real? and integer?.

(real? object) ⇒ #t or #f
Real? can be applied to any kind of argument, including
non-numbers. It returns #t if the object is a real number,
and otherwise it returns #f.

If real? is true of a number then all higher type predicates
are also true of that number. Consequently, if real? is
false of a number, then all lower type predicates are also
false of that number.

If z is an inexact complex number, then (real? z) is true if
and only if (zero? (imag-part z)) is true. If x is an inexact
real number, then (integer? x) is true if and only if (= x
(round x)).

(real? 3) => #t

(real? -2.5+0.0i)=> #t

(real? #e1e10) => #t

See also number?, complex?, rational? and integer?.

(zero? object) ⇒ #t or #f
This procedure returns #t if its argument is exactly equal
to zero. The result for inexact numbers may be unreliable
because of small inaccuracies.
128

Testing Strings 41

(string-ci<=? string1 string2) ⇒ #t or #f

This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String-ci<=? is
the lexicographic ordering on strings induced by the
ordering char-ci<=? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the shorter string is considered to be lexicographi-
cally less than the longer string.

(string-ci<? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String-ci<? is
the lexicographic ordering on strings induced by the
ordering char-ci<? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the shorter string is considered to be lexicographi-
cally less than the longer string.

(string-ci=? string1 string2) ⇒ #t or #f
Returns #t if the two strings are the same length and con-
tain the same characters in the same positions, otherwise
returns #f. String-ci=? treats upper and lower case letters
as though they were the same character. See string=?.

(string-ci=? "abc" (string #\a #\b #\c))=> #t

(string-ci=? "ABC" "abc")=> #t

(string-ci=? "ab" "AbC")=> #f

(string-ci>=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String-ci>=? is
the lexicographic ordering on strings induced by the
ordering char-ci>=? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the longer string is considered to be lexicographi-
cally greater than the longer string.

(string-ci>? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String-ci>? is
the lexicographic ordering on strings induced by the
ordering char-ci>? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the longer string is considered to be lexicographi-
cally greater than the longer string.
 Alter Reference Manual 129

Testing Strings
(string-empty? string1) ⇒ #t or #f
Returns #t if the string is the empty string.

(string-empty? "abc")=> #f

(string-empty? "")=> #t

(string<=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String<=? is
the lexicographic ordering on strings induced by the
ordering char<=? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the shorter string is considered to be lexicographi-
cally less than the longer string.

(string<? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String<? is the
lexicographic ordering on strings induced by the order-
ing char<? on characters. If two strings differ in length
but are the same up to the length of the shorter string, the
shorter string is considered to be lexicographically less
than the longer string.

(string=? string1 string2) ⇒ #t or #f
Returns #t if the two strings are the same length and con-
tain the same characters in the same positions, otherwise
returns #f. String=? treats upper and lower case as dis-
tinct characters. See also string-ci=?.

(string=? "abc" (string #\a #\b #\c))=> #t

(string=? "ABC" "abc")=> #f

(string>=? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String>=? is
the lexicographic ordering on strings induced by the
ordering char>=? on characters. If two strings differ in
length but are the same up to the length of the shorter
string, the longer string is considered to be lexicographi-
cally greater than the longer string.

(string>? string1 string2) ⇒ #t or #f
This procedure is a lexicographic extension to strings of
the corresponding ordering on characters. String>? is the
lexicographic ordering on strings induced by the order-
ing char>? on characters. If two strings differ in length
but are the same up to the length of the shorter string, the
longer string is considered to be lexicographically greater
than the longer string.
130

Types 42

(all-ivars type) ⇒ list

Returns a list of symbols that represent the instance vari-
ables for the argument and all of its supertypes. Equiva-
lent to appending the results of calling ivars on the result
of (cons type (all-supertypes type)).

(all-subtypes type) ⇒ list
Returns a list containing the argument, each of the argu-
ment’s immediate subtypes and the elements contained in
the result of applying all-subtypes to each of the argu-
ment’s immediate subtypes with duplicates removed.

(all-supertypes type) ⇒ list
Returns a list containing each of the argument’s immedi-
ate supertypes and the elements contained in the result of
applying all-supertypes to each of the argument’s imme-
diate supertypes with duplicates removed.

(get-type object) ⇒ type
Returns the type of the argument.

(get-type object-type)=> type

(get-type (make object-type))=> object-type

(get-type (make type ’() ’(object-type)))=> type

(initialize type) ⇒ type

(initialize object) ⇒ object
Performs any necessary initialization on the object and
returns the initialized object. Initialize is called automati-
cally by the operation make.

(ivars type) ⇒ list
Returns a list of symbols that represent the instance vari-
ables for the argument.

(subtypes type) ⇒ list
Returns a list containing the argument and each of its
immediate subtypes.

(supertypes type) ⇒ list
Returns a list containing the argument’s immediate super-
types.
 Alter Reference Manual 131

Types
132

User Requests 43

(confirm message [initialanswer [yesstring [nostring]]]) ⇒ #t or #f

Pops up a dialog window with two buttons. The window
is labeled with the given string. The second and remain-
ing arguments are optional. If the second argument is
given, it must be a boolean indicating which button is to
be the default (the one considered "pressed" if the user
hits the Return key on the keyboard). The third argu-
ment, if present, is a string that is used as the label for the
true-valued button. The fourth argument, if present, is a
string that is used as the label for the false-valued button.
Confirm returns a boolean value corresponding to the
button that was chosen by the user.

(request-directory-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to desig-
nate an existing directory to use in a subsequent activity.
Returns a filename, unless the user cancels the operation,
in which case it returns nil.

(request-file-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to desig-
nate an existing file to use in a subsequent activity.
Returns a filename, unless the user cancels the operation,
in which case it returns nil.

(request-new-file-name [filename]) ⇒ filename
Pops up a dialog window prompting the user to desig-
nate a new file to use in a subsequent activity. Returns a
filename, unless the user cancels the operation, in which
case it returns nil.

