RSA

LABORATORIES

PKCS#11v2.11 Final Draft: Cryptographic Token I nterface
Standard

RSA Laboratories

June 2001

Table of Contents

7.

8.

6.5 APPLICATIONS AND THEIR USE OF CRY PTOK |...cvuiuireeeerieeesessesssssesessessesssssssssssssssssssssssssessessssnees 16
6.5.1 Applications and processes
6.5.2 Applications and tNrEAAS...........oocerrrnisee e e
6.6 SESSIONS. ...ttt et teeeb et
6.6.1 REA-0NlY SESSION SLALES........occeirieerieerer et
6.6.2 REAA/WIITE SESSION SLALES.......oeeireerieerer et
6.6.3 Permitted object accesses by sessions.
B.6.4 SESSION BVENLS.....c.cvieeeriereriiristiress e ses et s s bR
6.6.5 Session handles and 0bjeCt hANAIES..........c.ccricireiricr s
6.6.6 Capabilities Of SESSIONS........cccovurerrerernerrererrreeere s
6.6.7 Example of USe Of SESSIONS.........ccvuremnerrenerrenerneereeereeeseeesseenas
6.7 SECONDARY AUTHENTICATION (DEPRECATED).....cviuneeeereeneene
6.7.1 Using keys protected by secondary authentication
6.7.2 Generating private keys protected by secondary authentication..............ccooveeernenccnenenee
6.7.3 Changing the secondary authentication PIN value.............ccccoouvnirrencrnenas

6.7.4 Secondary authentication PIN collection mechanisms
6.8 FUNCTION OVERVIEW......uiiiiturieireeaseseseeasasssese e teesesssssssesssssssse st sssssssstsssssessssanssnsssssnssssassnssssesnes

SECURITY CONSIDERATIONS. ..ottt s 31

PLATFORM- AND COMPILER-DEPENDENT DIRECTIVESFOR C OR CH++......cocviiccireccicnes 32

Copyright O 1994-2001 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

003-903053- 211- 000- 000

10.

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

81
8.2

NULL_PTR
83 SAMPLE PLATFORM - AND COMPILER-DEPENDENT CODEccooetiuriiiereressessssessetessssssesessssssesesnes 35
B.3.1 WWINS2Z ..ttt bbb bbb bR bbbt b b s s b et bt nee
832 Winl6..........
8.3.3 Generic UNIX

GENERAL DATA TYPES ... b bbb 37

9.1 GENERAL INFORMATIONuiiuiitiiiitestestestsseessessessessesssssssssessessessessessessssssssssssessesssssssssssssssssssssessassassasses
" CK_VERSION; CK_VERSION_PTR....ooooecccrresssecerressscceersssssien
CK_INFO; CK_INFO_PTR..ooocccccersesecceeesssssceeeesessseesssssseeeesssse
CK_NOTIFICATION .oosseeeeeeeeeeessseeeeessseseeeesesseeesssssseeeeessse
9.2 SLOT AND TOKEN TYPES....iiiiiiiiitistestestessessessesesssssssssssssssessessessessessssssssssssessesssssssssssssnsssssssessessassasses
S o G W) i | D 1@ = Ko 1 i 10X =2 1 =S
CK_SLOT_INFO; CK_S.OT_INFO_PTR
CK_TOKEN_INFO; CK_TOKEN_INFO_PTRu.osscccooreessscceerssssseeessssssceesssssseeeessssseseeessssseeesen
9.3 SESSION TYPES. ..o itistististierisstssesstssestsstsstestssaesssssessesstssssssssassassassessessesssssssssessestessessssssssessssnsssssssassassasses
" CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR.....ccooooiooroceeeessscceeesssssceeessssseeeesssse
(o1 QLU= = =3 1= =S
CK_STATE
CK_SESSION_INFO; CK_SESSION_INFO_PTR....ooorsoteceeeesssesceeeesssssceesssssseeesesssseseeessssseeesens
94 (@SN (o I 17 = =5
" CK_OBJECT _HANDLE; CK_OBJECT HANDLE_PTR
CK_OBJECT_CLASS, CK_OBJECT_CLASS PTR.....cccccormmr....
CK_HW._FEATURE_TYPE ..ooooccceesoeeceeeseseseeessesseeesessseeeeesssse
[2 2 =
[= 23 1= 7N 1 = 2 =T
CK_ATTRIBUTE_TYPE.....oooooooeoeeeeesseceeessseseeeeesesseeesssssseeeesssse
CK_ATTRIBUTE; CK_ATTRIBUTE_PTR.....coooroosrccerrsssscrerssse
[0 YN 1 =H
95 DATA TYPES FOR MECHANISMSccutiitiestiiitecte it st etssaesssessbessseesbesbssssesasssssssassssesssesssesssesssesssesssesnns
" CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR
CK_MECHANISM; CK_MECHANISM_PTR
CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR
9.6 [N (o N B = =TS

