RSA

LABORATORIES

PKCS #11 v2.20: Cryptographic Token Interface Standard —
Draft -56

RSA Laboratories

DPraft5—FINAL FINAL draft [] February4230 May, 2004

Editor’s note: This is the-the final final draft of PKCS #11 v2.20, which is available for a
3015-day public review period. Please send editorial comments and suggestions; both
technieat-and-editorial—to cryptoki@rsasecurity.com

Table of Contents
1 INTRODUCTION 1
2 SCOPE 2
3 REFERENCES 3
4 DEFINITIONS 7
5 SYMBOLS AND ABBREVIATIONS 10
6 GENERAL OVERVIEW 12
6.1 DESIGN GOALS ..eeiiiiiittteee ettt e e e et eeeitteeeeeeeeteitseeeeeeeeeeitseseeeeeeaaasssseeeeeeaeasssseeeeeesannnnsseeeees 12
6.2 GENERAL MODEL ...tttttteeieteeitteee e e eeeeeeee e e e et eeette st e e e eeeeaiteeeeeeeeesesssseeeeeeeeasssseeeeeeeeasssseeeees 13
6.3 LOGICAL VIEW OF A TOKENutiieittiie ettt ettt eee e ettt e e et e e eeteeeeeiieeeeeiseeeeenns 15
6.4 UUSERS ettt e et e e ettt e e ettt e e ettt e e eetaee e e 16
6.5 APPLICATIONS AND THEIR USE OF CRYPTOKI 1.veieiieiiiuuueeeeeeeesiiiisseeeeseeseeiisseeeeeeeeesisseseeeseensesees 17
0.5.1 ApplicAtions QNA PrOCESSESoocoeouuuiiiiiieiieiiiee ettt e e e et eeeiteeessseeeiiieeeesssesisieeseeaeas 17
0.5.2 Applications and threQdSccccoouuiiiiiiiiiiieiiiiieeiieiiieeeeeeeeeeiie e e eeeiitee e e e e s eeiieaeeeaas 18
6.6 SESSTONS ..ttt ettt e ettt e ettt e et e e ettt e e et e e ettt e e ettt e e et eeeenitreeea 19
6.6.1 Red-0nlY SCSSTON STATOS «....oooooiiiiiiiiiiiiie oo 19
0.6.2 ReQ/Write S@SSTON SEALESvooiioiieiiiiieee et ee e e et ettt eeeeeeeeeeiieeeeessessseeeeaaas 20
6.6.3 Permitted object accesSes DY SESSTIONSooooeuueiiiiiiieiiiiiiiieeeeeeecieeeeeeseeeiiieeeeesseiiiieeeeaaas 21
0.0.4 SESSION CVEIES ..o eeeeeee e e et et eeee e e e e e eeeetteeeeeeseeeteeeeeeeeseeintsseeesesseenssseeeseeseninesseeeseaaan 22
6.6.5 Session handles and 0bject RANAIES...............ccc.uouiioiieoieiiiiiieiieeeieee e eeeeeiieeeeeeeeseieeeeaeas 23
6.6.6 Capabilities Of SESSTONScccouuuiiiiiiiieeiiie et e ettt e e e et ettt eeeesseeasteesaesseninnaeeeaas 23
0.6.7 EXQMPLE Of USC Of SCSSIOMS . ..vvvvviiiiiieiiiiii et e ettt e e e e s eeiaaeeeeeeseeiasieeeaeaaas 24
6.7 SECONDARY AUTHENTICATION (DEPRECATED)...cuutiieiiiiiieeiiieeeiiiee et 26
6.8 FUNCTION OVERVIEW ...00iiiiiiiieiitseeeeetieeeisseeeeeeeesiisssseeeeeesaiisssseseeeeanesssseseeeeaiassssseeeeeeeanssssseeees 27
7 SECURITY CONSIDERATIONS 30
8 PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR CH+...cceceeennennee 31

Copyright 0 1994-2004 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning
or referencing this document.

000- 000000- 000- 000- 000

i PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

8.1 STRUCTURE PACKING ...ttt ettt ettt e e et e e et e e et eeeeiseeeentaeeeaisseens 31
8.2 POINTER-RELATED MACROS ...ttiiiittieiitieeeetee ettt etteeeiteeeeeeseeeeieeeeeiteeeesateeeeniieaeenns 32
¢ CKR UPTR .o 32

¢ CK DEFINE FUNCTION.......ooooiioiiiieeee ettt e e eseeeeseeineeeseinneeesinneeaans 32

¢ CK _DECLARE _FUNCTION ..ocoiiiiiiiieieeee e 32

¢ CK DECLARE FUNCTION POINTERoooooiiiiieeeeeeeeeeeee e 32

¢ CK CALLBACK FUNCTION .coooiiiiiiieoeeeeeeeeea 33

¢ INULL PTR....ooooeo oot e et e e et eeeeeeeeeseeneeeeeineeeeeenneeesansesesinseeaanns 33
8.3 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODEcuviiiieiiieeieiiieeeeiieeeeeiieeeeeieeeeeieeenns 33
8.3.1 WWEHLI 2ot 33
8.3.2 WERT G 34
8.3.3 GENEIIC UNIX ..ottt e et et e et e e e e ee e e e e ssessssnsnssannnns 35

9 GENERAL DATA TYPES 36
9.1 GENERAL INFORMATIONutiiieeettieeeetteeeeeteeeeeteeeeetteeeeetseeeeenseeeeeeteeeeesseeeeesseseensseeeanseeeeeanes 36
¢ CK _VERSION; CK_VERSION PTR ..cooooiiioeeeeeeeeeeeeeeeeeeeeeee e 36

¢ CK _INFO; CK INFO PTR ..ooociiiiiiiiiiiiiiiiiiieee e, 37

¢ CK _NOTIFICATION oo 38
9.2 SLOT AND TOKEN TYPEStttiiiiiitieiiiee ettt ettt e ettt e eet e e ettt e e eeteeesiteeestieeeenaseeeesineaens 38
¢ CK SLOT ID; CK SLOT ID PTR...occooooioiiiiieiiiiieieieeeeeea 38

¢ CK SLOT INFQO; CK _SLOT INFQO PTR.......coooieiieieeeeee et eeeeseieeeeainieeaeans 39

¢ CK TOKEN INFO; CK_TOKEN INFO PTR..cooooioiieoiieieeieieee 40
9.3 SESSTON TYPES ...ttt ettt e ettt e ettt et et e e ettt e e eeitteeesitteeeetteeeeenseeeesiseeens 46
¢ CK_SESSION_HANDLE; CK_SESSION _HANDLE PTRccocovvooiiaaiieie 46

¢ CK USER TYPE oot 46

¢ CK STATE ..o 47

¢ CK _SESSION INFO; CK _SESSION INFO PTR...ccoooooiioeiioiioeiieiieeeeeeeeeeeea 47
9.4 OBIECT TYPES ..tttteetttetittte ettt ettt ettt ettt et ettt e e ettt e eeeitteeeetteeeetteeeenssbeeeesteeessseeennns 48
¢ CK _OBJECT HANDLE; CK_ OBJECT HANDLE PTR......coooovoeoeoooaaeaen 48

¢ CK OBJECT CLASS: CK OBJECT CLASS PTRooooooeeiieieeeeeeeeeeeeeeeeeee e 48

¢ CK HW FEATURE TYPE.....occooiiiiiiiiiioioiiiieeeeeeeea 49

¢ CK KEY TYPE.....ccoouooiiieee oot e et e e ettt e e eeteessenneeeseenseeeeenseessenneeeeansesaanns 49

¢ CK _CERTIFICATE TYPE..cooiiiiiiiiiioieeeeeee 50

¢ CK ATTRIBUTE TYPE.......ccouiiiiieeeeeeeee et e e s eteeeeenseeeeeneeeseneeesainsesaanns 50

¢ CK ATTRIBUTE; CK_ ATTRIBUTE PTR..coooiiieiiieeeieeea 51

¢ CK UDATE. ... oottt e et e e e et e e e et e e e eseessnseeeeessessenseesainseseeannsesaanns 51
9.5 DATA TYPES FOR MECHANISMS ...veeeiiiiiiitiieeeeeeeeeeiieeeeeeeeeeeiitteeeeeeeeiteseeeeeeeeeissseeeeeeeaaassseeees 52
¢ CK MECHANISM _TYPE; CK MECHANISM TYPE PTR ..o 52

¢ CK MECHANISM; CK MECHANISM PTR...oocooiiiiiiiiiiiiieiiieie 52

¢ CK _MECHANISM _INFO; CK MECHANISM INFO PTRccoovooeoeeeieeeeea 53
9.6 FUNCTION TYPES ...ttt ettt e ettt et et et eeeee e et e e eetteeeaireeeennns 54
¢ CR RV oo 55

¢ CK NOTIFEY ..ottt e et e e ettt e e et eeeeenseessenseeeseseeseennseeeainneseeanneesaanns 55

¢ CKR G XXX i 55

¢ CK FUNCTION LIST: CK FUNCTION LIST PTR; CK FUNCTION LIST PTR PTR... 56
9.7 LOCKING-RELATED TYPES ... tttttttteeeieeiititeeeeeeeeeiiieeeeeeeeeeiiteeeeeeeeeeetseseeeeeeaeeissseeeeeeeaasssseeeeas 58
¢ CK CREATEMUTEX ..ot 58

¢ CK _DESTROYMUTEX ..ottt 58

¢ CK LOCKMUTEX and CK_UNLOCKMUTEX ..oooooooiioieeieeieeeeeeeeeeeeeeeee 58

¢ CK_C INITIALIZE ARGS; CK_C INITIALIZE ARGS PTRccoooovoooieaaea 60
10 OBJECTS 62
10.1 CREATING, MODIFYING, AND COPYING OBJECTS ..vveeiiutiieeitiiieeeiiieeeeiieeeeiie et eeieeeeeiiiaeenns 63

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION 11

10.1.1 CreQting ODJOCES ..o 63
10.1.2 MOAIVING ODJECLS ...t e e et e et e e e eneeeeaeseeeeneeeeenes 65
10.1.3 COPYING ODJOCLS ..o 65
10.2 COMMON ATTRIBUTES....utttiutteiutteitteette ettt e et e ettt e et e et e et e et e et e st e st eeteeeteesaeeeenee 66
10.3 HARDWARE FEATURE OBJECTS....0eiutttitititieitte ittt et ettt sit st ste e te st siee s 68
10.3.1 DCLINITIONS ..ottt e et e e e et e e e eeeeeeeeneeeeeinneeeseneeeeeanneeeeennes 68
10.3.2 OV@IVICW ..ot e et e e e e et e e et e e et eeeeteeeeeeeeaaans 68
10.3.3 CLOCK ..ot 68
10.3.4 Monotonic CoUnter OBDJECES.........c..oooueeeeeeeeeeeieeeiieeeeeeeeeeeeeeeeeeeee e 69
10.3.5 User INterface ODBJECESooooueiieeeee e eee e eieeeesieeeeeieeeeseneeeas 70
10.4 STORAGE OBJIECTS 1.ttteitieittteiiee ittt ettt eie ettt e et e et e e e etee e e eseesteeeseeeteeenneees 73
10.5 DATA OBJECTS ..ottt ittt ettt ettt ettt e et e et e et e et e et e et e sttt e etee et eseeenneee 74
10.5.1 DCIIREEIONS .o 74
10.5.2 OVEIVICW ..ot e et e e e e e e e e e e e e ee e e e e e e sssssnsnsnnssnsnes 74
10.6 CERTIFICATE OBJECTS ..tettttitteeitte ettt ettt e ettt e e et e e eeseesteesiteessaesseesnseenenes 75
10.6.1 DCIINIEIONS ..ottt 75
10.6.2 OV@IVECW .ottt eieeaaans 75
10.6.3 X 509 public key certificate ODJECLSccoviieeieeeiiiiieeeeeeeeeeeee e 76
10.6.4 WTLS public key certificate ODJECESccoowooeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaea 78
10.6.5 X 509 attribute certificate OBJECES............coooeeieeeiieiieeieeeieeeieeeeeeeeeeeeeeeee e 80
10.7 KEY OBIECTS ittt ettt ettt ettt e et s e et se e st e s e 81
10.7.1 DO ITIIONS ..ottt e e et et e e e e ee et teeeseeeeeeetteeeeeaeeaenneeeeeasaeaannneeeeas 81
10.7.2 OV@IVICW ..ot e et e e e et e e et e e et eeeeeeeeneeeaaans 81
10.8 PUBLIC KEY OBJECTS . utteeutttitteette ittt ettt ettt ettt ettt e et e et e et e et e et e st e st e eteeeteeseeenneee 83
10.9 PRIVATE KEY OBJECTS ..eutttitteitttitte ettt ettt ettt e ettt e et e et e st e st e st e eeeseeenee 84
10.10 SECRET KEY OBJECTS ...ttiitieiiiteittteitt ettt ettt ettt st e st e st e s e s e s e 87
10.11 DOMAIN PARAMETER OBJECTS ...uvteiutteiitieiiteesitieiiteeiitesieesitee s esiteesieesiteesiaesiseesiseesereesnnaenenes 91
10.11.1 DCIINIEIONS ..ottt e 91
10.11.2 OV@IVECW .ot eeeaaans 91
10.12 MECHANISM OBJIECTS. .. tetttetitteittte ettt ettt e st e sttt e st e st e st e st e st e s e s enaees 92
10.12.1 DCIIRTTIONS ..o 92
10.12.2 OV@IVICW oot e et eeeeaanns 92

11 FUNCTIONS 93
11.1 FUNCTION RETURN VALUES .. .tteeutttiutteiitte ittt ettt ettt eit e st steste s te st e sieeseeeeee 94
11.1.1 Universal Cryptoki function return VAlUescooeveeeeeeeeeeieeieeiceeeiiieeeeieeeseneenn 94
11.1.2 Cryptoki function return values for functions that use a session handle....................... 95
11.1.3 Cryptoki function return values for functions that use a token................cc..cccocuven..... 96
11.1.4 Special return value for application-supplied callbackscccccovvevveerveeeeeann..... 96
11.1.5 Special return values for mutex-handling functionsccoeeeeeeeeeeeeiesseeieeeeeennnn 97
11.1.6 All other Cryptoki function return VAlUesccoooeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeeenns 97
11.1.7 More on relative priorities of Cryptoki @rrors.......cooceeeeeeeeeeeeceieeeeeeceeeeeeeieeeeen 104
11.1.8 Error code “QOtCRAS "occooooeioooiioieeieeeeeeeeeeeeeeeeee e 105
11.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER............ 105
11.3 DISCLAIMER CONCERNING SAMPLE CODE.....uvittiiiiitiiiiiteiiiiieseiiieeeiiieeeiieeeiteesiiiee e s 106
11.4 GENERAL-PURPOSE FUNCTIONS....00utteiutteitteitieittestte it esiite st esittesiteesiteesteesiieeneeennaeennneenes 107
¢ C UIMITIQLIZO ..ot e ettt e e e e e e et e e e e s eeaetteeeeeesesennnesetesesesensnneeeesas 107

¢ C FUNQLIZO oo 108

¢ C UG .ottt e e e e ettt e e e e e e et e e e e s eeaeteeeeeeeesennsesetesesasesnnneeesas 109

¢ C GOFUNCHONLESE .o 110
11.5 SLOT AND TOKEN MANAGEMENT FUNCTIONSutieiitieiiieiiiieiiiesiiieiitesiieeiiesiteeieeeiie e 111
¢ C GOISIOTLESE .o 111

¢ C GOISIOHNLO oo 113

¢ C _GOTOKCHINLO .o 113

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

v PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C WaATtFOUSIOTEVENL ...t e e e et eeeeeeeeeeeneeeeeenseeseineeeeas 114
¢ C _GetMECHANTISILISE ..o 115
¢ C GetMeChARISIMUIRLO.cccoooieeeee e ettt et e et e s e eeenteeseineeeesineeeaas 117
¢ C INGETOKOR .o 117
¢ C U IRIEPIN ..ottt ettt e et e et e et e e ete e et e e e e et e e teeaeeeaaeeeeeens 119
¢ C USOIPIN .o 120
11.6 SESSION MANAGEMENT FUNCTIONStteitteittieitiesiiieitiesitteettesiiieeitesteeiiesieeeee e e 122
¢ C OPORSOSSIOMN. ..o 122
¢ C ClOSE@SCSSTON .o 123
¢ C CIOSCAILSOSSIOMS ..o 124
¢ C GetSSSIONINIO ..o 125
¢ C _GetOPErALIONSIAL ..o 126
¢ C SetOPerAtiONSIALE ... 127
¢ C U LOQIN oo 130
¢ C LOGOUL .o 131
11.7 OBJECT MANAGEMENT FUNCTIONS L..eeutitiitiiiitieiiiiesitteiitesitt e st esitt e sttt et et esieesiieeniee e 133
¢ C _Cre@teODJOCToueeieiiiiiseeeeee e 133
¢ C COPVODJOCE ...ttt e et e e e et e e s eeeeeeseneeeeeenseesseneeeeeineeeens 135
¢ C _DEStIOVODIOCE ..o 136
¢ C GEODBJOCESIZE ..ot e ettt e e et e e e eieeeeseneeeeeenneessenneeeeinneeeas 137
¢ C _GetAUFTDULEV QU@ ... 138
¢ C SCtAUTIDULEV AIUC.ooooeeeei oot e e e e e eeeeeeneeeeeineeeeeneeeeas 140
¢ C _FindODJ@CHSINIE ..o 141
¢ C FIBAODJCCELS ..ot e et e e e eneeeeeeneeeeeeneeeeeneeseennneeesineeeeas 142
¢ C FindObjeCtSFiNAl ..o 143
11.8 ENCRYPTION FUNCTIONS....0eeutteiutteitteittteittesit e et ettt e et e sttt e st e st e st eaiteesteenieesteeneenieeenes 144
¢ C ENCHYDHAIE .o 144
¢ C ECHYD oo 145
¢ C ENCTYDIUDAQLO ..o 146
¢ C ENCIYPEFINAL. ..o 146
11.9 DECRYPTION FUNCTIONS. ..ttt ettt e sttt e st sit e st e st e st esit e st eaiteenieeenes 149
¢ C DECIVDEIMI .o 149
¢ C DCCTYPDE et e ettt e e e e ettt e e e e e et et e e e e e ettt eeeeeaeeantnreeeas 150
¢ C _DeCIrYPIUDAALC. ... 151
¢ C DECTYDIFINAL. ..ottt e et e e e eneeeeeeieeeeseneeeeeeneeseeinneeeeineeeeas 151
11.10 MESSAGE DIGESTING FUNCTIONS ...00tiuuttteiiittteeittieeiiiteeisitieeesiteeeiteeeesiteeenieeeesieeeeniieeeenns 154
¢ C DEGOSHNLL oo 154
¢ C DTS e 154
¢ C DiQESIUDAALC ..o 155
¢ C DIGESIKOY . e 156
¢ C DIQESIFTAQL ..o 156
11.11 ~ STGNING AND MA CING FUNCTIONS ...0cuutteiitiiittieiiiiiiitiestteiit ittt esie et ettt et et et eniteenieeenes 158
¢ C STGIINIL oo 158
¢ G STGI oottt e e e e oot et e e e e ee et eeeeeeeeeetareeeeeeeeannreeeas 159
¢ C _SiQNUDAQL ..o 160
¢ C SIGNITNAL oot e et e e e e e e e e ettt e et teeeeinreeeeenreeeas 160
¢ C _SiQNRECOVOIINIE .o 161
¢ C STGNROCOVEEooiieeeeeeee oottt e e e et ettt e e e e e ee e eeeeeeeeetsreeeeeeeennnneeeess 162
11.12 FUNCTIONS FOR VERIFYING SIGNATURES AND MACScooiiiiiiieiiiieiiieiieeieseeeee e 164
¢ C VO IVINIL .o 164
¢ C VO ULV e 164
¢ C Ve I VUDAALC. ..o 165

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION v

¢ C VeFIfVFINAL.oocooiieeee et e e e et e e e e e s eeeeseeseeseenneeeeeneeeeeeeeeas 166

¢ C VErifVRECOVEITRIL oo 167

¢ C VeFIfVRCCOVEE ...t e e e e et e e e eeeeseneeeeeenteeseennseseeneeeeas 168

11.13 DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONScccuuiieiiueireeiiiiieeiiiieeesiieeesiiieeiiiieeesiieeenns 170

¢ C DigeStENCIYPIUDAQLE ..o 170

¢ C _DecryptDigeStUPAALE ..o 172

¢ C _SignENCIYPIUDAALC ..o 176

¢ C _DecryptVerifyUpPAALe.oooooueoiuiiiiiiiiiiiiiiiiiiieiiiieieeeee 178

11.14 KEY MANAGEMENT FUNCTIONS ...eeiutieiutteitteitteeteesttesteeattesteesieesiteesiteenieeniseeseeenireeneeeans 182

¢ C GENEIALCKCY ..ottt ettt e e e e e et e e e e e e etaeeeeeeeeenneeeeas 182

¢ C _GeNerateK@VPAITcc.ooeeeisieiieiieieeeee e 183

¢ C WHADKGY .ottt e ettt e e e e e ettt e e e e e e ettt eeeeeeeeenaeeeeas 185

¢ C UNWEADKOY oo 187

¢ C DCFIVEKOY ..ottt e e e ettt e e e e ee ettt et e e e ee ettt eeeeeeeeannreeeas 189

11.15 RANDOM NUMBER GENERATION FUNCTIONS ...uuvvitiiiiieeiiiiieeeiiiieeiiiieeeiiieeeeiiieeiiiieeesiieeens 192

¢ C SCCARANAONMY ..o 192

¢ C _GenerateRANMONYc..ooueiiiiiiiiiiiiieeeee e 192

11.16 PARALLEL FUNCTION MANAGEMENT FUNCTIONS ...cuvieitiiiiieiiieiiiesieesiieiieesieesieesieeeaeenns 194

¢ C GEtFUNCLIONSIATIS ..ottt e e e e e e e eeeeeeeeeeetteeeeeeeeeeenneeeess 194

¢ C _CANCOIFUNCIIOMN oo 194

11.17 CALLBACK FUNCTIONS . ..uutteittteittteitteitte sttt e ettt estt e st est e st esit e sttt esteesteesiteenteeniteeneeenes 195

11.17.1 Surrender CAIIDACKSoocoueiiiieeiieeee et eeer e e et eeeneeeeeees 195

11.17.2 Vendor-defined callDACKSccoooooeeeeeeeiieeeiiieeieeeeeeeeeeeeeeeeeeee e 195

12 MECHANISMS 196

12.1 RS A ettt e et e et e et e et e eteeateeeteeens 208

12.1.1 DCIINIEIONS .o 208

12.1.2 RSA pUDLIC K@Y OBJECES ...ttt eeeeeseteeseeneeeaanns 208

12.1.3 RSA private K€y ODJECLS............oocoueeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 209

12.1.4 PKCS #1 RSA key pair Generationc.oooeueeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeaeeean 211

12.1.5 X9.31 RSA key pair Generation............coocueeeeeeoeeeeiciieaieeiieeeeeeeeeeeeeeeea 212

12.1.6 PEKCS #I V1.5 RSA oottt eee e eeeeeeeeeeneesseseeaaineeeeanns 212

12.1.7 PKCS #1 RSA OAEP mechanism parametersocoouweeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeenns 213

¢ CK RSA PKCS MGF TYPE; CK RSA PKCS MGFE TYPE PTR...ccoooovoaeeaereanaan.. 213

¢ CK RSA_PKCS OAEP _SOURCE TYPE; CK_RSA PKCS OAEP_SOURCE TYPE PTR214

¢ CK _RSA PKCS OAEP PARAMS; CK RSA PKCS OAEP PARAMS PTR.................. 215

12.1.8 PKCS #I RSA QAEP ...t eeneeeseineeeseneeeeens 215

12.1.9 PKCS #1 RSA PSS mechanism paramertersccocooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeenn 216

¢ CK _RSA _PKCS PSS PARAMS; CK RSA PKCS PSS PARAMS PTR.....ccouuuervaeuan.... 216

12.1.10 PKCS 1 RSA PSS ..ottt eeeteeeeenteeeeanneeeseeeeeas 217

12.1.11 ISO/IEC 9796 RSA....oooooeeieeeeeee oot ae et eneesenaeaeneeas 218

12112 X509 (FAW) RSA oo 218

12.1.13 ANST X931 RSA. oo 220
12.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512,

RIPE-MD 128 08 RIPE-MD 160coooooeiiiieeeeeeeeeeeeeee et eee e eneeaenee e 221

12.1.15 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512 222

12.1.16 ANSI X9.31 RSA signature With SHA-1ccoooeeooeeeeeiiiieeiiiieeeeeeeeeeeea 223

12.2 DS A ettt eete e st eeaaeens 224

12.2.1 DCIIITIONS ..ottt eeeeiee e 224

12.2.2 DSA public key OBJECES ... 224

12.2.3 DSA private k€y ODJECESccooocueeeeieeieeeiiiiieeeieeeeeeeeeeeeeeeeee e 225

12.2.4 DSA domain parameter ODJECESoooveiiieeeeeeieeeeeeee e e s eeeeeseeteeaaeieeaenns 226

12.2.5 DSA key pair @eneration.............c...occuveeeeeeeeeeeeeeeeeeeeeeeeeeeee e 227

12.2.6 DSA domain parameter geNnerationcoouweeeeeeeeeeeeeeiieeeeeeeeeeeeeeeeeaeieenn 227

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

vi PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.2.7 DSA Without RASRING ... 228
12.2.8 DSA WIth SHA=T ..ottt e e eaeeeeeeaenesaeeesinesaeeas 228
12.2.9 FORTEZZA LIMESEAMP ...t eeeeaeieaaans 229
12.3 ELLIPTIC CURVE..utttiitttiitte ittt ettt ettt ettt ei e et e et e s e st esiteeeteesteenteenneeeaes 230
12.3.1 EC SIQNATUICS oo 231
12.3.2 DCLINITIONS ..ot e et e e ettt e e e etee e e eeeeeeeseneeeseeneessenseeeaeneeeaanns 232
12.3.3 ECDSA public K€Y ODJECLS ..o 232
12.3.4 Elliptic curve private key 0bJectSccuooooeeeeeeeoiieeeieieeiieeeiieeeieeeeeeeea 233
12.3.5 Elliptic curve key pair eneration...............c.occveeeeeeeeeeeeieeeeeeeeeiieeeseeeeeeeeeeeeean 234
12.3.6 ECDSA Without RASRHINGoccoeiiiiee oot seeeeeeiesseeseeeaeeeeeans 235
12.3.7 ECDSA WIth SHA=T ...ooooooioeeeeeeeeeeeeeeee ettt eeeeaaee e 236
12.3.8 EC mechaniSm paramertersc.ooooeveeeeeeeeeeeeeeeeeeeieeeeieeeeeeeeeeeeeee e 236
12.3.9 Elliptic curve Diffie-Hellman key derivationcocoweeeeeeeeeeeeeeeeieaieeeiieaneann.. 239
12.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation................cccccooveeeuveeeeen.... 239
12.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation...................ccooeeeeeeeeeeeceeeeeennen... 240
12.4 DIFFIE-HELLMAN ...ttt se e st e s e e st esiteeeieesteeneteenneeenes 242
12.4.1 DCIINIEIONS .o 242
12.4.2 Diffie-Hellman public key 0BJECES............ccooviiieieeeiiieiieeeeeeeeeeeeeiee e eeeeeee e 242
12.4.3 X9.42 Diffie-Hellman public key 0BbJectsccoeeeeeeeieeeeeeeeeiieeeieeeeeieeeeeeean 243
12.4.4 Diffie-Hellman private key OBJectsccoooeeeeeeeeeeeeiieeeieeeeiieeieeeeeeeeeeeaeeen 244
12.4.5 X9.42 Diffie-Hellman private k€y 0DJECtSoocveeeeeveeeeeeeeiieeieeeeeeeeee. 245
12.4.6 Diffie-Hellman domain parameter 0DJECESccoueeeeeeeeeeieieeeieieeeeeieeeeeeieeseieeeeans 246
12.4.7 X9.42 Diffie-Hellman domain parameters 0bjectsccoooeeeeeeeeeeeeeeieeeaeeeennn.. 247
12.4.8 PKCS #3 Diffie-Hellman key pair Senerationcoooeeeeeeveeeeeeeeeeeeeeereeaeneann.. 248
12.4.9 PKCS #3 Diffie-Hellman domain parameter generation...................ccooeeveeeveeeeeenn.... 248
12.4.10 PKCS #3 Diffie-Hellman key deriVation.................ccooooveeeueeieeieeeieiieeeeiieeeeeiieeseieeeeans 249
12.4.11 X9.42 Diffie-Hellman mechanisSm parameters...............cocoooeeeeeeeeeeeeeeeeeeieeeeeeeenn. 251
¢ CK X9 42 DHI DERIVE PARAMS, CK X9 42 DHI DERIVE PARAMS PTR........... 252
¢ CK X9 42 DH2 DERIVE PARAMS, CK X9 42 DH2 DERIVE PARAMS PTR........... 253
¢ CK X9 42 MOV DERIVE PARAMS, CK X9 42 MQOV DERIVE PARAMS PTR......... 254
12.4.12 X9.42 Diffie-Hellman key pair Seneration..................ccoooooeeeeeeeeeieeeeeieeesiieeesiieeseennnss 255
12.4.13 X9.42 Diffie-Hellman domain parameter generation....................occeuweeeeeeeeeeeeeeann.... 256
12.4.14 X9.42 Diffie-Hellman key derivationccocoooeeeueeeeeeeeeieeeieresiiieieeeeieeenenn. 256
12.4.15 X9.42 Diffie-Hellman hybrid key derivation...............ccccooeeeeeeeeeeeeeieeaveaseeannn. 257
12.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation............c...cccoeeveueenn.... 258
12.5 KB A oot et e et e et e et e et e et e et e et e enteeeneeeenteeenreeenreeenteeenreeeneeeaneeeaneeens 260
12.5.1 DCIINIEIONS ..ottt 260
12.5.2 KEA mechaniSm par@merters............cc.ooocueeeeeeeeeeeeeieeeieeieeeeeeeieeeeeee e 260
¢ CK KEA _DERIVE PARAMS; CK KEA DERIVE PARAMS PTR.....cccoovvviiviinn. 260
12.5.3 KEA public K€Y OBDJOCLS ..o 261
12.5.4 KEA private k€Y ODJECESoooouvoeeeeevieieeeiieeeeieeeeeeeeeeeeeeeeeeee e 261
12.5.5 KEA key pair SeNeration.cccuoooeiueeeeeeeeeeeeeeee e eeeeeeeeeeeeineesseesesaseneeeeanns 263
12.5.6 KEA key deriVationc..oooccueeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeee e 263
12.6 WRAPPING/UNWRAPPING PRIVATE KEY'S 1.vvittitieiieiieieeiieeiiesieesieeeie ettt 265
12.7 GENERIC SECRET KEY ...tetutteiutteeitteitte ittt ettt ettt et ei ettt e sttt e et e st e st et e st e ettt esteenieeniee e 269
12.7.1 DCIINITIONS ..ot e et e ettt e e e etee e e eeeeeeeseneeeeeeneeeseinseeaseneeeaanns 269
12.7.2 Generic Secret K@Y ODJECLSooooeveeeeeeeeeieeeeeeeeeeeeee e 269
12.7.3 Generic secret key Generationc.oooeoueeeeeeeeeeeeeeiieeeeeieeeeeeeeeieeeeeeeeeeeeeen 270
12.8 HMAC MECHANISMS ...ttt ettt ettt si e et e sttt e et e st e st e sttt e st e esiteesteeaieenieeeaes 270
12.9 RC2 ettt et e et e e 271
12.9.1 DCIIITIONS ..ot eeeeiee e 271
12.9.2 RC2 secret key ODJECES ... 271
12.9.3 RC2 mechanism parametersc.oocuveeeueeeeeeeeeeeeeieiiieeeeeieeeeeeeeeeeeeeeean 272
¢ CK RC2 PARAMS; CK RC2 PARAMS PTR....ccoooeiiiieiiiiiiiiiiiiiiiiiiiiiii 272
¢ CK RC2 CBC PARAMS; CK RC2 CBC PARAMS PTR ..cccooooeeeeieeeeeeeeeeeeeaa 272