(user-choose message labels values default [equalize]) ⇒ symbol
Pops up a dialog window prompting the user to choose
one element from a list, or to cancel the decision. The first
argument is the string to serve as the message to prompt
the user. The second argument is a list of strings used to
label the various buttons that will be created. The third
argument is a list of symbols, one for each button. One of
these symbols will be returned, indicating which button
was pressed. The fourth argument is a symbol that must
match one of the symbols in the list given in the third
argument, and specifies which button will be the default
(the one considered "pressed" if the user hits the Return
key). The fifth (optional) argument is a boolean value
specifying whether or not to make the buttons all the
same width, or to vary their widths depending on the
string labels (default is to equalize the widths).
 Alter Reference Manual 133

User Requests
(user-choose-from-list message labels values default [cancel [max-lines [buttons
button-values]]]) ⇒ object

Pops up a dialog window prompting the user to choose
one element from a list, or to cancel the decision. The first
argument is the string to serve as the message to prompt
the user. The second argument is a list of strings used to
label the items in the list. The third argument is a list of
objects, one for each list item. One of these objects will be
returned, indicating which item was selected. The fourth
argument is an object that must match one of the objects
in the list given in the third argument, and specifies
which list item will be the default (the one initially
selected when the dialog opens). The fifth argument is an
object that is returned if the cancel button is pressed. The
sixth (optional) argument is an integer value specifying
the number of lines in the list to show at once. The sev-
enth (optional) argument is another list of strings which
serves as the labels for a set of additional buttons. The
eighth (optional) argument must be included if the sev-
enth argument is included. This argument is a list
objects, one for each string in the seventh argument, that
are returned when one of the additional buttons are
pressed.

(warn message [text]) ⇒ nil
Pops up a modal (dialog) window with the given mes-
sage and a single button (labeled "OK") that the user must
press (or, equivalently, hit the Return key) in order to con-
tinue with further DoME activity.
134

Vectors 44

(make-vector size [fillval]) ⇒ vector

Returns a newly allocated vector of size elements. If a
second argument is given, then each element is initialized
to fillval. Otherwise the initial contents of each element is
unspecified.

(vector items...) ⇒ vector
Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector ’a ’b ’c) => #(a b c)

(vector-fill! vector obj) ⇒ vector
Stores arg2 in every element of arg1. The value returned
by vector-fill! is unspecified.

(vector-length vector) ⇒ integer
Returns the number of elements in vector.

(vector-length #(1 2 3))=> 3

(vector-ref vector k) ⇒ object
Vector-ref returns the kth element of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5)=> 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

 (inexact->exact (round (* 2 (acos -1)))))

=> 13

(vector-set! vector k obj) ⇒ object
Vector-set! stores obj in element k of vector. The value
returned by vector-set! is unspecified.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

 (vector-set! vec 1 ’("Sue" "Sue"))

 vec) => #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")=> error ; constant
vector
 Alter Reference Manual 135

Vectors
136

Index

Symbols
 9, 10
- 9
* 9
+ 9
/ 9
= 127
> 10
>= 10
^super 26

A
abs 10
accessories 75
acos 71
add-binding-named 75
add-child 75
add-interest 87
add-method 33
all-ivars 131
all-packages 99
all-subtypes 131
all-supertypes 131
and 69
any-changes? 91
append 15
apply 19
archetype 75
archetype? 75
archetype-shelf 75
archetypifiable? 75
arcs 75
as-backup 53
asin 71
assoc 51
assq 51
assv 51
atan 71

B
background-color 105
baseline 76
begin 19

binding-named 76
bindings 33
blue 17
bold 55
boolean? 115
border-bounds 76
bottom-margin 45
bound? 115
bounds 76
brightness 17
bring-to-focus 93

C
call/cc 21
call-with-current-continuation 19
car 65
category 73
cdr 65
ceiling 10
center 107
char 124, 124
char=? 124
char>=? 124
char>? 124
char->integer 27
char? 115
char-alphabetic? 123
char-ci 123, 123
char-ci=? 123
char-ci>=? 123
char-ci>? 123
char-downcase 27
char-lower-case? 123
char-numeric? 123
char-ready? 59
char-upcase 27
char-upper-case? 124
char-whitespace? 124
class? 115
clear-selection 93
close 59
close-input-port 59
close-model 93
close-output-port 59
color 76
 Alter Reference Manual Index-137

Index
color? 115
commit 59
components 76
cond 23
configurations 76
confirm 133
cons 65
construct 53
container 76
contents 59
copy 33
copy-to 53
copy-without 15
cos 71
cr 45
current-binding 76
current-configuration 76
current-directory 53
current-input-port 59
current-output-port 59
current-package 99
cyan 17

D
data-dictionary-edit 93
dates 53
date-today 73
dec-indent-level! 45
default-child-type 77
default-font-description 55
define 34
delete 53
delete-package 99
deletion-request? 93
denominator 10
description 77
deselect-all 93
destination 77
detect 51
dictionary->list 41
dictionary? 115
dictionary-keys 41
dictionary-ref 41
dictionary-set! 41
dictionary-unset! 42
dictionary-values 42
direction 77
directory? 115
display 59

display-errors 93
do 23
document-generator-named 89
document-generators 89
dome-home 53
dome-version 73
do-over-model 77
draw-arc 57
draw-grapething 45
draw-line 57
draw-polyline 57
draw-rectangle 57
draw-string 57

E
edit 60
edit-name 93
elements 77
eof-object? 124
eq? 115
equal? 116
eqv? 116
error 73
eval 24
even? 127
exact->inexact 27
exact? 127
exists 53
exists? 53
exp 71
expand-rectangle 107
export 99
exported-symbols 99
expt 71
extent 107

F
face 77
family 55
filename 77
filename->string 27
finalize 45
find-operation 35
find-package 99
find-vacant-position 78
fixed-width 55
flatten 15
floor 11
Index-138

Index
flush 60
for-each 24
frozen-color 78

G
gcd 11
generate 89
get-property 78
get-property-definition 78
get-property-definitions 78
get-type 131
grape? 119
graph 78
graph-label 78
green 17

H
has-archetype? 78
has-binding? 78
has-binding-named? 78
has-child? 79
has-name? 91
has-parent? 79
has-parent-connection? 79
has-property-set? 79
head 53
height 107
hue 17