(] G 2 &
CK_FUNCTION_LIST; CK_FUNCTION_LIST PTR; CK_FUNCTION_LIST PTR PTR.......68
9.7 LOCKING-RELATED TYPES.... ottt ciiiiiiiestieste st stessssestsssesssessbesssessbesssssssesassssssssssssssssssssesssesssesssesssesnns
S O O = =7 1 =V LU 1 =
CK_DESTROYMUTEXccoooeseeeeeessseeeeesssseceeeesesseeeessssseeeeesssse
CK_LOCKMUTEX and CK_UNLOCKMUTEXovvssccccrrree
CK_C_INITIALIZE_ARGS, CK_C_INITIALIZE_ARGS PTR

OBUIECTS ...ttt bbb b b bbb 74

101 CREATING, MODIFYING, AND COPYING OBJECTS
10.1.1 L@ 1] 00 o] o=t TP

Copyright © 1994-2001 RSA Security Inc.

10.1.2 Voo Y e [o] o £ 77
10.1.3 (0707 o)1/ T aTo o] o] 1=ox £ TP

102 COMMON ATTRIBUTES.

103 HARDWARE FEATURE OBJECTS .o cueuiuesreeeeeseesessesssssssessessesssssas 78
10.3.1 L1 oot O o= £ TP 79
10.3.2 MoONOtONIC COUNLEr ODJECES.......ccvirececirerecie sttt s e ssssesssnnsesns 80

104 STORAGE OBJECTS.c.ettteereseseesetsstsstssssessssssssssessessssssssssssssssssssssassessessssssssssssssssssassesssssessesssssessessssnsas 81

105 DATA OBJECTS.

106 CERTIFICATE OBJIECT Sttt tsetseesessesessssss s ettt sttt st nssssssssssasssnsns
10.6.1 X.509 public key certificate ODJECLS......cvvvrrccrrrcc e
10.6.2 X.509 attribute certificate objects

107 KEY OBJIECT Scoiueuirniseeeseesessessess s sssssssssssssssssssssssssssssssssssssens
108 PUBLIC KEY OBJIECTS.....coieieeeenesnensnsssessssssssssssssssessssssssssssssssens
10.8.1 RSA PUDIIC KEY ODJECLS ...ttt sttt s s ssnnsnse
DSA PUDIIC KEY ODJECLSvvececeeireccie sttt s s ettt ea e nnsnsnnses
10.8.3 ECDSA public Key ODJECES.......cccerereerercesie s
10.84 Diffie-Hellman public key Objects.........cccovvevnerrererecinnens
10.85 X9.42 Diffie-Hellman public key objects
10.8.6 KEA PUDIIC KEY ODJECES......cocuieirieiririciciseses st ssssss st sssssssssssssssssssssssessssssssssssnsseses
109 PRIVATE KEY OBJECTS.....cuiuieieneereseessessessessessesssnsas
10.9.1 RSA private key objects
10.9.2 DSA Private KeY ODJECES.......cveccecrcce st
10.9.3 Elliptic curve private KeY ODJECLS........covvceirrircresese st ssses
1094 Diffie-Hellman private K&y ODJECES ..o
10.9.5 X9.42 Diffie-Hellman private key ObJECtS.......covcevevccerscces e
10.9.6 KEA private key objects
1010 SECRET KEY OBJECT S uuuueeeeereseesseseesessessessessssessessssssssssssssssssssssssssssessessssssssssssssssssssassessessesssssssssnnes
10.10.1 GENEriC SECTEL KEY ODJECES.....cuiveieceeeeirecie ettt s s sssnansenas
10.10.2 RC2 secret Key ODJECES.......ccvevreeeereeeeresesiesesesesesessseesnens
10.10.3 RC4 secret Key ODJECES.......ccvevveeerereeierersesieseseseeesessssesens
10.104 RCS5 secret Key ObJECES.......ccvivireeereeeeresssie s
10.10.5 AESSECret KEY ODJECLS ..ottt ssnansenns
10.10.6 DESSECIet KEY ODJECES.....c.cucireeerieireiceseres e se st snsssnssnses
10.10.7 DES2 secret Key ODJECES.......ovrreerecre s
10.10.8 DES3 secret Key ODJECES.......cvirereceerercsie s
10.10.9 CAST secret Key ODJECES........vvrurereerrrerresieseseseeesessssssssennens
10.10.10 CAST3 SECret KEY ODJECES....cvucieeceeer sttt s st nanseens
10.10.11 CAST128 (CAST5) Secret KEY ODJECES.......cvierereeesrescsie st ssssse s ssssssssesns
10.10.12 IDEA secret key objects
10.10.13 CDMF SECIet KEY ODJECES.....cccvriereetrirecisisisessestssses st sssssessessssssssssssssesesssssssssssssnsesns
10.10.14 SKIPJACK SECret KEY ODJECES.....covueererieciririreceieirese st sessss sttt sssssssesssssansnsns
10.10.15 BATON SECIet KEY ODJECLScucvevireeirisicisis sttt sssss st sse s sssssessssansesns
10.10.16 JUNIPER SECIet KEY ODJECES......coeeeeerireecieirirescsisesesse st sessssssssesssss s ssssssssssssssnsnsns
1011 DOMAIN PARAMETER OBJECTS
10.11.1 DSA domain parameter ODJECES.......ccvviierirerrrinerersetsssessssessessssssssesssssssssssssssssssssssssssssssseses
10.11.2 Diffie-Hellman domain parameter ODJECLS........ccccvvceevvece s
10.11.3 X9.42 Diffie-Hellman domain parameters objects
FUNCTIONS......coooiieereireieisstseestissse e s st s bttt et esss sttt s ettt et esnessnsas 127
111 FUNCTION RETURN VALUES.....ccottnitntiniintseesesesssssssssssssstssssssssssssssssssssssssssesssssssssssssssssessesssssssssssnens 128
11.1.1 Universal Cryptoki function return VaIUES............cccoeeveverecneneseesesese s sssssssessessses 128
11.1.2 Cryptoki function return values for functions that use a session handle...................... 129
11.1.3 Cryptoki function return values for functions that use a token