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION vil

¢ CK RC2 MAC GENERAL PARAMS; CK RC2 MAC GENERAL PARAMS PTR......... 273
12.9.4 RC2 k@Y ORI ALION. ... 274
12.9.5 RC2-ECB oottt 274
12.9.6 RC2-CBC oo 275
12.9.7 RC2-CBC with PKCS PAAAING ..o 276
12.9.8 General-length RC2-MAQCccooooeeeoeeeeeeeeeeeeeeeeeeeeee e 277
12.9.9 RC2-MAC oot 278
12,10 RCA oottt ettt ettt eeeteeetbeeereeans 279
12.10.1 DCLINITIONS ..ot ettt e e ettt e e e etee e e et e e s eneeeeeeneeeseinseseaeneeeaanns 279
12.10.2 RCH secret key ODJECESooouviieeeeeeieeeeeeeeeeeeeeeeeeeeeeeee e 279
12.10.3 RCH k€Y GONCHALION. ..o 279
12.10.4 RCE MECHANESTI oo 280
D211 RCS ettt ettt et e et e eeaeeetbeeenteens 281
12.11.1 DCIIITIONS .ot eeeeiee e 281
12.11.2 RC5 secret key ODJECESooooueeiioeeooioeeeieeeeeeeeeeeeeeeeeee e 281
12.11.3 RC5 mechanism par@metersoocveeeueeeeeeeeieeeeereeiiieeeieeieeeeeeeeeeeeeeean 282
¢ CK RCS5_PARAMS; CK RC5 PARAMS PTR....ocooooiiiieiiiiiiiiiiiiiiiiiiiiii 282
¢ CK RC5 CBC PARAMS; CK RC5 CBC PARAMS PTR ..ccvooeeeeieoeeeeeeeeeeeeaa 282
¢ CK RC5_MAC GENERAL PARAMS; CK RC5 MAC GENERAL PARAMS PTR......... 283
12.11.4 RCS5 key ORI HALION. ... 283
12.11.5 RCOS-ECB oo 284
I2.11.6 RCOS5-CBC oottt e et et e et e e eteseeeseeeeeeesannesaneseaneeeanns 285
12.11.7 RC5-CBC With PKCS DAAAIAG ... 286
12.11.8 General-length RC5-MAQCooooooeoeeiiiieieeeeeeeeeeeeeeeeeeeeeeeeee e 287
12.11.9 ROS-MAC oo 287
12,12 AES oottt st e eeteesbeeenaeens 288
12.12.1 DCIIITIONS ..ot eeaeiee e 288
12.12.2 AES 8eCret K€Y ODJOCLS ..o 288
12.12.3 AES K@Y GONCHALION ..o 289
12,124 AES-ECB. ..ottt et e et e et e e s eete et eeenee et e s eneeaeneeanes 289
12.12.5 AES-CBQC oottt e e et et eeenaea e 290
12.12.6 AES-CBC with PKCS pAAAING........c..ooooooeeeeeoieeiiieeeeieeeeeeeeeeeeeeeeeeee e 291
12.12.7 General-length AES-MAQCoooouoooiiioeiioiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 292
12.12.8 AES-MAC ..ottt ettt e et e ete et e e et esaeeaeneeaeees 293
12.13 GENERAL BLOCK CIPHEReeuttiittieitieietieieteesitteeieesitteste ettt esieesieesiteestseeeseesiseennseeniseenaneenes 294
12.13.1 DCIINIEIONS .ottt 294
12.13.2 DES 5eCret k€Y ODJ@CHS ..o 295
12.13.3 CAST SeCret key ODJECLSooooooeeiieiie ettt eeeee s e e eieeeeeans 296
12.13.4 CAST3 secret key ODJECES ..o 297
12.13.5 CASTI28 (CASTS) secret key OBJECtSuweeeoeeeeeeieeeeiieeeieeeieeeeeeeeeeee 297
12.13.6 IDEA 5eCret k€Y ODJECES ..o 298
12.13.7 CDMEF SeCret k@Y OBJECESvoooieeeieiie et e e e ereeeereeeeeneeeeans 298
12.13.8 General block cipher mechanism paramerersccooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 299
¢ CK MAC GENERAL PARAMS: CK MAC GENERAL PARAMS PTIR........counn..... 299
12.13.9 General block cipher key Generation...............ccoooooeeeeeeeiueesiiieeeeieeeeeeeieeeeeeeeeeieeeenns 300
12.13.10 General block cipher ECB.........ooocuooiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 300
12.13.11 General block cipher CBC........ooooovoiiieeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeee 301
12.13.12 General block cipher CBC with PKCS paddingccooocovvveveeeeeiiieareaieeann. 302
12.13.13 General-length general block cipher MAC.........cccooooeueieeiieeiiiieeiieeeeeeeeeeeeeee e 303
12.13.14 General block cipher MACccooooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 304
12.14 KEY DERIVATION BY DATA ENCRYPTION — DES & AESccccovviiiiiiiiiiiiiiiiiiieeeeiee 305
12.14.1 DCIINIEIONS .o 305
12.14.2 MechaniSm PArametersccoouooeeieeeeeeee e e eee e eeeeeseeeeeeieesseisesaseeeeeaans 305
12.14.3 MechaniSm DeSCIIDIIONooeeeeeeeeeeeeeeeeeeeeeeeee e eeeee e 306
12.15 DOUBLE AND TRIPLE-LENGTH DESccioviiiiiiiiiiiiiiiiiiiiieeiesieee et 307

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

viil PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.15.1 DCIINEEIONS .o 307
12.15.2 DES2 SeCret K€Y ODJECESvvoiiieeeiieeeeeeee et e e e e e e eteeeaenaeeeaans 307
12.15.3 DES3 SeCret K€y ODJECLS ..o 308
12.15.4 Double-length DES key @enerationooooueeeeeeeeeeeeeeiieeeeeeeieeeeeeeeeeeeaeieenn 309
12.15.5 Triple-length DES Order of Operationsccooeeeeeeeeeeeeeeeeaeeeeeieaeeeeeieeaeen. 309
12.15.6 Triple-length DES in CBC MOGE.............ccoooooeeeeieiieieeeieeeeeeeeeeeee e eeeeaeaeeaeans 309
12.15.7 DES and Triple length DES in OFB Mode.............cccoooooveoeeeeeeeeeeeeeeeeeeeeea 310
12.15.8 DES and Triple length DES in CEFB MOAEoccoovooeoeeooeioeeeoeeeeeeeeaeaa 310
12,16 SKIPJACK Lttt ettt ettt e et e et e et e eeteeeetseeeaeeens 312
12.16.1 DCIINITIONS ..ot e e et e e e et e e e e etee e e eeeeeeeseneeeeeeneesseinsesesenseeeanns 312
12.16.2 SKIPJACK secret k€Y ODJECEScc.voooeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 312
12.16.3 SKIPJACK MechaniSm parametersccuweeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeaann 314
¢ CK SKIPJACK PRIVATE WRAP PARAMS;
CK_SKIPJACK PRIVATE WRAP_PARAMS PTR.....ccoooooviiiiiviiiiiiiiiiiiiiiiiiiiiii, 314
¢ CK SKIPJACK RELAYX PARAMS; CK SKIPJACK RELAYX PARAMS PTR............... 315
12.16.4 SKIPJACK K€Y G@N@IALIONvvoieoeeeeeeeeee et eeeereeeeneeeeenesesenes 316
12.16.5 SKIPJACK-ECBOA.......ccuiiieiiieeeeeeeieeeeeeeeeeeee et a et e e eaesaeeeaneeaeeas 316
12.16.6 SKIPJACK-CBCO4 oo 317
12.16.7 SKIPJACK-OFBO4 oo 317
12.16.8 SKIPJACK-CFBO4.......ccuiiieiioeseeee ettt eesaeeeseaesaeaesaeeesanesaieesaineaaeeas 318
12.16.9 SKIPJACK-CFEB32....oi oot e et eeeteeeaesaeeeaneeaeeas 318
12.16.10 SKIPJACK-CEBIO....ooiiiiioeieieeieeeeeeeeeeeeeeeeeeee e 319
12.16.1]1 SKIPJACK-CEBS....oooooooioieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 319
12.16.12 SKIPJACK-WRAPocoooiiiiieee oottt aeteaeseanesaeeeaneeaanns 320
12.16.13 SKIPJACK-PRIVATE-WRAPooooooiooeeeeeeeeeeeeeeeeeee e ns 320
12.16.14 SKIPJACK-RELAYX ..ooioiiioieeeeeeeeeeeeeeeeeeee e 320
12,17 BATON ettt ettt ettt e et e et e st e e ete e st eenreeans 321
12.17.1 DCLINITIONS ..ot e et e e e ettt e e e etee e e eeeeeeeseneeeeeeneeeseinseseaeneeeeanns 321
12.17.2 BATON SeCret K€Y OBJECES ... 321
12.17.3 BATON k€Y @eNerationcooeeeeeeeeeeeeeieeiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 322
12.17.4 BATON-ECBI28...ooooiooioooeeieeeeeeeeeeeeeeeeeeeeeeeeee e 322
12.17.5 BATON-ECB96 ..ottt eteeeteseeesennesenneesnnesaneas 323
12.17.6 BATON-CBCI28. ..ottt e e e eneeeeneeeeneeanes 323
12.17.7 BATON-COUNTERoooooiooeeeeeeeeeeeeeeeeeee e 324
12.17.8 BATON-SHUFFLEcooooooiioiioeeoeeeeeeeeeeeeee e 324
12.17.9 BATON WRAPccoooooeeeoeeeeee ettt ete e ete et eseeseeneesenesaineeaees 325
12.18 JUNIPER ...ttt ettt ettt ete e ettt e enteeeneeeeeesanseeenseeenseeenseeesseeenseeanseesnseesnseasnseens 326
12.18.1 DCIINIEIONS .ottt 326
12.18.2 JUNIPER secret k€y OBJECESc.oooveeeeeeeiieeeeeieeieeeeeeeeeeeeeeeeeeeeae 326
12.18.3 JUNIPER K€Y GE@NEFALION ...t eeeeeeeneeeseeseeaaenseeeanns 327
12.18.4 JUNIPER-ECBI28 oottt e aaeeaneesaaeaaneeas 327
12.18.5 JUNIPER-CBCI28 oo 328
12.18.6 JUNIPER-COUNTER....ccooooooioiooeieieeeeeeeeeeeeeeeeeeee e 328
12.18.7 JUNIPER-SHUFFLE.......c..ccooiiiouiiiiiiiiieeee et eeaeanesaneseneee e 329
12.18.8 JUNIPER WRAP.......coooooeiieeeeeeeeeeeee ettt a et eanesaeeeaneaaneeas 329
12,19 IMID2 ettt e et e et e e et e e ete e et e eteeeteeenreeans 330
12.19.1 DCIINEEIONS .o 330
12.19.2 MD2 QIO ettt ettt ettt e e e e eaaesareeaaeeaneeas 330
12.19.3 General-length MD2-HMACoocoooiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 330
12.19.4 MD2-HMAQC oot 331
12.19.5 MD2 K€Y deriVALION ... 331
1220 M5 ettt et e st e et e sbeeenaeens 333
12.20.1 DCIIITIONS ..ottt eeeeiee e 333
12.20.2 MDY @IGOSE.oooeoeeeeeeeeeeeeee et 333
12.20.3 General-length MDS5-HMACcccooooiiooiieiiiieeeeeiieeeeeeeeeeeeeeeeeeeeeean 333

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION X

12.20.4 MDS-HMAC oo 334
12.20.5 MD5 key deriVationcccoooceouiiiiieieeeeee ettt e e eaeeereeans 334
1221 SHA T oottt ettt e e ettt e et e e ettt e et e ettt e et e e et e eente e ettt aenteeaneeeeneeeerreeenreens 336
12.21.1 DCIINIEIONS ..ottt 336
12.21.2 SHAL @IGOSE .o 336
12.21.3 General-length SHA-1-HMAC.........ccooooiiiieiieeoeeeeeeeee et eeeeeeeieeeseiereeeans 336
12.21.4 SHA-T-HMAQC oottt eeeae e et e e enteeenseeenseeeneeas 337
12.21.5 SHA-1 k€Y deriVAtioncccvoeeeeoiieieeioiieiieeeieeeeeeeeeeeeeeeeeeee e 337
1222 SHA 250 oottt ettt et eeetreeeaeens 338
12.22.1 DCIINITIONS ..ot e e et e e e et e e e e etee e e eeeeeeeseneeeeeeneesseinsesesenseeeanns 338
12.22.2 SHA-256 di@OST ..o 338
12.22.3 General-length SHA-256-HMAC.........oooooeoeoooeeeiieeeieeeeeeeeeeeeeeeeeeeee 339
12.22.4 SHA-256-HMAC ..o 339
12.22.5 SHA-256 key deriVationcooveooeeeeieeeeeeeeeeeeeeeee e s e e eeeeeaenes 339
12.23 SHA 3B ittt e e ettt e et e e et e e et e et e e et e e et e aeneeeeteeaeneeaateeeereeeerreaeneeens 340
12.23.1 DCIINIEIONS .ottt 340
12.23.2 SHA-384 AiGOSE oo 340
12.23.3 General-length SHA-384-HMAC...........oooieiiieeeeeeeeee e eeieeeeeieeeeeeieeaeans 340
12.23.4 SHA-3E4-HMAC ..ottt et e et e eaesaeeeaneeaeeas 340
12.23.5 SHA-384 key deriVationooooveeeeueeeiioeiieeeiieeeieeeeeeeeeeeeeeeeeeee 341
1224 SHA-S12 oottt et e eetreeereeans 341
12.24.1 DCLINITIONS ..ot e et e e et e e e e etee e e eeeteeeseneeeeeeneeeseieseseaeneeeaanns 341
12.24.2 SHA-512 @ISt ..o 341
12.24.3 General-length SHA-512-HMAC.........oooooooiiooieeeeiieeeieeeeeeeeeeeeeeeeaee 341
12.24.4 SHA-5T2-HMAC ..o 341
12.24.5 SHA-512 key deriVationcc...coovooeeeueeieeeeeeeeeeee e eeeeeeeeeeeeeneeeaenes 342
12.25 FASTHASH ..ottt eeeee ettt e et e eeteeeeneeeensesenseeesseeenseeansseeneeeenseeenseenns 343
12.25.1 DCIINIEIONS .ot 343
12.25.2 FASTHASH diESE oo 343
12.26 PKCS #5 AND PKCS #5-STYLE PASSWORD-BASED ENCRYPTION (PBE)....cccccoovveeviiiviennns 344
12.26.1 DCIIITIONS ..ot eeaeiee e 344
12.26.2 Password-based encryption/authentication mechanism parameters.......................... 344
¢ CK PBE PARAMS; CK PBE PARAMS PTRccooovoiiiiieiiieeeieeeeeeeeeeeee e 344
12.26.3 MD2-PBE fOr DES-CBC ..o 345
12.26.4 MD5-PBE for DES-CBC ..ot 345
12.26.5 MD5-PBE for CAST-CBC .ooooiooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 345
12.26.6 MD5-PBE 01 CAST3-CBC ..ot eeee e et eeeneeeseneens 346
12.26.7 MDS5-PBE for CASTI28-CBC (CASTS5-CBC).ccooeoiieeeeeeeeeeeeeeeeeeeeeeeeeeea 346
12.26.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC) .ooouoeoeeiieieeeeeeeeeeeeeeeeeeeee 346
12.26.9 PKCS #5 PBKDF?2 key generation mechanism paramerterscc.oceeeeveeeneen.... 347
¢ CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;
CK PKCS5 PBKD2 PSEUDO _RANDOM FUNCTION TYPE PTR....ccoooovieiiiiannn. 347
¢ CK PKCS5 PBKDF2 SALT SOURCE TYPE;
CK PKCS5 PBKDF2 SALT SOURCE TYPE PTR....cccocooviiiiiiiiiiiiiiiiiiiiiiiiii, 347
¢ CK PKCS5 PBKD2 PARAMS; CK PKCS5 PBKD2 PARAMS PTR.......ccooooovvunaannn.... 348
12.26.10 PKCS #5 PBKD2 k€Y Generation..........c....cccoueeeeeeeeeiieeeeeeieeeeeeeeeeeeeeseieeseineeeseeeens 349
12.27 PKCS #12 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISMScccvveieveeneenes 350
12.27.1 SHA-1-PBE f0r 128-Dit RC4 . ..oooooeooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 351
12.27.2 SHA-1-PBE f0r 40-bit RCH...ocovooooooieeeeeeeeeeeeeeeeeeeeeeeeeeeea 351
12.27.3 SHA-1-PBE for 3-key triple-DES-CBCcccoooiiiieieieieee st 352
12.27.4 SHA-1-PBE for 2-key triple-DES-CBCccooooeeeieeeeeeeeeeeeeeeeeeeeeeeeeeee e 352
12.27.5 SHA-1-PBE for 128-bit RC2-CBC...covoooeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 352
12.27.6 SHA-1-PBE for 40-bit RC2-CBC..c.oooovoooeeeoieeeeeeeeeeeeeeeeeeeeeeeeeeeeeae 353
12.27.7 SHA-1-PBA for SHA-1-HMACooooooeeiieeeeeeeee et eineee e 353
12.28 RIPE-IMDD .iiuiiiiiiiiiie ittt ee e et e entesenteeenteseneeeeneeeenseeenseeesseaenseeesseeeneeeesseasnseens 354

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

X PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.28.1 DCIINEEIONS .o 354
12.28.2 RIPE-MD 128 digeSt.......oooooiieiiiieieieeeeeee ettt eaeesinesaeessineaaneeas 354
12.28.3 General-length RIPE-MD 128-HMACooooooeooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 354
12.28.4 RIPE-MD 128-HMAQC ..oooooooiooieeeeeeeeeeeeeeeeeeeeeeeee e 355
12.28.5 RIPE-MD 160 ..o 355
12.28.6 General-length RIPE-MD 160-HMACcoooiiiiiieeeeeeeeeeeeeeeeee e 355
12.28.7 RIPE-MD 160-HMACoooooeioeeeeeeeeeeeeeeeeee et enee e e 356
12,20 S BT ettt ettt e e et e et e et e e et e e ete e et eeteeenteeereeans 357
12.29.1 DCIINIEIONS .o 357
12.29.2 SET meChaniSm PArameEtersS.ccouvooeeueeeeeeeeeeeeeeeeeeeeseeeeeeieeeeeeeeresseseeeseeesesenees 357
¢ CK KEY WRAP SET OAEP_PARAMS; CK_KEY WRAP SET OAEP PARAMS PTR. 357
12.29.3 OAEP key wrapping for SEToocoooooeeieiiieieioiieeieeeeeeeeeeeeeeeeeeee e 357
1230 LYINKS Lottt e et e st eeeteestbeeenreens 359
12.30.1 DCIIITIONS .ot eeeeiee e 359
12.30.2 LYNKS K€Y WFAPPDIAG ..o 359
12,31 SO ettt e et e et eeteeetreeereeans 360
12.31.1 DCIINITIONS ..ot ettt e e ettt e e e ette e e ettt eeseneeeeeeneeeseinseseaeneeeaanns 360
12.31.2 SSL mechaniSm PArAM@LETSoooeeueeeeeeeeeeeeeeeeeeeee e 360
¢ CK _SSL3 RANDOM DATA ..o 360
¢ CK SSL3 MASTER KEY DERIVE PARAMS;
CK SSL3 MASTER KEY DERIVE PARAMS PTR.....ccoovoiiiiiiiiiiiiiiiiiieiee, 361
¢ CK SSL3 KEY MAT OUT; CK SSL3 KEY MAT QUT PTR.....cccooooivveeieeecieeane.. 361
¢ CK SSL3 KEY MAT PARAMS; CK SSL3 KEY MAT PARAMS PTR......cccooovvveneee.... 362
12.31.3 Pre_master key generationccooeeveveeoeeeiiieieieiiieeeieeiieeeieeeeeeeean 363
12.31.4 Master key deriVationccoouoieeiiiiieeee ettt e e eeeeans 363
12.31.5 Master key derivation for Diffie-Hellman.....................ccooveveeeeeeeeeeeeeeeieeeeeeeeaenenn 364
12.31.6 Key and MAC deriVAtionc..ooooveeeeeeeeiiiieieeeeiieeeeieeeeeeeeeeeeeeeeeeeeaeeean 365
12.31.7 MDS5 MACInG in SSL 3.0 .oooveooeoeoeieieeieeeeeeeeeeeeeeeeeee e 367
12.31.8 SHA-1 MACING i1 SSL 3.0....ccoiioiiiiiieee et aieeanea s 367
12,3 TS ittt ettt e e et e et e et e ete e et eetteeaeeenreeenreeenreeanreeenreearreeenreens 369
12.32.1 DCIINIEIONS .ot 369
12.32.2 TLS meChaQniSm PArQMEIOrS.c..oocvveeeeeeeeieeeeeeeeieeeeeeeeeeeeeeeeeeeeee e 369
¢ CK TLS PRF PARAMS; CK_TLS PRF PARAMS PTRcccocoovviiiiiiiiiiiiiiii 369
12.32.3 TLS PRF (pseudorandom fUnCLion)cc.ocoueeeueeeeeeeeieieeeeiieeeeeeeieeeeeeeeeeeeeann 370
12.32.4 Pre_master key generationcoooeeeeeeeeceeiiieieiiiiieeeieeiieeeieeeeeeeeean 370
12.32.5 Master key deriVationc...cccouoieeieiiieeee et eaeireeans 371
12.32.6 Master key derivation for Diffie-Hellman....................occooveveeeeeeeeeeeeeeieeeeeeieeaenenn 372
12.32.7 Key and MAC deriVAtionc..ooooueeeeeeeeeeiieieeeeiieeeeiieeeeeeeeeeeeeeeeaeeeean 373
12.33 WS oottt ettt e et e et e e eereeans 375
12.33.1 DCIINITIONS ..ot et e e e ettt e e e etee e e eeeeeeeseneeeeeeneesseinseeaaenseeeanns 375
12.33.2 WTLS mechaniSnm PAVAMELETScc.oooeeueeeeeeeieeeeeeeeeeeeeeeeeeeeeee e 375
¢ CK WTLS RANDOM DATA; CK WTLS RANDOM DATA PTR ...coovooeeoeeeeaean.. 375
¢ CK WTLS MASTER _KEY DERIVE PARAMS;
CK WTLS MASTER KEY DERIVE PARAMS PTR...occoooviiiiiiiiiiiiiiiiiieiiie, 376
¢ CK WTLS PRF PARAMS; CK WTLS PRF PARAMS PTR.......cccccoovvvveeiieieeieeeecnnennnn. 376
¢ CK WTLS KEY MAT OUT; CK WTLS KEY MAT OUT PTR.......cocouooveeeenn...... 377
¢ CK WTLS KEY MAT PARAMS; CK WTLS KEY MAT PARAMS PTR..........cuo.......... 378
12.33.3 Pre master secret key generation for RSA key exchange suitec....ccoueeen....... 379
12.33.4 Master secret key deriVation..............coooeeeeeeeeeeeeeeieeieiieeeieeeeeeeeieeeeeaeae 379
12.33.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography ... 380
12.33.6 WTLS PRF (pseudorandom fUnCHION)ccooueieieeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeens 381
12.33.7 Server Key and MAC deriVAtionc...ooceeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaann 382
12.33.8 Client key and MAC deriVation...............cccoooeoeeeeeeeiiieeiieeeieeeeeeeeeeeeeeeeeea 383
12.34 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMSccvtiiiiiiiiiiiiiiiiiiiieniieiiiesieens 385

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION X1
12.34.1 DCLIRITIONS ..ottt e et e e et e e e et eseeeeeeeeseessieteeaaeneeeeans 385
12.34.2 Parameters for miscellaneous simple key derivation mechanisms............c............ 385
¢ CK KEY DERIVATION STRING DATA; CK_KEY DERIVATION STRING DATA_PTR385
¢ CK EXTRACT PARAMS; CK EXTRACT PARAMS PTR ...cocooiiiiiiiiieeeeiieeeieeeeieenns 386
12.34.3 Concatenation of a base key and another keycccccccooovevviiiiiiiiiieiiiiieeiesieinnn.. 386
12.34.4 Concatenation of a base key and data...................cccooooeeiiviiiiiiiiiiiiiiiiiiiiiiieieeeeeeenna, 387
12.34.5 Concatenation of data and a base keycc..cooovooeeiiisiciiiiiiiiiiiiiiieesieeieesieieenn 388
12.34.6 XORINGg of A key and dQia.................coooooooueiiiiiiiiiiiiieeeeeeeeeeeee et eeeeieeeeeseeeseeieeeeeaas 389
12.34.7 Extraction of one key from another keycccococoooeeioiiiiiiiiiiiiiiiiiiiseeieiiiiieeeeeieenns 390

12,35 VIS oottt et eesetteeeeatteeesantteeeetteesantteesanttesaanettesanereesanreeeaanns 393
12.35.1 DCLITITIONS ..ot e e et e e e ette e e eeeteeeaeteeseaneeseietesaaeneeseans 393
12.35.2 CMS Signature MechaniSim OBJECEScccoouuuiiiiiiieiiiieeeeeeeieieeeeeeeieeereeesessieeeeeas 393
12.35.3 CMS MeChAniSIm DATAIMELEFScc.uuuviiiieeeeiieee et e e e e eieieeeseeeeiiseeeesesaieeeeeas 394
. CK CMS SIG PARAMS, CK CMS SIG PARAMS PTR.......ccccoooviviiiiiiaeiiiieeiiciaaannn. 394
12.35.4 CIVS STQUUATUTCS ...ttt ettt sssseessssessssssssssnsees 395

12.360 BLOWEISH ...utiieiittee ettt e et e et e e ettt e e eetteeeeetteeeeesseeeeeseeeeeenseeeeesseeeensseeeeesseeeeanes 397
12.36.1 DOLIIITIONS ..ottt e e ettt e e et e e et eeeaetteeaaeeeeaaeteesaaaes 397
12.36.2 BLOWFISH 5ecret key ODJECEScccvoooeeiiiioiiieeeiieeeeee e aiiee e 397
12.36.3 BIOWSiSH k@Y GO@NEIALION ...t ee et e teeetteseessanieseeeeseassanes 398
12.36.4 BIOWIISI mCBC .ottt e et e e et eeeeeteeeteteaseteeaaaeeraaans 398

12.37 TWOFISH 1ttt ettt ettt ettt e ettt e e et e e ettt e e eeteeeeetteeeeeiseeeenns 399
12.37.1 DCLIRITIONS ..ottt e e et e e et e e e ettt e e aeteeseeneessientesaaeneeeeans 399
12.37.2 TWOLISH SECTEE KCY ODJOCES. ..ot e e e et eeeteeesesaeaeesseeesessaneeeeess 399
12.37.3 TWOLISI K@Y GO@IMETAIION ...ttt e e e e e e eiseeeeseeeinieeeeas 400
12.37.4 TWOLISI mCBC oottt e st eeetteeeeeteesaeeeesaeeeeaaans 400

13 CRYPTOKI TIPS AND REMINDERS 405

13.1 OPERATIONS, SESSTONS, AND THREADScceuttieiiiiieieitieeeeiiiie et e et eeee e 405

13.2 MULTIPLE APPLICATION ACCESS BEHAVIOR ...cccuuviiiiiiiieiiiiiieeeiiiee ettt 405

13.3 OBJECTS, ATTRIBUTES, AND TEMPLATES......uueiiiiitiieeietieeeeiieeeeeieeeeeeeeeeeieeeeeieeeeeneeeeeenneeas 406

134 SIGNING WITH RECOVERY ..tttiieittieeeettteeeeee ettt ettt e et ete e et e e eeieeee e 406

A. MANIFEST CONSTANTS 409

B. TOKEN PROFILES 417

GOVERNMENT AUTHENTICATION=ONLY .uttitiiiitiieeitiieeeiiieeeeiiee et e ettt e eiteeeeieeeeeiieeeeiiaeeeeiseaean 417

CELLULAR DIGITAL PACKET DATA 11eetiiiiiiiie ettt eae e e 417

OTHER PROFILES.....uteeeiiutteeeettee e e e et e e ettt e e e ettt e e eete e e eeteeeeeteeeeeetseeeeensseeeeesseeeeenseseeeseeeeeenneeeeanseeeaan 418

C. COMPARISON OF CRYPTOKI AND OTHER APIS 419

FORTEZZA CIPG, REV. 1.5 ittt ittt ettt e s e eieseeetetessenseeesanteeesaaneesesannneesanneeeaas 419

GO - A Pttt e e ettt e e ettt e e eenaeeee ettt eeeaneteeeantetesennteeesanreeseanneeseenneeesanneeeaan 421

D. INTELLECTUAL PROPERTY CONSIDERATIONS 423

E. METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI

(DEPRECATED) 424

F. REVISION HISTORY 425

+—INTRODUCTION 1

2—SCOPE 2

3.—REFERENCES 3

Draft 65, February-May 2004

Copyright © 2004 RSA Security Inc. |

CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11 v2.20 (DRAFT)

X11

DEEINITIONS
PETF I IR

12

L= g m e e b e I S A v s ¥ B T T R R R R R R R R R R R R R R R R R T R R R R R R R R R R R R T R R TR TR RIS T T T T &

DESICN-GOALS

12

N I T T IV I T I T T T i i e e e e ssss LT

GENERAL MODPEL

62

15

PivAu s iera s wan s mh A A v e W B T A B i P T T R T E F P F T E T T r T T T &

LOGICAT VIEW OF A TOKFEN

63
64

e e e e e e e e e e e e e e e e e e ere e e e e e ersrsvsvsvsssvsvsvsvsss IO

HSERS
TR

17

L B T\ N T T T T T T T T T R T T R T T R R R TR R TR TT T T

A PRI ICA TIONS AND-THEIR HUSE O CRVYPTOKL

X T IO X T TOTND 7 XN T T AT

s

oL Or-or

17

d proceseas

TP PITCAITOTES GO T OCES S CS e s s s s s s s e s s s s s e e s e

Annli

Tone g

£

1oa

Anpnl.

]
1

655
0o~

L
O
10

1
Y N T T T T e e rererersvsvsvsrsrsvsssssssssssssssesssesssssssssssssssssssssssssssssssssssesssssssssssessssssvesevevevevesesevevess L

atinpe and thyroadc
TPPHEGHONS-AHAHH CAES

)

SESSIONS

6.6

10

1

Rogd anl coccinn otagtoc
A ORY-SESSIONSTHCS e e e

]

66

001

ftatog

1o CoCeQInIy o

'

P oo g
TG W HFH S ES SO ST ES e e e

662
00

20
o4

22

Soccingn ovontc
DESSLOMH-CVYERLES

6-6-4

O

6566
A4

22

IonC

litioe of cpnaay

b1

COOAOTITITES O D OO0 TOTID i e s s s s s s s s s s e s s s s s e s e s e s s a e e e

Capnah

Iy camnlo of 160 of coceinne
LXGHIPTE-OF S € Of SESSTORS s s T T T s s s s s e s e

68

27

EImNCTION-OVERVIEW

7

V VY o i e e e v e v e v e v e v e v s v e s s s ssrsriririririrerererersrerererers

T OINCTTON OV T

21

D T I O T U I T T 2 IS N T T T i T e e s s s s s e s s s s s s e s s s s s s e s s s s s s s e s s s s sssssssssssrsrsrsrsrsrsrsrsrsssrsrsrsrsrsrsrsrsrsrsrsrsrsrsss I L

STRHOTIRE PACKING

29

POINTER _RET ATED MACROS
I A D IV I Oy o s sesrsrsrsrsrsrsrsrsrsrsrssssssssssssssssssssssssssssssssssssvsvsssvsvsvsvsvsvsvsvsvsvsvsvsvsvevs o

T OTIN T T

82

32

CK_PTR

=7 & BN & A T R E R R R E Y R R R R R R R R R R R T Y]

CK DEEFINE ETINCTIOAN

392

=4
32

CK _DECIARE ELINCTIOA

\=7 & upp =4 S5 e SR P SEu B R A S B A U S N R R R R R R R RN R

A o7 Ay =4 A s ore v A B U B R E R E R R R R E T R R R R R R R ey

+
4

:

CK DECT ARE ELINCTIOMN

\SZ Ay = SA s mysrav Sy aa A A B Ao n

392

=4
33

E S T s 5o B B = & S R AR

DOJINTER

CK _CAILT RACK ELINCTIOAN

\SZE T =2 =5 e e wr A G B e B S B & U B R E T R R R R R R R R R T Y

\ezay

+
é

22
a4

+—NILL PR e

32

]

3

JA 12 32

7Tt

n]h

4L Z 3 A N N N N N N R N R R LR R N N LR E N LR LR R LR LR R R LR R R R R R R R R R R R R R R EE R R

F1

AV Ve

)

3
0%

34
Sa

PEY

LINTY

Geoneri.

3
=4

3
4

A = 4o i 1 o o i B S S EE R T EREE R R R R R R R R E R R R R R R R R R R E R R R R E R R R R R R R R EA R R R A EA SR EE EA EA R R X

26

CENERALDATA TVPES

OV X 7YX I 727X KK)

I+

26
©

IVIZX TTOTN

GENERAT INEORMATION

TN Y 1IN T Or

91

DTD

CK _TVERSION . (K TVERSTAN

24
20

E S B & T RN R R R R R R N R R R R R R R R R R R R R R R R R R AR R

Y IAOTO 1Y, OIx V1A o1y

CKINFO- CK INFO PTR

\e7ay

r 3F ¥ A IO R R R R R R R L R L L L R L L L L XX EE LR

Cix 11V O

CK _NOTIEIC ATION

A\=2 S P2 b an v

37
3Q
20

P A ¥ a8 7 B A v S B T R TR TR

ST OT AND TOKEN-TVYPES

\e7ay

+
é

2K

IS/ =iv s o e v = o A v/ i e e T R P R R R R R R R R R R R R R R R R R R T P R R R R R TR TR T TR YT R TR R I T I A e |

39

CK_ SITOT ID-CK _SITOT 1D PTR

3
=4

E SR P S e B B & T EE R R R R R R R R R E R R R R ER R R R R ER ER ER SR EA AR R

Ty o1

11v1 75

CK SITOT INEO- (K ST OT INEO PTR

CTIix OO T

+

46

Y S T I I T T L T i i s s s s e s e s e s e s s s s s s s esessrsrsrsrsssssrsrsrsrsrsrsrsrsrsrers TO

SESSION-TVPES

(0P

CK _LSER TYVDL

46
40

47
—

P B S T N RN R N N N T LN N N T TR L TR LR TR T L E N L R SR R R R R SR R R R R EE R A SR SR SR R A R AR R R

\=ges >ray

=7 A G~ £ P ¥ S O O O O O O O O I R O I I O L L L L)

\e7ay

ry 2004

MEebrua

i

Draft 65

| Copyright © 2004 RSA Security Inc.

Xiii
48

I O B B B A RIS ST ST RT RIS ST T g o

ORIECTTVRPES
\=gerpmioy s

04

INTRODUCTION

40
4
40
57
g
54
4
545
55
545
5Q
539
e
50
O
62
6
63
6

B S B B S R R R R R R P P TRy
L P B S LR R R R N R LR T

A T2 A NS B b P AT 5 S A v B B B B i R R R R EE R R R R R EER R R R R R

EaF B = I T T R I R R R IR R R R R R R R R R R R R RN E TR NSRRI T T]

P P a > R E T R R R R R R R R R R R R R R R R Y

T 1711 1T

I 8 v s T R R R R R R R R R T R E T T T

CK CERTIFICATE TYPE

S Ot SO0 €T S s s s s s s s s s s s s s s e s s e

Creatina obicets

ASZ A S B s B S B B S R R R R R R R R R E R R R R R R R T T

IV T L o i i oo v e v e v evevevevevevevevoverevevevovsvevovsvsvsvovsvsvsvsvevsvevevsvsvevevevevereverevorerererererererererersrsrererey

\=Z 57 aw v ey A wre w v =)

TT 1T 1A DO 117

CK _HIW EEATIIRE TYDEL

CK _KEY TVYDL
S5+
CK ATTRIRIITE . (K ATTRIRIITL DTP

CK _DATE

DATA TVYDPES AR MECTTANISMS

CK _NOTIEY.