I
identifier 79
identity 109
if 25
implementations 79
import 99
inc-indent-level! 45
incoming-arcs 79
indent 45
indent-level 45
indent-size 45
inexact->exact 27
inexact? 127
initialize 131
in-new-environment-do 25
in-package 99
input? 91
input-and-output? 91

input-only? 91
input-port? 119
inspector-edit 93
instances 79
integer->char 28
integer? 127
interface 73
is-a? 119
is-kind-of? 91
italic 55
ivars 131

L
lambda 35
landscape 105
lcm 11
left-margin 45
length 16
let 36
let* 37
letrec 37
line-style 105
line-width 105
list 65
list->string 28
list->vector 28
list? 120
list-head 65
list-last 65
list-ref 66
list-tail 66
load 60
loaded-modules 95
load-path 54
log 71
logical-top-graph 79
logical-top-graph? 91
lower-left 107
lower-right 107

M
magenta 17
make 38
make-cmy-color 17
make-color 17
make-dictionary 42
make-directory 54
make-hsb-color 18
 Alter Reference Manual Index-139

Index
make-package 99
make-rgb-color 18
make-string 113
make-vector 135
map 25
master 79
max 11
member 51
memq 52
memv 52
merge-file 85
message-to-user 73
methods 38
min 11
modulo 11
moveable? 91
move-to 54
move-to-back 93
move-to-front 93

N
name 61
name-set! 80
name-source 80
negative? 127
new-child-model 85
new-in 85
newline 61
new-settings 89
new-top-model 86
next-multilevel-tag 46
next-put 46
nil? 120
nodes 80
not 69
null? 120
number->string 28
number? 120
numerator 12

O
object->string 29
object? 120
odd? 128
open 46
open-client-socket 111
open-input-file 61
open-input-string 61

open-models 80
open-output-file 61
open-output-string 61
operation? 120
or 69
origin 80
outgoing-arcs 80
output? 91
output-only? 91
output-port? 120

P
package-name 100
package-used-by-list 100
package-use-list 100
page-height 46
page-width 46
paint 105
paint-color 105
paint-style 106
pair? 120
parent 80
parent-connection 80
peek-char 62
platform 73
point 102, 102
point- 101
point* 101
point+ 101
point/ 102
point> 102
point>= 102
point? 125
point-max 101
point-min 101
port 46
port? 121
position 80
positive? 128
predefined-bindings 38
print 93
print-size 46
procedure? 121
property-schema-files 81
provide 95
put-string 46
Index-140

Index
Q
quasiquote 39
quote 39
quotient 12

R
radius 102
random 73
rational? 128
rationale 81
read 62
read-char 62
read-through-char 62
real? 128
rectangle? 125
red 18
refresh-display 93
register 109
relative-position 81
relative-scale 81
remainder 12
remove 81
remove-child 81
remove-from-list! 66
remove-interest 87
rename-package 100
request-directory-name 133
request-file-name 133
request-new-file-name 133
require 95
reset 62
reset-environment 73
reset-multilevel-counter 46
resizable? 91
resolve 54
resolve-identity 81
return-spec 74
reverse 67
right-margin 46
round 13
route 81

S
saturation 18
save 94
save-as 94
scale 47

scale-rectangle 108
scale-to! 47
select 52
selected? 91
selected-components 81
serif 55
set! 40
set-bold! 55
set-border-bounds! 81
set-bottom-margin! 47
set-car! 67
set-cdr! 67
set-color! 82
set-configurations! 82
set-container! 82
set-current-binding! 82
set-current-configuration! 82
set-description! 82
set-destination! 82
set-direction! 82
set-face! 47
set-family! 55
set-fixed-width! 55
set-frozen-color! 82
set-indent-level! 47
set-indent-size! 47
set-italic! 55
set-left-margin! 47
set-line-style! 47
set-line-width! 47
set-master! 82
set-name! 82
set-origin! 82
set-page-height! 47
set-page-width! 48
set-paint-color! 48
set-paint-style! 48
set-parent-connection! 82
set-port! 48
set-position! 83
set-print-size! 48
set-property! 83
set-property-schema-files! 83
set-rationale! 83
set-relative-position! 83
set-relative-scale! 48
set-right-margin! 48
set-route! 83
set-scale! 48
set-selection 94
 Alter Reference Manual Index-141

Index
set-serif! 55
set-size! 83
set-strikeout! 55
set-top-margin! 48
set-translation! 48
set-underline! 56
shell 97
show-progress-begin 26
show-progress-for-each 26
sin 71
size 56
sleep 74
sort 67
sqrt 13
square-route 94
start-para 48
strikeout 56
string 113, 130, 130
string=? 130
string>=? 130
string>? 130
string->filename 29
string->list 29
string->number 29
string->symbol 30
string? 121
string-append 113
string-capitalize 30
string-ci 129, 129
string-ci=? 129
string-ci>=? 129
string-ci>? 129
string-copy 113
string-downcase 30
string-empty? 130
string-fill! 113
string-length 113
string-ref 113
string-set! 113
string-upcase 30
subdiagrams 83
substitute 16
substring 113
substring-index 114
subtype? 121
subtypes 131
supertypes 131
supports-native-paragraph-numbering?

49
symbol->string 30

symbol? 121
synchronize-display 94

T
tail 54
tan 71
temporary-filename 54
text-line-height 84
theta 102
thunk? 121
time-now 74
top-margin 49
top-model 84
top-model? 91
translate-rectangle 108
translation 49
trim 16
truncate 13
type->symbol 31
type? 121

U
underline 56
unexport 100
unquote 40
unquote-splicing 40
unregister 109
unset-property! 84
unuse-package 100
upper-left 108
upper-right 108
use-package 100
user-choose 133
user-choose-from-list 134
user-home 54

V
vector 135
vector->list 31
vector? 122
vector-fill! 135
vector-length 135
vector-ref 135
vector-set! 135
views 84
visible? 92
Index-142

Index
W
warn 134
what-are-you 84
width 108
with-input-from-file 62
with-output-to-file 63
word-wrap 16
writable? 122
write 63
write-bitmap 86
write-char 63
write-postamble 49
write-preamble 49

X
x 103

Y
y 103
yellow 18

Z
zero? 128
 Alter Reference Manual Index-143

	Contents
	Introduction 1
	Syntax 2
	Reserved Words 3
	Notation Conventions 4
	(procedure-name argument-specification) ﬁ return-t...
	(operation-name argument-specification) ﬁ return-t...
	An argument specification is a series of the follo...