1114 Special return value for application-supplied callbacks.........cccocoeevrevcnnessenenenenns

Copyright © 1994-2001 RSA Security Inc.

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.1.5 Special return values for mutex-handling functions.
11.1.6 All other Cryptoki fUNCtion FetUrN ValUEScovvceciericseeeee et ssesssssessesnnes
11.1.7 More onrelative priorities of Cryptoki errors
11.1.8 T 0] o010 [Tl 0] (o = LR
112 CONVENTIONS FOR FUNCT IONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER....... 139
113 DISCLAIMER CONCERNING SAMPLE CODE
114 GENERAL-PURPOSE FUNCTIONScctttteeenesnessessessssssssssssssssessssessessessesssssssssssssssssssessessessessesssssssnsans
" O 1 oL = O
L 10T U= OO
L = {11 TR
C_GEtFUNCLIONLISEcvevecceeieereceesesesee s sseees
115 SLOT AND TOKEN MANAGEMENT FUNCTIONS.
" O €1 1S o 4 N O
LR €= 65 o] 1 | g1 (o 1P
LG 1= o2 1) o TR
C_WaitFOrSOtEVENL ..o sseees
C_GetMeChani SIMLIStccccvrerreerereseeesesses s sessssens
C_GetMechani SMINFO ..o
L 1 o118 o] G TP

116

117

118

119

11.10

(o 13111 1 N T

(O O 1= 1= o] = ot TP
LR ©0]'0) YL@ o] = ox 0T
O D=1 (0)Y® o] =" ot O

O €= (0]][I 15 T
C_GEtAUITDULEVAIUE.......cececeeeeereee s

C_SEtAITDULEVAIUE ...ttt sttt ana e s
L 1107 (@] 1= £ 1 o PP
C_FindObjects
C_FindObjectsFinal
ENCRY PTION FUNCTIONS......cuttttutreutrtutseasssessesessessssessssesssssssssssessssssssssssssssssssesssssssssssssssssssssssssssnsns
L =0 To7 1Y/)4 I o RPN
(O =12 ot Y/ | TP
C_EncryptUpdate
L =g To3 Y/ o)1 1 - OO
DECRY PTION FUNCTIONS......cuttttuttreutrtasseasesessesessessssessssessssssessssessssssssssssssssssssessssssssssssssssssssssesssnsns
LGS 1o Y, o) 4 1 g OO

C_Decrypt....ccovvrenens

C_DecryptUpdate
LR 1w Y o1 1 - TP
M ESSAGE DIGESTING FUNCTIONS......ctutiutreerereeressesessesessssssesssessssssssssessssssssssssssssssssssssssssssssssesssssns

Copyright © 1994-2001 RSA Security Inc.