\ezay

CK (YYY
i

CK _DESTROVALLITE Y

T O IS T T I I/ Y T I T Y T Lt e e e e e s s sss DO
CIX IO T AN T T IVE T L a2 coiviviri e v e e sseseses

CK CREATEAMIITE Y.

O N O N T D D T i i r e v e v e v v e v e v e e v e v e v s v e s s vsvsvsssvsssssssssssssssssssssssssssssvsvsssssssssvsvsvsvsssvsvsvsvsvsvsvsvsvsvsvsvsesy

TFIXTZY T X T D T O IV T T XN T IVE Y T 7 e e v v e ssssssssssss s ssesesesess o

A= A = P = I R E T R R R R R E Y E Y R R R R R R R R R R R T Y]

CK _ATTRIRIITE TVYPL
I AL A A DO A1
EIINCTION-TVRES

L OoCKING-RELATED- TYPRES

i1 77
TIx

A=z aunrauwg
Tix

\=2ay
ORJECTS
DI 1

101 7
1TUA1

+
é
+
é
+
é
+
é
+
4
%

05
T
06
O

Q7
I

-

v

71

T I I A T O) I I s s s re oo e e rerersrersrsrerersrersrsrersrsrsrsrersrsrersrsrsrererersrsrsrersrersrererereress 7 1
1

70
70
72
N O e T T s i e e ererrsenssenssessssssssssnsssnssssssssssssessssssssstsssssssssssssssssssssssssssessssssssssssssssssssccsscnssnnssns / oJ
716
k%29
O
L2
2
IV ANV O T I D s s s s e s O
823
O
Q2
(2 ¥/
O

T ATV X T L IS Y O T T T T i a e e e e e s s sss 1O

(0]

P Av/1svaven s e viva vl as s n AW v 5w B R EE E R P R R R R R TR R R R T o

D I T S N O T L L s s rsr ssasssasrsasssssssssssssrsssssrsssvsvsssssvsvsvsvsssssssvsssssssess 1O

60
73

70

66
68
0O
68
OO
71

A A/)T B e A o e B B R R R R R R T R PR E R R E R R R PR R TR T v A v

68

0
S vavivFALPa AV ME S e W BTSN M U4 b i) S e R E R R R R R R R R R TR R R TR RS R TR R A v A o

Copyright © 2004 RSA Security Inc. |

1Q

10

o4
o4
o4

Arino aghicete
O P G OO CELS T T T

A7

A~ 4 = 2 = 4 T R E T R R R R R R E Y R F T E T R R F YRR R R R T Y

A 4 = g 1 4 A T T T T T T P T F T E E E F T F T F T F Y P P P F T T F T F T R T TR ST R T TT Y
s 22 EEEE L R R R R rEEE T

L T O S e s s s s s s s e s e e s e e s s e s e e s s e e e e s e e s

Orvery

A= 4 = 4) 4 T R T R R R R R R R R R T T T R LR LR LR LR LR LR L L E L L L L L L L C L L L XL

A= 4 = 2 = 4 T T T R E Y R R R R R R R R R R R R R Y]
€ T T O S s e s s s s e s s s e s e e

S T L WY e e e s e s e s e s e s e s e s e s e s e e s e e e e e e s s s e s e s e s e s e s i i et i i et i i i i i i i i ieieieieieieieieieierererererererey
e 22 e R R R R R R E T EEE T

L O S s s s s s s s s s e e s s e s e r s s e e s s s e e s

Orvery

A 4 = g 1 4 A T T T T T T P T T E T F R E FE F T F T P P P P P F T T F T F T F T T TR ST TR TT Y

T T O S e s s s s s s s e s e s e e e s s e s e s s e e s s s e e s

COPYIHREO0/€C
Orvery

Deofinitions
Deofinitione
O eriois
Definitione
Orvopviow
Deofinitions
Deofinitione
O erpiois

Copuinoaoh
Deofinitions

Ao

HARDWARE FuATIIRE ORIECTS
DOMAN-PARAMETER ORIECTS

r‘{'\l\ﬂ?\/lf\\T ATTRIRIITECQ
STORACE ORIECTS
CERTIEICATE ARIECTS
PLRIIC KEV ORIECTS
PRIVATE KEV ORIECTS
SEORET KEV AR IROTS
MECHANISM - ORBIECTS

DATA ORIECTS
KEyv ORIECTS

1

1
1
1

r
EUINCTIONS

T OV C I IIr\y

10 £ 2.
1

10 171 1
1TV 11~
1O 171 D
111~
10 12 D
1TV 1=~

107
1072

T

10 7 1
-

T

1032
16-3-
1051
+6-
1052
105
L
10-6-1
1061
0-6:

104
105

10 1 3
112
10 3 1
1

102
103

10 1 D
1T~
174

14

108
100

Draft 65, February-May 2004

H-

CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11 v2.20 (DRAFT)

X1V

EINCTION-REFLHRN-VA LIRS

T OINCTTONN IR T UINTN

\E RS "AvS oTe rry

(079

Loy code “ontehac’
107 BOtERaS

J7 1 9
1110

€oac

9
(01

DISCI AIMER - CONCERNING-SAMPI E COPE
P CEATME IR CONCERNIING S AV - COD s e e

GENERATL _PLHRPOSE RFLENCTIONS

o

b1

A\ Sy pazava s mas BiTS AV I e} n a T) S B L S e R R R R T R R R R R R R T R T R T T R R TR E R TR T Y

C _Initial

H3
+H4

O
_08

C _LEinali

A\ 742772277775 o

[010]

Py

T RaGize

+
é

100
Favavs
101

101

C _Getlnto

T TE€TITT

C _GetEynetionl ict

102

DO T AN T OIS IN VI X INZ YO VI TN T T O TN T O TN T i s i s s s s rrrsrrrrrrrrrsrsrsrsssssrsrsssssrssssssssssssssssssss T O

QI OT AND-TOKENMANACEMENT-EFLNCTIONS

A & o 2 a7 2 2 o 7 4 7 B N R T

+

5

102
s

£

I

C _GetSlat]

C _GetSlotInto

T OCTOTOTITT

A e & o J e 4 v 4 2 = T R

+
é
+
+
4

104
s

AV s

C _GetTolenInto

TG ECTLOETHT

104

1

Lo

C _WaitForSlotEvent

<

105
e 1 U

7t OTroTtOTL=vETiT

106

1

C _GetMochanicm] ict

7O
108
10

A & = 784 8 o o 27 2 TN 3 N R AR R

C _GetMechanicmInto

O CTVICCTIATTiS LT

7ASE

C InitTolon

108

1

7O
110

S ¥ 77 B v A7 = P R R R R R R R R R T R R R R R R R R R R R R R R R R

+

C_InitPIN

s
777
11+

. _SotDIN

T DoCT 11V

+

+H-6

QEQQION MANACEMENT ELNCTIONS

113

D D TN IV I TN NI IV I TN T O N T T O I i s ees T L

772
s

C _OnpenSecc
&

ion

é

+

+
4

+

=4
1714

1

1

g 2T A I Ao N g A T R R R

C CloceSeccion

)

Jona

C _ClocedllSocc

T IO ECOESS IO

s
715
—11

T CTOSCATIOES 510D

1164

1

C GetSessionlnto

O
117

1
1

C G etOperationState

TG CTOESS T,
TOETT

+

é

g A a2 ae s A R LI T EEEEEEEErrr Ty

1718

110

L SotOnerationState

T ot

+

+
4

+

1271
1
]22
—

—1

PETraTtoriotaie—

SE7)
F 424 T IR R EEEIITErrrrrrrrrsy

VAR -V

T 10,

C I oonut
&6,

S O T s s s s s s s s s s ey

+

124
s

C _CregteOhicct
—Createoo

4
1264
—1

s e s s s r e s e s e e,

C _CopvOhicet

T 0,

+
4

O

—Copyoiorect
C _DeoctrouOhicot
—estre

129
—1

3

ECTOTZ€—=

T OCTT0,

Y OECT—

C _GetObicetSt

O
120

C _GeotAttribytelalye

+
4

139
1D

137

C _EindOhiontclnit

C SotAttribytelV/ alio
C—HHaGo

4

HECT Tttt

C _EindOhiccta

a0

+

732
—1

L7 S R E Y R R R R R R R R ET T Y

7
C EindOhiontcEinal
CTHRAGG0

7134
1%

A A 2L L A EEEEE L T T T E R rErr e e s

+

H=S

1235
T

ENCRVYPTION-ELENCTIONS
EINCIC T T TOIN T OINC IO

1

C _Epepruntly
C—LHET

]34
T

C Epcopmmt

é
E o

136
137
10

vt Indato

Ay =7 gaer

C _FEn

‘}/IJLUIJVI/MLO...
C Euepuntllyn ol

T L=HET

é

+

1190
T2

137
1

I 242 2 EEEE R TR R R T T

140

T O IN T O TN T O N D T i i e e e e e s e ssssssssssvsssssvsssssssssssvsssssssssssssssssrsssssrsrssss T TO

DPDECRVYPFION-FINCTIONS

T

140
—19t

gt it

C Do

yPHT

C_Decrvupt
A\ =g = o 4

A\ =g = o 4

+

147

1

I I N N N N N N N R R R R R T R R R R R R R R R R RN E TR RN TR R NN TR TN AT AT AT AT TR I Sy e &

JPt

ry 2004

MEebrua

i

Draft 65

| Copyright © 2004 RSA Security Inc.

XV

142

C_Decrvntl Indate
—ect

INTRODUCTION

(S Y W \p N A RN D~ ~+ h o W\ NN NN op J ~N % N QA eh o b o D N oh 4 YOS o+ g oh oo
F Y F Y Y Y < ¥ Dy v R R L LR L & O O & o+ Y NG S) SO SO o bSO SO B ONJ [e
NN I A B] A i Bt A e 'R b B B A e '] <N "N "N ™M T N b I '] ~N~ ™ ~ - N YN Al - o -~

Copyright © 2004 RSA Security Inc. |

pod callbagnl-c
ABERRCA CATOGCRS T T T e e e e e ey

1

b

7 A S e = 1 A E R R EEE T ErE s

callbacl-e
CAHTOAEKS

4
C _GepeprateKevuPair
P

TG EHRErATELx e

T IINT T IO

340

1

J2a7¢

Lol

prsey
C - DeoriveK ey

2
)

YPIOTESESTO paate

ypropaate
B4 A Z N 2 T R EE L R E T T T

C _DecpmntEinal

Ao =g o o 4

T e e e T e e e e e e r i i i i i i rerererererererereierevereveveveveverevevevevevevevevess L

Veondor dofs

S ppereaan A 2y

- eRao?
Deofinitions
FEHHAORS

SEOTHCT y Propaate
ot 1 Cract

SEOT Gt

o 2 N S A EE R T e TR R EE T T T FEEErEr T

e A e e A EEEE T R T R R T TP E T T E T

S O L s e s s e e e s e e s e e e e s s e s e e s e ey

= 2 24 A R EEE R R E TP T R E

STHATCT Yy Pt O PO s s s s s s s s s e s s s e s

ST C OV s s s s s s s s e s s s r e s s

)

Snopaairt——

STHTTTT
LT B A = 2 1] A EEEEEEEE D

AR 78 SR R R Ry
A7 S 4 EEEIEIITTE s

Y s s s s s s e s e r e s s s s s s r s s e s e e

rEH y Pttt
7T yIc€CoOvEer—

Av4

C - _Dioceat

A= =4

C Digoctl Indate
¢

C- _DiocpctK o

A= =4

C DicectEinagl
A= =7

C _Sionllndate
\./_Ulv

C SiopnKinagl
ot

C _SionRornvoprln
\./_AJL

C Vorifol Indate

C Veorifs

C VorifuRorovorlnit

C VeorifuRerovonr

C _DeocruntDicectl Indate
cect

C SiopnEncruntl Indato
ot

C _Deocpruntl/opiful Indato

cect
C- W ranK e
C_GeperateRandom
C CapecolFEynction

O T I TN I I oo erererererererererererererersrersrsrerererersrersrersrsrsrersrsrsrersrersrsrersrersrsrsrsrsrsrsrerererers T

A S2as mm e e L e\ W T L e B A e R T R T R T T R T P R T ET E TR TR T T T T o oA v/

A A & o 2 a7 2 2 o 2 A e e 22 2] T R F T R R R R R R R R R R R R e

PO v i/ va v Pa N ma s m b e S e L e B A e R R R R T R T E E R R R PR T E TR PR E R TR R R TR TR TR r T a ay fred
A A = 4 4 = i ¥ 7 2 = AN 2427 2 T R R T R R R R R R R R T R T

C_GenerateK ey
c—Generatesse

D IO N I N T AN D IV N N T T O T I D T i s e e e e e e ee s IT

C _Sionly

S1eNINGAND-MA CING RLINCTIONS
o7,

VIS O AOE DIOES TINVG T oNCTTOND
K ey MANACEMENT RLNCTIONS

C DigoctInit

MESSAGE DIGESTING REINCTIONS
17

PARAMETER PREEMNITIONS

C DigpctEncmmtl Indato
T ARSIV T

1t
CALIRBACK FIINCTIONS

C _SionRecagyiong
ot

C Vorif

I Fapisey

C Ilpmorank o
C—ORWFG,
C—HerHerse

C _SoodP andon
C—oeearcaia ot

C G etFEyunetionStatis
C—CaReer HREOHR—
ORIECT DEEINITIONS

ot
MECHANISMS

VAR C A XN EOD TV Y

IBUBCRURUR T Ny
SRR NN SR R U iR UR AR SR U U S IR UR AR SR SR AR G R SR UR R O AR R UR SR U - R SR G- AR R Y e e mﬁ_.%.. %m‘

Draft 65, February-May 2004

12.

CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11 v2.20 (DRAFT)

XVi

100

(N

o)

100

1

finitione

De.

1241

1

O

100

1

Jrov Ahiootc

TOZT PUCTTC I YO0 OOt s s s s s s e e s

PRCA o b

[2 42

-

T

200

ROA pyivnto frovs ahioate

12 4 2

TZ790

TO7T Privaite ey O0fCCI s

]2 4 5
s

203
4

YO 3] RCA o najr opporatinng
OO KEY P GERECFATION s e
DE(CC H]] § RPCA

X

203
7

P & v e & T R A R TR

L

T Ix oo 171

12 4 4
4

T

DVrv(‘ #’ DCA n/‘ FD R I

T Ix oo 711 1xO7T TZ1Ld

206
7O

12 4 8
40

T

DEOS H1 PS4 DO

B aS S S SIw au b s VS8 S BN S L TN T R L R T R

208
174
200
t

12410

7 F 3 T /£ T T T T T T T T T T T T T T T T TR R R TR R TR RN RN R LR LN RN R N L LR L L L L L L L L L EE L L LA LI E]

JSONEC Q704 RS A

TG 11T

T

~~
~~
¥
il

T

T

1t
277

2710

(A% 240 ar A~ S o S A EE I T T T T TR EF R R Ry

]2 4 1D Y 500 (3a4) RS A
41 oU

1

ANST YO 371 RS A

]2 4 13

L S S b AV S S T R R R R R R R T R R R R R R R R R R R R R R R E R E T R R R R R R R R R R T T TY

TIVOT

1

o

1

RIDE A 128 o3 RIDE A 1A

272
—Z1

T Vi 1 20Ot Vil 10U =

Y K e e e s s s s s s s s s s e e e e S erererererererererererereeeeveveveves ey

2715
s
215

Deofinitione

7

12 8§ 7
120

NSA pihlic fror ahiceta
17071 PUHOTTCHEY-O0FCEES s

) o BENo)

1

214
vy

NS A pnpivagto Jrov ahionta
17T PV CREY- OO0 CCTS e s T T s s s e e

]2 &5 2
oo

]2 § §
120

2718
1

DS A Jrov nair goperation
17T Y PAH- SCHCH GO s

125 7

NS A svithont haching
DO WO HASTHR S e e e T e T e e

2710
g
220

DS A viogth SITA]

P =go e a4 7 S S B S S T R LT

12 8§ 9
o0

L4

LFORTE77 A timmoctamy
Ea e sy = e oy 24 SNy~ T e

12 5 Q
120

221
T

B T R T T T R EE EE EE E R R R F R R FE E T E R R T R E T F T R FE FE F R R R F R R R R R R R R T T Y]

v

Errmprice CURVVE
B e oot

126

222

L Siopatyroc
o OTSRATHIES —

]2 A 1
O

222
222

finitinne

De

12 4 D

—O-
12 4 2

Jrov ahiootc
DA PUOTHEREY- OO CCES

LECNDSA pa by

1Z7070

LONDSA voithayt hachina
DA WHAGHT ST

1266

226

00

227

(DS A it SITA T

[2 67

O

1z~

127
T=F

222

PDirErmrE-HEL I M MAN

ry 2004

MEebrua

i

Draft 65

finitione

De.

]2 7 1
71

| Copyright © 2004 RSA Security Inc.

XVil

INTRODUCTION

249

XO 42 DirriE-HELINMAN

12

“
242

I T T o IVEIZ XIN e v e e e e e s e e e e s s e ss s e ssvsvsvsvsssvsssvsvsvsvsssvsvsvsesy

Definitions

Om s

7%

128 1

251
T
2571

B 22272 R R R
Py s T O O O O O O I I I O O O O T L L L L L L L L L]

s
KEA

O

Deofinitione

12 Q]
12~

€ T O S s s s s s s s s s s s s s s e s s e

1

252

Jrov ahioatc

It T PUOTTCREC Y OO €O s s s s s s s s s s s s e s s s s s s s s e

KA nbli

12 Q 2
1z

=4

2589

Az Private Ity OO OO S s s s s s s s s s e e e e

KEA private frov ahicota
KEA Jrovs 1

12 0 4
P

1

254

1on

11 ogpepoprat

Ea = = e o Ay =4 2 a4 A= e 2 4 A T T EE T F e EErrr T

KEA Jrov doydvating

1205

2584

[2 06

IX I T WE T v T O s s s s e e e e e

O

260

GENERIC SECRETKEY

1211
T

ov

260
1A

260
152

T N I S S o T IS Y T o i e e e s e s e s e s e s e s e s e s s e s s e e s s e s s e e s e e s s s s s s sssssssssssssvsssssvsvsvsvsvsvsvsvsvsvsssvsvsvsesy

1T

B 222724 R R R

Definitions

]2 77 1
111

fq

i

cpppnt Jrou Ak
Generte-seeretkey-oorects

Geoneri.

]2 171)

T

P v oy

1212

T

261

HMA C MECHANISMS

Ot
262D

IV XA IV X IN T IVE) 10w e v e v e v e e v e e e e s s s s s ssvsvsvsvsvsvsvsvsvsvsvsvsvsvsvsvsvsesy

RC2Q
b as o

T

1212

O

T

finitione

€ T O S e s s s s e s s r s s e s e e e e

De

262
1%

(2 131

T

o1

DR copppnt Jrov ahiontc

[2 133

T

DECHET ey OO CCTS

pan

1o

264
64

264
6

A Ay S A= e 2 2 4 R

R(CIO LD

RO Jrov goporating
Ean s

paw s

12 12 4
1TZ 1%

oD

]2 713 §
=

1

265
\%4

A > A R E R R R E R R R F R R R R R R R R R R TR R T T RY

12YabiNalTal
pas = ErrrTS

190
]2 123 7

]2 12 4
S

1

46

ROI (R ith DS padding

00

267
152

268

TOCT Wil 1 Ix O PG S s s s s e

Generallenoth RC2AMAC

pan

1O
12 12 Q
121970

P/ 7 A T T T T T T T T T T T T T T T T R T T T R R R TR TR TN R LR LR E R R LR L E L C LI L L LI LI EEE]

SCHCT AT Ehigirn1ve

PRI AAC

]2 12 QO

PiZ 78 A = R R R R R R R E Y R E Y R E Y R R E Y R E Y E Y R R R R R R R R R Y]

Fauws

1

1

2690
T

RC4Y
Eax iy arrrrn

12 14

260
152
260
152
260

€ T O S s e s s s s s s s s e s s s e e e s

Definitione
RO conyot Jron

ohiccte

T D CCTrET ey O00/CCTS

12 14 D
1TZ 192

ROY Jrov: oppneration

]2 14 3

T €Y GCRECH IO e e e e s e e e
RO ypponk o

O S e~
]2 14 4

v

270

1o

P A A o g T R TR R R R R TR

1T

271

RCS

12 15

P AN A T O O O I I I O O O O L L L L L L L LT

(2151

o
1z

2771

fnitions
DERRHONRS s

Do

7

T

ROS corpot Jrovs nhiontc

271

]2 15 2

DECTCT ey O0fCCIs s

Fauws

1

1

272

1013 oo ofoypa

DRSS vponk

J2 745 3

1

THCCTIATITSTIT POT G T CTET S T s s s e s s e s s s s s e s s s s s s s s e s e s s e areeees

Pau

x4

e

RS oy opperation

273

LA P A=A 22 A e e

LR

Fauws

1T

]2]145 4

1

274

12 YAk
Ean =

12155

1

oD

e

278

RS (DR
ROS CBRC ith PEOCS naddina

O
12 15 7
1Tz~

12 15 4
T

T

276

COT Wil 1 Ix OO PG S s s s s s s s s e

paw s

Copyright © 2004 RSA Security Inc. |

Draft 65, February-May 2004

CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11 v2.20 (DRAFT)

XV111

277

P31/ 78 A = T T T R E Y R E Y R E Y E Y EY R R R R R R T Y]

RS AAC

GEHCTaT—tCIigTi1vC

General lenoth
RS A4

O
12150

1

]2 145 Q
oE

1

277

P34 78 &~ T T T T R R R Y R T R]

Pau

e

27K

AES

1’7_]£

T

7

XL TR e v e e v e v e v e v e e v e e e e e e e e e e e e e e veveveveveveveveve vy

O

278

B 22 EEEEE TR T T T R EEErE e

Deofinitione

]2 1/ D
O

278

TEODCCTrCTCy O0fCCTS

AES corpot Irovs ahioata

1

1

270

1on

AES Jrovs gopopat

]2 1A 3

10D

B e e 4 = A= 7 22 4 e 4 T N R IR T R R

AES LD

270
280

P U ST s & > R R N R N LN R R N R R N R R R R N T R R R T LR R R R E R E R R R R A EE R R R R EA R R R EX]

ALES CRC

-

12 1A 4
105

T

T~ CDC -

12 14§

1TZ-107

]2 14 7

1

299
O

T~ IVIZTC

General lonath AES AA(C

—10-
[2 168

T

2932

Senrerat—1engin
AES A4

o
R4

P U ST s e B S L N N N R R R R R R T R R R R LR R R L T E R E R R R R R EE R AR R EA R R R EX)

O

10

GENERATL BRI OCK-CIPHER

o

TN D DCOCIS O s

294

Deofinitions

]2 17 1

1

oE
12 172

1

1

B 2227 R EEE R I e T T E TR T T T T T EEEE T

NES conpot Jrov ok

1C

o

294
O

e

DO O CCT Ty OO0 OOl s s s s s s s s e s s s e s s e s e e e

CAST coppot rou ok

204
o0

fq

10

]2 17 2
I e

T

DT D ECHET NE Yy OO CCT0 s s s s s s e e e e

CAST?3 copprot oy ob

2897
O

£q

1on

12 17 4.
179

T

zs

ST D CCT Ty OO0 CCT0 s s s s s s s e e

]2 17 64

1

299

Jonta

INE A cprpot J-ou ok

00

O

1

200

T SECTCT ey 007 €CTS

CDME coppnt lrors ahipnta

[177

T

O

A=z =sasss

1

201

inhor OB

A e o e o A v A o g o e = = LT

SECCHETHEY OO CCTS s e T T T T T T T T e S e T T e e e e s e e e e e e e
General bloclk cinher CRC.

General-bloek

]2 17 11

A =7 > A R R R R R R R R R R R R RN RN AT R TR

GEHCT At OtOCI— CIpIeT

11

1

1

204

B 22272 R R R

Definitions

1O1
12 19)

]2 719]
S

1

2045

AMeochanicps Doy otorpa

VI CCTTAITS AT arieters

O
]2 719 2
12100

12 10

T

e

2064

banicn Nocryintiang

TV CCTTAT S T T CS O PO s s s s s s s s s s e s s s e e

Ao

207

BT AVAvSs i sy a vl b T A AN S I) v MR A B B B B g B R T Y

DOURIEAND-TRIPIE- I ENGTHDES

T

207

Definitions

]2 1Q 1
1

1

207

D CCT Ty OO OOt s s e e s

DESR coppot lrov ahionte

10

NES) coppot lrovs ahioatc

1=

12 1Q D
=

T

208

(2193

T

=4

T

z

202
302
=AY

B 22 e R EE R TR T T T T R TR R EEEEE P

oI D CCT e ey OO0/ CCT

Definitione

T INTE 7 X T E N 1 r e e erer i s s s ssess SO

SKIPIACK

U

1220

T

304
t

f

LS T A P S R B B & R R

7Y IXZTL

T1 17

CK C’VID_TAFV DRIVATE TWRAD DARAAMS DTP

CTIx OIxtt 70Tty 1 I ¥

306
SAvAY

SEID IACK Jrov: goneration

1220 4

T

U

306

DIxtt g7 oix Ny SO ET it O e e e e

SKIDIACK _E(CBA4

12 20 &
1z~

[SZa v o e B s b e B e S e R E E E E E E E E E E E E E E E E E EE E EE R R TRy

SKIDIACK (CRCAHAL

v
12 20 6
s

307
1o

S22~z a rea = s e - - T R R R R R R R R R R R R RN N RN T TN

SKIDJIACK OEFRAL

O

1

307
SAv

1220 7

1

OIXTT FZI TN T D O T i i e e e e e e e e e s e s e s s s s s s ssres

i

2308
O

SKIPDIACK (EBRA4

12208

T

[SZa v & a s B e & N e B S P P PR PRy

SKIDIACK (CER2)
oisit SIS S DI

O
12 20 Q.
1z~

\va

308

v
12 20 10)

1

300
7

S22~z a r e e~ s s e - A T T T R R R R R R R R R R NN E AR T Y]

SKIDIACK (CLRI1A

(e avg

3200
U

OIXTT FZIXTIXY T DI O i i e ererer e s s sessres

SKIDJIACK (PO

U1t

]2 20 11

ry 2004

MEebrua

i

Draft 65

| Copyright © 2004 RSA Security Inc.

XiX

INTRODUCTION

3710

SKIDIACK _JI/R AP

[SZavearrsavra s avess

]2 20 1)

1

SKIDJIACK _DRITVATE JI/R AD

U
]2 20 13

3710
Seav

YV IXZIT

T11<

[SZaveanrsavrausaravag

U1

7.

310
e e

211

[SZav s P R T i e A B s S P T PRy

SKIDIACK RET AVY

20 14
" o g

]
1

1221

BATON

B T I N e e e e e v e v e v oo v e v e v e v e v v e v s v v v v v vsvevey

]2 271 1

1

Tzt

B 2227 A R R EE I I T T T T rE R T T T T EEEErr T

Deofinitions

oE
J2 271)

1

1

3717
e

Jonta

DA T IV S CCTCT Ty OO0 € S s s s s s s s s s s s s e s e e e

DR ATON corpot Jron oh
DR ATON Jrors opnorating

1~

379
o

DI OV Ny S C e ATt O s s s s s s e e e s

RATON _ECRIDNSQ

]2 2] 2
Z 1D

T

3712
373

12 27 4.
1z~

P> e o B v s A e S o R E EE R E TR ey

RATON_ECROQA

-
]2 2] §

1

T

RATON_CRCIDS
DAL TV ChbTHo

1~

372
HD

S T T T R T R T R R R R R R R R T R]

]2 2] 4
1O

1

3714
2 o

DRATON _COIINTER

D71 1Y

[2 2] 7

T

A A v s b S & S R R R ERER R R R R R R RN R R R R R R R R R R R E R R R E R R R R R R R E A EE R A EX EX EA EX EA EX R A A AR X}

RATON SHT LT L

S
12 071 Q

T

P> e B A T S S B B T B B = e E R R R R Ry

O

T

zs

375

R ATON JI/RAP.

]2 271 QO
1
1229

T

DA TNV
TINIPER

1~

216

T T TN TE L N T i e e e e e s s s s s s s sss JITO

314
SE 8

€ T T O S e s s s r s s s e s e s s s s s e e e

Definitione

1
12 22).

(222 1
1z~

T

316

JLINJIDPER cocpot lrov ahioote

10
317
s

T OIVILT TS O CCT CT ey O €O s s s e e s

JILINIPER |01, gonoratinn

=z
]2 29 2

1

A = e = A A= 4 = A = 2 2 A v I EIIITTT e

JIINJDEDR L('RJJQ
DATParsar Sraus sar>p

o4
]2 29 4

1

317
o

AR R R R R R R R R R R R R R R A R R EE R R EE R AR R R A XXX

O

3719
4O

JIINJPER ("R(]DQ

DACSPAP > ar >F awswr >4 wp

(2225

T

L T R R R R P T PP TR r ey

JLINJIPER (COLINTER

3718

12 29 4
1z~

DATSRP » B = i S e I B 5 & T T T T T T T T T T T ey

JINJPER _SIITILET I

O
]2 292 7

1

T OIVIL TAXCOTLI T L L AThT e e rererirerererererirerirsrssirsesrsrsrsesrsrsesrsrseseseseseseirsrsrsrsrsrsrsrsrsrsrrrsrseseins

3710
o

T OTVEIL LTEX PV IXZIT oo e oo re s e s e s e s e s e s e s e sesesesesesesesesesesesesesesesssesssress

JIINJIDEDR TI/P A D

]2 29 Q
O

1

290

e T T T T T T TR TR R e R R R e R R e e e e e e e e e e erererererererererererererererers D&Y

NP2
VI

12 22]

T

1223

T

=

320
320

€ T O S s s s s s s s s s s s s e s s e

A digoct

Deofinitione
-

o1

zs

]2 22)

1

L322 4= T R T R R T T T T EEEE T

General lonoth MDD _TIAL A

320

12233

1

v

=4

LIV I T T oo e e e e e esssesesessseseseses

SeRera—1tengii1vits
A2 A AL
pas e =

AT

327
=4

3 534 58 & S R TR R R R R R RN R R R R R R R R R R R TR R R

A D Jrons dorivation

12 22 4
Tz

T

327
2772

VT Zz ey aCrivation

12 22 &
1ZZ29

MDS
VI

1224]

1224
1

“

323
2D

B 22272 R R TR R

AMD S dicect

Definitions
Vi

1

4

322
Oz

[2242

T

~-

12 24 4

1

324

AN _HALAC

pas s =4

P 3 1778 A R E Y E Y R R R F Y R R R R R R R R R R R T Y]

A Jrovs Aoy
pas s =

T
]2 24 §

1

T

324
SF-

TV afin

ey aCTrivaitorn

g

276

> 5 r 3 W B T O O O O I I I I O O O O O L C L LA L L LA LI & A%

SHA 1

1225

T

=0

324
324

R 22 R EEEE T T T T R R R ErE T

Deofinitione
CITA 1 A,

oE
]2 248)

12 28]

1z~

1

oo

[= e e a2 4 S A R EEE e T E R R T

324
>z 0

SITA] HIALA(
GEREFAHTCR G D11 VI T T T s e s e e

SITA] A4

General lonoth

=4
17.7<./1

]2 248 2
S

1

327
=4

|2 5 P S S B B2 P S B S R LR R R R R R R R R R R R R R R R R R EE R R R R R R R EA R E A R R EA R R EA EE EE EA ER AR ER)

SHA 1 Jrov doriviation

-

327

[e e S A = e A= i A A A EEL T ErEr e

SHA 256
DT
]2 24 1

[2 255
1

1z~

20

A AT T T T T T T T T R R E R T R T T T YT T T TR R

\v4

1226

329
220

CITA 2854 diopct

Definitions
ISzzces

O
[2 262

T

329
ZO

O S C S T s s s s e s e s

O

]2 2/ 4

1

320

O W T e e e e e e v e e v e v e v e s s s v v v s v s ssvsvsrey

CITA D84 Jrov doy

O1T17T

SIIA D5A HALA(
T D111

]2 24 §

1

O

320
7

Tvationy
OHEY - GBIV AOR e T T e T T S e T T e e e T T e e e e

Or

220

=7 5 v g wr A s T I I I O A

SHA 34

1227

T

7

=

330
330N

CITA 394 Jiopat

Deofinitione

1
]2 27)

12 27]

1z~

IS = e s A 7 2 = R R T R R E R T

[2 27 4

T

3220
=AY

|2 5 Fe S AT iy s B B P S B SRR R R EEEE R R R R R RN R R R E R R R R R R R R EA R R A R R R A R R EA R R EE EE ER AR ER)

CITA 294 TIAAA(
SITA 2894 [ron

-

337
221

doyrivation

12 27 &
1z~ 0

[e e e A = i e 4 2 N

SHA_512

1228

OTI7 X T

O

337
JIT

Definitions

1228 1

1

1

O

B 22272 R R R

CITA 8512 Jiogpct

OT1zT

337
o+

[2 28 2

T

R 22 s NIRRT TR EEEEFEEEFEE R R EFEF

O

Copyright © 2004 RSA Security Inc. |

Draft 65, February-May 2004

CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11 v2.20 (DRAFT)

XX

232
0

CITA 5712 AL A(

1228 4

O1T17T T L P 7S o S R T T Y

O

1

339
>

doyivating

CITA 5719 Jron

12285
1220
T=

Wy O Ty O O e s e e

1

EASTHASH

OT1zT

O

332
3323

TZ Yo T riZ Yot~

12 20 1

=

Deofinitions

1

1

2323
0D

LASTIHASH Jigoect

T

1220 2

1

324

Deofinitione

325

i

AIDI_PRE fire DES_CRC

12 20 2

TVIIZ Z—1 D O I D O s s s s s e s s s e e s

1TZ o000

334

AN PRE {0 DES (R
MDD _PRE {1y

]2 20 4
ot

1

334

v T
334

90

334

O

O e e

CAST CRC.
1T D1 Ot zo-co {101

NS PRE o3 CASTINS (R ((CASTS CBC)

1 D1 oot b
AMDS_PRE fne (CAST CBRBC

pas s =g
Vil

Vil

]2 20 §
A
12 30 A
I=ATras
07
v

1

>

CK_PKCS5 PRKDEY SAIT SOIIRCE _TYPE DTR

337

[SATATS AN TS Shuy oy & B Shu S o 3w

1T Dixiot 2 7171

CTix T IxCo

2320
=4

ey e ATt O s e e s

1T D1Ix1>

T I oo 71

3471
o9

128 hit R4
O—OHAY T

1

CITA] DR {1y
D171 1 D1 Ot

]2 37 1
o1

1

CITA] DRE 453 40) hit R(C4
D11zt D1 JOF U O s s s s e

J2 2])

3471
T

o1

1

342
T

A= > 2 wrrey

128 hit RCIO (R
oO—OHAYC

1

CITA] DRL £y
D171t D17 Ot

]2 2] §
o

1

243
A

CITA] DRE 453 40 hit RCI_(CR(C

]2 2] 4

A7 Z A S T T T T R T YT

O

o1
]2 3] 7

1

117111 D17 O U0 1YC

343
S s
244

SITA] DRA 413 SITA] AL A

DIAZ7T 11 D71 O DIz T T A IVIZ T o s s s s s s s s s s s s s e s s s s e e e

Pye oy

1
1232
Tz

T
344

N IV T o T T T T e e e e oo e e v s ererererererererererererererereverererererevevevey

RIPE-MD

Deofinitions

T

1

]2 239 1

1

344
C A

Topot
O WLSOOL...