	Arithmetic 5
	(* numbers...) ﬁ number
	(+ numbers...) ﬁ number
	(- number rest...) ﬁ number
	(/ number rest...) ﬁ number
	(< num1 num2 num3...) ﬁ #t or #f
	(<= num1 num2 num3...) ﬁ #t or #f
	(> num1 num2 num3...) ﬁ #t or #f
	(>= num1 num2 num3...) ﬁ #t or #f
	(abs number) ﬁ number
	(ceiling number) ﬁ number
	(denominator fraction) ﬁ integer
	(floor number) ﬁ number
	(gcd number...) ﬁ number
	(lcm number...) ﬁ number
	(max number rest...) ﬁ number
	(min number rest...) ﬁ number
	(modulo numerator divisor) ﬁ integer
	(numerator fraction) ﬁ integer
	(quotient numerator divisor) ﬁ integer
	(remainder numerator divisor) ﬁ integer
	(round number) ﬁ integer
	(sqrt number) ﬁ number
	(truncate number) ﬁ integer

	Collections 6
	(append string1 string2...) ﬁ string
	(append list1 list2...) ﬁ list
	(copy-without list object) ﬁ newlist
	(flatten list) ﬁ list
	(length string) ﬁ integer
	(length list) ﬁ integer
	(length vector) ﬁ integer
	(substitute string substring replacement) ﬁ string...
	(trim string) ﬁ string
	(word-wrap string [width [ignorecrs]]) ﬁ list-...

	Colors 7
	(blue color-type) ﬁ number
	(brightness color-type) ﬁ number
	(cyan color-type) ﬁ number
	(green color-type) ﬁ number
	(hue color-type) ﬁ number
	(magenta color-type) ﬁ number
	(make-cmy-color cyan magenta yellow) ﬁ color
	(make-color red green blue) ﬁ color
	(make-hsb-color hue saturation brightness) ﬁ color...
	(make-rgb-color red green blue) ﬁ color
	(red color-type) ﬁ number
	(saturation color-type) ﬁ number
	(yellow color-type) ﬁ number

	Control 8
	(apply proc list) ﬁ object
	(begin body...) ﬁ object or nil
	(call-with-current-continuation proc) ﬁ value
	(call/cc proc) ﬁ value
	(cond clause...) ﬁ object or nil
	(do bindings terminator body...) ﬁ object or nil
	(eval object) ﬁ object
	(for-each proc list1 list2...) ﬁ nil
	(if test consequence [alternate]) ﬁ object or ni...
	(in-new-environment-do body...) ﬁ nil
	(map proc list1 list2...) ﬁ list
	(show-progress-begin label body...) ﬁ object or ni...
	(show-progress-for-each message proc list1 list2.....
	(^super type operation object...) ﬁ object

	Converting 9
	(char->integer char) ﬁ integer
	(char-downcase char) ﬁ character
	(char-upcase char) ﬁ character
	(exact->inexact number) ﬁ float
	(filename->string filename-type) ﬁ string
	(inexact->exact number) ﬁ integer
	(integer->char int) ﬁ character
	(list->string listofchars) ﬁ string
	(list->vector list) ﬁ vector
	(number->string number [radix]) ﬁ string
	(object->string object) ﬁ string
	(string->filename string resolve...) ﬁ filename
	(string->list string) ﬁ list
	(string->number string [radix]) ﬁ number
	(string->symbol string) ﬁ symbol
	(string-capitalize string) ﬁ string
	(string-downcase string) ﬁ string
	(string-upcase string) ﬁ string
	(symbol->string symbol) ﬁ string
	(type->symbol type) ﬁ symbol
	(vector->list vector) ﬁ list

	Defining 10
	(add-method interface body...) ﬁ procedure
	(bindings) ﬁ list
	(copy object) ﬁ object
	(define varspec valueorbody body...) ﬁ object or p...
	(find-operation name) ﬁ operation
	(lambda formals body...) ﬁ procedure
	(let bindings body...) ﬁ object
	(let* bindings body...) ﬁ object
	(letrec bindings body...) ﬁ object
	(make type ivars supertypes) ﬁ type
	(make type) ﬁ object
	(methods operation) ﬁ list
	(predefined-bindings) ﬁ list
	(quasiquote expression) ﬁ object
	(quote object) ﬁ object
	(set! variable expression) ﬁ object
	(unquote expression) ﬁ object
	(unquote-splicing expression) ﬁ object

	Dictionaries 11
	(dictionary->list dictionary) ﬁ list
	(dictionary-keys dictionary) ﬁ list
	(dictionary-ref dictionary key [default]) ﬁ obje...
	(dictionary-set! dictionary key obj) ﬁ #t or #f
	(dictionary-unset! dictionary key) ﬁ #t or #f
	(dictionary-values dictionary) ﬁ list
	(make-dictionary [comparison [size]]) ﬁ dictio...