L 101 =Y/
L 1= T = O
1111 SIGNING AND MACING FUNCTIONS
" LS T 1 o TP
LS T o o TP
LS T 110 1o £ =TT
LS o a1 - OO
C_SignRecoverlnit....
C_SignRecover
1112 FUNCTIONS FOR VERIFYING SIGNATURES AND MACS
1113
" C_DigestENCryptUpdate.........coceerereeeenrerssieneresseeesesessessesesssesens
C_DeCryptDIgESIUPUALE......cooveeceeereeceetri sttt s e ss st ns s ssnansesnenen
LGRS T =g o3 Y] 014181 T F= L= TP
C_DecryptVerifyUpdate
1114 KEY MANAGEMENT FUNCTIONS . .c.csturettrertartasestsesteesssssssssssssssessssessssessssesssssssessssssssnsssssssesssessssesass
" O 1= = = 1= (T
C_GENEIALEKEYPAIT ...ttt se sttt s et s et es s sns s nsnansessnen
O =T o (=Y T
C_UnwrapKey
O 1= L= 2SR
1115 RANDOM NUMBER GENERATION FUNCTIONS.....ccitueutteeneerenssrenstsessesessssessessssessssesssssssssssessssessssesass
" LGRS "==o | =TT (o] o o TS
C_GenerateRandom
1116 PARALLEL FUNCTION MANAGEMENT FUNCTIONS
" C_ GOt UNCLIONSLALUS......corveeeeeesieireee ettt ssssssasessssse s s ssss e s ssssssssesssssessesssnsessssssssesssnssnsessnen
LG @ 1Tt 0 3 4 o o TR
1117 CALLBACK FUNCTIONS....ctritreuireneereeeeseesessesessasesssssssssssessesessssssnses
11.17.1 Surrender callbacks.........ocenierecinecneereeeereeeeeene
11.17.2 Vendor-defined CAlIDACKS..........ccvieriniireiireereeeree s
12. IMECHANISIVIS ..ottt bbb bbb 229
121 RSA MECHANISMS.....cuiteeertieestieesessesetsese s ssessesessessssessssese s se st esssssssssasssbsessssesssasssssssssssssssssessssnsns 234
12.1.1 PKCS#1 RSAKeY Pair gENEIAtiONc.ocveceerririreeireesieisesessessesesssssessssssssessssssssssssssssssssnes 234
12.1.2 X9.31 RSA KEY PaIT gENEIALION ...ttt ssssssssessssss et sssssessssssssesnenes 235
12.1.3 PICSHL RSA ..ottt e bbbt 235
1214 PKCS#1 RSA OAEP mechani Sm parameters.........ooccenerensesnesessesesesssssssssssssesssnes 237
CK_RSA PKCS MGF_TYPE; CK_RSA PKCS MGF_TYPE_PTR....ccccosinrrieenieeeeeneeenens 237
CK_RSA_PKCS OAEP_SOURCE_TYPE; CK_RSA_PKCS OAEP_SOURCE_TYPE_PTR 237
CK_RSA PKCS OAEP_PARAMS, CK_RSA PKCS OAEP_PARAMS PTR.....cccovniireniunen. 238
12.15 PKCSHL RSA OAEP ...ttt
12.1.6 [SO/TEC 9796 RSA......coooiirrirenereireeireeieie et
12.1.7 X.509 (FaW) RSA......ccereretresesee s sessssns
12.1.8 ANSE X 3L RSA ...ttt bbb
12.1.9 PKCS#1 RSA signature with MD2, MD5, or SHA-1
12.1.10 ANS X9.31 RSA signature with SHA-L......ccccoevvvereervennnns
122 DSA MECHANISMS...cuiieeiieeieieessisesstsess st sessssessessssesssesssssssssssssas
12.2.1 (DS N A o Tz T 0 [T T= = L1 o) o T

Copyright © 1994-2001 RSA Security Inc.

vi PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.2.2 DSA domain parameter generationccvcereressenesesssesesssssesssssesesssssssesssssessssssnes
12.2.3 DSA WIthOUL NASNINGcceiriicicrce st s e snaes
12.2.4 DSAWIth SHA-L.....ooririrrriee st

12.25 FORTEZZA tiMESLAITID.o vvceeeereeseeeeseeseesessessssesss s sssessssssssssssssssssessssssssssssssssssssessessessssns

123 ABOUT ELLIPTIC CURVE .octiieiuieisesessesessesssssess st ssssssssssssssssssss s sssssssssssssssssssssssssssssnsns

124 124 B LIPTIC CURVE MECHANISMS....covieirinereiseisstsstsstsssssssesssssesesssssssssssssssssssssssssssssssessssssssssssnens
124.1 12.4.1 Elliptic curve Key pair generation.........cccvreeeerereeeetnenensssssesssssesessssssssssssessssssnes
12.4.2 12.4.2 ECDSA without hashing
12.4.3 12. 4.3 ECDSAWILh SHA-L ..ottt
124.4 EC mMechani SM ParameLerS.........cocveerricierresesisesesssssesessses
1245 Elliptic curve Diffie-Hellman key derivationc.ccoceeevvevecenrencninnne,

12.4.6 Elliptic curve Diffie-Hellman with cofactor key derivation
12.4.7 Elliptic curve Menezes-Qu-Vanstone key derivationcccceveeveennne.