RIDL A1) 128 .
Tt Vit

]2 29)
oz

1

12 29 4.
1Z9Z~

345
=

RIDE AM) 129 TIAAA(

PAV S a Sris 5 e oo B P 4 P S B S T

-

345

RIDL A1) 140

]2 29 §
]2 39 7
oz

1

346
—o90

VI 1 00U LV IzZT s

RIDL AD) 160 HA AL

pav s e =)

247
a7

SE

ch
NE

o

—

347
“

Deofinitions

1

]2 233]

1

347
Sa

b amaiams n g ofopa

SLT 100
D11 HCCAGIRES I PAF eI Er S T T e

J2 22)
=en

1

347
“

WE Y W AP P S JOT O e s e s s s s s s s s s s e s s s e s

OAEP Jrovs roranning for
=4 At
LV NKS

72 223 2

1

2490
T

T E TN NI e e e e e s s s ss s s ssesssesy

T

12 24

T

finitione

De

340
Sie s

B 22 e R EE R TR T T T R E R R EEEEE P

349

] VNIKS Jrovs soranning
VIO REY WHAP PR S s

12 24).

4
250

SQY

1TZ o7 Z

1225
=4

50
t

finitione

]2 248] De
oo

1

250
o

monhanicn g atorc

(N4
PO I CCAGRES I PaF IRt eH S s s e

]2 248)
oos

T

350

CK_SST3 RANDOAM D AT A

[=¢s & s SrrrrrrrEren

pavesar=avsis

T o170

CK _SST 2 AMMASTEDR KLY nl?D?Tl? DARAANS DTP

357

[0 PP A A o e B S ¥ AT P I e B B T TR R TR R TRy

IVIZIO T 174X Ixts 1

T oD17o

ry 2004

MEebrua

i

Draft 65

| Copyright © 2004 RSA Security Inc.

XX1

INTRODUCTION

352
0D

Do 3 natoy Jrov gomnoratinn

]2 2348 2

T

T 1€

x4

x4

TS TCT Wy S ET il O s s s e s

352

AMactor frors doyivation

12 245 4
1z~ 0

TS TET Wy A GO s s s s s s s s s s s

-

r4

]2 24 A
4

354
v

TVt

K oy g d AMAC Joge
1T CY-GRAVIA ey atton——

O

1

357
=4

MDA AMACina in SSI 2)

[2 35 7

T

357

L7 AT T

VIZT SO0 o0

SHA I AMACinain SSI 3 0
D111 VA CH g oo

pas s =g

>
12 245 Q
129970

250

TI

1226

T

P = T T T R R T R E R E Y R R E R R R R F R R R R R R R R R R R R TT T

IxeAv

350
7

B 22272 R R R

Definitions
TIS yonhan

D0
]2 34 D

]2 24 1
S

250
=4

fogeQ

Jom napama o

T O T CCHaAT S T PO G E T e S s s s s e

AT

361

AMactor frors doyivation

12 24 &
1290

TS TET Wy A GO s s s s s s s e

12367
1227

T

363

TVt

I Cy Gria iz aCrivaitorn

I oy g d AMAC oy
MWTLS

=AYH

265

A P T O O O O I IR O O O L L L L L LA L L LA LI A 4

7

T4

365
1%

Deofinitione

12 27]
1z

CK WTLS MASTER KEY DERIVE PARAMS PTR

266
00

E S B A T R ERERER R R ERECERER R AR RN

[=s=rava sy arsrave sl s o)

Y 1T oD IVIZIO 1T 171x Ix17 1

TIx

Ko gnd MAC Jdopivat
DETV e Iy GG VI T A e TV IO s s s e

]2 27 7

1

372

1073

Coring

TVt

AAMMAC o
e REY-ARA VA A YO e

Clicnt Jrov an

]2 237 Q

1

373
SEa

O

x4

3758

R 22 EEEE T T T T T R R EEEr

Deofinitione

370

YORno of-aloev and data

]2 29 A

1

I e AN 2y e A A 2 A 4 Y A R T TR TR E R

o0

CMS

2Q9

T T TR R R R TR e e e e R e r e R e e e R e e e e e e e ers DO

1’7_’2(\

T

TIvVIDY

>4

389
O

€ T O S s s s s s s s s s s s s e s s e s e e

Deofinitione

CAMS ciopagtiros

394
o4

VDS ST T T T € e e s s s s s s e s s s s s s s s e s e e e s e e e e s

12 20 4
1 P
12 40

T

2ARA

I A T VY L T T T i e v e e s s s sss JOO

BLrowERISH

Y

394
200

€ T O S e e s s s e s s e s e s e e

Definitione

12 40 3

1

397
O

DTOW ST IE S e T A T O s s s s s s s s s s s s s s s s e e s s e s e e

Blovofich Jrov opperation
Rlovofich (R

DRAveTs

]2 40 4.

397
20

TDCT

DTOWTSTT

DAY

2QQ

WV O I L o e e e s s s s s s s s s s s v e v s e e e e e T e e e T e TS e e e T e e e e e T e T e T e T e v e v e e e e e e v e e v e v e v e v e v e v e v e v e v e v e v e v e v e v e e e e s DS OO

TWORISIHT

30Q
o0

€ T O S s s s s s s s s s s s s s e s e e s

Deofinitione

Copyright © 2004 RSA Security Inc. |

Draft 65, February-May 2004

Xxil PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12 471 D hoofich coryot Jrov ahiontc 39Q
1TZ 91~ ITWORSASCEFEIKEY- OO CETS e o0
12 47 3 "onfieh Trov opnoratinng 2390
12494 1TWOFESHE CHREFAHONR T T 30
12 471 4 "onfic 1274l 290
12914 T WS —CD O

3 1 ARDWARE FoATIRE ORIECTS 200
FARDWARE T EAT ORI BI eI O e e A

J3 71 7 Clock 200
141 SO T T T T T T T T T T T T t/

J3 7 77 Deofinition 200

1T A1+1 B 24 1 A Sravs

J2 7719 Neocrrintinon 200
111 1P ESCFIPRON SEavs

J2 712 71

142z 1

J2 7 2) 3071
1o 12~ oS
J3] 2 23071
1o o
J3 7 2 7 307
1o 1o s
J2 7 39 30171
TIO T 7IV ’

List of Figures

FIGURE 1, GENERAL CRYPTOKI MODEL.....cceiiiiiiiiiirreeeeeeeeeiisiissseeeeseeeeneesisnneeeeeeeessnsisneneeess 14
FIGURE 2, OBJECT HIERARCHY ...eeeiiiiiiiiuuuieeieeeeeiieiiiuseseeesseseeinsnsseeeesseesesnnssnsseesseseessnnssnnneees 1D
FIGURE 3, READ-ONLY SESSION STATES ...eetitiiitiiitiiiiieeiiieeeieeeeereeeeeeeeeeeeeeeeeteeeeeeereeeereeeeee: 20
FIGURE 4, READ/WRITE SESSION STATES ...eiiiiiiiiuuuutieeeesteiiiuesseeeesseseamssssesessesssssmmsnesseeeees 21
FIGURE 5, OBJECT ATTRIBUTE HIERARCHYccoiiiuirreeeeeeeeiiiiiiirneeeeseeeeniiisnneeeeeeeeesnsinsnnneees02

List of Tables

T ABLE |, S Y MBS .t ttuutttttueteteueeseteeeeesennseeennaseeeesnneeeeanasseseennseennnsseeennnsseensnnsseennnnseees 10
TABLE 2, PREFIXES ..ttttttuuuuueeeetttttuusunnnseeseseeesunssnnnseesesssssnnssnsssessessssnsssssssssssssessssnssssssesseseeeel0

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION xxiii

TABLE 3, CHARACTER SET L1veiiiiiiiiiiiiutteeeeeeeetieiiissseeeeeeeeeieiissssseesseeeemmnssssssesseseesommossssseeeees 12
TABLE 4, READ-ONLY SESSION STATES ..iiiiiiiiiiiuuutiiieeeeeeiiiiusreeeesseeeeinissseeeeseeeeeommisneeeeeees 20
TABLE 5, READ/WRITE SESSION STATES ..eiiiiiiiiiiiutuuriieeesiiiiiiuseeeeseeesiinisseeesseseessomisneeeeeeess 21
TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONS....... 22
TABLE 7, SESSION EVENTS L.utiiiiiiiiiiiiitteeeteeeetiiiiisisseeeeeeeeeiiiisssseeeeseeeeamnisssssesseseesomnissnseeeees 22
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS ..uuuuviiiiiiiiiiiiiuiieeiieeeeiieiiiisneeeeseeeeeiaiinnseeeeeeess 27
TABLE 9, MAJOR AND MINOR VERSION VALUES FOR PUBLISHED CRYPTOKI SPECIFICATIONS37
TABLE 10, SLOT INFORMATION FLAGS ...iiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee et eeeeseeeseseeeeeaeeeas 39
TABLE 11, TOKEN INFORMATION FLAGSiiiiiiiiiiiiiiiiieiiiiiiiiiiieeeeeeeeeeiiiiineeeeseeeeeesinsseeeeeees 42
TABLE 12, SESSION INFORMATION FLAGS ...iiiiiiiiuiiiiiiiiiiiiiiiiiiiieieeeeeeeesiiiieeeeeseeeeeeainsneeeeeeens 48
TABLE 13, MECHANISM INFORMATION FLAGS ..oooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeieeeeeeeeeeeeeeeeees 54
TABLE 14, C INITIALIZE PARAMETER FLAGS ...cooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee et ie e eaeaaan 61
TABLE 15, COMMON FOOTNOTES FOR OBJECT ATTRIBUTE TABLESccooiiiiiiiiiiiiiiiiiiieieeeennns 66
TABLE 16, COMMON OBJECT ATTRIBUTEScceitiuuuuitiieeieiieiiurreeeesseeiesiissseressessesomsisseeeeeeess 67
TABLE 17, HARDWARE FEATURE COMMON ATTRIBUTESccvviiiiiiiiiiiiiiiiiiirieerieeeeeeeeeeeeeeees 68
TABLE 18, CLOCK OBJECT ATTRIBUTES .. .iiiiiiiiiiiiiiiiiiieieieieieieieeeseisieieieeeieseeesesesesesesaaaeasenas 69
TABLE 19, MONOTONIC COUNTER ATTRIBUTES ...vvvieiieiiiiiiiiuurreeeeeeeeeeiiisnereeseseeeenninsnnseeeeees 69
TABLE 20, USER INTERFACE OBJECT ATTRIBUTES .. .iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieiiieieiasaieeaeaaenas 71
TABLE 21, COMMON STORAGE OBJECT ATTRIBUTESccevtviiiiiiiiiiiiiiieieiiieirieeeeeeeeeeeeeeeeeeeess 73
TABLE 22, DATA OBJECT ATTRIBUTES .. .iiiiiiiiiiiiiiiiiie it ieieieieieieieseieeeieieseseieeesesesesesessaaeasenas 74
TABLE 23, COMMON CERTIFICATE OBJECT ATTRIBUTESciiiiiiiiiiiiiiiiiiiiieiiiiieieieieseiaeseaaeeas 75
TABLE 24, X.509 CERTIFICATE OBJECT ATTRIBUTEScitiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieieiaiaeasaaeas 77
TABLE 25: WTLS CERTIFICATE OBJECT ATTRIBUTES.....ccttiiiiiiiiiiiiiiiiieeeeeeereeeeeeeeeeeeeeeeeeeess 79
TABLE 26, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES.....cooiiiiiiiiiiiiiieiiieieieeennn, 80
TABLE 27, COMMON KEY ATTRIBUTES ...eieiiiiiiiiiuusteeeeeeeeeiiiissseeeeseeeeeiiissssreeseeeesommisssseeeeees 81
TABLE 28, COMMON PUBLIC KEY ATTRIBUTES ..uuuvviiiiiiiiiiiiiuureeeeeeeeeieiiisseeeeseeeeeensinsneeeeeeess 83
TABLE 29, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC
OB Y S ettt ettt ettt et e e et e et e e et eeee et et et e eeeeeeeeeeeeeeteteeeeeeeteeeee e st teeeseeseteeeeeeereeeees 84
TABLE 30, COMMON PRIVATE KEY ATTRIBUTES ...0veeiiiiiiiiiiiuurreeeeeeeeeeiiiinreeeeeeeeeenninssneeeeeees 84
TABLE 31, COMMON SECRET KEY ATTRIBUTES ..uuvviiiiiiiiiiiiiuirreeeeeeeeieiiiisseeeeseseeeensinsneseeeeess 88
TABLE 32, COMMON DOMAIN PARAMETER ATTRIBUTESccevviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeess 91
TABLE 33, COMMON MECHANISM ATTRIBUTES ...ciiiiiiiiiiiiiiiiiiieiiieieieieieieeeieeeeeieseseseeeaaeaaenns 92
TABLE 34, MECHANISMS VS. FUNCTIONSiiiitiurteeeieeeeiiiiiitieeeeseeeeeniiisnseeeeeeeeeeniinssnseeeeees 196
TABLE 40, RSA PUBLIC KEY OBJECT ATTRIBUTESotiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeesiieieaesaeaaaens 208
TABLE 41, RSA PRIVATE KEY OBJECT ATTRIBUTEScceiiiiiiiiiiiiiiiiiiiiieiiiiieieieeeeeeeeeeeeeeeess 209
TABLE 42, PKCS #1 v1.5 RSA: KEY AND DATA LENGTH ...ooooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeannn, 213
TABLE 43, PKCS #1 MASK GENERATION FUNCTIONS ...iiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeieeeienaeeaans 214
TABLE 44, PKCS #1 RSA OAEP: ENCODING PARAMETER SOURCESccooiiiiiiiiiiiiiiiiinnnn. 214
TABLE 45, PKCS #1 RSA OAEP: KEY AND DATA LENGTH ...ccvvvvviiiiiiiiiiiiiiiiiiieieeeeeeeeee, 216
TABLE 46, PKCS #1 RSA PSS: KEY AND DATA LENGTH ...ooooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeann, 217
TABLE 47, ISO/IEC 9796 RSA: KEY AND DATA LENGTH.....cceiiiiiiiiiiiiiiiiieeieiiiinniereeesess 218
TABLE 48, X.509 (RAW) RSA: KEY AND DATA LENGTH ...cooiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeaan, 220
TABLE 49, ANSI X9.31 RSA: KEY AND DATA LENGTH ...ccovviiiiiiiiiiiiiiiiiiiiieiiiieeieeeeeeeees, 221
TABLE 50, PKCS #1 v1.5 RSA SIGNATURES WITH VARIOUS HASH FUNCTIONS: KEY AND
DATA LENGTH. ...uuuttutiieieeiieiiiisteeeeeseeeieiiissseeeesseteeaessssseesseeeesianissssseesseesemnesssssseseeeeenans 222

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

XXiv

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 51, PKCS #1 RSA PSS SIGNATURES WITH VARIOUS HASH FUNCTIONS: KEY AND
DATA LENGTH. ...uuuttuiiieieeiiiiiiiiueeeeeeeeeeieiissseeeessesteiesssnseessseseeienisssseeeeseessanmsssnneesseseeannns 223
TABLE 52, ANSI X9.31 RSA SIGNATURES WITH SHA-1: KEY AND DATA LENGTH. 223
TABLE 53, DSA PUBLIC KEY OBJECT ATTRIBUTEScciiiiiiiiiiiiiiiiiiiieieiiieeeieiiieieieieseseseeens 224
TABLE 54, DSA PRIVATE KEY OBJECT ATTRIBUTES....ciiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieeieiesesesasaaaeas 225
TABLE 55, DSA DOMAIN PARAMETER OBJECT ATTRIBUTES ...coiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeans 226
TABLE 56, DSA: KEY AND DATA LENGTH ...coooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeaeeeeeaean 228
TABLE 57, DSA WITH SHA-1: KEY AND DATA LENGTH ..oooiiiiiiiiiiieieceeeeeeeeeeeeeeeeeeeeeeeannn 229
TABLE 58, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH ...coooiiiiiiiiiiiiiiiiieieieeeeennn, 229
TABLE 59, MECHANISM INFORMATION FLAGS ..uuvvviiiiiiiiiiiiiiiiiieieeeieciiiiiieeeeeeeeieinnseneeeenss 230
TABLE 60, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTES.....cccoiiiiiiiiiiiiiiiiieieieeeeennn. 232
TABLE 61, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTES ...ccoooiiiiiiiiiiiiiiieieieieiennn. 233
TABLE 62, ECDSA: KEY AND DATA LENGTH ..uuvvveiiiiiiiiiiiiiiieieeeeeeisiiiiinseeeeeeeeeisiinsneeeeeeees 235
TABLE 63, ECDSA WITH SHA-1: KEY AND DATA LENGTH ...coooiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeaan, 236
TABLE 64, EC: KEY DERIVATION FUNCTIONScciiiiiiiiiiiiieiiieieeeieeeeeeeeeeeeeeeeeieeeieieeeseeeeeeeans 236
TABLE 65, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ...coooiiiiiiiiiiiiiiiiieieieeeiennn, 242
TABLE 66, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ...ccoooeiiiiiiiiiiennnnn. 243
TABLE 67, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTEScooiiiiiiiiiiiiiiiiiiiiieiennn. 244
TABLE 68, X9.42 DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTESccceeeeeieiennnnnn.. 245
TABLE 69, DIFFIE-HELLMAN DOMAIN PARAMETER OBJECT ATTRIBUTES.......cceeeeeennnn... 246
TABLE 70, X9.42 DIFFIE-HELLMAN DOMAIN PARAMETERS OBJECT ATTRIBUTES............ 247
TABLE 71, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS ...coooiiiiiiiiiiiiiiiiiiennnnn, 251
TABLE 72, KEA PUBLIC KEY OBJECT ATTRIBUTEScociiiiiiiiiiiiiiiiiieiiieieeiieeeieieieieieeeeeeeans 261
TABLE 73, KEA PRIVATE KEY OBJECT ATTRIBUTES ...ciiiiiiiiiiiiiiiiiiieiiieieiiieieeeieieieseseneaeans 262
TABLE 74, KEA PARAMETER VALUES AND OPERATIONS .. .cciiiiiiiiiiiiiiiiiiiiieiiieieieiesanaaaaneas 264
TABLE 75, GENERIC SECRET KEY OBJECT ATTRIBUTES ...uuuvuveiiiiieiiiiiiiinreeeeeeeeeiiiinnseneeenss 269
TABLE 76, RC2 SECRET KEY OBJECT ATTRIBUTEScciiiiiiiiiiiiiiiieiiieieieieeiieieeeeeieieseeeeeeeans 271
TABLE 78, RC2-ECB: KEY AND DATA LENGTH ...coiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeieeeieieeeaeneeeeeans 275
TABLE 79, RC2-CBC: KEY AND DATA LENGTH ...cceiiiiiiiiiiiiiieieeeeeeiiiiiiinreeeeeeeeeiiiinsseeeeeess 276
TABLE 80, RC2-CBC wITH PKCS PADDING: KEY AND DATA LENGTH ...cooooiiiiiiiinnnnn.. 2717
TABLE 81, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTHccoooeveieeieeeiennnnn.. 277
TABLE 82, RC2-MAC: KEY AND DATA LENGTH....cooiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeieeeeeieieaeaeeeeans 278
TABLE 83, RC4 SECRET KEY OBJECT . .00eiiiiiiiiiiiinieeeeeeeeiiiiiisseeesseeeeneiisnseeeeeseeeinsinsssseeeeess 279
TABLE 84, RC4: KEY AND DATA LENGTH ...ccooiiuuueiiiieieiiiiiiiiieieseeeeieiiiisneeeeeeeeeeininnseeeeesees 280
TABLE 85, RC5 SECRET KEY OBJECT .. cciiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieieeeeeeeeeseeeeeeans 281
TABLE 86, RC5-ECB: KEY AND DATA LENGTH ...cooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeieeeieieeeseaeeeeaans 284
TABLE 87, RC5-CBC: KEY AND DATA LENGTH ...cceiiiiiiiiiiiiiieieeeeeeiiiiiiinreeeeeeeeeiniinssneeeeeess 285
TABLE 88, RC5-CBC wITH PKCS PADDING: KEY AND DATA LENGTH ...cooooiiiiiiinnnnnn... 286
TABLE 89, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTHccoooveieieieieiennnnn.. 287
TABLE 90, RC5-MAC: KEY AND DATA LENGTH....coiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeieieieeeneeeaaans 287
TABLE 91, AES SECRET KEY OBJECT ATTRIBUTES......cciottituueieeeeeeeniiinnreeereeeeeiniinsnneeeeeess 288
TABLE 92, AES-ECB: KEY AND DATA LENGTH ...cciiiiiiiiiiiiiiiiieeeeeiiiiiiinneeeeeeeeeisiinsseeeeeeess 290
TABLE 93, AES-CBC: KEY AND DATA LENGTH.....ccooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeann 291
TABLE 94, AES-CBC wWITH PKCS PADDING: KEY AND DATA LENGTH.....cooeoeeeeeeennnnnn... 292
TABLE 95, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTH ...cooooiiiiiiiiiiiieiennnnn, 292
TABLE 96, AES-MAC: KEY AND DATA LENGTH ...ccooiiiiiiiiiiiiiieeeiiiiiiiinieeeeeeeeeiiiinnseeeeeess 293

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION XXV

TABLE 97, DES SECRET KEY OBJECT ..vviiiiiiiiiiiusieeeeeeeeiiaiiisseeesseeeeniiisnseeeeeeeeesmsisssnseeeeess 295
TABLE 98, CAST SECRET KEY OBJECT ATTRIBUTESccooiuuueiiiieeiiiiiiiuneeeeeeeeeeiniinsneeeeeeess 296
TABLE 99, CAST3 SECRET KEY OBJECT ATTRIBUTEScceviiiiiiiiiiiiiiiiieiiiiieieieeeeeeeeeeeeeeees 297
TABLE 100, CAST128 (CASTS) SECRET KEY OBJECT ATTRIBUTES ..vvvvviiiiiiiiiiiineieneeeess. 297
TABLE 101, IDEA SECRET KEY OBJECTciiiitiuuueeeeeeeeiiiiiiuneeeseeeeeniiisnseeeeeseeeinsissnseeeeess 298
TABLE 102, CDMF SECRET KEY OBJECT.....ccitttuuttitiieieiiiiiiuueeeseeeeieiiisneeeseeeseeinninsseseeeeess 299
TABLE 103, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH......cccovvvveeeeeennne... 301
TABLE 104, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH......coooeeiieieiennnnn.. 302
TABLE 105, GENERAL BLOCK CIPHER CBC wITH PKCS PADDING: KEY AND DATA
LENGTH cuutiiiiiieiieiitiiee e e eeett et e e e e et teittteeeeeseeseeeessssseessseeeeennnnsseeeeeseeaaannnssnneesseseeannn 303
TABLE 106, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH304
TABLE 107, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTHcoooeeeeeieiennnnn.. 304
TABLE 108, MECHANISM PARAMETERSceiiiiiiuuteeeieeeeiiaiiitiseeesseeeeniiisnseeeeeseeesnninssnseeeeees 305
TABLE 109, DES2 SECRET KEY OBJECT ATTRIBUTESiitiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieiasaeaaans 307
TABLE 110, DES3 SECRET KEY OBJECT ATTRIBUTES....ccctvtiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeees 308
TABLE 111, OFB: KEY AND DATA LENGTH....ooiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeseieeeeeieieseneeaaens 310
TABLE 112, CFB: KEY AND DATA LENGTHuuuutieeeiiiieiiiiiiieeeeeeeeeesiiiinnseeeeeeeeeiniinsnneeeeeess 311
TABLE 113, SKIPJACK SECRET KEY OBJECT .uuuuvviiiiiiiiiiiiiiiueieseeeeiiiiiisneeeeeeeeeeiniinnsneeeeeess 312
TABLE 114, SKIPJACK-ECB64: DATA AND LENGTHccovviiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeess 317
TABLE 115, SKIPJACK-CBC64: DATA AND LENGTH ...cooiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeaeeeean, 317
TABLE 116, SKIPJACK-OFB64: DATA AND LENGTH ...ooiiiiiiiiiiiiiiiiiiiieieiiieiieeeiieieieieieeans 318
TABLE 117, SKIPJACK-CFB64: DATA AND LENGTH ...oioiiiiiiiiiiiiiiiiieieeeeeieeeeeieieieieneeeeans 318
TABLE 118, SKIPJACK-CFB32: DATA AND LENGTH ...cocvviiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeees 319
TABLE 119, SKIPJACK-CFB16: DATA AND LENGTH ..cooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeieeeeeaeeeaan, 319
TABLE 120, SKIPJACK-CFB8: DATA AND LENGTH ...cooiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeeieieiesaiaanns 320
TABLE 121, BATON SECRET KEY OBJECT ..ceioiuuuuuiiiieieiiiiiiieeeeseeeeieiiisneeeeeeeeeeinninsseeeeesess 321
TABLE 122, BATON-ECB128: DATA AND LENGTH ...cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeenss 323
TABLE 123, BATON-ECB96: DATA AND LENGTH ...ccoiiiiiiiiiiiiiiiieieeeeeeeeeeeieieeeeeieeeseneeeeans 323
TABLE 124, BATON-CBC128: DATA AND LENGTH ...ccooiiiiiiiiiiiiiiiiiiiiieieiiieieieieieieieseieenns 324
TABLE 125, BATON-COUNTER: DATA AND LENGTH ...ooiiiiiiiiiiiiiiiiiiieeiieieeeieieeeieeeeeeans 324
TABLE 126, BATON-SHUFFLE: DATA AND LENGTH.....cccoviiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeees, 325
TABLE 127, JUNIPER SECRET KEY OBJECT ...ciiiiiiiiiiiiiieieieeeieeeeeeeieeeeeeeeeeeieieeeieieeeseseaeeaans 326
TABLE 128, JUNIPER-ECB128: DATA AND LENGTH ...ccoiiiiiiiiiiiiiiiiiiiiiieiiiiiieeieieieieseeeaaans 328
TABLE 129, JUNIPER-CBC128: DATA AND LENGTH....cooiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeieieieieieeans 328
TABLE 130, JUNIPER-COUNTER: DATA AND LENGTH.....cccvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeees. 329
TABLE 131, JUNIPER-SHUFFLE: DATA AND LENGTH ..ccooiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeaaan, 329
TABLE 132, MD2: DATA LENGTH ...uuvtveiiiieeiiiiiiisseeeeeeeetiiiiisseeesseeeenieisnseeeeeseeesnnissnseeeeess 330
TABLE 133, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTHcoooeeeiiinnnnnn... 330
TABLE 134, MD5: DATA LENGTH ...eeeiiiiiiiiiiiiiiiiiieiieeeeieieeeeeeeeeeeeeeeeeeeeeeeereeeereeeereeeereeeeeeee: 333
TABLE 135, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTHccoeeeeeennnnnn... 334
TABLE 136, SHA-1: DATA LENGTH ..uuveiiiiiiiiiiiiiinieeeieeeeiiiiiiiseeeseeeeeniiisnseeeeeseeeinninssneeeeeess 336
TABLE 137, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH......ceeeennnnnn... 337
TABLE 138, SHA-256: DATA LENGTH ...cooviiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeieeeeeeeeereeeeeeeeeeeeeeeeeeeeeees 339
TABLE 139, GENERAL-LENGTH SHA-256-HMAC: KEY AND DATA LENGTH.................. 339
TABLE 140, SHA-256: DATA LENGTH ..eeoiiiiiiiiiiiuiieeeeeeeiiiiiiiseeeseeeeeaiiisnseeeeeeeeeinsinssneeeeeees 340
TABLE 141, SHA-512: DATA LENGTH ..ooiiiiiiiiiiiiiieiieeeeiieiiiieeeeseeeeeeiiisneeeseeeseeinninsneeeeesess 341

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc.

XXVi PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 142, FASTHASH: DATA LENGTHcoiiiiuuiiiiieiieiiiiiiiieeeeeeeeesiiiinnneeeeeeeeeiniinnsneeeeeess 343
TABLE 143, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS......... 347
TABLE 144, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCEScccooeiiiiiiiiieieeeennnn. 348
TABLE 145, RIPE-MD 128: DATA LENGTH ...cooiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeieieieseieeeaeaeeeaeans 354
TABLE 146, GENERAL-LENGTH RIPE-MD 128-HMAC:ottt 355
TABLE 147, RIPE-MD 160: DATA LENGTH ...couuuviiiiiiiiiiiiiiiieieeeeeeieiiiineeeeeeeeeeinsinsseeeeeeess 355
TABLE 148, GENERAL-LENGTH RIPE-MD 160-HMAC: ...ttt 356
TABLE 149, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH ...cooooviiiiiiiiiiieieieeennnnn, 367
TABLE 150, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH......cooooiiiiiiiiiiieiennnnn. 368
TABLE 151, CMS SIGNATURE MECHANISM OBJECT ATTRIBUTESccoiiiiiiiiiiiiiiiiieiiieiennn. 393
TABLE 152, BLOWFISH SECRET KEY OBIECT .. .ccciiiiiiiiiiiiiiiiieieeeieeeeeieeeeeieieeeeeieieeeneeeeeans 397
TABLE 153, TWOFISH SECRET KEY OBJIECT L..iiiiiiiiiiiiiiiieiiieieieeeeeeeeeieeeeeieeeieieeeaeieeeseseeeaans 399
S o e 3 s e S E R R EEEE e R e R 0
TABERE2ZPREFIES 10
e 2

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

INTRODUCTION XXvil

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

XXViil PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

XXiX

INTRODUCTION

PIOLN
XL ~T4

TArre 124 MDY DATA T ENGTLE

T 7Y T Z Ty IVIE I Z T I 77X T 7YX LT I N T L Ll s o o eeeeseesesnssvssessesssssssossossessesvesossesoessesssesossssscsscsnssnsscsncss

20
o0z=0O

T XD T 0T IVIIT DT I 7YX I 7K L N T T Ll c i o ereesesvesvssessessssossessesssssssossessssssssssossessssssssssvssossssscsnsses

PATA I ENGTH

Taprre 126 MPS-

221
0T

- PATA T ENGTH
LY S e I A S NN N R x xxxxxxIxxxxmmnnnnmnonononoanonoanoaoanoaénaonononononononoaToanoagTanagaganonanoaanoangagTg§niTédniTéninngyg>™@™

| 5 v e

TArIE 12 QITA _1]

T7YD T 120,

224
00T

DX A7 X Z T EFTY L 7Y ETLINST LT cecsescescescssossessessesossossessessesossossessessesossossessosssesossossoss

TAarre 120 SHA 256 D AaTA T ENGTFH

T7YD T TOYT

Copyright © 2004 RSA Security Inc.

| Draft 65, February-May 2004

19. INTRODUCTION 1 |

1 Introduction

As cryptography begins to see wide application and acceptance, one thing is increasingly
clear: if it is going to be as effective as the underlying technology allows it to be, there
must be interoperable standards. Even though vendors may agree on the basic
cryptographic techniques, compatibility between implementations is by no means
guaranteed. Interoperability requires strict adherence to agreed-upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives
of industry, academia and government, a family of standards called Public-Key
Cryptography Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing
public-key and related technology. It is RSA Laboratories' intention to improve and
refine the standards in conjunction with computer system developers, with the goal of
producing standards that most if not all developers adopt.

The role of RSA Laboratories in the standards-making process is four-fold:
1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.
4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority on
each document, though input from reviewers is clearly influential. However, RSA
Laboratories’ goal is to accelerate the development of formal standards, not to compete
with such work. Thus, when a PKCS document is accepted as a base document for a
formal standard, RSA Laboratories relinquishes its “ownership” of the document, giving
way to the open standards development process. RSA Laboratories may continue to
develop related documents, of course, under the terms described above.

PKCS documents and information are available online at
http://ww. rsasecurity.com rsal abs/ PKCS/. There is an electronic
mailing list, “crypt oki ”, at rsasecurity. com specifically for discussion and
development of PKCS #I1. To subscribe to this list, send e-mail to
maj or dono@r sasecurity. comwith the line “subscri be cryptoki” in the
message body. To unsubscribe, send e-mail to maj or dono@r sasecurity. com
with the line “unsubscri be crypt oki ” in the message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

2 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS Editor
RSA Laboratories
174 M ddl esex Turnpi ke

Bedford, MA 01730 USA
pkcs-editor @sasecurity.com
http://ww. rsasecurity. comrsal abs/ PKCS/

It would be difficult to enumerate all the people and organizations who helped to produce
PKCS #11. RSA Laboratories is grateful to each and every one of them. Special thanks
go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA for the many hours
they spent writing up parts of this document. Thanks also for the many other technical
descriptions provided by many industry specialists. The reviewers of the document,
without whose help the quality of the content would not be as great, must also be
acknowledged and thanked. The review effort cannot be underestimated especially for a
document so large.

For Version 1.0, PKCS #11’s document editor was Aram Pérez of International
Computer Services, under contract to RSA Laboratories; the project coordinator was Burt
Kaliski of RSA Laboratories. For Version 2.01, Ray Sidney served as document editor
and project coordinator. Matthew Wood of Intel was document editor and project
coordinator for Version 2.10 and Version 2.11. Simon McMahon from Eracom was
editor for Version 2.20 while Magnus Nystrom of RSA coordinated the project.