	Document Generation 12
	(bottom-margin document-context) ﬁ inches
	(cr document-context [integer]) ﬁ nil
	(dec-indent-level! document-context) ﬁ nil
	(draw-grapething ps-context object [translation]...
	(draw-grapething document-context object [transla...
	(finalize ps-context) ﬁ nil
	(finalize document-context) ﬁ nil
	(inc-indent-level! document-context) ﬁ nil
	(indent document-context) ﬁ nil
	(indent-level document-context) ﬁ nil
	(indent-size document-context) ﬁ nil
	(left-margin document-context) ﬁ inches
	(next-multilevel-tag document-context level [sepa...
	(next-put document-context string) ﬁ nil
	(open ps-context [output]) ﬁ nil
	(open document-context [output]) ﬁ nil
	(page-height document-context) ﬁ inches
	(page-width document-context) ﬁ inches
	(port document-context) ﬁ port
	(print-size document-context) ﬁ number
	(put-string ps-context string [font-description]...
	(reset-multilevel-counter document-context [key]...
	(right-margin document-context) ﬁ inches
	(scale document-context) ﬁ point
	(scale-to! document-context rectangle) ﬁ nil
	(set-bottom-margin! document-context inches) ﬁ nil...
	(set-face! document-context string) ﬁ nil
	(set-indent-level! document-context indent-level) ...
	(set-indent-size! document-context indent-level) ﬁ...
	(set-left-margin! document-context inches) ﬁ nil
	(set-line-style! document-context symbol) ﬁ nil
	(set-line-width! document-context width) ﬁ nil
	(set-page-height! document-context inches) ﬁ nil
	(set-page-width! document-context inches) ﬁ nil
	(set-paint-color! document-context color-value) ﬁ ...
	(set-paint-style! document-context symbol) ﬁ nil
	(set-port! document-context port) ﬁ nil
	(set-print-size! document-context inches) ﬁ nil
	(set-relative-scale! document-context factor) ﬁ ni...
	(set-right-margin! document-context inches) ﬁ nil
	(set-scale! document-context point) ﬁ nil
	(set-top-margin! document-context inches) ﬁ nil
	(set-translation! document-context point) ﬁ nil
	(start-para ps-context [style]) ﬁ nil
	(start-para document-context [style]) ﬁ nil
	(supports-native-paragraph-numbering? document-con...
	(top-margin document-context) ﬁ inches
	(translation document-context) ﬁ point
	(write-postamble document-context) ﬁ nil
	(write-preamble document-context) ﬁ nil

	Enumerating 13
	(assoc obj list) ﬁ pair or #f
	(assq obj list) ﬁ pair or #f
	(assv obj list) ﬁ pair or #f
	(detect list predicate [none]) ﬁ object
	(member obj list) ﬁ list or #f
	(memq obj list) ﬁ list or #f
	(memv obj list) ﬁ list or #f
	(select list predicate) ﬁ list

	File 14
	(as-backup filename-type) ﬁ string
	(construct filename rest...) ﬁ filename
	(copy-to filename destination) ﬁ nil
	(current-directory) ﬁ filename
	(dates filename) ﬁ dictionary
	(delete filename-type) ﬁ filename
	(dome-home) ﬁ filename
	(exists filename-type) ﬁ #t or #f
	(exists? filename-type) ﬁ #t or #f
	(head filename-type) ﬁ string
	(load-path) ﬁ filename
	(make-directory filename-type) ﬁ filename
	(move-to filename destination) ﬁ nil
	(resolve filename) ﬁ filename
	(tail filename-type) ﬁ string
	(temporary-filename) ﬁ filename
	(user-home) ﬁ filename

	Font Descriptions 15
	(bold font-description) ﬁ boolean
	(default-font-description) ﬁ font-description
	(family font-description) ﬁ string
	(fixed-width font-description) ﬁ boolean
	(italic font-description) ﬁ boolean
	(serif font-description) ﬁ boolean
	(set-bold! font-description boolean) ﬁ nil
	(set-family! font-description string) ﬁ nil
	(set-fixed-width! font-description boolean) ﬁ nil
	(set-italic! font-description boolean) ﬁ nil
	(set-serif! font-description boolean) ﬁ nil
	(set-strikeout! font-description boolean) ﬁ nil
	(set-underline! font-description boolean) ﬁ nil
	(size font-description) ﬁ points
	(strikeout font-description) ﬁ boolean
	(underline font-description) ﬁ boolean

	Graphics 16
	(draw-arc context bounding-rectangle start-angle s...
	(draw-arc document-context bounding-rectangle star...
	(draw-line context from-point to-point) ﬁ nil
	(draw-line document-context from-point to-point) ﬁ...
	(draw-polyline context point-list [fill]) ﬁ nil
	(draw-polyline document-context point-list [fill ...
	(draw-rectangle context rectangle [fill]) ﬁ nil
	(draw-rectangle document-context rectangle [fill ...
	(draw-string context string point) ﬁ nil
	(draw-string document-context string alignment loc...

	I/O 17
	(char-ready? [port]) ﬁ #t or #f
	(close port) ﬁ nil
	(close-input-port port) ﬁ nil
	(close-output-port port) ﬁ nil
	(commit port) ﬁ nil
	(contents filename) ﬁ string
	(contents port) ﬁ string
	(current-input-port) ﬁ input-port or nil
	(current-output-port) ﬁ output-port
	(display object [port]) ﬁ nil
	(edit graphmodel) ﬁ unspecified
	(edit filenameorstring) ﬁ nil
	(flush port) ﬁ nil
	(load filenameorstring [loudly [modified]]) ﬁ ...
	(name namednode) ﬁ string
	(name package) ﬁ string
	(name graphmodel) ﬁ string
	(name graphobjectattribute) ﬁ string
	(name port) ﬁ string
	(name nameddirarc) ﬁ string
	(name user-defined-type) ﬁ string
	(newline [port]) ﬁ nil
	(open-input-file filename) ﬁ input-port
	(open-input-file string) ﬁ input-port
	(open-input-string string) ﬁ input-port
	(open-output-file filename) ﬁ output-port
	(open-output-file string) ﬁ output-port
	(open-output-string) ﬁ output-port
	(peek-char [port]) ﬁ character
	(read [port]) ﬁ expression
	(read-char [port]) ﬁ character
	(read-through-char char [port]) ﬁ string
	(reset port) ﬁ nil
	(with-input-from-file string proc) ﬁ object
	(with-output-to-file string proc) ﬁ object
	(write object [port]) ﬁ nil
	(write-char char [port]) ﬁ nil