125 DIFFIE-HELLMAN MECHANISMS....coiuriinireireeeeisssstsstsstssisesssessssssssssssnsns
125.1 PKCS#3 Diffie-Hellman key pair generation..........cccovvccnnensenensssnesesssesssssssessesesnes
12.5.2 PKCS#3 Diffie-Hellman domain parameter generation
1253 PKCS#3 Diffie-Hellman key derivationcccccovveeeerenenns

126 X9.42 DIFFIE-HELLMAN MECHANISM PARAMETERS......cvuuiiunienereenesssessessessesessessssssssssessessssssssenees

CK_X9 42 DH1 DERIVE PARAMS, CK_X9 42 DH1 DERIVE_PARAMS PTR.......ccccovuunren. 260

127 X9.42 DIFFIE-HELLMAN MECHANISMS.....cvurieirimrirreseseeseesessesssssssessesssssssssssssessssssssssessessssssssssssnees

12.7.1 X9.42 Diffie-Hellman key pair generation..........cccocveveeeee.

12.7.2 X9.42 Diffie-Hellman domain parameter generation

12.7.3 X9.42 Diffie-Hellman Key derivationccceernereenrenssssessssessessseesssssssssesssssesnees
12.7.4 X9.42 Diffie-Hellman hybrid key derivation ... sseseesesessesnees
12.7.5 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation............coccevveveenereeseennens 265

12.8 KEA MECHANISM PARAMETERS
CK_KEA DERIVE_PARAMS, CK_KEA DERIVE_PARAMS PTR

129 KEA MECHANISMScoiuieieisetsetsstsstsesssssssessesss sttt ssessesss bbbt sessessessessssssssssnsns
12.9.1 KEA key pair generationccoceeeeeverenrenesssesesesssssesnens
12.9.2 KEA KeY derivation........ccccevneeenensessesssiesesssssssessssesnens
1210 GENERIC SECRET KEY MECHANISMS......cviemienienernenesessssessessssnsenss
12.10.1 GeNeric SECret KEY JENEIAtiONccueveceeieireresietseess et sesss s s sssssssssssssassesns
1211 WRAPPING/UNWRAPPING PRIVATE KEY S...ceiririierireessesessssssssssesssssssssssssssssssssssssssssssesssssssssssseees
1212 ABOUT RC2...ieirctrcineiniieeeee sttt ssssssssssssssss s sssssssssssssns
1213 RC2MECHANISM PARAMETERS......ccotuniuritneeneenesnesessnessssssssssssssssenns
) CK_RC2_PARAMS; CK_RC2 PARAMS PTR.....cccovumrrrrrrineen.
CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS PTR
CK_RC2_MAC_GENERAL_PARAMS, CK_RC2_MAC_GENERAL_PARAMS PTR.......... 274
1204 RC2MECHANISMS....coieieeeeeeeeseeseeseseesessessesssssssessessssssssssssssssssssssssssssesssssssssssssssssssssssssssessessessssssssssnes 275
12.14.1 @7 S VA0 1= = =4 o) o TR 275
12.14.2 RC2-ECB....occrreseisei st s st 275
12.14.3 RC2-CBC..ooirirereriereiretsetsessess st ssssss s s s s s sssssssssnsns 276
12.14.4 RC2-CBC With PKCS PAAAING ...cvvveeeeeeriierieiriresieisesesseesesessesssesesssssssssssesssssssssssssssssesssssnes 277

12.14.5 General-length RC2-MAC
12.146 RC2-MAC

1215 RCAMECHANISMS,
12.15.1 RC4 key generation

12152 RCAuee...
12.16 ABOUT RC5
12.17 RC5 MECHANISM PARAMETERS.....ccietictierierieseststsstessestessesssssssssstssssssssssssssssssssssssssssssssssessestessessesns
" CK_RC5_PARAMS; CK_RC5 PARAMS PTRoooosoooeeeresssscceesssssoceeeessssseesessssssesesssssseessen 280
CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS PTR......cooorooeeooeersssscceeessssseceeesssssieen 281
CK_RC5_MAC_GENERAL_PARAMS, CK_RC5 MAC_GENERAL_PARAMS PTR........ 281
12.18 RCE MECHANISMS....c ettt etetestsstssss s e sseebes e ssssstssbestastesbesbessesse st st snsesssassaseabesbessessssssansastestestessesns 282

Copyright © 1994-2001 RSA Security Inc.