2 Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki, pronounced “crypto-key” and short for “cryptographic token interface,”
follows a simple object-based approach, addressing the goals of technology
independence (any kind of device) and resource sharing (multiple applications accessing
multiple devices), presenting to applications a common, logical view of the device called
a “cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from the PKCS Web
page. This document and up-to-date errata for Cryptoki will also be available from the
same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to run in a
different environment; thus, the application is portable. How Cryptoki provides this

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

39. REFERENCES 3 |

isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

A number of cryptographic mechanisms (algorithms) are supported in this version. In
addition, new mechanisms can be added later without changing the general interface. It
is possible that additional mechanisms will be published from time to time in separate
documents; it is also possible for token vendors to define their own mechanisms
(although, for the sake of interoperability, registration through the PKCS process is
preferable).

Cryptoki is intended for cryptographic devices associated with a single user, so some
features that might be included in a general-purpose interface are omitted. For example,
Cryptoki does not have a means of distinguishing multiple users. The focus is on a single
user’s keys and perhaps a small number of certificates related to them. Moreover, the
emphasis is on cryptography. While the device may perform useful non-cryptographic
functions, such functions are left to other interfaces.

3 References

ANSIC ANSV/ISO. American National Standard for Programming Languages
—C. 1990.

ANSI X9.31 Accredited Standards Committee X9. Digital Signatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). September 9, 1998.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. March 9, 2001.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA). 1998.

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography. 2001.

CC/PP W3C. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.org/TR/CCPP-struct-vocab/

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46-3 NIST. FIPS 46-3: Data Encryption Standard (DES). October 25,
1999. URL.: http://csrc.nist.gov/publications/fips/index.html

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

4 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FIPS PUB 74 NIST. FIPS 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April I, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 81 NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
http://csre.nist.gov/publications/fips/index.html

FIPSPUB 113 NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 180-2 NIST. FIPS 180-2: Secure Hash Standard. August 1, 2002. URL:
http://csre.nist.gov/publications/fips/index.html

FIPS PUB 186-2 NIST. FIPS 186-2: Digital Signature Standard. January 27, 2000.
URL: http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 197 NIST. FIPS 197: Advanced Encryption Standard (AES). November
26, 2001. URL: http://csrc.nist.gov/publications/fips/index.html

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November 1995.

GCS-API X/Open Company Ltd. Generic Cryptographic Service API (GCS-
API), Base - Draft 2. February 14, 1995.

ISO/IEC 7816-1 ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 1: Physical Characteristics. 1998.

ISO/IEC 7816-4 1SO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

ISO/IEC 8824-1 ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO/IEC 8825-1 1SO. Information Technology—ASN.I Encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). 2002.

ISO/IEC 9594-1 ISO. Information Technology — Open Systems Interconnection — The
Directory.: Overview of Concepts, Models and Services. 2001.

ISO/IEC 9594-8 ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO/IEC 9796-2 ISO. Information Technology — Security Techniques — Digital
Signature Scheme Giving Message Recovery — Part 2: Integer
factorization based mechanisms. 2002.

Java MIDP Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL:
http://jcp.org/jsr/detail/118.jsp

MeT-PTD MeT. MeT PTD Definition — Personal Trusted Device Definition,
| Version 1.0, February 2003+. URL: http://www.mobiletransaction.org

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

39. REFERENCES 5 |

PCMCIA Personal Computer Memory Card International Association. PC Card
Standard, Release 2.1,. July 1993.

PKCS #1 RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.
URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

PKCS #3 RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
3/index.html

PKCS #5 RSA Laboratories. Password-Based Encryption Standard. v2.0,
March 25, 1999. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
5/index.html

PKCS #7 RSA Laboratories. Cryptographic Message Syntax Standard. v1.5,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
7/index.html

PKCS #8 RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
8/index.html

PKCS #11-C RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
11/index.html

PKCS #11-P RSA Laboratories. PKCS #11 Profiles for mobile devices, June 2003.
URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html

PKCS #12 RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
12/index.html

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992. URL: http://ietf.org/rfc/rfc1319.txt

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT

Laboratory for Computer Science and RSA Data Security, Inc., April
1992. URL: http://ietf.org/rfc/rfc1321.txt

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

RFC 2045 Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL: http://ietf.org/rfc/rfc2045.txt

RFC 2246 T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL: http://ietf.org/rfc/rfc2246.txt
RFC 2279 F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646

Alis Technologies, January 1998. URL: http://ietf.org/rfc/rfc2279.txt

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

RFC 2534

RFC 2630

RFC 2743

RFC 2744

SEC 1

SEC 2

TLS

WIM

WPKI

WTLS

X.500

X.509

X.680

X.690

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL: http://ietf.org/rfc/rfc2630.txt

J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000.
URL: http://ietf.org/rfc/rfc2743.txt

J. Wray. RFC 2744: Generic Security Services API Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL:
http://ietf.org/rfc/rfc2246.txt

WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July
2001. URL: http://www.wapforum.org/

WAP. Wireless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-
20010406-a. April 2001. URL: http://www.wapforum.org/.

ITU-T. Information Technology — Open Systems Interconnection —
The Directory.: Overview of Concepts, Models and Services. February
2001.

Identical to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.

Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. [Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

49. DEFINITIONS

4 Definitions

For the purposes of this standard, the following definitions apply:

API
Application

ASN.1
Attribute
BATON
BER
CAST

CAST3

CASTS

CAST128

CBC

CDMF

Certificate

CMS
Cryptographic Device

Cryptoki

Cryptoki library

DER

Draft 65, Eebruary-May 2004

Application programming interface.

Any computer program that calls the Cryptoki
interface.

Abstract Syntax Notation One, as defined in X.680.
A characteristic of an object.

MISSI’s BATON block cipher.

Basic Encoding Rules, as defined in X.690.

Entrust Technologies’ proprietary symmetric block
cipher.

Entrust Technologies’ proprietary symmetric block
cipher.

Another name for Entrust Technologies’ symmetric
block cipher CAST128. CAST128 is the preferred
name.

Entrust Technologies’ symmetric block cipher.

Cipher-Block Chaining mode, as defined in FIPS PUB
81.

Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

A signed message binding a subject name and a public
key, or a subject name and a set of attributes.

Cryptographic Message Syntax (see RFC 2630)

A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in
this standard.

Distinguished Encoding Rules, as defined in X.690.

Copyright © 2004 RSA Security Inc. |

DES

DSA

EC
ECB

ECDH
ECDSA
ECMQV
FASTHASH
IDEA

v
JUNIPER
KEA
LYNKS
MAC

MD2

MDS5

Mechanism
MQV
OAEP
Object

PIN
PKCS
PRF
PTD
RSA
RC2
RC4

| Copyright © 2004 RSA Security Inc.

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Data Encryption Standard, as defined in FIPS PUB 46-
3.

Digital Signature Algorithm, as defined in FIPS PUB
186-2.

Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB
81.

Elliptic Curve Diffie-Hellman.

Elliptic Curve DSA, as in ANSI X9.62.

Elliptic Curve Menezes-Qu-Vanstone

MISSI’s FASTHASH message-digesting algorithm.
Ascom Systec’s symmetric block cipher.
Initialization Vector.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPYRUS.

Message Authentication Code.

RSA Security's MD2 message-digest algorithm, as
defined in RFC 1319.

RSA Security's MD5 message-digest algorithm, as
defined in RFC 1321.

A process for implementing a cryptographic operation.
Menezes-Qu-Vanstone
Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a
certificate, or a key.

Personal Identification Number.

Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

RSA Security’s RC2 symmetric block cipher.

RSA Security’s proprietary RC4 symmetric stream
cipher.

Draft 65, MEebruary 2004

49. DEFINITIONS

RC5
Reader

Session

SET
SHA-1

SHA-256

SHA-384

SHA-512

Slot
SKIPJACK
SSL

Subject Name

SO
TLS
Token

User

UTF-8

WIM
WTLS

Draft 65, Eebruary-May 2004

9 |

RSA Security’s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logical connection between an application and a
token.

The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm with a 160-bit
message digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 256-bit message
digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message
digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message
digest, as defined in FIPS PUB 180-2.

A logical reader that potentially contains a token.
MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a
key is assigned.

A Security Officer user.
Transport Layer Security.

The logical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to
Cryptoki.

Universal Character Set (UCS) transformation format
(UTF) that represents ISO 10646 and UNICODE
strings with a variable number of octets.

Wireless Identification Module.

Wireless Transport Layer Security.

Copyright © 2004 RSA Security Inc. |

10

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

5 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes
Prefix | Description
C_ Function
CK_ Data type or general constant
CKA | Attribute
CKC_ | Certificate type
CKD | Key derivation function
CKF_ | Bit flag
CKG_ | Mask generation function
CKH_ | Hardware feature type
CKK | Key type
CKM | Mechanism type
CKN_ | Notification
CKO _ | Object class
CKP_ | Pseudo-random function
CKS | Session state
CKR_ | Return value
CKU_ | User type
CKZ | Salt/Encoding parameter source
h a handle
ul a CK_ULONG
p a pointer
pb a pointer to a CK_ BYTE
ph a pointer to a handle
pul a pointer to a CK_ULONG

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

59. SYMBOLS AND ABBREVIATIONS 11 |

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
t ypedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
t ypedef CK BYTE CK CHAR;

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK _UTF8CHAR,

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
t ypedef unsigned |long int CK _ULONG

/* a signed value, the sane size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */
t ypedef CK _ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR _PTR /* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK_UTF8CHAR */
CK_ULONG PTR /* Pointer to a CK _ULONG */
CK_ vO D _PTR /[* Pointer to a void */

Cryptoki also defines a pointer to a CK VOID PTR, which is implementation-
dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application is linked.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

12 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
All numbers and values expressed in this document are decimal, unless they are preceded
by “0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI
C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters | ! “#% & () *+,-./:;<=>2[\]" _{]|}~

Blank character ¢

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified
in RFC2279. UTF-8 allows internationalization while maintaining backward
compatibility with the Local String definition of PKCS #11 version 2.01.

In Cryptoki, a flag is a Boolean flag that can be TRUE or FALSE. A zero value means
the flag is FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these
macros, if needed:

#i f ndef FALSE
#defi ne FALSE O
#endi f

#i f ndef TRUE

#define TRUE (! FALSE)

#endi f
Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the
private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications
are developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6 General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 13 |

cards, and smart diskettes. There are already standards (de facto or official) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the
device. To do so is still a long-term goal, and would certainly contribute to
interoperability. The primary goal of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a “cryptographic token” (or simply “token’).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one
device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with
the functions that Cryptoki provides. Cryptoki is intended to complement, not compete
with, such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 2743 and RFC 2744) and “Generic Cryptographic Service
API” (GCS-API) from X/Open.

6.2 General model

Cryptoki's general model is illustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with
one or more cryptographic devices, on which some or all of the operations are actually
performed. A user may or may not be associated with an application.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

14

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Application 1

v

Application k

v

Other Security Layers

Other Security Layers

v

Crvptoki

v

_l

Cryvptoki

l_l

Device Contention/Synchronization

l_l

_l

Slot 1 Slot n
Token 1 Token n
(Device 1) (Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots”. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the slot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of slots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a
system has some number of slots, and applications can connect to tokens in any or all of
those slots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logically like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or
even know which ones are involved); Cryptoki hides these details. Indeed, the
underlying “device” may be implemented entirely in software (for instance, as a process
running on a server)—no special hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; alternatively, Cryptoki can be a so-called “shared” library (or dynamic link

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 15 |

library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if a library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not all libraries will support all the mechanisms (algorithms) defined in this
interface (since not all tokens are expected to support all the mechanisms), and libraries
will likely support only a subset of all the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will
be developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles” will emerge.

6.3 Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object stores a certificate. A
key object stores a cryptographic key. The key may be a public key, a private key, or a
secret key; each of these types of keys has subtypes for use in specific mechanisms. This
view is illustrated in the following figure:

Object

Data Key Certificate

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

16 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Objects are also classified according to their lifetime and visibility. “Token objects” are
visible to all applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions” (connections between an application and
the token) are closed and the token is removed from its slot. “Session objects” are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects”; however, to view “private objects”, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See Table 6Fable-6 on page 22 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random
number generator.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of
“objects,” or be able to perform every kind of cryptographic function. Many devices will
simply have fixed storage places for keys of a fixed algorithm, and be able to do a limited
set of operations. Cryptoki's role is to translate this into the logical view, mapping
attributes to fixed storage elements and so on. Not all Cryptoki libraries and tokens need
to support every object type. It is expected that standard “profiles” will be developed,
specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as a modulus or exponent
for RSA keys.

6.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer
(SO). The other type is the normal user. Only the normal user is allowed access to
private objects on the token, and that access is granted only after the normal user has
been authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private
objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 17 |

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that
they are variable-length strings of characters from the set in Table 3Fable-3. Any |
translation to the device’s requirements is left to the Cryptoki library. The following
issues are beyond the scope of Cryptoki:

* Any padding of PINS.

* How the PINs are generated (by the user, by the application, or by some other
means).

PINs that are supplied by some means other than through an application (e.g., PINs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such a PIN to be supplied and used, and little more.

6.5 Applications and their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki function C_Initialize (see Section 11.4) from one of its threads; after this call is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki function C_Finalize (see Section 11.4) and ceases to
be a Cryptoki application.

6.5.1 Applications and processes

In general, on most platforms, the previous paragraph means that an application consists
of a single process.

Consider a UNIX process P which becomes a Cryptoki application by calling
C_Initialize, and then uses the f or k() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write
operation, if the operating system follows the copy-on-write paradigm), they are not part
of the same application. Therefore, if C needs to use Cryptoki, it needs to perform its
own C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki is undefined if C tries to use it without its own C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI NOT INITIALIZED;
however, because of the way f or k() works, insisting on this return value might have a

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

18 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potential “shortcuts” which might (or might not!) be available because of this.

In the scenario specified above, C should actually call C_Initialize whether or not it
needs to use Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize
immediately thereafter. This (having the child immediately call C_Initialize and then
call C_Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of the f or k() call; however, it is not required by Cryptoki.

6.5.2 Applications and threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki
enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki
library with a call to C_Initialize, it can specify one of four possible multi-threading
behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 3 and 4" types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling
mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If a call is made by a thread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 19 |

See Section 9.7 for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.6 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token’s objects and functions. A session provides a logical connection
between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenticated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if a single application has multiple sessions open with a token, and it uses one of
them to create a session object, then that session object is visible through any of that
application’s sessions. However, as soon as the session that was used to create the object
is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
a limited number of sessions—or only a limited number of read/write sessions-- however.

An open session can be in one of several states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are
described in Section 6.6.1 and Section 6.6.2.

6.6.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initially opened, it is in either the “R/O Public Session” state (if the
application has no previously open sessions that are logged in) or the “R/O User
Functions” state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

20 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Close Session/
Device Removed

R/O Public

Open Session Session

Login User

Close Session/
Device Removed

R/O User
Functions

Open Session

Figure 3, Read-Only Session States

The following table describes the session states:

Table 4, Read-Only Session States

State Description

R/O Public Session | The application has opened a read-only session. The application
has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions | The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.6.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.
When the session is opened, it is in either the “R/W Public Session” state (if the
application has no previously open sessions that are logged in), the “R/W User
Functions” state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions” state (if the application already has an open
session that the SO is logged into).

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW

R/W SO
Functions

Close Session/

Open Session Device Removed

Open Session Close Session/

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session .
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States

The following table describes the session states:

Table 5, Read/Write Session States

State Description

has read/write access to all public objects.

R/W Public Session | The application has opened a read/write session. The application

R/W SO Functions | The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal user’s

PIN.
R/W User The normal user has been authenticated to the token. The
Functions application has read/write access to all objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no

access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User

Functions” session cannot create or delete a token object.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

22 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 6, Access to Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in Table
6Fable-6 is limited to sessions belonging to the application which owns that object (i.e.,
which created that object).

6.6.4 Session events

Session events cause the session state to change. The following table describes the
events:

Table 7, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.

Device Removed | the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, all sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token that is not present. Realistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token’s absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki, all sessions that an application has with a token must have the same
login/logout status (i.e., for a given application and token, one of the following holds: all
sessions are public sessions; all sessions are SO sessions; or all sessions are user
sessions). When an application’s session logs into a token, a// of that application’s
sessions with that token become logged in, and when an application’s session logs out of
a token, all of that application’s sessions with that token become logged out. Similarly,
for example, if an application already has a R/O user session open with a token, and then
opens a R/W session with that token, the R/W session is automatically logged in.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 23 |

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/'W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.6.5 Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is in many
ways akin to a file handle, and is specified to functions to indicate which session the
function should act on. All threads of an application have equal access to all session
handles. That is, anything that can be accomplished with a given file handle by one
thread can also be accomplished with that file handle by any other thread of the same
application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among all threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers’ convenience, Cryptoki defines the following symbolic value:

CK_I NVALI D_HANDLE
6.6.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, a single
session can perform only one operation at a time; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section 11.13.

A consequence of the fact that a single session can, in general, perform only one
operation at a time is that an application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application all need to

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

24 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

use Cryptoki to access a particular token, it might be appropriate for each thread to have
its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded access to it. Even if it is safe to
access the library from multiple threads simultaneously, it is still not necessarily safe to
use a particular session from multiple threads simultaneously.

6.6.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a Cryptoki library
to access a single token T. Each application has two threads running: A has threads A1l
and A2, and B has threads B1 and B2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. Al and B1 each initialize the Cryptoki library by calling C_Initialize (the specifics
of Cryptoki functions will be explained in Section 10.12). Note that exactly one call
to C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this
is the first session to be opened for A, it is a public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s existing
sessions are public sessions, session 4 is also a public session.

4. Al attempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. Al receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION READ ONLY_ EXISTS).

5. A2 logs the normal user into session 7. This turns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that because Al and A2 belong to

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW 25 |

the same application, they have equal access to all sessions, and therefore, A2 is able
to perform this action.

6. A2 opens a R/W session and receives the session handle 9. Since all of A’s existing
sessions are user sessions, session 9 is also a user session.

7. Al closes session 9.

8. BI1 attempts to log out session 4. The attempt fails, because A and B have no access
rights to each other’s sessions or objects. B1 receives an error message which
indicates that there is no such session handle
(CKR_SESSION_HANDLE_INVALID).

9. B2 attempts to close session 4. The attempt fails in precisely the same way as B1’s
attempt to log out session 4 failed (ie, B2 receives a
CKR _SESSION HANDLE INVALID error code).

10. B1 opens a R/W session and receives the session handle 7. Note that, as far as B is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s
session 7 are completely different sessions.

11. B1 logs the SO into [B’s] session 7. This turns B’s session 7 into a R/W SO session,
and has no effect on either of A’s sessions.

12. B2 attempts to open a R/O session. The attempt fails, since B already has an SO
session open, and R/O SO sessions do not exist. Bl receives an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION READ WRITE SO EXISTYS).

13. Al uses [A’s] session 7 to create a session object Q1 of some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

14. B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the
object handle 7. As with session handles, different applications have no access rights
to each other’s object handles, and so B’s object handle 7 is entirely different from
A’s object handle 7. Of course, since B1 is an SO session, it cannot create private
objects, and so O2 must be a public object (if B1 attempted to create a private object,
the attempt would fail with error code CKR USER NOT LOGGED IN or
CKR_TEMPLATE INCONSISTENT).

15. B2 uses [B’s] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifies O2.

16. Al uses [A’s] session 4 to perform an object search operation to get a handle for O2.

The search returns object handle 1. Note that A’s object handle 1 and B’s object
handle 7 now point to the same object.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Al attempts to use [A’s] session 4 to modify the object associated with [A’s] object
handle 1. The attempt fails, because A’s session 4 is a R/O session, and is therefore
incapable of modifying O2, which is a token object. Al receives an error message
indicating that the session is a R/O session (CKR_SESSION READ ONLY).

Al uses [A’s] session 7 to modify the object associated with [A’s] object handle 1.
This time, since A’s session 7 is a R/W session, the attempt succeeds in modifying
02.

B1 uses [B’s] session 7 to perform an object search operation to find O1. Since O1 is
a session object belonging to A, however, the search does not succeed.

A2 uses [A’s] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifies O1.

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1.
This destroys O2.

B1 attempts to perform some operation with the object associated with [B’s] object
handle 7. The attempt fails, since there is no longer any such object. B1 receives an
error message indicating that its object handle is invalid
(CKR_OBJECT _HANDLE INVALID).

Al logs out [A’s] session 4. This turns A’s session 4 into a R/O public session, and
turns A’s session 7 into a R/W public session.

Al closes [A’s] session 7. This destroys the session object O1, which was created by
A’s session 7.

A2 attempt to use [A’s] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no longer any
such object. It returns a CKR_OBJECT HANDLE INVALID.

A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this point,
if A were to open a new session, the session would not be logged in (i.e., it would be
a public session).

B2 closes [B’s] session 7. At this point, if B were to open a new session, the session
would not be logged in.

A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary authentication (Deprecated)

Note: This support may be present for backwards compatibility. Refer to

PKCS11 V 2.11 for details.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

69. GENERAL OVERVIEW

6.8 Function overview

27 |

The Cryptoki API consists of a number of functions, spanning slot and token

management and object management, as well as cryptographic functions.
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

These

Category Function Description
General C Initialize initializes Cryptoki
purpose C Finalize clean up miscellaneous Cryptoki-
functions associated resources
C Getlnfo obtains general information about

Cryptoki

C_GetFunctionList

obtains entry points of Cryptoki library
functions

Slot and token | C_GetSlotList

obtains a list of slots in the system

management C_GetSlotInfo obtains information about a particular slot
functions C_GetTokenInfo obtains information about a particular
token
C_WaitForSlotEvent waits for a slot event (token insertion,
removal, etc.) to occur
C_GetMechanismList obtains a list of mechanisms supported by
a token
C_GetMechanismInfo obtains information about a particular
mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an
management application and a particular token or sets
functions up an application callback for token

insertion

C_CloseSession

closes a session

C_CloseAllSessions

closes all sessions with a token

C_GetSessionInfo

obtains information about the session

C_GetOperationState

obtains the cryptographic operations state
of a session

C_SetOperationState

sets the cryptographic operations state of a
session

C Login

logs into a token

C_Logout

logs out from a token

Draft 65, Eebruary-May 2004

Copyright © 2004 RSA Security Inc. |

28 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptlnit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption
operation
C_EncryptFinal finishes a multiple-part encryption
operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption
operation
C_DecryptFinal finishes a multiple-part decryption
operation
Message C Digestlnit initializes a message-digesting operation
digesting C Digest digests single-part data
functions C_ DigestUpdate continues a multiple-part digesting
operation
C DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting
operation

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

69. GENERAL OVERVIEW

Category Function Description

Signing C_Signlnit initializes a signature operation
and MACing C Sign signs single-part data

functions C_SignUpdate continues a multiple-part signature

operation

C SignFinal

finishes a multiple-part signature
operation

C _SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C _SignRecover

signs single-part data, where the data can
be recovered from the signature

Functions for C Verifylnit

initializes a verification operation

verifying
signatures C Verify verifies a signature on single-part data
and MACs C_VerifyUpdate continues a multiple-part verification

operation

C_VerifyFinal

finishes a multiple-part verification
operation

C_VerifyRecoverlnit

initializes a verification operation where
the data is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data,
where the data is recovered from the
signature

Dual-purpose C DigestEncryptUpdate

continues simultaneous multiple-part

cryptographic digesting and encryption operations
functions C DecryptDigestUpdate | continues simultaneous multiple-part
decryption and digesting operations
C _SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations
C DecryptVerifyUpdate | continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) a key

C_UnwrapKey

unwraps (decrypts) a key

C DeriveKey

derives a key from a base key

Draft 65, Eebruary-May 2004

Copyright © 2004 RSA Security Inc. |

30 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description

Random C_SeedRandom mixes in additional seed material to the

number random number generator

generation

functions C_GenerateRandom generates random data

Parallel C_GetFunctionStatus legacy function which always returns

function CKR_FUNCTION NOT PARALLEL

management

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION NOT PARALLEL

Callback application-supplied function to process

function notifications from Cryptoki

7 Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may also be
needed.

2. Additional protection can be given to private keys and secret keys by marking them
as “sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off
the token, and unextractable keys cannot be revealed off the token even when
encrypted (though they can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other

than Cryptoki (e.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’s PIN. The particular mechanism for protecting
private objects is left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especially since
the PIN may be passed through the operating system. This can make it easy for a rogue

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

89. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

application on the operating system to obtain the PIN; it is also possible that other
devices monitoring communication lines to the cryptographic device can obtain the PIN.
Rogue applications and devices may also change the commands sent to the cryptographic
device to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play a role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for
a variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a
built-in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8 Platform- and compiler-dependent directives for C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Win32 and Winl6 platforms, Cryptoki structures should be packed with 1-byte
alignment. In a UNIX environment, it may or may not be necessary (or even possible) to
alter the byte-alignment of structures.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

31

32 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

8.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

¢+ CK PTR

CK_PTRis the “indirection string” a given platform and compiler uses to make a pointer
to an object. It is used in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR
¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, and namne is its name.
It is used in the following fashion:

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR pReserved
)

{
}
¢ CK DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, and nane is its name.
It is used in the following fashion:

CK_DECLARE _FUNCTION(CK RV, Clnitialize)(
CK_VA D _PTR pReserved
);

¢ CK DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PQO NTER(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki library. r et ur nType is the return
type of the function, and name is its name. It can be used in either of the following
fashions to define a function pointer variable, myC | ni ti al i ze, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
snippets actually assigns a value to myC_I ni ti al i ze):

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

89. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK_ VA D _PTR pReserved
);

or:

t ypedef CK DECLARE _FUNCTI ON_PO NTER(CK_RV,
myC InitializeType)(
CK_ VA D _PTR pReserved

)
nyC InitializeType nyClnitialize;

¢ CK CALLBACK FUNCTION

CK_CALLBACK FUNCTI ON(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to an application callback function that can be used by a Cryptoki API
function in a Cryptoki library. returnType is the return type of the function, and
name is its name. It can be used in either of the following fashions to define a function
pointer variable, myCal | back, which can point to an application callback which takes
arguments ar gs and returns a CK_RYV (note that neither of the following code snippets
actually assigns a value to my Cal | back):

CK_CALLBACK FUNCTI ON(CK_RV, nyCal | back) (args);

or:
t ypedef CK_CALLBACK FUNCTI ON(CK_RV,
myCal | backType) (args);
myCal | backType nyCal | back;
¢ NULL _PTR

NULL_PTR s the value of a NULL pointer. In any ANSI C environment—and in many
others as well—NULL _PTR should be defined simply as 0.

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#define CK | MPORT_SPEC _ decl spec(dl linport)

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

33

34 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

/* Define CRYPTOKI EXPORTS during the build of cryptok
* libraries. Do not define it in applications.
*/

#i f def CRYPTOKI _EXPORTS

#defi ne CK_EXPORT_SPEC _ decl spec(dl | export)

#el se

#defi ne CK_EXPORT_SPEC CK_| MPORT_SPEC

#endi f

/* Ensures the calling convention for Wn32 builds */
#define CK CALL _SPEC _ cdecl

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType CK _EXPORT_SPEC CK_CALL_SPEC name

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC nane

#defi ne CK _DECLARE FUNCTI ON_ PO NTER(returnType, nane) \
returnType CK_| MPORT_SPEC (CK_CALL_SPEC CK_PTR nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nanme) \
returnType (CK _CALL_SPEC CK_PTR hane)

#1 f ndef NULL_PTR
#define NULL_PTR O
#endi f

Hence the calling convention for all C_xxx functions should correspond to "cdecl" where
function parameters are passed from right to left and the caller removes parameters from
the stack when the call returns.

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)
8.3.2 Winlé6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Winl16 Cryptoki .dll might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)

#define CK_ PTR far *

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

89. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ | 35

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType __ export _far _pascal nane

#def i ne CK_DECLARE _FUNCTI ON(r et urnType, nane) \
returnType _ _export _far _pascal nane

#defi ne CK_DECLARE FUNCTI ON_PO NTER(returnType, nane) \
returnType _ _export _far _pascal (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nane)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType nanme

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType nanme

#def i ne CK _DECLARE_FUNCTI ON_PO NTER(ret urnType, nane) \
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

36 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9 General data types

The general Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section 12.

A C or C++ source file in a Cryptoki application or library can define all these types (the
types described here and the types that are specifically used for particular mechanism
parameters) by including the top-level Cryptoki include file, pkcs11. h. pkcsl1l. h,
in turn, includes the other Cryptoki include files, pkcs11t. h and pkcs1l1lf.h. A
source file can also include just pkcs11t . h (instead of pkcs11. h); this defines most
(but not all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directives indicated in Section 8.

9.1 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. It is defined as follows:

t ypedef struct CK VERSI ON {
CK_BYTE mmaj or;
CK_BYTE mi nor;

} CK_VERSI O\,

The fields of the structure have the following meanings:

major major version number (the integer portion of the
version)

minor minor version number (the hundredths portion of the
version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and
| minor = 10. Table 9Fable-9 below lists the major and minor version values for the
officially published Cryptoki specifications.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 37 |

Table 9, Major and minor version values for published Cryptoki specifications

Version | major | minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 0x0a
2.11 0x02 0x0b
2.20 0x02 Ox14

Minor revisions of the Cryptoki standard are always upwardly compatible within the
same major version number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

¢ CK_INFO; CK_INFO _PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK_I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS f | ags;
CK_UTF8CHAR | i braryDescri ption[32];
CK_VERSI ON | i braryVersi on;

} CK_I NFG

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility
with future revisions of this interface

manufacturerID 1D of the Cryptoki library manufacturer. Must be
padded with the blank character (*). Should not be
null-terminated.

flags bit flags reserved for future versions. Must be zero for
this version

libraryDescription character-string description of the library. Must be
padded with the blank character (*). Should not be
null-terminated.

libraryVersion Cryptoki library version number

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

38 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For libraries written to this document, the value of cryptokiVersion should match the
version of this document; the value of libraryVersion is the version number of the library
software itself.

CK INFO_PTR is a pointer to a CK_INFO.

¢ CK NOTIFICATION

CK NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It is defined as follows:

t ypedef CK_ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:

CKN_SURRENDER
The notifications have the following meanings:

CKN SURRENDER Cryptoki is surrendering the execution of a function
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function
(see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK SLOT_ID; CK_SLOT_ID PTR

CK SLOT _ID is a Cryptoki-assigned value that identifies a slot. It is defined as
follows:

typedef CK _ULONG CK _SLOT | D
A list of CK SLOT IDs is returned by C_GetSlotList. A priori, any value of

CK _SLOT _ID can be a valid slot identifier—in particular, a system may have a slot
identified by the value 0. It need not have such a slot, however.

CK SLOT _ID PTR s a pointer to a CK_SLOT _ID.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 39 |

¢ CK SLOT_INFO; CK_SLOT _INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

t ypedef struct CK SLOT I NFO {
CK_UTF8CHAR sl ot Descri pti on[64] ;
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS f | ags;

CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnvar eVer si on;
} CK_SLOT_I NFO

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (*). Should not be
null-terminated.

manufacturerID 1D of the slot manufacturer. Must be padded with the
blank character (*). Should not be null-terminated.

flags bits flags that provide capabilities of the slot. The
flags are defined below

hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’s firmware

The following table defines the flags field:

Table 1010, Slot Information Flags

Bit Flag Mask Meaning

CKF TOKEN PRESENT 0x00000001 | TRUE if a token is present in the slot
(e.g., a device is in the reader)

CKF_REMOVABLE DEVICE | 0x00000002 | TRUE if the reader supports
removable devices

CKF HW _SLOT 0x00000004 | TRUE if the slot is a hardware slot, as
opposed to a software slot
implementing a “soft token”

For a given slot, the value of the CKF_REMOVABLE DEVICE flag never changes.
In addition, if this flag is not set for a given slot, then the CKF_TOKEN PRESENT
flag for that slot is always set. That is, if a slot does not support a removable device, then
that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

40 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK _TOKEN_I NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturerl D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunber [16];

CK_FLAGS fl ags;

CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnvar eVer si on;
CK_CHAR ut cTi ne[16] ;

} CK_TOKEN | NFQO,

The fields of the structure have the following meanings:

label

manufacturerID

model

serialNumber

flags

ulMaxSessionCount

| Copyright © 2004 RSA Security Inc.

application-defined label, assigned during token
initialization. Must be padded with the blank character
(©). Should not be null-terminated.

ID of the device manufacturer. Must be padded with
the blank character (* ©). Should not be null-

terminated.

model of the device. Must be padded with the blank
character (*). Should not be null-terminated.

character-string serial number of the device. Must be
padded with the blank character (*). Should not be
null-terminated.

bit flags indicating capabilities and status of the device
as defined below

maximum number of sessions that can be opened with
the token at one time by a single application (see note
below)

Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 41 |

ulSessionCount ~ number of sessions that this application currently has
open with the token (see note below)

ulMaxRwSessionCount ~ maximum number of read/write sessions that can be
opened with the token at one time by a single
application (see note below)

ulRwSessionCount ~ number of read/write sessions that this application
currently has open with the token (see note below)

ulMaxPinLen maximum length in bytes of the PIN
ulMinPinLen minimum length in bytes of the PIN

ulTotalPublicMemory the total amount of memory on the token in bytes in
which public objects may be stored (see note below)

ulFreePublicMemory the amount of free (unused) memory on the token in
bytes for public objects (see note below)

ulTotalPrivateMemory the total amount of memory on the token in bytes in
which private objects may be stored (see note below)

ulFreePrivateMemory the amount of free (unused) memory on the token in
bytes for private objects (see note below)

hardwareVersion version number of hardware
firmwareVersion version number of firmware

utcTime current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a
clock, as indicated in the token information flags (see
below)

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

42 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 111, Token Information Flags

Bit Flag

Mask

Meaning

CKF _RNG

0x00000001

TRUE if the token
has its own
random number
generator

CKF_WRITE PROTECTED

0x00000002

TRUE if the token
is write-protected
(see below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are
some
cryptographic
functions that a
user must be
logged in to
perform

CKF _USER_PIN INITIALIZED

0x00000008

TRUE if the
normal user’s PIN
has been
initialized

CKF _RESTORE _KEY NOT NEEDED

0x00000020

TRUE if a
successful save of
a session’s
cryptographic
operations state
always contains all
keys needed to
restore the state of
the session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED AUTHENTICATION PATH

0x00000100

TRUE if token has
a “protected
authentication
path”, whereby a
user can log into
the token without
passing a PIN
through the
Cryptoki library

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 43 |

Bit Flag Mask Meaning

CKF _DUAL CRYPTO_OPERATIONS 0x00000200 | TRUE if a single
session with the
token can perform
dual cryptographic
operations (see
Section 11.13)

CKF _TOKEN INITIALIZED 0x00000400 | TRUE if the token
has been
initialized using

C InitializeToken
or an equivalent
mechanism outside
the scope of this
standard. Calling
C_InitializeToken
when this flag is
set will cause the
token to be
reinitialized.