	Lists 18
	(car list) ﬁ object
	(cdr list) ﬁ object
	(cons obj1 obj2) ﬁ pair
	(list items...) ﬁ list
	(list-head list index) ﬁ list
	(list-last list) ﬁ sexpr
	(list-ref list index) ﬁ sexpr
	(list-tail list index) ﬁ list
	(remove-from-list! list object) ﬁ list
	(reverse list) ﬁ list
	(set-car! list obj) ﬁ object
	(set-cdr! list obj) ﬁ object
	(sort list proc) ﬁ list

	Logic 19
	(and args...) ﬁ object or #f
	(not object) ﬁ #t or #f
	(or expressions...) ﬁ object or #f

	Math Functions 20
	(acos number) ﬁ number
	(asin number) ﬁ number
	(atan y [x]) ﬁ number
	(cos number) ﬁ number
	(exp number) ﬁ number
	(expt base exponent) ﬁ number
	(log number) ﬁ number
	(sin number) ﬁ number
	(tan number) ﬁ number

	Miscellaneous 21
	(category thunk [category]) ﬁ string
	(date-today) ﬁ vector
	(dome-version) ﬁ string
	(error error-message) ﬁ string
	(interface proc) ﬁ list
	(message-to-user message) ﬁ string
	(platform) ﬁ association
	(random [low high]) ﬁ number
	(reset-environment) ﬁ
	(return-spec proc) ﬁ string
	(sleep milliseconds) ﬁ nil
	(time-now) ﬁ vector

	Model:Accessing 22
	(accessories graphobject) ﬁ list
	(add-binding-named graphobject configuration graph...
	(add-binding-named graphmodel configuration grapho...
	(add-child graphobject graphmodel) ﬁ graphmodel
	(archetype graphobject) ﬁ graphobject
	(archetype domenode) ﬁ node
	(archetype-shelf graphmodel) ﬁ graphmodel
	(archetype? graphobject) ﬁ #t or #f
	(archetype? graphmodel) ﬁ #t or #f
	(archetype? remotegraphobject) ﬁ #t or #f
	(archetypifiable? graphobject) ﬁ #t or #f
	(arcs graphmodel) ﬁ list
	(baseline graphobject) ﬁ integer
	(baseline graphmodel) ﬁ integer
	(binding-named grapething string) ﬁ modelbinding
	(border-bounds domenode) ﬁ rectangle
	(bounds grapething) ﬁ rectangle
	(color graphobject) ﬁ color-value
	(color font-description) ﬁ color-value
	(components grapething) ﬁ list
	(configurations graphmodel) ﬁ list
	(configurations grapething) ﬁ list
	(container graphobject) ﬁ visualgrapething
	(current-binding graphmodel) ﬁ modelbinding
	(current-configuration graphmodel) ﬁ string
	(default-child-type graphobject) ﬁ graphmodel-clas...
	(description proc [string]) ﬁ string
	(description grapething) ﬁ string
	(destination netarc) ﬁ node
	(destination graphobjectreference) ﬁ node
	(direction graphboundary) ﬁ symbol
	(do-over-model grapething thunk) ﬁ nil
	(elements graphobject) ﬁ list
	(face alter-graphics-context) ﬁ string
	(face grapething) ﬁ string
	(face document-context) ﬁ string
	(filename graphmodel) ﬁ filename-type
	(find-vacant-position graphmodel width height) ﬁ p...
	(frozen-color graphobject) ﬁ #t or #f
	(get-property object propname) ﬁ object
	(get-property propname object) ﬁ object
	(get-property-definition grapething propertyname) ...
	(get-property-definition grapething-class property...
	(get-property-definitions grapething [categorynam...
	(get-property-definitions grapething-class) ﬁ dict...
	(graph grapething) ﬁ graphmodel
	(graph-label graphmodel) ﬁ node
	(has-archetype? graphobject) ﬁ #t or #f
	(has-binding-named? grapething string) ﬁ #t or #f
	(has-binding? grapething) ﬁ #t or #f
	(has-child? graphobject) ﬁ #t or #f
	(has-parent-connection? grapething) ﬁ #t or #f
	(has-parent? grapething) ﬁ #t or #f
	(has-property-set? grapething propname) ﬁ boolean
	(has-property-set? propname grapething) ﬁ boolean
	(identifier grapething) ﬁ number
	(implementations graphobject) ﬁ list
	(incoming-arcs domenode) ﬁ list
	(instances domenode) ﬁ list
	(logical-top-graph graphmodel) ﬁ graphmodel
	(master grapething) ﬁ grapething
	(name-set! namednode string) ﬁ string
	(name-set! graphmodel string) ﬁ string
	(name-set! graphobjectattribute string) ﬁ string
	(name-set! user-defined-type string) ﬁ string
	(name-set! nameddirarc string) ﬁ string
	(name-source grapething) ﬁ grapething
	(nodes graphmodel) ﬁ list
	(open-models) ﬁ list
	(origin netarc) ﬁ node
	(outgoing-arcs domenode) ﬁ list
	(parent graphmodel) ﬁ graphobject
	(parent-connection graphobject) ﬁ graphobject
	(position graphobject) ﬁ point
	(property-schema-files grapething) ﬁ list
	(rationale grapething) ﬁ string
	(relative-position domenode) ﬁ point
	(relative-scale graphmodel) ﬁ number
	(relative-scale alter-graphics-context) ﬁ number
	(remove grapething) ﬁ nil
	(remove-child graphobject graphmodel) ﬁ graphmodel...
	(resolve-identity remotegraphobject) ﬁ grapething
	(route netarc) ﬁ list
	(selected-components grapething) ﬁ list
	(set-border-bounds! domenode rectangle) ﬁ rectangl...
	(set-color! graphobject color) ﬁ unspecified
	(set-color! font-description color-value) ﬁ nil
	(set-configurations! graphmodel list) ﬁ unspecifie...
	(set-container! grapething new-container) ﬁ #t or ...
	(set-current-binding! graphmodel modelbinding) ﬁ u...
	(set-current-configuration! graphmodel string) ﬁ u...
	(set-description! grapething string) ﬁ unspecified...
	(set-destination! netarc node) ﬁ unspecified
	(set-direction! graphboundary symbol) ﬁ unspecifie...
	(set-frozen-color! graphobject boolean) ﬁ unspecif...
	(set-master! grapething grapething) ﬁ unspecified
	(set-name! namednode string) ﬁ unspecified
	(set-name! graphmodel string) ﬁ unspecified
	(set-name! graphobjectattribute string) ﬁ unspecif...
	(set-name! nameddirarc string) ﬁ unspecified
	(set-origin! netarc node) ﬁ unspecified
	(set-parent-connection! graphobject parent) ﬁ chil...
	(set-position! domenode point) ﬁ point
	(set-property! object propname value) ﬁ nil
	(set-property! propname object value) ﬁ nil
	(set-property-schema-files! grapething list) ﬁ uns...
	(set-rationale! grapething string) ﬁ unspecified
	(set-relative-position! domenode point) ﬁ point
	(set-route! netarc list) ﬁ unspecified
	(set-size! domenode point) ﬁ point
	(set-size! font-description number) ﬁ nil
	(subdiagrams graphobject) ﬁ list
	(text-line-height graphobject) ﬁ integer
	(top-model grapething) ﬁ grapething
	(unset-property! grapething propname [value]) ﬁ ...
	(unset-property! propname grapething [value]) ﬁ ...
	(views grapething) ﬁ list
	(what-are-you grapething) ﬁ string