Vii

12.18.1 R OIS VAo 1= == 4o o T 282
12.182 RC5-ECB
12.183 RC5-CBC

12.18.4 RC5-CBC With PKCS PAAAINGvvveeeeeereierieiriresieisesesaeesesessesssssessssssesssssssssssssssssssssssssssssnes 284
12.18.5 General-1ength RCE-MAC ...ttt ssssssssss s sssssessssssssssssssssseses 285
12.18.6

1219 AESMECHANISMS
12.19.1
12.19.2
12.19.3 AESCBC ...ttt sss s s et
12.19.4 AESCBC with PKCS padding.......cccovereeerrrerenesenerseernereneens
12.19.5 General-length AES-MAC.........ocrvecceseseseeseeeessenes
12.19.6 AESMAC ..ottt

12.20 GENERAL BLOCK CIPHER MECHANISM PARAMETERS
CK_MAC_GENERAL_PARAMS, CK_MAC_GENERAL_PARAMS PTR

1221 GENERAL BLOCK CIPHER MECHANISMS.....courierienernesereessessssessesssssssessessessssssssssnes
12.21.1 General block cipher key generation..........cccoceevevecrvennnns
12.21.2 General block cipher ECB........cooovoevvenrcnrersseesereesnenees
12.21.3 General bloCK CIPNEr CBC ...ttt sssssssssssssse s sssssssssssssssssssssssesas
12.21.4 General block cipher CBC with PKCSPadding........ccccoeeuveneeerrreresrsreseseenessssesseseseeens
12.21.5 General-length general block cipher MAC
12.21.6 General bloCK CIPNEr IMAC......... ettt sssss st ss s sssssssansesas
1222 DOUBLE AND TRIPLE-LENGTH DESMECHANISMS.....cvirierienienereenninsssesessesesssssssssssssessesssssesenees
12.22.1 Double-length DESKEY gENEratiON.........cccevuvvreeirereseeereresssesesssssessssssssesssssssssssssssssssssnes
12.22.2 Triple-length DES Order of Operations........ccooveevneniesinnesssessnesssssssssssssssssssssesssssssesns

12.22.3 Triple-length DESin CBC Mode
1223 SKIPJACK MECHANISM PARAMETERS
CK_SKIPJACK_PRIVATE_WRAP_PARAMS,

CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR....c.coiiiinininsinsineineinesesssssss s ssssssssssssssssssssssessesns 298
CK_SKIPJACK_RELAYX_PARAMS; CK_SKIPJACK_RELAYX_PARAMS PTR......cccceuuuu.n. 299

1224 SKIPJACK MECHANISMS....oouuiurerreiereeseesessessssessessssssssssssssssssssssssssssessessssssssssssssssssssssssessessesssssssssnnes

12.24.1 SKIPJACK KEY GENETALIONveveereeereriresieiresessisssesssssssesssssssssssssssssssssssessssssssssssssssssssssssssesas

12.24.2 SKIPJACK-ECBBAcoverieeeeiririsissiseeseisesssssess st ssssssss s st sssssssessssssssessnsns

12.24.3 SKIPJACK-CBCBA......cvverereeieireirsisseseesesnessesesssssssssssssssssens

12.24.4 SKIPJACK-OFBBA4 ..o

12245 SKIPJACK-CFBBAcvvurereeieieirsissiseiseenesnesssssss s issssssssens

12246 SKIPJACK-CFB32iriuriererrinieinsisseseessssessssssss st ssssssssssssss s s st sssssssessessssssssssns

12247 SKIPJACK-CFBLOccureeeeereieeiseisisseseesessesssssess s sssessesssssessssas

12.24.8 SKIPJACK-CFB8

12.24.9 SKIPJACK-WRAP ...t ississesesssssessssssss s s sss s s sessssssssnsns

12.24.10 SKIPJACK-PRIVATE-WRAP

12.24.11 SKIPJACK-RELAYX.....ciiurierereumsireesessesesssssesssssssessssnssessesssssessesas
1225 BATON MECHANISMS...ciurieeirireerreseseesessessessssessesssssssssssesssssssssssssssesssssssssssssssssssssssssassessessesssssssssnes

12.25.1 BATON key generation

12.252 BATON-ECBIL28........ccooreureererrinieisissessessssessesssse s sssessesssssessesas

12.25.3 BATON-ECBOB........ccouriurerrererrinsississesseseessssesssssssssss s sssessesssssessssns

12.25.4 BATON-CBCL28........cocorerereeieireinsinsissesessesnessssssssssssssssssens

12255 BATON-COUNTER.......ccoosumumrrirsirsineireeseesesnessssessssessssseseens

12.25.6 BATON-SHUFFLE......cccsosmiinernineireereneseseseese s

12257 BATONWRAP.......oo ettt sse s s bt
1226 JUNIPER MECHANISMS.....ooiueiuirrereieseeseesessessssessessssssssssssssssssssssssssssessssssssssssssssssssssssssssessessessssssssssnnes

12.26.1 JUNIPERKey generation........ccoceevvereeesenssenssesssesssnennens

12.26.2 JUNIPER-ECBI128..........coccocovumrmrirrirrinsirierennesnessssssssssissesseseens

12.26.3 JUNIPER-CBCIL28couveereererrireisirseseesessesssssess s ssessssas

Copyright © 1994-2001 RSA Security Inc.