CKF_USER PIN COUNT LOW 0x00010000 | TRUE if an
incorrect user
login PIN has been
entered at least
once since the last
successful
authentication.

CKF _USER_PIN FINAL TRY 0x00020000 | TRUE if supplying
an incorrect user
PIN will it to
become locked.

CKF_USER_PIN _LOCKED 0x00040000 | TRUE if the user
PIN has been
locked. User login
to the token is not
possible.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

44 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag

Mask

Meaning

CKF USER PIN TO BE CHANGED

0x00080000

TRUE if the user
PIN value is the
default value set
by token
initialization or
manufacturing, or
the PIN has been
expired by the
card.

CKF SO PIN COUNT LOW

0x00100000

TRUE if an
incorrect SO login
PIN has been
entered at least
once since the last
successful
authentication.

CKF SO PIN FINAL TRY

0x00200000

TRUE if supplying
an incorrect SO
PIN will it to
become locked.

CKF SO PIN LOCKED

0x00400000

TRUE if the SO
PIN has been
locked. User login
to the token is not
possible.

CKF SO PIN TO BE CHANGED

0x00800000

TRUE if the SO
PIN value is the
default value set
by token
initialization or
manufacturing, or
the PIN has been
expired by the
card.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these

actions can include any of the following, among others:

* Creating/modifying/deleting any object on the token.

* Creating/modifying/deleting a token object on the token.

* Changing the SO’s PIN.

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 45 |

* Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending
on the session state to implement its object management policy. For instance, the token
may set the CKF_WRITE_PROTECTED flag to TRUE unless the session state is R/'W
SO or R/W User to implement a policy that does not allow any objects, public or private,
to be created, modified, or deleted unless the user has successfully called C_Login.

The CKF_USER_PIN _COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may always
be set to FALSE if the token does not support the functionality or will not reveal the
information because of its security policy.

The CKF_USER_PIN_TO BE_CHANGED and
CKF_SO_PIN _TO BE _CHANGED flags may always be set to FALSE if the token
does not support the functionality. If a PIN is set to the default value, or has expired, the
appropriate CKF_USER_PIN_TO_BE _CHANGED or
CKF_SO_PIN_TO_BE_CHANGED flag is set to TRUE. When either of these flags are
TRUE, logging in with the corresponding PIN will succeed, but only the C_SetPIN
function can be called. Calling any other function that required the user to be logged in
will cause CKR PIN EXPIRED to be returned until C_SetPIN is called successfully.

Note: The fields wulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotal PrivateMemory,

and ulFreePrivateMemory can have the special value
CK _UNAVAILABLE INFORMATION, which means that the token and/or library is
unable or unwilling to provide that information. In addition, the fields

ulMaxSessionCount and ulMaxRwSessionCount can have the special value
CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

These values are defined as

CK_UNAVAI LABLE_| NFORVATI ON
CK_EFFECTI VELY_I NFI NI TE

It is important to check these fields for these special values. This is particularly true for
CK_EFFECTIVELY INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’t open any sessions with the token, which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something along the lines of the following:

CK_TOKEN_I NFO i nf o;

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

46 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

i f ((CK_LONG i nfo.ul MaxSessi onCount
== CK_UNAVAI LABLE | NFORMATI ON) {
/* Token refuses to give value of ul MaxSessi onCount */

} else if (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_I NFI NI TE) {
/* Application can open as nmany sessions as it wants */

1 else {
/* ul MaxSessi onCount really does contain what it should
*/
}

CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

¢ CK SESSION_HANDLE; CK_SESSION_HANDLE_ PTR

CK _SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

typedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_I NVALI D_HANDLE

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

¢ CK _USER TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 6.4, and, in
addition, a context-specific type described in Section 10.9. It is defined as follows:

t ypedef CK _ULONG CK_USER TYPE;

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 47 |

For this version of Cryptoki, the following types of users are defined:

CKU_SO
CKU_USER
CKU_CONTEXT SPECI FI C

¢ CK STATE

CK_STATE holds the session state, as described in Sections 6.6.1 and 6.6.2. It is defined
as follows:

t ypedef CK _ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

CKS_RO PUBLI C_SESSI ON
CKS_RO_USER_FUNCTI ONS
CKS_RW PUBLI C_SESSI ON
CKS_RW USER_FUNCTI ONS
CKS_RW SO FUNCTI ONS

¢ CK_SESSION_INFO; CK_SESSION_INFO_PTR
CK_SESSION_INFO provides information about a session. It is defined as follows:
typedef struct CK_SESSI ON | NFO {
CK SLOT_ID slotlD;
CK_STATE st at e,
CK_FLAGS f 1l ags;

CK_ULONG ul Devi ceError;
} CK _SESSI ON | NFO

The fields of the structure have the following meanings:
slotID ID of the slot that interfaces with the token
state the state of the session

flags Dit flags that define the type of session; the flags are
defined below

ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

48 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 1212, Session Information Flags

Bit Flag Mask Meaning

CKF _RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE
if the session is read-only

CKF_SERIAL SESSION | 0x00000004 | This flag is provided for backward
compatibility, and should always be set to
TRUE

CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

¢ CK OBJECT _HANDLE; CK_OBJECT_HANDLE PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

t ypedef CK _ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an
object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object as long
as the session continues to exist, the object continues to exist, and the object continues to
be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_| NVALI D_HANDLE

CK_OBJECT_HANDLE PTR is a pointer to a CK_OBJECT_HANDLE.

¢ CK_OBJECT_CLASS; CK_OBJECT CLASS_PTR

CK _OBJECT_CLASS is a value that identifies the classes (or types) of objects that
Cryptoki recognizes. It is defined as follows:

t ypedef CK_ULONG CK_OBJECT CLASS:;

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 49 |

Object classes are defined with the objects that use them. The type is specified on an
object through the CKA CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDCR_ DEFI NED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a
device. It is defined as follows:

typedef CK_ULONG CK_HW FEATURE TYPE;

Hardware feature types are defined with the objects that use them. The type is specified
on an object through the CKA HW_ FEATURE TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR _DEFI NED

Feature types CKH_VENDOR _DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their feature types through
the PKCS process.
¢ CK KEY_TYPE
CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

t ypedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is
specified on an object through the CKA KEY TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKK_VENDCR_DEFI NED

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

50 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

¢ CK _CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as
follows:

typedef CK_ULONG CK_CERTI FI CATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The
certificate type is specified on an object through the CKA CERTIFICATE TYPE
attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDCR_DEFI NED

Certificate types CKC_VENDOR DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types
through the PKCS process.

¢ CK ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

t ypedef CK_ULONG CK_ATTRI BUTE_ TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are
specified on an object as a list of type, length value items. These are often specified as an
attribute template.

Vendor defined values for this type may also be specified.

CKA VENDOR DEFI NED

Attribute types CKA_VENDOR DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their attribute types through
the PKCS process.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 51 |

¢ CK ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute.
It is defined as follows:

typedef struct CK _ATTRI BUTE {
CK_ATTRI BUTE_TYPE t ype;
CK_VA D _PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTRI BUTE;

The fields of the structure have the following meanings:
type the attribute type
pValue pointer to the value of the attribute
ulValuelen length in bytes of the value

If an attribute has no value, then u/ValueLen = 0, and the value of pValue is irrelevant.
An array of CK_ATTRIBUTEs is called a “template” and is used for creating,
manipulating and searching for objects. The order of the attributes in a template never
matters, even if the template contains vendor-specific attributes. Note that pValue is a
“void” pointer, facilitating the passing of arbitrary values. Both the application and
Cryptoki library must ensure that the pointer can be safely cast to the expected type (i.e.,
without word-alignment errors).

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

¢+ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:
typedef struct CK DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;
CK_CHAR day[2] ;
} CK_DATE;
The fields of the structure have the following meanings:
year the year (“1900” - ©“9999”)
month the month (“01” - “12”)

day the day (“01” - “317)

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

52 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The fields hold numeric characters from the character set in Table 3Fable—3, not the
literal byte values.

When a Cryptoki object carries an attribute of this type, and the default value of the
attribute is specified to be "empty." then Cryptoki libraries shall set the attribute's a
ulValueLen to 0.

Note that implementations of previous versions of Cryptoki may have used other
methods to identify an "empty" attribute of type CK DATE, and that applications that
needs to interoperate with these libraries therefore have to be flexible in what they accept
as an empty value.

9.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to
them:

¢ CK _MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as
follows:

t ypedef CK_ULONG CK_MECHANI SM TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.

Vendor defined values for this type may also be specified.

CKM_VENDOR_DEFI NED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechanism types
through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

¢ CK MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any
parameters it requires. It is defined as follows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK_VO D_PTR pPar anet er ;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 53 |

The fields of the structure have the following meanings:
mechanism the type of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

¢+ CK MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

t ypedef struct CK _MECHANI SM I NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS f 1 ags;

} CK_MECHANI SM | NFO

The fields of the structure have the following meanings:

ulMinKeySize the minimum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

ulMaxKeySize the maximum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

flags Dbit flags specifying mechanism capabilities

For some mechanisms, the u/MinKeySize and ulMaxKeySize fields have meaningless
values.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

54 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 1313, Mechanism Information Flags

Bit Flag Mask Meaning

CKF _HW 0x00000001 | TRUE if the mechanism is
performed by the device; FALSE if
the mechanism is performed in
software

CKF _ENCRYPT 0x00000100 | TRUE if the mechanism can be used
with C_Encryptlnit

CKF _DECRYPT 0x00000200 | TRUE if the mechanism can be used
with C_Decryptlnit

CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used
with C_DigestInit

CKF_SIGN 0x00000800 | TRUE if the mechanism can be used
with C_SignInit

CKF _SIGN RECOVER 0x00001000 | TRUE if the mechanism can be used
with C_SignRecoverlInit

CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used
with C_Verifylnit

CKF_VERIFY RECOVER 0x00004000 | TRUE if the mechanism can be used
with C_VerifyRecoverlnit

CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used
with C_GenerateKey

CKF GENERATE KEY PAIR | 0x00010000 | TRUE if the mechanism can be used
with C_GenerateKeyPair

CKF_WRAP 0x00020000 | TRUE if the mechanism can be used
with C_WrapKey

CKF _UNWRAP 0x00040000 | TRUE if the mechanism can be used
with C_UnwrapKey

CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used
with C_DeriveKey

CKF _EXTENSION 0x80000000 | TRUE if there is an extension to the

flags; FALSE if no extensions.
Must be FALSE for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_ MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 55 |

¢ CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as
follows:

typedef CK_ULONG CK RV,

Vendor defined values for this type may also be specified.

CKR_VENDOR _DEFI NED

Section 11.1 defines the meaning of each CK RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

¢ CK NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_ HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VA D_PTR pApplication

)
The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback
event The type of notification callback

pApplication An application-defined value. This is the same value
as was passed to C_OpenSession to open the session
performing the callback

¢ CK C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki API (see Section 10.12 for detailed information about each of
them), Cryptoki defines a type CK_C_XXX, which is a pointer to a function with the
same arguments and return value as C_XXX has. An appropriately-set variable of type
CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

56 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK FUNCTION_LIST; CK_FUNCTION_LIST PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It is defined as follows:

t ypedef struct CK _FUNCTI ON_LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;
CK_C Finalize C Finalize;
. GetInfo C CGetlnfo;
t Functi onLi st C _Get Functi onlLi st;
tSlotList C GetSlotlList;
tSlotlnfo C GetSlotlnfo;
t Tokenl nfo C _Get Tokenl nf o;
t Mechani snLi st C_Get Mechani snii st ;
t Mechani sm nfo C_Get Mechani sm nf o;
i t Token C_InitToken;
itPIN C.InitPIN,
tPIN C SetPIN
enSessi on C_OpenSessi on;
oseSessi on C_Cl oseSessi on;
oseAl | Sessions C C oseAl | Sessi ons;
t Sessi onl nfo C_Get Sessi onl nf 0;
t OperationState C CGet OQperati onSt at e;
t Oper ationState C_Set QperationStat e;
gin C_Login;
gout C_Logout;
eat e(bj ect C Create(bj ect;
pyObj ect C CopyObj ect ;
stroyQbj ect C Dest royOoj ect;
t Obj ect Si ze C_Get Obj ect Si ze;
tAttri buteValue C Get Attri buteVal ue;
et Attri buteVal ue C Set Attri buteVal ue;
i ndQbj ectslnit C FindObjectslnit;
i ndObj ects C_Fi ndObj ect s;
i ndObj ect sFi nal C_Fi ndij ect sFi nal ;
ncryptlinit C Encryptlinit;
ncrypt C Encrypt;
ncrypt Updat e C Encrypt Updat e;
ncrypt Fi nal C_EncryptFi nal ;
cryptinit C Decryptlnit;
crypt C Decrypt;
crypt Updat e C Decrypt Updat e;
crypt Final C_DecryptFi nal ;
i gestinit C Digestlnit;
i gest C _Di gest;
i gest Updat e C_Di gest Updat e;
i gest Key C _Di gest Key;

R

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

2022200029

Q@QQQSS%Q@QQQQSEQ@@@Q@

22092000020009220002200022000
I'|'||'|'II'|'II'I'I'I'I'I'I'I'I(I)

DDDDQQQQ

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 57 |

Q

i gest Final C.Di gest Fi nal ;

ignlnit C Signlnit;

ign C_Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

i gnRecoverlnit C Si gnRecoverI nit;

i gnRecover C_ Si gnRecover

erifylnit C Verifylnit;

erify C Verify;

eri fyUpdate C VerifyUpdate;

erifyFinal C VerifyFinal;

erifyRecoverlnit C Veri fyRecoverI nit;

er| fyRecover C VerifyRecover;

gest Encrypt Updat e C Di gest Encrypt Updat e;
crypt Di gest Updat e C_Decrypt Di gest Updat e;
> Si gnEncrypt Update C_Si gnEncrypt Updat e;
crypt Veri fyUpdate C _Decrypt Veri fyUpdat e;
ner at eKey C _CGener at eKey;

ner at eKeyPal r C _Generat eKeyPair;

apKey C:VVapKey,

wr apKey C _Unwr apKey;

ri vekKey C DeriveKey;

edRandom C_SeedRandom

ner at eRandom C_Gener at eRandom

t FunctionStatus C_Get Functi onSt at us;
ncel Function C_Cancel Functi on;

_C Wi t For Sl ot Event C Wi t For Sl ot Event ;

} CK_FUNCTI ON_LI ST;

mmmmm@

<<

<<<

QD

OOOOOOOOOOOOOOOOOOOOOOOOOO
(/) <

9QgggggggggggQQQQQQQggggggg
0RPERT00F

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is also owned by the library) may be obtained by the
C_GetFunctionList function (see Section 11.2). The value that this pointer points to can
be used by an application to quickly find out where the executable code for each function
in the Cryptoki API is located. Every function in the Cryptoki API must have an entry
point defined in the Cryptoki library’s CK_FUNCTION_LIST structure. 1f a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library’s CK_FUNCTION_LIST structure should point to a function
stub which simply returns CKR_FUNCTION NOT_SUPPORTED.

An application may or may not be able to modify a Cryptoki library’s static
CK _FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
SO.

CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST PTR_PTR is a pointer to a CK_FUNCTION_LIST PTR.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

58 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9.7 Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneously. Applications which will not do this need
not use any of these types.

¢ CK CREATEMUTEX

CK CREATEMUTEX is the type of a pointer to an application-supplied function
which creates a new mutex object and returns a pointer to it. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D PTR_PTR ppMit ex

);

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values: CKR_OK, CKR_GENERAL ERROR, CKR HOST MEMORY.

¢ CK DESTROYMUTEX

CK DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_ DESTROYMUTEX) (
CK_VO D _PTR pMit ex
)i

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values: CKR OK,
CKR GENERAL ERROR, CKR HOST MEMORY, CKR MUTEX BAD.

¢ CK LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functions is as follows:

 If a CK_LOCKMUTEX function is called on a mutex which is not locked, the
calling thread obtains a lock on that mutex and returns.

 If a CK_LOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 59 |

 Ifa CK LOCKMUTEX function is called on a mutex which is locked by the calling
thread, the behavior of the function call is undefined.

* [If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

» If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains a lock on that mutex, and its CK_ LOCKMUTEX call returns.

e If more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains a lock on the mutex, and its CK_LOCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

* Ifa CK_UNLOCKMUTEX function is called on a mutex which is not locked, then
the function call returns the error code CKR. MUTEX NOT LOCKED.

* Ifa CK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_LOCKMUTEX) (
CK_VO D PTR pMit ex

)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be

locked. Such a function should return one of the following values: CKR OK,
CKR_GENERAL ERROR, CKR HOST MEMORY, CKR MUTEX BAD.

CK_UNLOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D PTR pMut ex
)i

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values: CKR OK,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR _MUTEX BAD,
CKR MUTEX NOT LOCKED.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

60 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK _C_INITIALIZE_ARGS; CK_C_INITIALIZE ARGS PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is
defined as follows:

typedef struct CK C I N TIALI ZE _ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oyMut ex;
CK_LOCKMUTEX LockMuit ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS f | ags;
CK_VA D _PTR pReserved;

} CK_C_INTIALI ZE_ARGS;

The fields of the structure have the following meanings:
CreateMutex pointer to a function to use for creating mutex objects

DestroyMutex pointer to a function to use for destroying mutex
objects

LockMutex pointer to a function to use for locking mutex objects

UnlockMutex pointer to a function to use for unlocking mutex
objects

flags bit flags specifying options for C_Initialize; the flags
are defined below

pReserved reserved for future use. Should be NULL PTR for this
version of Cryptoki

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

99. GENERAL DATA TYPES 61 |

The following table defines the flags field:

Table 1414, C_Initialize Parameter Flags

Bit Flag Mask Meaning
CKF LIBRARY CANT CREATE OS THREADS | 0x00000001 | TRUE if
application

threads which
are executing
calls to the
library may not
use native
operating system
calls to spawn
new threads;
FALSE if they
may

CKF OS LOCKING OK 0x00000002 | TRUE if the
library can use
the native
operation system
threading model
for locking;
FALSE
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

62 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10 Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK _OBJECT_CLASS data type. An object consists of a set of attributes, each of
which has a given value. Each attribute that an object possesses has precisely one value.
The following figure illustrates the high-level hierarchy of the Cryptoki objects and some
of the attributes they support:

Object
Class
Storage Hardware feature Mechanism
Feature type Mechanism type
Token
Private
k/labde'll" o Domain
odifiable
> parameters
Data Key
Application
Object Identifier
Value Certificate

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateKey) also create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attribute values may also take the following types:

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 63 |

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTEs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.g., the integer 32768 is represented as the 2-byte
string 0x80 0x00)

Local string an unpadded string of CK_CHARSs (see Table 3Fable
3) with no null-termination

RFC22709 string an unpadded string of CK_UTF8CHARs with no null-
termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to
have exactly the same values for all their attributes.

In most cases each type of object in the Cryptoki specification possesses a completely
well-defined set of Cryptoki attributes. Some of these attributes possess default values,
and need not be specified when creating an object; some of these default values may even
be the empty string (“”’). Nonetheless, the object possesses these attributes. A given
object has a single value for each attribute it possesses, even if the attribute is a vendor-
specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section 11.14) may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section 12). In any
case, all the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C _GenerateKey, C_GenerateKeyPair, C UnwrapKey, and C DeriveKey (see
Section 11.14). In addition, copying an existing object (with the function
C_CopyObject) also creates a new object, but we consider this type of object creation
separately in Section 10.1.3.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

64 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE TYPE INVALID. An attribute
is valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR ATTRIBUTE VALUE INVALID.
The valid values for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE READ ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR. TEMPLATE INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR TEMPLATE INCONSISTENT. A set of attribute values is inconsistent if not
all of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be
using a template which specifies two different values for the same attribute. Another
example would be trying to create a secret key object with an attribute which is
appropriate for various types of public keys or private keys, but not for secret keys.
A final example would be a template with an attribute that violates some token
specific requirement. Note that this final example of an inconsistent template is
token-dependent—on a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fail with error code
CKR TEMPLATE INCONSISTENT. Library developers are encouraged to make
their libraries behave as though the attribute had only appeared once in the template;

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 65 |

application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section
11.7). The template supplied to C_SetAttributeValue can contain new values for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may actually not
be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiable insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key object’s CKA_SENSITIVE attribute can be changed
from FALSE to TRUE, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section 11.7). In
the process of copying an object, C_CopyObject also modifies the attributes of the
newly-created copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being
modifiable, plus the three special attributes CKA TOKEN, CKA PRIVATE, and
CKA MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyODbject operation insofar as the Cryptoki specification is concerned.
A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.
For example, a secret key object’s CKA_SENSITIVE attribute can be changed from

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

66 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FALSE to TRUE during the course of a C_CopyObject operation, but not the other way
around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to copying
objects with C_CopyObject, except for the possibility of a template being incomplete.

10.2 Common attributes

Table 1515, Common footnotes for object attribute tables

"' Must be specified when object is created with C_CreateObject.
? Must not be specified when object is created with C_CreateObject.

’ Must be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

* Must not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

> Must be specified when object is unwrapped with C_UnwrapKey.
% Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

¥ May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. However, it is possible that a
particular token may not permit modification of the attribute during the course of a
C_CopyObject call.

? Default value is token-specific, and may depend on the values of other attributes.
19 Can only be set to TRUE by the SO user.
' Attribute cannot be changed once set to TRUE. It becomes a read only attribute.

12 Attribute cannot be changed once set to FALSE. It becomes a read only attribute.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIJECTS

Table 1616, Common Object Attributes

Attribute Data Type

Meaning

CKA CLASS' CK_OBIJECT CLASS

Object class (type)

“Refer to table Table 15Fable15 for footnotes

The above table defines the attributes common to all objects.

Draft 65, Eebruary-May 2004

Copyright © 2004 RSA Security Inc. |

68 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.3 Hardware Feature Objects

10.3.1 Definitions
This section defines the foHewing:

Oobject class CKO HW _FEATURE for type CK OBJECT CLASS as used in the
CKA_ CLASS attribute of objects.

Attributes CRAHWFEATURETYPE:

10.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device.
They provide an easily expandable method for introducing new value-based features to
the cryptoki interface.

When searching for objects using C_FindObjectsInit and C_FindObjects, hardware
feature objects are not returned unless the CKA CLASS attribute in the template has the
value CKO_HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 1747, Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA HW FEATURE TYPE' | CK_HW FEATURE | Hardware feature (type)

“Refer to table Table 15Fable15 for footnotes

10.3.3 Clock

10.3.3.1 Definition

The CKA HW FEATURE TYPE attribute takes the value CKH CLOCK of type
CK HW FEATURE.

10.3.3.2 Description

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source as the uteTime field in the CK TOKEN INFO structure.

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBJECTS 69 |

Table 18, Clock Object Attributes

Attribute Data Type Meaning

CKA _VALUE | CK_CHAR[16] | Current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx
(4 characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters).

The CKA VALUE attribute may be set using the C SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The device
may_require _the SO to be the user logged in to modify the time value.
C_SetAttributeValue will return the error CKR. USER NOT LOGGED IN to indicate
that a different user type is required to set the value.

10.3.4 Monotonic Counter Objects

10.3.4.1 Definition

The CKA HW FEATURE TYPE attribute takes the value
CKH MONOTONIC COUNTER of type CK HW FEATURE.

10.3.4.2 Description

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.
This might be used by an application for generating serial numbers to get some assurance
of uniqueness per token.

Table 19, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET ON_INIT' | CK_BBOOL | The value of the counter will reset to a
previously returned value if the token is
initialized using C InitializeToken.

CKA_HAS RESET' CK_BBOOL | The value of the counter has been reset at
least once at some point in time.

CKA VALUE' Byte Array The current version of the monotonic
counter. The value is returned in big endian
order.

'Read Only

The CKA VALUE attribute may not be set by the client.

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

70 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.3.5 User Interface Objects

10.3.5.1 Definition

The CKA HW FEATURE TYPE attribute takes the value
CKH USER INTERFACE of type CK HW FEATURE.

10.3.5.2 Description

User interface objects represent the presentation capabilities of the device.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIJECTS

Table 20, User Interface Object Attributes

Attribute Data type Meaning
CKA PIXEL X CK_ULONG | Screen resolution (in pixels) in X-axis
(e.g. 1280)
CKA PIXEL Y CK_ULONG | Screen resolution (in pixels) in Y-axis
(e.g. 1024)
CKA_RESOLUTION CK_ULONG | DPI, pixels per inch
CKA_CHAR_ROWS CK_ULONG | For character-oriented displays;
number of character rows (e.g. 24)
CKA_CHAR_COLUMNS CK_ULONG | For character-oriented displays:
number of character columns (e.g.
80). If display is of proportional-font
type, this is the width of the display in
“em’-s (letter “M”), see CC/PP
Struct.
CKA _COLOR CK_BBOOL | Color support
CKA_BITS PER _PIXEL CK_ULONG | The number of bits of color or
grayscale information per pixel.
CKA_CHAR_SETS RFC 2279 String indicating supported character
string sets, as defined by IANA MIBenum
sets (www.lana.org). Supported
character sets are separated with “‘;”.
E.g. a token supporting is0-8859-1
and us-ascii would set the attribute
value to “4; 3.
CKA_ENCODING_METHODS | RFC 2279 String indicating supported content
string transfer encoding methods, as defined
by IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and
base64 could set the attribute value to
“7bi t ; 8bit; base64”.
CKA_MIME TYPES RFC 2279 String indicating supported
string (presentable) MIME-types, as defined

by IANA (www.iana.org). Supported
types are separated with “;”. E.g. a
token supporting MIME types "a/b",
"a/c" and "a/d" would set the attribute
value to “a/ b; a/ c; a/ d”.

The selection of attributes, and associated data types, has been done in an attempt to stay

as aliened with RFC 2534 and CC/PP Struct as possible.

The special value

Draft 65, Eebruary-May 2004

Copyright © 2004 RSA Security Inc. |

72 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_UNAVAILABLE INFORMATION may be used for CK_ULONG-based attributes
when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA ENCODING METHODS attribute may be used when the
application needs to send MIME objects with encoded content to the token.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 73 |

10.4 Storage Objects

This is not an object class, hence no CKO definition is required. It is a category of
object classes with common attributes for the object classes that follow.

Table 2148, Common Storage Object Attributes

Attribute Data Type Meaning

CKA TOKEN CK_BBOOL TRUE if object is a token object;
FALSE if object is a session object
(default FALSE)

CKA PRIVATE CK BBOOL TRUE if object is a private object;

FALSE if object is a public object.
Default value is token-specific, and
may depend on the values of other
attributes of the object.

CKA MODIFIABLE | CK BBOOL TRUE if object can be modified
(default TRUE)

CKA LABEL RFC2279 string Description of the object (default
empty)

Only the CKA LABEL attribute can be modified after the object is created. (The
CKA _TOKEN, CKA PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the
user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL attribute is intended to assist users in browsing.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

74 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.5 Data objects

10.5.1 Definitions

This section defines the object class CKO DATA for type CK_OBJECT CLASS as used
in the CKA CLASS attribute of objects.

10.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes defined for this object class:

Table 2219, Data Object Attributes

Attribute Data type | Meaning
CKA APPLICATION | RFC2279 | Description of the application that manages the
string object (default empty)

CKA OBIJECT ID Byte Array | DER-encoding of the object identifier indicating
the data object type (default empty)

CKA VALUE Byte array | Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The CKA_OBJECT _ID attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass = CKO_DATA;
CK_UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK _BYTE data[] = “Sanple data”;
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_APPLI CATI ON, application, sizeof(application)-1},
{CKA VALUE, data, sizeof(data)}
1

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 75 |

10.6 Certificate objects

10.6.1 Definitions

This section defines the object class CKO CERTIFICATE for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes defined for this object class:

Table 2320, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE TYPE' | CK_CERTIFICATE_TYPE | Type of certificate
CKA_TRUSTED'" CK_BBOOL The certificate can be

trusted for the application
that it was created.

CKA_CERTIFICATE_CATEGORY | CK_ULONG Categorization of the
certificate:

0 = unspecified (default
value), 1 = token user, 2 =
authority, 3 = other entity

CKA CHECK VALUE Byte array Checksum

CKA _START DATE CK _DATE Start date for the certificate
(default empty)

CKA END DATE CK DATE End date for the certificate
(default empty

“Refer to table Table 15Fable15 for footnotes

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created. This version of Cryptoki supports the following certificate types:

* X.509 public key certificate
* WTLS public key certificate
* X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to TRUE by an application. It must be set
by a token initialization application or by the token’s SO. Trusted certificates cannot be
modified.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

76 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored
certificate is a user certificate for which the corresponding private key is available on the
token (“token user”), a CA certificate (“authority’), or an other end-entity certificate
(“other entity”). This attribute may not be modified after an object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will
together be used to map to the categorization of the certificates. A certificate in the
certificates CDF will be marked with category “token user”. A certificate in the
trustedCertificates CDF or in the usefulCertificates CDF will be marked with category
“authority” or “other entity” depending on the CommonCertificateAttribute.authority
attribute and the CKA_TRUSTED attribute indicates if it belongs to the
trustedCertificates or usefulCertificates CDF.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by
taking the first three bytes of the SHA-1 hash of the certificate object’s CKA VALUE
attribute.

The CKA_START_DATE and CKA_END DATE attributes are for reference only;
Cryptoki does not attach any special meaning to them. When present, the application is
responsible to set them to values that match the certificate’s encoded “not before” and
“not after” fields (if any).

10.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC X 509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes defined for this object class:

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBJECTS 77 |

Table 2421, X.509 Certificate Object Attributes

Attribute Data type | Meaning

CKA SUBJECT! Byte array | DER-encoding of the certificate
subject name

CKA ID Byte array | Key identifier for public/private
key pair (default empty)

CKA ISSUER Byte array | DER-encoding of the certificate

issuer name (default empty)

CKA SERIAL NUMBER Byte array | DER-encoding of the certificate
serial number (default empty)

CKA VALUE! Byte array | BER-encoding of the certificate
CKA URL’ RFC2279 | If not empty this attribute gives the
string URL where the complete
certificate can be obtained (default
empt

CKA HASH OF SUBJECT Byte array | SHA-1 hash of the subject public
PUBLIC KEY* key (default empty)

CKA_H4ASH_OF_ISSUER_PUBLI Byte array | SHA-1 hash of the issuer public
C_KEY” key (default empty)

CKA _JAVA MIDP_SECURITY | €K _ULONG | Java MIDP security domain: 0 =

_DOMAIN unspecified (default value), 1 =
manufacturer, 2 = operator, 3 =
third party

"Must be specified when the object is created.

*Must be specified when the object is created. Must be non-empty if CKA URL is empty.
’Must be non-empty if CKA VALUE is empty.

*Can only be empty if CKA URL is empty.

Only the CKA ID, CKA ISSUER., and CKA SERIAL NUMBER attributes may be
modified after the object is created.

The CKA ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA ID value without introducing any

ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

78 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

not enforce this association, or even the uniqueness of the key identifier for a given
subject: in particular, an application may leave the key identifier empty.

The CKA ISSUER and CKA SERIAL NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3
extensions to X.509 certificates, the key identifier may be carried in the certificate. It is
intended that the CKA ID value be identical to the key identifier in such a certificate
extension, although this will not be enforced by Cryptoki.

The CKA URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA HASH OF SUBJECT PUBLIC KEY and
CKA HASH OF ISSUER PUBLIC KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer.

The CKA JAVA MIDP SECURITY DOMAIN attribute associates a certificate with
a Java MIDP security domain.

The following is a sample template for creating an X.509 certificate object:

CK_OBJECT _CLASS cl ass = CKO CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC X 509;

CK UTF8BCHAR | abel [] = “A certificate object”;
CK BYTE subject[] = {...};

CK BYTE id[] = {123};
CK BYTE certificate[] = {...};

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA CERTI FI CATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA SUBJECT, subject, sizeof(subject)},

{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}
1

10.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC WTLS) hold WTLS public key
certificates. The following table defines the WTLS certificate object attributes, in
addition to the common attributes defined for this object class.

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBJECTS 79 |

Table 2522: WTLS Certificate Object Attributes

Attribute Data type Meaning

CKA SUBJECT! Byte array WTLS-encoding (Identifier type)
of the certificate subject

CKA ISSUER Byte array WTLS-encoding (Identifier type)
of the certificate issuer (default
empt

CKA_VALUE’ Byte array WTLS-encoding of the certificate

CKA URL’ RFC2279 If not empty this attribute gives

string the URL where the complete

certificate can be obtained

CKA_HASH OF_SUBIJECT | Byte array SHA-1 hash of the subject public

_PUBLIC_KEY* key (default empty)

CKA_HASH OF_ISSUER_P | Byte array SHA-1 hash of the issuer public

UBLIC KEY* key (default empty)

"Must be specified when the object is created. Can only be empty if CKA VALUE is empty.
’Must be specified when the object is created. Must be non-empty if CKA URL is empty.
3Must be non-empty if CKA VALUE is empty.

“Can only be empty if CKA URL is empty.

Only the CKA ISSUER attribute may be modified after the object has been created.

The encoding for the CKA SUBJECT, CKA ISSUER, and CKA VALUE attributes
can be found in [WTLS] (see References).

The CKA URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA HASH OF SUBJECT PUBLIC KEY and
CKA HASH OF ISSUER PUBLIC KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer.