	Model:Creation 23
	(merge-file graphmodel file) ﬁ nil
	(new-child-model protodomespecwrapper graph-object...
	(new-child-model graphmodel-class graph-object) ﬁ ...
	(new-child-model metadomegraph graphobject) ﬁ grap...
	(new-in metadomearcspec graph originnode destinati...
	(new-in domenode-class graph [position]) ﬁ node
	(new-in metadomenodespec graph [position]) ﬁ nod...
	(new-in netarc-class graph originnode destinationn...
	(new-top-model graphmodel-class) ﬁ graphmodel
	(write-bitmap graphmodel filename format) ﬁ nil

	Model:Dependencies 24
	(add-interest grapething aspect lambda interestedo...
	(remove-interest grapething aspect interestedobjec...

	Model:Generating 25
	(document-generator-named grapething string) ﬁ gen...
	(document-generators grapething) ﬁ list
	(generate domegeneratorspec subject settings) ﬁ un...
	(new-settings domegeneratorspec) ﬁ settings-object...

	Model:Testing 26
	(any-changes? graphmodel) ﬁ #t or #f
	(has-name? grapething) ﬁ #t or #f
	(input-and-output? graphboundary) ﬁ #t or #f
	(input-only? graphboundary) ﬁ #t or #f
	(input? graphboundary) ﬁ #t or #f
	(is-kind-of? grapething class) ﬁ #t or #f
	(logical-top-graph? graphmodel) ﬁ #t or #f
	(moveable? graphobject) ﬁ #t or #f
	(output-only? graphboundary) ﬁ #t or #f
	(output? graphboundary) ﬁ #t or #f
	(resizable? graphobject) ﬁ #t or #f
	(selected? graphobject) ﬁ #t or #f
	(top-model? graphmodel) ﬁ #t or #f
	(visible? graphobject) ﬁ #t or #f

	Model:User-Interface 27
	(bring-to-focus grapevisualthing) ﬁ unspecified
	(clear-selection graphobject) ﬁ unspecified
	(close-model graphmodel) ﬁ unspecified
	(data-dictionary-edit grapething) ﬁ unspecified
	(deletion-request? grapething) ﬁ #t or #f
	(deselect-all graphmodel) ﬁ unspecified
	(display-errors list) ﬁ nil
	(edit-name grapevisualthing) ﬁ unspecified
	(inspector-edit grapevisualthing) ﬁ unspecified
	(move-to-back graphobject) ﬁ unspecified
	(move-to-front graphobject) ﬁ unspecified
	(print graphmodel) ﬁ unspecified
	(refresh-display grapevisualthing) ﬁ unspecified
	(save graphmodel) ﬁ unspecified
	(save-as graphmodel) ﬁ unspecified
	(set-selection graphobject) ﬁ unspecified
	(square-route netarc) ﬁ unspecified
	(synchronize-display graphmodel) ﬁ nil

	Modules 28
	(loaded-modules) ﬁ list
	(provide module) ﬁ boolean
	(require module) ﬁ boolean

	OS Interface 29
	(shell command args...) ﬁ integer

	Packages 30
	(all-packages) ﬁ list
	(current-package) ﬁ package
	(delete-package package-name) ﬁ package
	(export symbol [package]) ﬁ package
	(exported-symbols package-name) ﬁ list
	(find-package package-name) ﬁ package
	(import symbols exporting-package [importing-pack...
	(in-package package-name) ﬁ package
	(make-package package-name) ﬁ package
	(package-name package) ﬁ string
	(package-use-list package) ﬁ package
	(package-used-by-list package) ﬁ package
	(rename-package package new-package-name) ﬁ packag...
	(unexport symbol-or-list [package]) ﬁ package
	(unuse-package package-to-unuse [unusing-package ...
	(use-package package-to-use [using-package]) ﬁ u...

	Points 31
	(point* point1 point2...) ﬁ point
	(point+ point1 point2...) ﬁ point
	(point- point1 point2...) ﬁ point
	(point-max point rest...) ﬁ point
	(point-min point rest...) ﬁ point
	(point/ point1 point2...) ﬁ point
	(point< pt1 pt2 pt3...) ﬁ #t or #f
	(point<= pt1 pt2 pt3...) ﬁ #t or #f
	(point> pt1 pt2 pt3...) ﬁ #t or #f
	(point>= pt1 pt2 pt3...) ﬁ #t or #f
	(radius point) ﬁ number
	(theta point) ﬁ number
	(x point) ﬁ number
	(y point) ﬁ number

	Printer Driver 32
	(background-color alter-graphics-context) ﬁ colorv...
	(landscape alter-graphics-context) ﬁ #t or #f
	(line-style alter-graphics-context) ﬁ symbol
	(line-width alter-graphics-context) ﬁ integer
	(paint alter-graphics-context) ﬁ array
	(paint-color alter-graphics-context) ﬁ colorvalue
	(paint-style alter-graphics-context) ﬁ symbol

	Rectangles 33
	(center rectangle) ﬁ point
	(expand-rectangle rectangle expansion) ﬁ rectangle...
	(extent rectangle) ﬁ number
	(height rectangle) ﬁ number
	(lower-left rectangle) ﬁ number
	(lower-right rectangle) ﬁ number
	(scale-rectangle rectangle scale) ﬁ rectangle
	(translate-rectangle rectangle translation) ﬁ rect...
	(upper-left rectangle) ﬁ number
	(upper-right rectangle) ﬁ number
	(width rectangle) ﬁ number

	Registry 34
	(identity identifier) ﬁ object
	(register object) ﬁ identifier
	(unregister identifier) ﬁ nil

	Rpc 35
	(open-client-socket hostname port) ﬁ input-output-...