Vil

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.26.4 JUNIPER-COUNTER......ccssuririresesseseesessessessesssss st sssessesssssessssas
12.26.5 JUNIPER-SHUFFLEcoiiirrrrrriresetseisesess sttt s sssns
12.26.6 JUNIPERWRAP........ccovtrirerieisirs st

1227 IMD2 MECHANISMS....cuieeeeeeseeseessessesessessesssssssessessssssssssssssssssssssssssssesssssssssssssssssssssssssssessessesssssssssnes
12,271 IMD2.eieeeeeeieieese ettt st R e
12.27.2 General-1ength MD2-HMAC ...t ssssssssss st sssssssssssssssssssssseses
12.27.3 MD2-HMAC...... ittt ssssss s st s
12.27.4 MD2 key derivation

1228 IMDS MECHANISMS...cctieeeeerereseessessesessessesssssssessessssssssssssssssssssssssssssesssssssssssssssssssssssssssessessessssssssssnnes
2 T Y | L OO
12.28.2 General-length MD5-HMAC ...
12.28.3 MDS5-HMAC...... et
12.28.4 MD5 Key derivationccccoveeneneenvenssiesesessesesssssesnens

1229 SHA-LMECHANISMS....ceiiriueerrereessessesessessessessssessesssssssssssssssssssssssssessessssssssssssssssssssssssssessessessssssssssnnes
12291 SHA L ettt R e
12.29.2 General-length SHA-1-HMAC
12.29.3 SHA-L-HMAC ...t
12.29.4 SHA-L Key derivation.........ccceevereeeerereseeisssesssssssessssssnenens

1230 FASTHASH MECHANISMS.....ooiiiiirieriereeseesessesseseesssssssssesssssessssssssssesssssssssssssssssssssssssssessessessssssssssnses
12.30.1 FASTHASH. ..ottt s st

1231 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISM PARAMETERS........cccnvunes 316

CK_PBE_PARAMS; CK_PBE_PARAMS PTR.....ccotinirininiinininessns st ssssssssssssssssssssns 316

1232 PKCS#5AND PKCS#5-STYLE PASSWORD-BASED ENCRYPTION MECHANISMS.......oovurerrenees 317
12.32.1 MD2-PBE fOr DES-CBCccoviirinrirrireiriereenessessiss s sssesssssssssssssssssss s ssssssssssssssssssssessssns
12.32.2 MD5-PBE fOr DES-CBCccoeoiirinierierieriesiesessesssssis s sssssssssssssssssssssss s sssssssssssssssssssssssessssns
12.32.3 MD5-PBE for CAST-CBC......cccoccntminierierennesnesensessississesseneens
12.32.4 MD5-PBE fOr CAST3-CBC.......ceriurieriereerierienernessessisissssisssssssssssssssssss s ssssssssssssssssssssssssssns
12.32.5 MD5-PBE for CAST128-CBC (CAST5-CBC)cccosunrerierierierirressesseessinssssisssssssessssssssssesesns
12.32.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)cccoeverreereerernerneeereeserneens

12.32.7 PKCS#5 PBKDF2 key generation mechanism parameters
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;

CK_PKCS5_PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR.....cccoevevenirrineineineneneeeesneens 319
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR.....cootrnininineininisesisssss s ississsssssesssssssesssseens
CK_PKCS5_PBKD2_PARAMS, CK_PKCS5_PBKD2_PARAMS PTR
12.32.8 PKCS#5 PBKD2 KEY QENEI AtiON......cucvieieceetreresieiresesse s sesssssssesssssessssssssssssssssssssssssnes
1233 PKCS#12 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISMS.....oovurerrereenes 321
12.33.1 SHA-1-PBE for 128-hit RC4
12.33.2 SHA-1-PBEfor 40-bit RCA.......cccovrrreriereeneneeieise e
12.33.3 SHA-1-PBE for 3-Key tripl@-DES-CBCcccoeierreeerrerisieinesesssssessssessssssssssssssssssssssssesns 323
12.33.4 SHA-1-PBEfor 2-Key tripl€-DES-CBCcccerrerretrrersesiesesessssssessssssssssssssssssssssssssssssssesns 324
12.335 SHA-1-PBE for 128-hit RC2-CBCccouovirirnerreieisississiseesessessesssse s sssssssssssssssssssesns 324
12.33.6 SHA-1-PBE fOr 40-hit RC2-CBC......cccsuviureerirnirnirsisisissississessssessesssse s sssssssssssssssssssssssssesns 324
12.33.7 SHA-1-PBAfor SHA-1-HMAC
1234 SET MECHANISM PARAMETERS.....ctttiutereteseeseesssssessssesssssessssssssssesssssssssssssssssssssssssssessessessssssssssnses

12.35.1 OAEP key wrapping for SET

1236 LYNKSMECHANISMS....coovuriirirrereeeereessesesssssssssssssessessssssssssssssssssssssns
12.36.1 LYNKSKEY WEAPPING..eveeeeeirerirrieireesseesessssestsesesssssssssssssssesssssssesssssssssssssssesssssssssssssssssesssssses
1237 SSL MECHANISM PARAMETERS......cotttueereteeeseesssssessssessssssssssssssssessssssssssssssssssssssssssssessessessssssssssnnes
CK_SSL.3 RANDOM_DATA ...ttt sttt
CK_SSL.3_MASTER KEY_DERIVE_PARAMS,
CK_SSL3 MASTER _KEY_DERIVE_PARAMS PTR.....ooinninineinenesis st ssssessssessesseseens 328

Copyright © 1994-2001 RSA Security Inc.