The following is a sample template for creating a WTLS certificate object:

CK_OBJECT _CLASS cl ass = CKO CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC WILS;
CK UTF8CHAR | abel [] = “A certificate object”;
CK BYTE subject[] ={...};
CK BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK ATTRI BUTE tenpl ate[] =
{
~ {CKA CLASS, &class, sizeof(class)},
{ CKA CERTI FI CATE TYPE, &certType, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc.

80 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA LABEL, | abel, sizeof (| abel)-1},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA VALUE, certificate, sizeof(certificate)}

}

10.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC X 509 ATTR CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes defined for this object class:

Table 2623, X.509 Attribute Certificate Object Attributes

Attribute Data Type [Meaning

CKA OWNER' Byte Array IDER-encoding of the attribute certificate's
subject field. This is distinct from the
CKA_SUBJECT attribute contained in
CKC X 509 certificates because the ASN.1
syntax and encoding are different.

CKA AC ISSUER Byte Array IDER-encoding of the attribute certificate's
issuer field. This is distinct from the
CKA_ISSUER attribute contained in
CKC_ X 5009 certificates because the ASN. 1
syntax and encoding are different. (default
empty)

CKA SERIAL NUMBER | Byte Array |DER-encoding of the certificate serial number.
(default empty)

CKA ATTR TYPES Byte Array IBER-encoding of a sequence of object identifier
values corresponding to the attribute types
contained in the certificate. When present, this
field offers an opportunity for applications to
search for a particular attribute certificate
without fetching and parsing the certificate
itself. (default empty)

CKA VALUE' Byte Array [BER-encoding of the certificate.
"Must be specified when the object is created

Only the CKA AC ISSUER, CKA SERIAL NUMBER and CKA ATTR TYPES
attributes may be modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK OBJECT CLASS cl ass = CKO CERTI FI CATE;

CK_CERTI FI CATE_TYPE cert Type = CKC X 509 ATTR CERT;

CK UTF8CHAR | abel [] = " attribute certificate object”;
CK BYTE owner[] = {...};

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 81 |

CK BYTE certificate[] = {...};

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA CERTI FI CATE TYPE, &certType, sizeof(certType)};
{CKA TOKEN, &true, sizeof(true)},

{CKA _LABEL, | abel, sizeof(label)-1},

{CKA_ OANER, owner, si zeof (owner)},

{CKA VALUE, certificate, sizeof(certificate)}

}

10.7 Key objects

10.7.1 Definitions

There is no CKO _definition for the base key object class, only for the key types derived
from it.

This section defines the object class CKO PUBLIC KEY, CKO PRIVATE KEY and
CKO_SECRET KEY for type CK OBJECT CLASS as used in the CKA CLASS
attribute of objects.

10.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to all the tables describing
attributes of keys:

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes defined for this object class:

Table 2724, Common Key Attributes

Attribute Data Type Meaning

CKA _KEY TYPE'" CK_KEY TYPE | Type of key

CKA_ID* Byte array Key identifier for key (default empty)
CKA_START DATE® CK_DATE Start date for the key (default empty)
CKA END DATE® CK DATE End date for the key (default empty)
CKA DERIVE® CK BBOOL TRUE if key supports key derivation

(i.e., if other keys can be derived
from this one (default FALSE)

CKA LOCAL**® CK_BBOOL TRUE only if key was either

e generated locally (i.e., on the
token) with a C GenerateKey or

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

82 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data Type Meaning

C_GenerateKeyPair call

* created with a C_CopyObject
call as a copy of a key which had
its CKA_LOCAL attribute set to

TRUE
CKA KEY GEN_ CK_MECHANISM | [dentifier of the mechanism used to
MECHANISM**° _TYPE generate the key material.

CKA_ALLOWED_MECHANISMS | CK_MECHANISM | A list of mechanisms allowed to be

—T,YtPEt—PTR’ used with this key. The number of
pointer to a . . - . ..
CK_MECHANISM mechanisms in the array is the

_TYPE array ulValueLen component of the

attribute divided by the size
of CK_ MECHANISM TYPE.Fhe
| : hani ol)

expressed-by-the-#Fefnelen
component of the attribute.

"Refer to table Table 15Fable15 for footnotes

The CKA_ID field is intended to distinguish among multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the
key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section 10.6 for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of a key according to the dates; doing this is up to the application.

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive
other keys from the key.

The CKA_LOCAL attribute has the value TRUE if and only if the value of the key was
originally generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

The CKA _KEY GEN MECHANISM attribute identifies the key generation
mechanism used to generate the key material. It contains a valid value only if the
CKA_LOCAL attribute has the value TRUE. If CKA LOCAL has the value FALSE,
the value of the attribute is CK_UNAVAILABLE INFORMATION.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 83 |

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following
table defines the attributes common to all public keys, in addition to the common
attributes defined for this object class:

Table 2825, Common Public Key Attributes

Attribute Data type Meaning

CKA_ SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryption’

CKA VERIFY® CK BBOOL | TRUE if key supports verification
where the signature is an appendix to
the data’

CKA_VERIFY RECOVER® | CK_BBOOL | TRUE if key supports verification
where the data is recovered from the

signature’
CKA WRAP® CK_BBOOL | TRUE if key supports wrapping (i.e.,
can be used to wrap other keys)’
CKA_TRUSTED" CK BBOOL | The key can be trusted for the

application that it was created.

The wrapping key can be used to wrap
keys with

CKA_ WRAP_WITH_TRUSTED =
TRUE.

CKA WRAP TEMPLATE g%ATTRIBUTE— For wrapping keys. The attribute
template to match against any keys
wrapped using this wrapping key. Keys
that do not match cannot be wrapped.
The number of attributes in the array is
the ulValuelen component of the
attribute divided by the size of
CK_ATTRIBUTEFhe-number-of

R e

el e L
attribute.

“Refer to table Table 15Fable15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key also be stored on the token.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

84 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS

#11 attributes for public keys. use the following table.

Table 2926, Mapping of X.509 kev usage flags to cryptoki attributes for public kevs

Key usage flags for public keys in X.509

Corresponding cryptoki attributes for

public key certificates public keys.
dataEncipherment CKA_ENCRYPT
digitalSignature, keyCertSign, cRLSign CKA_VERIFY
digitalSignature, keyCertSign, cRLSign CKA_VERIFY RECOVER
keyAgreement CKA_DERIVE
keyEncipherment CKA_WRAP
nonRepudiation CKA_VERIFY
nonRepudiation CKA_VERIFY RECOVER

10.9 Private key objects

Private key objects (object class CKO_PRIVATE KEY) hold private keys. The
following table defines the attributes common to all private keys, in addition to the
common attributes defined for this object class:

Table 3027, Common Private Key Attributes

Attribute Data type Meaning

CKA SUBJECT® Byte array DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE™! CK _BBOOL | TRUE if key is sensitive’

CKA DECRYPT® CK_BBOOL | TRUE if key supports
decryption’

CKA SIGN® CK_BBOOL | TRUE if key supports
signatures where the signature
is an appendix to the data’

CKA_SIGN _RECOVER® CK BBOOL | TRUE if key supports
signatures where the data can
be recovered from the
signature’

CKA UNWRAP® CK_BBOOL | TRUE if key supports
unwrapping (i.e., can be used
to unwrap other keys)’

CKA_EXTRACTABLE™" CK_BBOOL | TRUE if key is extractable and
can be wrapped’

CKA_ALWAYS SENSITIVE**° CK_BBOOL | TRUE if key has always had
the CKA SENSITIVE

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

109. OBIECTS 85 |

Attribute Data type Meaning
attribute set to TRUE

CKA NEVER EXTRACTABLE**® | CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE
attribute set to TRUE

CKA_WRAP_WITH TRUSTED'" | CK_BBOOL | TRUE if the key can only be
wrapped with a wrapping key
that has CKA_ TRUSTED=
TRUE.

Default = FALSE.

CKA UNWRAP _TEMPLATE g%ATTRIBUTE— For wrapping keys. The
attribute template to apply to
any keys unwrapped using this
wrapping key. Any user
supplied template is applied
after this template as if the
object has already been
created. The number of
attributes in the array is the
ulValuel en component of the
attribute divided by the size of
CK_ATTRIBUTEFhenumber
B
component-ofthe-attribute.
CKA _ALWAYS AUTHENTICATE | CK BBOOL | If TRUE, the user has to
H supply the PIN for each use
(sign or decrypt) with the key
(default FALSE).
CKA—AUTHENTICATED"™ CK BBOOL | TRUE il the PIN has been
e

"Refer to table Table 15Fable-15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, this is not enforced by Cryptoki, and it is not required that the certificate
and public key also be stored on the token.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is FALSE, then certain attributes of the private key cannot be revealed in plaintext
outside the token. Which attributes these are is specified for each type of private key in
the attribute table in the section describing that type of key.

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

86 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA ALWAYS AUTHENTICATE attribute can be used to force re-
authentication (i.e. force the user to provide a PIN) for each use of the-a private key.
“Use” in this case means sign—or—deerypta cryptographic operation_such as sign or
decrypt. This attribute may only be set to TRUE when CKA_PRIVATE is also TRUE.

Re-authentication occurs by calling C Login with wuserType set to
CKU_CONTEXT SPECIFIC immediately after a cryptographic operation using the
key has been initiated (e.g. after C Signlnit). In this call, the actual user type is
implicitly given by the usage requirements of the active key. If C Login returns
CKR OK the user was successfully authenticated and this sets the active key in an
authenticated state that lasts until the cryptographic operation has successfully or
unsuccessfully been completed (e.g. by C Sign, C SignFinal...). A return value
CKR PIN INCORRECT from C Login means that the user was denied permission to
use the key and continuing the cryptographic operation will result in a behavior as if
C Login had not been called. In both of these cases the session state will remain the
same, however repeated failed re-authentication attempts may cause the PIN to be
locked. C_Login returns in this case CKR PIN LOCKED and this also logs the user out
from the token. Failing or omitting to re-authenticate when
CKA ALWAYS AUTHENTICATE s set to TRUE will result in
CKR USER NOT LOGGED IN to be returned from calls using the key. C_Login will
return CKR_OPERATION_NOT_INITIALIZED, but the active cryptographic operation
will not be affected, if an attempt is made to re-authenticate when
CKA ALWAYS AUTHENTICATE is set to FALSE.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 87 |

10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following
table defines the attributes common to all secret keys, in addition to the common
attributes defined for this object class:

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

88 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 3128, Common Secret Key Attributes

Attribute

Data type

Meaning

CKA_SENSITIVE™"

CK_BBOOL

TRUE if object is sensitive
(default FALSE)

CKA_ENCRYPT®

CK_BBOOL

TRUE if key supports encryption’

CKA DECRYPT®

CK_BBOOL

TRUE if key supports decryption’

CKA SIGN®

CK_BBOOL

TRUE if key supports signatures
(i.e., authentication codes) where
the signature is an appendix to the
data’

CKA_VERIFY®

CK_BBOOL

TRUE if key supports verification
(i.e., of authentication codes)
where the signature is an
appendix to the data’

CKA WRAP®

CK_BBOOL

TRUE if key supports wrapping
(i.e., can be used to wrap other
keys)’

CKA_ UNWRAP®

CK_BBOOL

TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)’

CKA EXTRACTABLE""

CK_BBOOL

TRUE if key is extractable and
can be wrapped °

CKA ALWAYS SENSITIVE**®

CK_BBOOL

TRUE if key has always had the
CKA_SENSITIVE attribute set to
TRUE

CKA NEVER EXTRACTABLE>*
6

CK_BBOOL

TRUE if key has never had the
CKA EXTRACTABLE attribute
set to TRUE

CKA CHECK VALUE

Byte array

Key checksum

CKA WRAP WITH TRUSTED"

CK_BBOOL

TRUE if the key can only be
wrapped with a wrapping key that
has CKA_TRUSTED= TRUE.

Default = FALSE.

CKA TRUSTED"

CK_BBOOL

The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED
= TRUE.

CKA WRAP TEMPLATE

CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to match against any
keys wrapped using this wrapping
key. Keys that do not match
cannot be wrapped. The number

| Copyright © 2004 RSA Security Inc.

Draft 65, MEebruary 2004

109. OBIECTS 89 |

Attribute Data type Meaning
of attributes in the array is the

ulValuelen component of the
attribute divided by the size of
CK_ATTRIBUTEFhe-size-ts-the
CKA UNWRAP TEMPLATE I(E%ATTRIBUTE— For wrapping keys. The attribute

template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of attributes
in the array is the ul/ValueLen

component of the attribute
divided by the size of

CK_ATTRIBUTEFhe-size-is-the

"Refer to table Table 15Fable-15 for footnotes

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is FALSE, then certain attributes of the secret key cannot be revealed in plaintext outside
the token. Which attributes these are is specified for each type of secret key in the
attribute table in the section describing that type of key.

The key check value (KCV) attribute for symmetric key objects to be called
CKA_CHECK VALUE, of type byte array, length 3 bytes, operates like a fingerprint,
or checksum of the key. They are intended to be used to cross-check symmetric keys
against other systems where the same key is shared, and as a validity check after manual
key entry or restore from backup. Refer to object definitions of specific key types for
KCYV algorithms.

Properties:

1. For two keys that are cryptographically identical the value of this attribute should
be identical.

2. CKA CHECK_ VALUE should not be usable to obtain any part of the key value.

3. Non-uniqueness. Two different keys can have the same CKA CHECK VALUE.
This is unlikely (the probability can easily be calculated) but possible.

The attribute is optional but if supported the value of the attribute is always supplied by
the library regardless of how the key object is created or derived. It shall be supplied
even if the encryption operation for the key is forbidden (CKA ENCRYPT=FALSE).

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

90 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If a value is supplied in the application template (allowed but never necessary) then, if
supported, it must match what the library calculates it to be or the library returns a
CKR ATTRIBUTE VALUE INVALID. If the library does not support the attribute
then it should ignore it. Allowing the attribute in the template this way does no harm and
allows the attribute to be treated like any other attribute for the purposes of key wrap and
unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute
in the template as a no-value (0 length) entry. The application can query the value at any
time like any other attribute using C_GetAttributeValue. C_SetAttributeValue may be
used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived
from the key object by taking the first three bytes of an encryption of a single block of
null (0x00) bytes, using the default cipher and mode (e.g. ECB) associated with the key
type of the secret key object.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

109. OBIECTS 91 |

10.11 Domain parameter objects

10.11.1Definitions

This section defines the object class CKO DOMAIN PARAMETERS for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.11.20verview

This object class was created to support the storage of certain algorithm's extended
parameters. DSA and DH both use domain parameters in the key-pair generation step. In
particular, some libraries support the generation of domain parameters (originally out of
scope for PKCS11) so the object class was added.

To use a domain parameter object you must extract the attributes into a template and
supply them (still in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public
domain parameters.

The following table defines the attributes common to domain parameter objects in
addition to the common attributes defined for this object class:

Table 3229, Common Domain Parameter Attributes

Attribute Data Type Meaning

CKA KEY TYPE' CK KEY TYPE | Type of key the domain parameters can
be used to generate.

CKA LOCAL** CK_BBOOL TRUE only if domain parameters were
either

» generated locally (i.e., on the token)
with a C_GenerateKey

» created with a C_CopyObject call
as a copy of domain parameters
which had its CKA_LOCAL
attribute set to TRUE

"Refer to table Table 15Fable15 for footnotes

The CKA_LOCAL attribute has the value TRUE if and only if the value of the domain
parameters were originally generated on the token by a C_GenerateKey call.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

92 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.12 Mechanism objects

10.12.1Definitions

This section defines the object class CKO MECHANISM for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.12.20verview

Mechanism objects provide information about mechanisms supported by a device beyond
that given by the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsInit and C_FindObjects, mechanism
objects are not returned unless the CKA_CLASS attribute in the template has the value
CKO_MECHANISM. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 3330, Common Mechanism Attributes

Attribute Data Type Meaning
CKA MECHANISM TYPE | CK MECHANISM TYPE | The type of mechanism
object

The CKA_MECHANISM_TYPE attribute may not be set.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 93

11 Functions

Cryptoki's functions are organized into the following categories:

» general-purpose functions (4 functions)

* slot and token management functions (9 functions)

* session management functions (8 functions)

* object management functions (9 functions)

* encryption functions (4 functions)

* decryption functions (4 functions)

* message digesting functions (5 functions)

* signing and MACing functions (6 functions)

» functions for verifying signatures and MACs (6 functions)

* dual-purpose cryptographic functions (4 functions)

* key management functions (5 functions)

* random number generation functions (2 functions)

» parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to
notify an application of certain events, and can also use application-supplied functions to
handle mutex objects for safe multi-threaded library access.

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function
call accomplishes either its entire goal, or nothing at all.

* [fa Cryptoki function executes successfully, it returns the value CKR OK.

* Ifa Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the
failure of the function.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

94 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* In unusual (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partially achieved.

There are a small number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individually with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even
an unsupported function must have a “stub” in the library which simply returns the value
CKR _FUNCTION NOT SUPPORTED. The function’s entry in the library’s
CK _FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to
this stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section 11.1, we enumerate the various possible return values for Cryptoki functions;
most of the remainder of Section 10.12 details the behavior of Cryptoki functions,
including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions’ return
values. We have attempted to specify the behavior of Cryptoki functions as completely
as was feasible; nevertheless, there are presumably some gaps. For example, it is
possible that a particular error code which might apply to a particular Cryptoki function
is unfortunately not actually listed in the description of that function as a possible error
code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precisely what kind of error), and
behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make
an application that accommodates a range of behaviors from Cryptoki libraries.

11.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 95 |

* CKR_GENERAL ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token is in an inconsistent state.

e CKR _HOST MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

* CKR _FUNCTION FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that
can be obtained by calling C_GetSessionInfo will hold useful information about
what happened in its u/DeviceError field. In any event, although the function call
failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR GENERAL ERROR is returned. Depending on what the root cause of the
error actually was, it is possible that an attempt to make the exact same function call
again would succeed.

* CKR_OK: The function executed successfully. Technically, CKR OK is not quite a
“universal” return value; in particular, the legacy functions C_GetFunctionStatus
and C_CancelFunction (see Section 11.16) cannot return CKR _OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR GENERAL ERROR or CKR HOST MEMORY would be an appropriate error
return, then CKR_GENERAL ERROR should be returned.

11.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList,
C_GetSlotList, C_GetSlotInfo, C_GetTokenlInfo, C_WaitForSlotEvent,
C_GetMechanismList, C_GetMechanismInfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following values:

e CKR SESSION HANDLE INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

* CKR DEVICE REMOVED: The token was removed from its slot during the
execution of the function.

e CKR SESSION CLOSED: The session was closed during the execution of the
function. Note that, as stated in Section 6.6.6, the behavior of Cryptoki is undefined
if multiple threads of an application attempt to access a common Cryptoki session
simultaneously. Therefore, there is actually no guarantee that a function invocation

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

96 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

could ever return the value CKR SESSION CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR _SESSION HANDLE INVALID or CKR DEVICE REMOVED would be an
appropriate error return, then CKR_SESSION HANDLE INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_GetIlnfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, or C_WaitForSlotEvent) can return any of the following values:

* CKR_DEVICE MEMORY: The token does not have sufficient memory to perform
the requested function.

* CKR DEVICE ERROR: Some problem has occurred with the token and/or slot.
This error code can be returned by more than just the functions mentioned above; in
particular, it is possible for C_GetSlotInfo to return CKR_DEVICE ERROR.

* CKR TOKEN NOT PRESENT: The token was not present in its slot at the time
that the function was invoked.

e CKR DEVICE REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR _DEVICE MEMORY or CKR DEVICE ERROR would be an appropriate error
return, then CKR_DEVICE MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.14 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function.
Itis:

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 97 |

* CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section 11.17). If the callback
returns the value CKR CANCEL, then the function aborts and returns
CKR_FUNCTION CANCELED.

11.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application developers who are
not using their own threading model. They are:

* CKR _MUTEX BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such a function will successfully detect bad mutex objects and return this value.

e CKR MUTEX NOT LOCKED: This error code can be returned by mutex-
unlocking functions. It indicates that the mutex supplied to the mutex-unlocking
function was not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of a function, then the function may return any applicable error code.

* CKR_ARGUMENTS BAD: This is a rather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

* CKR_ATTRIBUTE READ ONLY: An attempt was made to set a value for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section 10.1 for more information.

* CKR_ATTRIBUTE SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive
or unextractable.

* CKR_ATTRIBUTE TYPE INVALID: An invalid attribute type was specified in a
template. See Section 10.1 for more information.

e CKR ATTRIBUTE VALUE INVALID: An invalid value was specified for a
particular attribute in a template. See Section 10.1 for more information.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

98 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* CKR BUFFER TOO SMALL: The output of the function is too large to fit in the
supplied buffer.

* CKR_CANT LOCK: This value can only be returned by C_Initialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

e CKR_CRYPTOKI ALREADY INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has already been initialized (by a
previous call to C_Initialize which did not have a matching C_Finalize call).

* CKR_CRYPTOKI NOT INITIALIZED: This value can be returned by any function
other than C_Initialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a call to
C_Initialize.

e CKR DATA INVALID: The plaintext input data to a cryptographic operation is
invalid. This return value has lower priority than CKR DATA LEN RANGE.

e CKR DATA LEN RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the
plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA INVALID.

e CKR DOMAIN PARAMS INVALID: Invalid or unsupported domain parameters
were supplied to the function. Which representation methods of domain parameters
are supported by a given mechanism can vary from token to token.

e CKR ENCRYPTED DATA INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED DATA LEN RANGE.

e CKR ENCRYPTED DATA LEN RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRYPTED DATA INVALID.

* CKR _FUNCTION CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR CANCEL (see CKR CANCEL). It also
happens to a function that performs PIN entry through a protected path. The method
used to cancel a protected path PIN entry operation is device dependent.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 99 |

e CKR _FUNCTION NOT PARALLEL: There is currently no function executing in
parallel in the specified session. This is a legacy error code which is only returned by
the legacy functions C_GetFunctionStatus and C_CancelFunction.

e CKR _FUNCTION NOT _SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki API should have a
“stub” in the library; this stub should simply return the value
CKR_FUNCTION _NOT SUPPORTED.

* CKR_FUNCTION REJECTED: The signature request is rejected by the user.

* CKR_INFORMATION SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

* CKR _KEY CHANGED: This value is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
original saved session.

* CKR _KEY FUNCTION NOT PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key’s attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). This return
value has lower priority than CKR_KEY TYPE INCONSISTENT.

* CKR KEY HANDLE INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
We reiterate here that 0 is never a valid key handle.

* CKR _KEY INDIGESTIBLE: This error code can only be returned by C_DigestKey.
It indicates that the value of the specified key cannot be digested for some reason

(perhaps the key isn’t a secret key, or perhaps the token simply can’t digest this kind
of key).

e CKR _KEY NEEDED: This value is only returned by C_SetOperationState. It
indicates that the session state cannot be restored because C_SetOperationState
needs to be supplied with one or more keys that were being used in the original saved
session.

e CKR KEY NOT NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

* CKR KEY NOT WRAPPABLE: Although the specified private or secret key does
not have its CKA UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

100 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_ KEY UNEXTRACTABLE.

* CKR KEY SIZE RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actually do it because the supplied key‘s size is outside the range of key sizes that it
can handle.

e CKR KEY TYPE INCONSISTENT: The specified key is not the correct type of
key to use with the specified mechanism. This return value has a higher priority than
CKR _KEY FUNCTION NOT_PERMITTED.

* CKR KEY UNEXTRACTABLE: The specified private or secret key can’t be
wrapped because its CKA UNEXTRACTABLE attribute is set to TRUE. Compare
with CKR_KEY NOT WRAPPABLE.

* CKR_MECHANISM INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

e CKR MECHANISM PARAM INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

e CKR NEED TO CREATE THREADS: This value can only be returned by
C Initialize. It is returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

2. The library cannot function properly without being able to spawn new threads
in the above fashion.

e CKR _NO EVENT: This value can only be returned by C_GetSlotEvent. It is
returned when C_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

* CKR OBJECT HANDLE INVALID: The specified object handle is not valid. We
reiterate here that 0 is never a valid object handle.

* CKR OPERATION ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from
activating an encryption operation with C_Encryptlnit. Or, an active digesting

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 101 |

operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’t support simultaneous dual
cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

e CKR OPERATION NOT INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having called C_Encryptlnit first to activate an
encryption operation.

e CKR PIN EXPIRED: The specified PIN has expired, and the requested operation
cannot be carried out unless C_SetPIN is called to change the PIN value. Whether or
not the normal user’s PIN on a token ever expires varies from token to token.

e CKR PIN INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN
stored on the token. More generally-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

e CKR PIN INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

* CKR PIN LEN RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

* CKR _PIN LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

* CKR_RANDOM NO RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random

number generator. This return value has higher priority than
CKR_RANDOM_SEED NOT SUPPORTED.

* CKR _RANDOM SEED NOT SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not

accept seeding from an application. This return value has lower priority than
CKR_RANDOM NO RNG.

* CKR _SAVED STATE INVALID: This value can only be returned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations
state is invalid, and so it cannot be restored to the specified session.

* CKR_SESSION COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

102 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

many sessions already open, or because the token has too many read/write sessions
already open.

 CKR_SESSION EXISTS: This value can only be returned by C_InitToken. It
indicates that a session with the token is already open, and so the token cannot be
initialized.

 CKR_SESSION PARALLEL NOT SUPPORTED: The specified token does not
support parallel sessions. This is a legacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel sessions.
CKR_SESSION PARALLEL NOT SUPPORTED can only be returned by
C _OpenSession, and it is only returned when C_OpenSession is called in a
particular [deprecated] way.

e CKR _SESSION READ ONLY: The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_ TOKEN WRITE PROTECTED.

 CKR_SESSION READ ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

e CKR_SESSION READ WRITE SO EXISTS: A read/write SO session already
exists, and so a read-only session cannot be opened.

* CKR _SIGNATURE LEN RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR _SIGNATURE_INVALID.

* CKR_SIGNATURE INVALID: The provided signature/MAC is invalid. This return
value has lower priority than CKR_SIGNATURE LEN RANGE.

e CKR SLOT ID INVALID: The specified slot ID is not valid.

* CKR _STATE UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is simply unable to save

the current state). This return value has lower priority than
CKR_OPERATION NOT INITIALIZED.

e CKR _TEMPLATE INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more
information.

* CKR _TEMPLATE INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section 10.1 for more information.

* CKR _TOKEN NOT RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the slot.

Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 103 |

* CKR_TOKEN WRITE PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR SESSION READ ONLY.

* CKR _UNWRAPPING KEY HANDLE INVALID: This value can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key is not valid.

* CKR _UNWRAPPING KEY SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key’s size is outside the range of key sizes that it can handle.

* CKR UNWRAPPING KEY TYPE INCONSISTENT: This value can only be
returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

» CKR USER ALREADY LOGGED IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,
because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

* CKR USER ANOTHER ALREADY LOGGED IN: This value can only be
returned by C_Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

* CKR _USER NOT LOGGED IN: The desired action cannot be performed because
the appropriate user (or an appropriate user) is not logged in. One example is that a
session cannot be logged out unless it is logged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A final example is that cryptographic operations on certain
tokens cannot be performed unless the normal user is logged in.

* CKR _USER PIN NOT INITIALIZED: This value can only be returned by
C_Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

e CKR _USER TOO MANY TYPES: An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. It is
not required to, however. Only if the simultaneous distinct users cannot be supported
does C_Login have to return this value. Note that this error code generalizes to true
multi-user tokens.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

104 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

e CKR _USER TYPE INVALID: An invalid value was specified as a
CK USER TYPE. Valid types are CKU SO—.and CKU_USER:, and
CKU_CONTEXT_SPECIFIC.

* CKR _WRAPPED KEY INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If a call is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR. WRAPPED KEY INVALID. This return
value has lower priority than CKR. WRAPPED KEY LEN RANGE.

e CKR WRAPPED KEY LEN RANGE: This value can only be returned by
C _UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR _WRAPPED KEY INVALID.

e CKR WRAPPING KEY HANDLE INVALID: This value can only be returned by
C _WrapKey. It indicates that the key handle specified to be used to wrap another
key is not valid.

* CKR_WRAPPING KEY SIZE RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it

because the supplied wrapping key’s size is outside the range of key sizes that it can
handle.

e CKR WRAPPING KEY TYPE INCONSISTENT: This value can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from
Section 11.1.6. One minor implication of this is that functions that use a session handle
(i.e., most functions!) never return the error code CKR_ TOKEN NOT PRESENT (they
return CKR_SESSION _HANDLE INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 105 |

11.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section 11.1.2, an application should never count on getting a
CKR_SESSION CLOSED error.

3. The difference between CKR DATA INVALID and CKR DATA LEN RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR ENCRYPTED DATA INVALID and
CKR_ENCRYPTED DATA LEN RANGE, and between
CKR WRAPPED KEY INVALID and CKR WRAPPED KEY LEN RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library
developer to know which of CKR ATTRIBUTE VALUE INVALID,
CKR TEMPLATE INCOMPLETE, or CKR TEMPLATE INCONSISTENT to
return. When possible, it is recommended that application developers be generous in
their interpretations of these error codes.

11.2 Conventions for functions returning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to a location which will hold the length of the output produced (say pul/BufLen). There
are two ways for an application to call such a function:

1. If pBuf is NULL PTR, then all that the function does is return (in *pu/BufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR OK is returned by
the function.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

106 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. If pBuf is not NULL PTR, then *pu/BufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER _TOO SMALL is returned. In either case, *pulBufLen
is set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return 0
bytes of plaintext. If a single additional byte of ciphertext is supplied by a subsequent
call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in
Cryptoki. Most functions will be shown in use in at least one sample code snippet. For
the sake of brevity, sample code will frequently be somewhat incomplete. In particular,
sample code will generally ignore possible error returns from C library functions, and
also will not deal with Cryptoki error returns in a realistic fashion.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 107 |

11.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

¢ C_Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR plnitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL PTR
or points to a CK_C_INITIALIZE_ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generally supply the value
NULL PTR to C_Initialize (the consequences of supplying this value will be explained
below).

If plnitArgs is non-NULL PTR, C Initialize should <cast it to a
CK _C_INITIALIZE ARGS PTR and then dereference the resulting pointer to obtain
the CK _C_INITIALIZE ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL PTR; if it’s not, then C_Initialize should return with
the value CKR_ ARGUMENTS BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set,
that indicates that application threads which are executing calls to the Cryptoki library
are not permitted to use the native operation system calls to spawn off new threads. In
other words, the library’s code may not create its own threads. If the library is unable to

function properly under this restriction, C_Initialize should return with the value
CKR NEED TO CREATE THREADS.

A call to C_Initialize specifies one of four different ways to support multi-threaded
access via the value of the CKF_OS_LOCKING_OK flag in the flags field and the
values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer
fields:

1. If the flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have
the value NULL PTR), that means that the application won’t be accessing the
Cryptoki library from multiple threads simultaneously.

2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the
value NULL PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_ CANT LOCK.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

108 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

3. [If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have
non-NULL PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_Initialize should return with the value CKR CANT LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return
with the value CKR_CANT_LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ ARGUMENTS BAD.

A call to C_Initialize with plnitArgs set to NULL PTR is treated like a call to
C_Initialize with plnitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL PTR, and has the flags field set to 0.

C _Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typically, it might cause Cryptoki to initialize its internal memory buffers, or any other
resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call
to C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See
Section 6.5 for more details.

Return values: CKR_ARGUMENTS_BAD, CKR_CANT LOCK,
CKR_CRYPTOKI ALREADY_INITIALIZED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR _NEED TO CREATE THREADS, CKR OK.

Example: see C_GetInfo.

¢ C_Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C Finali ze)(
CK_ VA D _PTR pReserved
);

C _Finalize is called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions; for this version, it should be set to NULL PTR (if

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 109 |

C_Finalize is called with a non-NULL PTR value for pReserved, it should return the
value CKR_ ARGUMENTS BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call to C_Finalize should be preceded by a single call to C_Initialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section 6.5 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread
becomes unblocked and returns the value CKR _CRYPTOKI NOT INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK.

Example: see C_GetInfo.

¢ C_Getlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get I nf o) (
CK_I NFO _PTR plnfo

)

C_Getlnfo returns general information about Cryptoki. plnfo points to the location that
receives the information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK.

Example:
CK_I NFO i nf o;
CK RV rv;

CK_C I NI TI ALI ZE_ARGS | ni t Ar gs;

I nit Args. CreateMut ex = &WCreat eMut ex;

I ni t Args. DestroyMiut ex = &WDest royMit ex;
I ni t Args. LockMut ex = &WLockMut ex;

I ni t Args. Unl ockMut ex = &WUnl ockMut ex;
InitArgs.flags = CKF_OS _LOCKI NG _CXK;

I nit Args. pReserved = NULL_PTR;

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

110 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

rv = Clnitialize((CK VO D PTR) & nitArgs);
assert(rv == CKR_XK);

rv = C GetlInfo(& nfo);
assert(rv == CKR_(X);

if(info.version.mgjor == 2) {
/* Do lots of interesting cryptographic things with the
t oken */
}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_(X);

¢ C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cet Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

)|

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’s
CK _FUNCTION_LIST structure, which in turn contains function pointers for all the
Cryptoki API routines in the library. The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether
or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_Initialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: ~ CKR_ARGUMENTS BAD, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK.

Example:

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st ;
CK Clnitialize pClnitialize;
CK_RV ryv;

/* 1t’s OKto call C _GetFunctionList before calling
Clnitialize */

rv = C_Get Functi onLi st (&pFuncti onLi st);

assert(rv == CKR_X);

pC lInitialize = pFunctionList -> C lnitialize;

[* Call the C_Initialize function in the library */
rv = (*pC_lnitialize)(NUL_PTR);

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 111 |

11.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

¢ C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C GetSlotList)(
CK BBOOL t okenPresent,
CK_SLOT_|I D_PTR pSl ot Li st,
CK_ULONG_PTR pul Count

)|

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (TRUE), or all
slots (FALSE); pul/Count points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL PTR, then all that C_GetSlotList does is return (in *pulCount)
the number of slots, without actually returning a list of slots. The contents of the

buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case,
and the call returns the value CKR_OK.