	Strings 36
	(make-string length [char]) ﬁ string
	(string char rest...) ﬁ string
	(string-append string1 string2...) ﬁ string
	(string-copy string) ﬁ string
	(string-fill! string char) ﬁ string
	(string-length string) ﬁ integer
	(string-ref string index) ﬁ character
	(string-set! string index char) ﬁ string
	(substring string start end) ﬁ string
	(substring-index string substring [start]) ﬁ num...

	Testing 37
	(boolean? object) ﬁ #t or #f
	(bound? symbol) ﬁ #t or #f
	(char? object) ﬁ #t or #f
	(class? object) ﬁ #t or #f
	(color? object) ﬁ #t or #f
	(dictionary? object) ﬁ #t or #f
	(directory? filename-type) ﬁ #t or #f
	(eq? arg1 arg2) ﬁ #t or #f
	(equal? arg1 arg2) ﬁ #t or #f
	(eqv? arg1 arg2) ﬁ #t or #f
	(grape? object) ﬁ #t or #f
	(input-port? object) ﬁ #t or #f
	(is-a? object type) ﬁ #t or #f
	(list? object) ﬁ #t or #f
	(nil? object) ﬁ #t or #f
	(null? object) ﬁ #t or #f
	(number? object) ﬁ #t or #f
	(object? object) ﬁ #t or #f
	(operation? object) ﬁ #t or #f
	(output-port? object) ﬁ #t or #f
	(pair? object) ﬁ #t or #f
	(port? object) ﬁ #t or #f
	(procedure? object) ﬁ #t or #f
	(string? object) ﬁ #t or #f
	(subtype? object type) ﬁ #t or #f
	(symbol? object) ﬁ #t or #f
	(thunk? object) ﬁ #t or #f
	(type? object) ﬁ #t or #f
	(vector? object) ﬁ #t or #f
	(writable? filename-type) ﬁ #t or #f

	Testing Characters 38
	(char-alphabetic? char) ﬁ #t or #f
	(char-ci<=? arg1 arg2) ﬁ #t or #f
	(char-ci<? arg1 arg2) ﬁ #t or #f
	(char-ci=? arg1 arg2) ﬁ #t or #f
	(char-ci>=? arg1 arg2) ﬁ #t or #f
	(char-ci>? arg1 arg2) ﬁ #t or #f
	(char-lower-case? char) ﬁ #t or #f
	(char-numeric? char) ﬁ #t or #f
	(char-upper-case? char) ﬁ #t or #f
	(char-whitespace? char) ﬁ #t or #f
	(char<=? arg1 arg2) ﬁ #t or #f
	(char<? arg1 arg2) ﬁ #t or #f
	(char=? arg1 arg2) ﬁ #t or #f
	(char>=? arg1 arg2) ﬁ #t or #f
	(char>? arg1 arg2) ﬁ #t or #f
	(eof-object? object) ﬁ #t or #f

	Testing Geometric Objects 39
	(point? object) ﬁ boolean
	(rectangle? object) ﬁ boolean

	Testing Numbers 40
	(= num1 num2 num3...) ﬁ #t or #f
	(even? object) ﬁ #t or #f
	(exact? object) ﬁ #t or #f
	(inexact? object) ﬁ #t or #f
	(integer? object) ﬁ #t or #f
	(negative? object) ﬁ #t or #f
	(odd? object) ﬁ #t or #f
	(positive? object) ﬁ #t or #f
	(rational? object) ﬁ #t or #f
	(real? object) ﬁ #t or #f
	(zero? object) ﬁ #t or #f

	Testing Strings 41
	(string-ci<=? string1 string2) ﬁ #t or #f
	(string-ci<? string1 string2) ﬁ #t or #f
	(string-ci=? string1 string2) ﬁ #t or #f
	(string-ci>=? string1 string2) ﬁ #t or #f
	(string-ci>? string1 string2) ﬁ #t or #f
	(string-empty? string1) ﬁ #t or #f
	(string<=? string1 string2) ﬁ #t or #f
	(string<? string1 string2) ﬁ #t or #f
	(string=? string1 string2) ﬁ #t or #f
	(string>=? string1 string2) ﬁ #t or #f
	(string>? string1 string2) ﬁ #t or #f

	Types 42
	(all-ivars type) ﬁ list
	(all-subtypes type) ﬁ list
	(all-supertypes type) ﬁ list
	(get-type object) ﬁ type
	(initialize type) ﬁ type
	(initialize object) ﬁ object
	(ivars type) ﬁ list
	(subtypes type) ﬁ list
	(supertypes type) ﬁ list

	User Requests 43
	(confirm message [initialanswer [yesstring [nos...
	(request-directory-name [filename]) ﬁ filename
	(request-file-name [filename]) ﬁ filename
	(request-new-file-name [filename]) ﬁ filename
	(user-choose message labels values default [equal...
	(user-choose-from-list message labels values defau...
	(warn message [text]) ﬁ nil

	Vectors 44
	(make-vector size [fillval]) ﬁ vector
	(vector items...) ﬁ vector
	(vector-fill! vector obj) ﬁ vector
	(vector-length vector) ﬁ integer
	(vector-ref vector k) ﬁ object
	(vector-set! vector k obj) ﬁ object

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