2. If pSlotList is not NULL PTR, then *pul/Count must contain the size (in terms of
CK _SLOT _ID elements) of the buffer pointed to by pSlotList. 1f that buffer is large
enough to hold the list of slots, then the list is returned in it, and CKR OK is
returned. If not, then the call to C_GetSlotList returns the value
CKR BUFFER TOO SMALL. In either case, the value *pul/Count is set to hold the
number of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often
call C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of all slots with a token present, then the number of such slots can
(unfortunately) change between when the application asks for how many such slots there
are and when the application asks for the slots themselves). However, multiple calls to
C_GetSlotList are by no means required.

All slots which C_GetSlotList reports must be able to be queried as valid slots by
C_GetSlotInfo. Furthermore, the set of slots accessible through a Cryptoki library is
checked at the time that C_GetSlotList, for list length prediction (NULL pSlotList
argument) is called. If an application calls C_GetSlotList with a non-NULL pSlotList,
and then the user adds or removes a hardware device, the changed slot list will only be
visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the
changed slot list will be successfully recognized depending on the library
implementation. On some platforms, or earlier PKCS11 compliant libraries, it may be
necessary to successfully call C_Initialize or to restart the entire system.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

112 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_ ARGUMENTS BAD, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK.

Example:

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK SLOT_I D PTR pSl ot List, pSlotWthTokenLi st;
CK_ RV rv;

[* Get list of all slots */
rv = C GetSlotList(FALSE, NULL_PTR, &ul Sl ot Count);
if (rv == CKR_XK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_I D)) ;
C Get SlotList(FALSE, pSlotlList, &ulSlotCount);
rv == CKR_K) {
Now use that list of all slots */

rv
i f

|

/

}

free(pSlotList);
}

/* Get list of all slots with a token present */
pSl ot Wt hTokenLi st = (CK_SLOT_I D PTR) mal | oc(0);
ul Sl ot Wt hTokenCount = O;
while (1) {
rv = C Get SlotList(
TRUE, pSl ot WthTokenList, ul Sl otWthTokenCount);
if (rv !'= CKR_BUFFER TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st ,
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == CKR_.OK) {
/* Now use that list of all slots with a token present
*/

}
free(pSl ot Wt hTokenLi st) ;

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 113 |

¢ C _GetSlotInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot I nfo)(
CK_SLOT_ID slotlD,
CK_SLOT_I NFO_PTR pl nf o

) |

C_GetSlotInfo obtains information about a particular slot in the system. slot/D is the ID
of the slot; pInfo points to the location that receives the slot information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST MEMORY, CKR_OK, CKR_SLOT ID INVALID.

Example: see C_GetTokenInfo.

¢ C _GetTokenlInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Tokenl nf o) (
CK_SLOT_I D sl ot D,
CK_TOKEN_I NFO_PTR pl nfo

) |

C_GetTokenlInfo obtains information about a particular token in the system. slotID is
the ID of the token’s slot; p/nfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SLOT ID INVALID, CKR TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_ ARGUMENTS BAD.

Example:

CK_ULONG ul Count ;
CK_SLOT_I D_PTR pSl ot Li st ;
CK_SLOT I NFO sl ot I nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_ RV rv;

rv = C GetSlotList(FALSE, NULL_PTR, &ul Count);
if ((rv == CKR_.OK) && (ul Count > 0)) {
pSlotList = (CK_SLOT_I D PTR)
mal | oc(ul Count *si zeof (CK_SLOT_ID));
rv = C Get SlotList(FALSE, pSlotList, &ul Count);
assert(rv == CKR_XK);

/[* Get slot information for first slot */
rv = C GetSlotInfo(pSlotList[O], &slotlnfo);

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

114 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

assert(rv == CKR_XK);

/* Get token information for first slot */
rv = C _Get Tokenl nfo(pSlotList[0], &tokenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) {

l;ree(pSI ot List);

¢ C_WaitForSlotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wit For Sl ot Event) (
CK_FLAGS f 1 ags,
CK_SLOT_I D_PTR pSl ot
CK_ VO D _PTR pReserved

);

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits
for a slot event to occur); pSlot points to a location which will receive the ID of the slot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and some slot’s event flag is set, then that event flag is cleared, and the call
returns with the ID of that slot in the location pointed to by pSlot. If more than one slot’s
event flag is set at the time of the call, one such slot is chosen by the library to have its
event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF DONT_BLOCK flag set in the flags
argument, and no slot’s event flag is set, then the call returns with the value
CKR NO EVENT. In this case, the contents of the location pointed to by pSlot when
C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags
argument, then the call behaves as above, except that it will block. That is, if no slot’s
event flag is set at the time of the call, C_WaitForSlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application has a C_WaitForSlotEvent call

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 115 |

blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value
CKR CRYPTOKI NOT INITIALIZED.

Although the parameters supplied to C Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_NO EVENT, CKR OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_I D slotlD;
CK _SLOT I NFO sl ot I nf 0;

)* Bl ock and wait for a slot event */
rv = C WaitForSlotEvent(flags, &slotlD, NULL_PTR);
assert(rv == CKR_(X);

/* See what’s up with that slot */

rv = C GetSlotInfo(slotlID, &slotlnfo);
assert(rv == CKR_ XK);

¢ C_GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani snii st) (
CK _SLOT I D slotlD,
CK_MECHANI SM TYPE_PTR pMechani snli st
CK_ULONG_PTR pul Count

)

C_GetMechanismList is used to obtain a list of mechanism types supported by a token.
SlotID is the ID of the token’s slot; pul/Count points to the location that receives the
number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL PTR, then all that C_GetMechanismList does is return
(in *pulCount) the number of mechanisms, without actually returning a list of
mechanisms. The contents of *pulCount on entry to C_GetMechanismList has no
meaning in this case, and the call returns the value CKR OK.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

116 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. If pMechanismlList is not NULL PTR, then *pulCount must contain the size (in terms
of CK MECHANISM _TYPE clements) of the buffer pointed to by
pMechanismList. 1f that buffer is large enough to hold the list of mechanisms, then
the list is returned in it, and CKR OK 1is returned. If not, then the call to
C_GetMechanismList returns the value CKR_BUFFER TOO SMALL. In either
case, the value *pul/Count is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

Return values: CKR_BUFFER TOO SMALL,

CKR _CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR _DEVICE MEMORY, CKR DEVICE REMOVED, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,

CKR SLOT ID INVALID, CKR TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_ ARGUMENTS BAD.

Example:

CK_SLOT_I D sl ot D,

CK_ULONG ul Count ;

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK RV rv;

rv = C _Get Mechani snilist(slotl D, NULL_PTR, &ul Count);
if ((rv == CKR_.CK) && (ul Count > 0)) {
pMechani snii st =
(CK_MECHANI SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani snii st (slotlD, pMechanisnList,
&ul Count) ;
if (rv == CKR_XK) {

}
free(pMechani snii st);

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 117 |

¢ C_GetMechanismlInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani s nf 0) (
CK_SLOT_ID slotlD,
CK_MECHANI SM_TYPE t ype,
CK_MECHANI SM_| NFO_PTR pl nf o

)

C_GetMechanismInfo obtains information about a particular mechanism possibly
supported by a token. slotID is the ID of the token’s slot; fype is the type of mechanism;
plnfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_MECHANISM INVALID,
CKR_OK, CKR _SLOT ID INVALID, CKR TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_ ARGUMENTS BAD.

Example:

CK_SLOT_I D slotlD;
CK_MECHANI SM | NFO i nf o;
CK RV rv;

)* Get information about the CKM MD2 nechanismfor this
t oken */

= C _CGet Mechani sm nfo(slotI D, CKM MD2, & nfo);

(rv == CKR_X)

if (info.flags & CKF_DI GEST) {

}
}

¢ C _InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_InitToken) (
CK_SLOT_I D slotlD,
CK_UTF8CHAR_PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR PTR pLabel

)|

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the
SO’s initial PIN (which need not be null-terminated); u/PinLen is the length in bytes of
the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated). This standard allows PIN
values to contain any valid UTF8 character, but the token may impose subset restrictions.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

118 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If the token has not been initialized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK _TOKEN _INFO structure indicates the action that will result from -calling
C_InitToken. If set, the token will be reinitialized, and the client must supply the
existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except
for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user’s PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED _AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session
with it; when a call to C_InitToken is made under such circumstances, the call fails with
error CKR_SESSION EXISTS. Unfortunately, it may happen when C_InitToken is
called that some other application does have an open session with the token, but Cryptoki
cannot detect this, because it cannot detect anything about other applications using the
token. If this is the case, then the consequences of the C_InitToken call are undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In
these situations, an initialization mechanism outside the scope of Cryptoki must be
employed. The definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT ID_INVALID, CKR_ TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_TOKEN WRITE PROTECTED,
CKR_ARGUMENTS BAD.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 119 |

Example:

CK SLOT_ID slotlD;
CK_UTF8CHAR PTR pin = “MyPI N’;
CK_UTF8CHAR | abel [32] ;

CK RV rv;

memset (| abel , * ', sizeof (label)):

mencpy(l abel, “My first token”, strlien(“M first
token”));

rv = ClnitToken(slotID, pin, strlen(pin), |abel);
if (rv == CKR_XK) {

}

¢ C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C InitPIN)(
CK_SESSI ON_ HANDLE hSessi on,
CK_UTF8CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_InitPIN initializes the normal user’s PIN. #hSession is the session’s handle; pPin
points to the normal user’s PIN; u/PinLen is the length in bytes of the PIN. This standard
allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT LOGGED IN.

If the token has a “protected authentication path”, as indicated by the
CKF _PROTECTED AUTHENTICATION PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize the normal user’s PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitPIN can be used to initialize the normal user’s token
access.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

120 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK, CKR PIN INVALID,
CKR PIN LEN RANGE, CKR SESSION CLOSED, CKR SESSION READ ONLY,
CKR_SESSION HANDLE INVALID, CKR TOKEN WRITE PROTECTED,
CKR_USER_NOT_LOGGED IN, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_UTF8CHAR newPi n[]= {"“ NewPI N'};

CK RV rv;

rv = C_InitPlIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_X) {

}

¢ C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C Set PIN) (
CK_SESSI ON_ HANDLE hSessi on,
CK_UTF8CHAR_PTR pd dPi n,

CK_ULONG ul d dLen,
CK_UTF8CHAR_PTR pNewPi n,
CK_ULONG ul NewLen
);

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU USER
PIN if the session is not logged in. ASession is the session’s handle; pOIldPin points to
the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new
PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to
contain any valid UTF8 character, but the token may impose subset restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions”
state, or “R/W User Functions” state. An attempt to call it from a session in any other
state fails with error CKR_SESSION READ ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF _PROTECTED_ AUTHENTICATION PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on a token with such a protected authentication
path, the pOIldPin and pNewPin parameters to C_SetPIN should be NULL PTR. During
the execution of C_SetPIN, the current user will enter the old PIN and the new PIN

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 121 |

through the protected authentication path. It is not specified how the PINpad should be
used to enter two PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN LEN RANGE,
CKR_PIN_LOCKED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR SESSION READ ONLY,
CKR_TOKEN WRITE PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on
CK_UTF8CHAR ol dPi n[] {“A dPIN};
CK_UTF8CHAR newPi n[] {“ NewPI N };
CK RV ryv;

rv = C_Set Pl N
hSessi on, ol dPin, sizeof (ol dPin), newPin,
si zeof (newki n));
if (rv == CKR_.OX) {

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

122 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select a token.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the
token.

3. Call C _Login to log the user into the token. Since all sessions an application has
with a token have a shared login state, C_Login only needs to be called for one of the
sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is also possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

¢ C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _OpenSessi on) (
CK_SLOT_I D sl ot 1D,
CK_FLAGS f 1 ags,
CK_VO D_PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON_HANDLE_PTR phSessi on

)|

C_OpenSession opens a session between an application and a token in a particular slot.
slotID is the slot’s ID; flags indicates the type of session; pApplication is an application-
defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section 11.17); phSession points to the location that
receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical
OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy
reasons, the CKF_SERIAL_SESSION bit must always be set; if a call to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_ PARALLEL NOT_SUPPORTED.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 123 |

There may be a limit on the number of concurrent sessions an application may have with
the token, which may depend on whether the session is “read-only” or “read/write”. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION READ WRITE SO _EXISTS (see Section 6.6.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as the Notify parameter. See Section 11.17 for more information about
application callbacks.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL NOT SUPPORTED,
CKR_SESSION_READ WRITE SO_EXISTS, CKR_SLOT ID INVALID,
CKR_TOKEN NOT PRESENT, CKR_ TOKEN NOT RECOGNIZED,
CKR_TOKEN WRITE PROTECTED, CKR_ ARGUMENTS BAD.

Example: see C_CloseSession.

¢ C_CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseSessi on) (
CK_SESSI ON_ HANDLE hSessi on

)

C_CloseSession closes a session between an application and a token. hSession is the
session’s handle.

When a session is closed, all session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections
6.6.5-6.6.7 for more details).

If this function is successful and it closes the last session between the application and the
token, the login state of the token for the application returns to public sessions. Any new
sessions to the token opened by the application will be either R/O Public or R/W Public
sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

124 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR SESSION CLOSED is an error return. It actually indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made to C_CloseSession to close this particular session, and that call finished executing
first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will
occur in general if an application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_ FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_ SLOT_ID slotlD;

CK_BYTE application;
CK_NOTI FY MyNot i fy;
CK_SESSI ON_ HANDLE hSessi on;
CK RV ryv;

application = 17;
MyNoti fy = &EncryptionSessi onCal | back;
rv = C_OpenSessi on(
slot1 D, CKF_SERI AL_SESSI ON | CKF_RW SESSI ON,
(CK_VO D PTR) &application, MyNotify,
&hSessi on) ;
if (rv == CKR_XK) {

C_CI oseSessi on(hSessi on);

}

¢ C_CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseAl | Sessi ons) (
CK SLOT ID slotID

)

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed
automatically.

After successful execution of this function, the login state of the token for the application
returns to public sessions. Any new sessions to the token opened by the application will
be either R/O Public or R/W Public sessions.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 125 |

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_SLOT ID INVALID, CKR TOKEN NOT PRESENT.

Example:

CK_SLOT_I D slotlD;
CK RV rv;

'rv = C O oseAl | Sessions(slotlD);

¢ C_GetSessionInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sessi onl nf o) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_|I NFO _PTR pl nfo

) |

C_GetSessionInfo obtains information about a session. ASession is the session’s handle;
plnfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,

CKR_SESSION CLOSED, CKR_SESSION HANDLE INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK RV rv;

= C_Cet Sessi onl nfo(hSessi on, & nfo);
(rv == CKR_X) {
if (info.state == CKS_RW USER FUNCTI ONS) {

rv
i f

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

126 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C Get OperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQper ati onSt at e,
CK_ULONG_PTR pul Oper ati onSt at eLen

)

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. ASession is the session’s handle; pOperationState points to
the location that receives the state; pulOperationStateLen points to the location that
receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention
described in Section 11.2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from
token to token; however, this state is what is provided as input to C_SetOperationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the
session is using the CKM_SHA 1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts: the state of SHA-1’s 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at a later time.

Consider next a session which is performing an encryption operation with DES (a block
cipher with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session
is using the CKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and
output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES
key being used for encryption (see C_SetOperationState for more information on
whether or not the key is present in the saved state).

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 127 |

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain all the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a session which does not
currently have some active savable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some legal combination of two of these) should fail with the error
CKR OPERATION NOT INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of
various reasons (certain necessary state information and/or key information can’t leave
the token, for example) should fail with the error CKR _STATE UNSAVEABLE.

Return values: CKR_BUFFER TOO SMALL,

CKR _CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR _DEVICE MEMORY, CKR DEVICE REMOVED, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,

CKR _SESSION HANDLE INVALID, CKR STATE UNSAVEABLE,
CKR_ARGUMENTS BAD.

Example: see C_SetOperationState.

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C SetQperationState) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pQper ati onSt at e,
CK_ULONG ul Oper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

) |

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained with C_GetOperationState. #hSession is the session’s handle;
pOperationState points to the location holding the saved state; u/OperationStateLen
holds the length of the saved state; hEncryptionKey holds a handle to the key which will
be used for an ongoing encryption or decryption operation in the restored session (or 0 if
no encryption or decryption key is needed, either because no such operation is ongoing in
the stored session or because all the necessary key information is present in the saved
state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or 0 if no such key
is needed, either because no such operation is ongoing in the stored session or because all
the necessary key information is present in the saved state).

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

128 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The state need not have been obtained from the same session (the “source session”) as it
is being restored to (the “destination session”). However, the source session and
destination ~ session should have a common session state (e.g.,
CKS RW_USER FUNCTIONS), and should be with a common token. There is also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determine is not valid saved state (or is cryptographic operations state from
a session with a different session state, or is cryptographic operations state from a
different token), it fails with the error CKR_SAVED STATE INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY NEEDED. If the key in
use for the operation is saved in the state, then it can be supplied in the hEncryptionKey
argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing,
or verification operation, and the key in use for the operation is not saved in the state,
then it must be supplied to C_SetOperationState in the hA4uthenticationKey argument.
If it is not, then C_SetOperationState will fail with the error CKR_KEY NEEDED. If
the key in use for the operation is saved in the state, then it can be supplied in the
hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle
is submitted in the AEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_ KEY NOT NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState
can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), then C_SetOperationState fails
with the error CKR_KEY CHANGED.

An application can look at the CKF_RESTORE KEY NOT _NEEDED flag in the
flags field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles to C_SetOperationState calls. If this flag is TRUE, then a
call to C_SetOperationState never needs a key handle to be supplied to it. If this flag is
FALSE, then at least some of the time, C_SetOperationState requires a key handle, and
so the application should probably always pass in any relevant key handles when
restoring cryptographic operations state to a session.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 129 |

C_SetOperationState can successfully restore cryptographic operations state to a
session even if that session has active cryptographic or object search operations when
C_SetOperationState is called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_KEY CHANGED,
CKR_KEY NEEDED, CKR KEY NOT NEEDED, CKR OK,
CKR_SAVED STATE INVALID, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK _BYTE data3[] = {0x10, OxOF, OxOE, 0Ox0D, 0x0C};
CK_BYTE pDi gest [20];

CK_ULONG ul Di gest Len;

CK_RV rv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMechanism;
assert(rv == CKR_(X);

[* Start hashing */
rv = C _DigestUpdate(hSession, datal, sizeof(datal));
assert(rv == CKR_(X);

/* Find out how big the state m ght be */

rv = C Get OperationState(hSession, NULL PTR
&ul St at eLen) ;

assert(rv == CKR_X);

/* Allocate sonme nenory and then get the state */
pState = (CK BYTE_PTR) mal | oc(ul St at eLen);
rv = C GetOperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C_DigestUpdate(hSession, data2, sizeof(data2));
assert(rv == CKR_X);

/* Restore state. No key handl es needed */

rv = C _Set OperationState(hSession, pState, ul StatelLen, 0,
0);

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

130 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

assert(rv == CKR_XK);

/* Continue hashing fromwhere we saved state */
rv = C _DigestUpdate(hSession, data3, sizeof(data3));
assert(rv == CKR X);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDi gest);
rv = C_DigestFinal (hSession, pDigest, &ulDigestLen);
if (rv == CKR_X) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}

¢ C _Login

CK_DEFI NE_FUNCTI ON(CK_RV, C _Logi n) (
CK_SESSI ON_HANDLE hSessi on,
CK_USER_TYPE user Type,
CK_UTF8CHAR PTR pPi n,

CK_ULONG ul Pi nLen
);

C _Login logs a user into a token. ASession is a session handle; userType is the user type;
pPin points to the user’s PIN; u/PinLen is the length of the PIN. This standard allows
PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

When the user type is either CKU SO or CKU USER, if the call succeeds, each of the
application's sessions will enter either the "R/W SO Functions" state, the "R/W User
Functions" state, or the "R/O User Functions" state. If the user type is
CKU_CONTEXT SPECIFIC , the behavior of C_Login depends on the context in which
it is called. Improper use of this user type will result in a return value
CKR_OPERATION NOT_INITIALIZED.Pepending—on—the—user—type,—i—the—eall

o o T o D A QL Dt e

5 O v, O O O

X3 M 2 (13 . 2
9 9

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected
authentication path, the pPin parameter to C_Login should be NULL PTR. When
C_Login returns, whatever authentication method supported by the token will have been
performed; a return value of CKR OK means that the user was successfully

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 131 |

authenticated, and a return value of CKR PIN INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s
session, and then C_Login is successfully executed by that application, it may or may not
be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section 6.6.7). An attempt to do this will result
in the error code CKR_SESSION READ ONLY_ EXISTS.

C Login may be called repeatedly, without intervening C Logout calls, if (and only if) a
key with the CKA ALWAYS AUTHENTICATE attribute set to TRUE exists, and the
user needs to do cryptographic operation on this key. See further Section 10.9.

Return values: CKR_ ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION _CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION NOT INITIALIZED, CKR PIN INCORRECT, |
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,

CKR_SESSION _HANDLE INVALID, CKR_SESSION READ ONLY EXISTS,
CKR USER ALREADY LOGGED IN,
CKR_USER_ANOTHER ALREADY LOGGED IN,

CKR_USER_PIN _NOT_INITIALIZED, CKR_USER_TOO _MANY_TYPES,
CKR_USER_TYPE INVALID.

Example: see C_Logout.

¢ C Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_HANDLE hSessi on
);

C_Logout logs a user out from a token. ASession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s
sessions will enter either the “R/W Public Session” state or the “R/O Public Session”
state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, all private session objects from sessions belonging to the
application are destroyed.

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc. |

132 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If there are any active cryptographic or object-finding operations in an application’s
session, and then C_Logout is successfully executed by that application, it may or may
not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER_NOT LOGGED_IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_UTF8CHAR userPIN] = {“M/PIN'};
CK_ RV ryv;

rv = C Logi n(hSession, CKU USER, userPIN,
si zeof (userPIN));
if (rv == CKR_X) {

rv == C_Logout (hSessi on);
if (rv == CKR.XK) {

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 133 |

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions
provided specifically for managing key objects are described in Section 11.14.

¢ C CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Create(bject) (
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phObj ect
)

C_CreateObject creates a new object. ASession is the session’s handle; pTemplate points
to the object’s template; u/Count is the number of attributes in the template; phObject
points to the location that receives the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to FALSE. If that key object is a secret or private key then
the new key will have the CKA_ALWAYS_SENSITIVE attribute set to FALSE, and
the CKA_NEVER_EXTRACTABLE attribute set to FALSE.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE TYPE INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN PARAMS INVALID, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK, CKR PIN EXPIRED,
CKR_SESSION CLOSED, CKR_SESSION HANDLE INVALID,
CKR_SESSION_READ ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN WRITE PROTECTED,
CKR_USER NOT LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE

hDat a,

hCertificate,

hKey;
CK_OBJECT_CLASS

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

134 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

dat aCl ass = CKO_DATA,
certificateCl ass = CKO _CERTI FI CATE,
keyd ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {“My Application”’};
CK _BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK BYTE id[] ={...};
CK_BYTE certificateValue[] = {...};
CK _BYTE nmodul us[] = {...};
CK_BYTE exponent[] ={...};
CK BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &datad ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof(dataVval ue)}

CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass,
si zeof (certificated ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificateValue, sizeof(certificateValue)}

CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

}1
CK_ RV rv;

)* Create a data object */
rv = C Creat ebj ect (hSessi on, &dataTenpl ate, 4, &hData);
if (rv == CKR_.X) {

}

/* Create a certificate object */
rv = C Creat ehj ect (

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_ XK) {

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 135 |

}

/* Create an RSA public key object */
rv = C Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {

}

¢ C _CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyObj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hbj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phNewObj ect
);

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; #Object is the object’s handle; pTemplate points to the template for the
new object; ul/Count is the number of attributes in the template; phNewObject points to
the location that receives the handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily
be modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE
attribute may be changed from TRUE to FALSE, but not the other way around. If this
change is made, the new key’s CKA_NEVER_EXTRACTABLE attribute will have the
value FALSE. Similarly, the template may specify that the new key’s
CKA_SENSITIVE attribute be TRUE; the new key will have the same value for its
CKA ALWAYS SENSITIVE attribute as the original key). It may also specify new
values of the CKA TOKEN and CKA PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR _TEMPLATE INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

136 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_SESSION_CLOSED, CKR_SESSION HANDLE _INVALID,
CKR_SESSION READ ONLY, CKR TEMPLATE INCONSISTENT,
CKR_TOKEN WRITE PROTECTED, CKR_USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] ={...};
CK BYTE fal se = FALSE;
CK BYTE true = TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &fal se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)}

}1
CK RV rv;

/* Create a DES secret key session object */
rv = C Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {
/* Create a copy which is a token object */
rv = C_Copybj ect (hSessi on, hKey, ©Tenplate, 1,
&hNewkKey) ;

}

¢ C DestroyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Destroyject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect

) |

C_DestroyObject destroys an object. ASession is the session’s handle; and hObject is
the object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects
can be destroyed unless the normal user is logged in.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 137 |

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OBJECT HANDLE INVALID, CKR_OK, CKR PIN_EXPIRED,
CKR_SESSION CLOSED, CKR_SESSION_HANDLE INVALID,
CKR_SESSION READ ONLY, CKR TOKEN WRITE PROTECTED.

Example: see C_GetObjectSize.

¢ C_GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Obj ect Si ze) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hQbj ect,

CK_ULONG_PTR pul Si ze

);

C_GetObjectSize gets the size of an object in bytes. ASession is the session’s handle;
hObject is the object’s handle; pulSize points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it
is some measure of how much token memory the object takes up. If an application
deletes (say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token’s CK_TOKEN_INFO structure increases by
approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION FAILED, CKR GENERAL ERROR, CKR HOST MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT HANDLE INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE _INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_OBJECT_CLASS dat aCl ass = CKO _DATA;
CK_CHAR application[] = {“My Application”};
CK BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;
CK_ATTRI BUTE terrpl ate[] = {
{CKA CLASS, &datad ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, val ue, sizeof(value)}

}

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

138 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_ULONG ul Si ze;
CK_ RV rv;

rv = C Createbj ect (hSession, & enplate, 4, & bject);
if (rv == CKR_X) {

rv = C _Get Obj ectSi ze(hSessi on, hQbject, &ulSize);

if (rv !'= CKR_| NFORMATI ON_SENSI TI VE) {

}
rv = C DestroyQbj ect (hSession, hQCbject);

}

¢ C_GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Attri buteVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) |

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession
is the session’s handle; hObject is the object’s handle; pTemplate points to a template
that specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each (#ype, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

1. If the specified attribute (i.e., the attribute specified by the #ype field) for the object
cannot be revealed because the object is sensitive or unextractable, then the

ulValueLen field in that triple is modified to hold the value -1 (i.e., when it is cast to a
CK _LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValueLen field in that triple is modified to hold
the value -1.

3. Otherwise, if the pValue field has the value NULL PTR, then the ul/ValueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 139

located at pValue, and the ul/ValueLen field is modified to hold the exact length of the
attribute.

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE SENSITIVE. If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE TYPE INVALID. If case 5
applies to any of the requested attributes, then the call should return the wvalue
CKR BUFFER TOO SMALL. As usual, if more than one of these error codes is
applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

In the special case of an attribute whose value is an array of attributes, for example
CKA WRAP TEMPLATE, where it is passed in with pValue not NULL, then if the
pValue of elements within the array is NULL PTR then the u/Valuelen of elements
within the array will be set to the required length. If the pValue of elements within the
array is not NULL_PTR, then the u/ValuelLen element of attributes within the array must
reflect the space that the corresponding p Value points to, and pValue is filled in if there is
sufficient room. Therefore it is important to initialize the contents of a buffer before
calling C_GetAttributeValue to get such an array value. If any ul/Valuelen within the
array isn't large enough, it will be set to —1 and the function will return
CKR_BUFFER TOO_SMALL, as it does if an attribute in the pTemplate argument has
ulValueLen too small. Note that any attribute whose value is an array of attributes is
identifiable by virtue of the attribute type having the CKF_ARRAY_ ATTRIBUTE bit
set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR ATTRIBUTE TYPE INVALID, and CKR BUFFER TOO SMALL do not
denote true errors for C_GetAttributeValue. If a call to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every attribute in
the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE TYPE INVALID, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE_ MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OBJECT HANDLE INVALID, CKR OK, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQnj ect ;

Draft 65, February-May 2004 Copyright © 2004 RSA Security Inc.

140 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE_PTR pMdul us, pExponent;
CK_ATTRI BUTE tenpl ate[] = {
{CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

}1
CK_ RV rv;

.rv = C CetAttributeVal ue(hSessi on, hCbject, &tenplate,

2);
if (rv == CKR_OK)
pModul us = (CK_BYTE_PTR)
mal | oc(tenpl at e[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = pModul us;
[* tenpl ate[0].ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK BYTE_PTR)
mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl ate[1] . pVal ue = pExponent;
/* tenplate[1].ul Val ueLen was set by
C GetAttributeval ue */

rv = C GetAttributeVval ue(hSession, hQoject,
2);
if (rv == CKR_XK) {

}
free(pModul us) ;
free(pExponent);

}

¢ C_SetAttributeValue

&t enpl at e,

CK_DEFI NE_FUNCTI ON(CK_RV, C _Set Attri but eVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) |

C_SetAttributeValue modifies the value of one or more attributes of an object.
hSession is the session’s handle; hObject is the object’s handle; pTemplate points to a
template that specifies which attribute values are to be modified and their new values;

ulCount is the number of attributes in the template.

Only session objects can be modified during a read-only session.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 141 |

The template may specify new values for any attributes of the object that can be
modified. If the template specifies a value of an attribute which is incompatible with
other existing attributes of the object, the call fails with the return code
CKR _TEMPLATE INCONSISTENT.

Not all attributes can be modified; see Section 9.7 for more details.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR DEVICE REMOVED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION HANDLE INVALID, CKR_SESSION READ ONLY,
CKR_TEMPLATE INCONSISTENT, CKR_ TOKEN WRITE PROTECTED,
CKR_USER NOT LOGGED _IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, | abel, sizeof(label)-1

s
CK RV rv;

'rv = C SetAttributeVal ue(hSession, hQbject, &tenplate,
1);
if (rv == CKR_XK) {

}

¢ C_FindObjectsInit

CK_DEFI NE_FUNCTI ON(CK_RV, C FindObjectslnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)|

C_FindObjectsInit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template that
specifies the attribute values to match; u/Count is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with all attributes in the
template. To find all objects, set ulCount to 0.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

142 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After calling C_FindObjectsInit, the application may call C_FindObjects one or more
times to obtain handles for objects matching the template, and then eventually call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For
example, an object search in an “R/W Public Session” will not find any private objects
(even if one of the attributes in the search template specifies that the search is for private
objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

Even though C_FindObjectsInit can return the values
CKR ATTRIBUTE TYPE INVALID and CKR ATTRIBUTE VALUE INVALID, it
is not required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE TYPE INVALID, or it can initialize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE VALUE_INVALID, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION FAILED, CKR GENERAL ERROR, CKR HOST MEMORY,
CKR_OK, CKR_OPERATION_ ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE _INVALID.

Example: see C_FindObjectsFinal.

¢ C_FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phObj ect ,

CK_ULONG ul MaxObj ect Count ,
CK_ULONG_PTR pul Obj ect Count

)|

C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. ASession is the session’s handle; phObject points to
the location that receives the list (array) of additional object handles; u/MaxObjectCount
is the maximum number of object handles to be returned; pul/ObjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pulObjectCount
points to receives the value 0.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 143 |

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_ARGUMENTS BAD, CKR CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR _DEVICE REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Example: see C_FindObjectsFinal.

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndQbj ect sFi nal) (
CK_SESSI ON_HANDLE hSessi on
)

C_FindObjectsFinal terminates a search for token and session objects. ASession is the
session’s handle.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_ULONG ul Qoj ect Count ;

CK RV rv;

rv = C_FindQojectslnit(hSession, NULL_PTR 0);
assert(rv == CKR_X);
while (1) {
rv = C_FindQoj ect s(hSessi on, & bject, 1,
&ul Obj ect Count) ;
if (rv 1= CKR. K || ul QojectCount == 0)
br eak;

}

rv = C_FindQbj ect sFi nal (hSessi on) ;
assert(rv == CKR_(X);

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

144 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; 4Key is the handle of the encryption
key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt data
in a single part; or call C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the
final piece of ciphertext. To process additional data (in single or multiple parts), the
application must call C_Encryptlnit again.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR_KEY HANDLE _INVALID,
CKR_KEY SIZE RANGE, CKR_KEY TYPE INCONSISTENT,
CKR_MECHANISM INVALID, CKR MECHANISM PARAM INVALID, CKR OK,
CKR_OPERATION ACTIVE, CKR PIN EXPIRED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT LOGGED _IN.

Example: see C_EncryptFinal.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 145 |

¢ C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

) |

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to
the data; u/Datalen is the length in bytes of the data; pEncryptedData points to the
location that receives the encrypted data; pulEncryptedDatalen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be called after
C_Encryptlnit without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, then C_Encrypt will fail with return code
CKR DATA LEN RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and
pEncryptedData point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

Return values: CKR_ ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DATA INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE MEMORY,
CKR_DEVICE REMOVED, CKR_FUNCTION _CANCELED,

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

Draft 65, Eebruary-May 2004 Copyright © 2004 RSA Security Inc. |

146 PKCS #11 v2.20 (DRAFT): CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C _EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) |

C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handle; pPart points to the data part; ul/PartLen is the
length of the data part; pEncryptedPart points to the location that receives the encrypted
data part; pulEncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. This function
may be called any number of times in succession. A call to C_EncryptUpdate which
results in an error other than CKR BUFFER TOO SMALL terminates the current
encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_ ARGUMENTS BAD, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example: see C_EncryptFinal.

¢ C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt Fi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG_PTR pul Last Encrypt edPartLen

)

C_EncryptFinal finishes a multiple-part encryption operation. ASession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any; pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

| Copyright © 2004 RSA Security Inc. Draft 65, MEebruary 2004

119. FUNCTIONS 147 |

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. A call to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return
code CKR_DATA LEN RANGE.

Return values: CKR_ ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example:

#def i ne PLAI NTEXT_BUF_SZ 200
#def i ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on
CK_OBJECT_HANDLE hKey;
CK_BYTE i v][8];
CK_MECHANI SM nmechani sm = {

CKM D