CK_SSL3_KEY_MAT_OUT; CK_SSL3 KEY_MAT_OUT_PTRuccoooooooceeeessscceesessseeeeesssseen 328
CK_SSL3 KEY_MAT_PARAMS; CK_SSL3 KEY_MAT_PARAMS PTR.......oovorerocerrrssrceen 329
12.38 SS. MECHANISMS

12.38.1 Pre_master KE&Y geNEratioN.........ccvveeerericieirreseseses s sssesssssessssse s ssssssssessssssnes

12.38.2 MaSter KEY TN TVALION........ccvveeceetrecee e et n s snnes

12.38.3 Master key derivation for Diffie-Hellman

12.38.4 Key and MAC DI VALIONcccereeerirese s sesss st ssssssssssssses

12.38.5 MD5 MACING iN SSL 3.0 ...

12.38.6 SHA-LMACING IN SSL 3.0 ..ottt sssssss s s sssssessnsns
1239 TLSMECHANISMS....coiuieieeeeeeseeseessessesessessesssssssessesssssssssssssssssssssssssssesssssssssssssssssssssssssassessessesssssnssssnes

12.39.1 Pre_master key generation.........ccccoceeeeveveerenenesesneneesnnnens

12.39.2 Master key derivation...........ccoeerveeenensseisessseeesesseseenens

12.39.3 Master key derivation for Diffie-Hellman

12.394 Key and MAC AEITVALIONccueirecerercce st sss sttt nsssssssses
1240 PARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS......cccoonvunrereenes 339

CK_KEY_DERIVATION_STRING_DATA; CK_KEY_DERIVATION_STRING_DATA PTR.339
CK_EXTRACT_PARAMS, CK_EXTRACT_PARAMS PTR
1241 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS
12.41.1 Concatenation of a base key and another Keycoccvevveercnenecseinscsesssessesessneenns
12.41.2 Concatenation of a base key and data
12.41.3 Concatenation of data and a base key
12414 XORING Of @Ky aNd dat@.......ccoeevueiriririniririnssieesessesssessssessessssssssesssssssssssssessssssssssssssssseses
12.41.5 Extraction of one key fromanother KeY ...
1242 RIPEMD 128 MECHANISMS.....iiesiereeeeseesessesseseessssssssssssssssessssssssssesssssssssssssssssssssssssssessessessssssssssnees
12421 RIPE-MD 128......oiiceeiniecie e ssissesessessessssssss s st s sssnsssssnsns
12.42.2 General-length RIPE-MD 128-HMAC
12.42.3 RIPE-MD 128-HMAC.......ocoirrirerrinsereessiseisessess st ssssssssssssss st sssssssssssssssns
1243 RIPEMD 160 MECHANISMS....oiuiisiereeeeseeseesesseseesssssessssssssssessssssssssesssssssssssssssssssssssssssessessessssssssssnnes
12431 RIPE-MD 160ccovirieriereerernieieinsissesseseesessessesssssssssssssssseens
12.43.2 General-length RIPE-MD 160-HMAC
12.43.3 RIPE-MD 160-HMAC........ooierirerrirsireisstneisessess s sssisssssssssssssssssss s st ssssesssssssssssssns

CRYPTOKI TIPSAND REMINDERS..........coosnniniiis s ssssssnes

131 OPERATIONS, SESSIONS AND THREADS......ccctereeuetrereeseressesesssessesessssssssesssessssesssssesssssssssssssassesseneas
132 MULTIPLE APPLICATION ACCESS BEHAVIOR......cccoeviernrreererinnns
133 OBJECTS ATTRIBUTES, AND TEMPLATES.....cvretrerrereererrereseenens
134 SIGNING WITH RECOVERYvvuiuueereiassessesesssesessesessssssesssssessesesssessssssssessssssssessssesssssesssnssssessensassessenens

TOKEN PROFILES ..o s 351
COMPARISON OF CRYPTOKI AND OTHER APIS ... 353
INTELLECTUAL PROPERTY CONSIDERATIONS........ccoiitriiinesees s 357

METHOD FOR EXPOSING MULTIPLE-PINSON A TOKEN THROUGH CRYPTOKI.................. 358

D.1 VIRTUAL SLOTS AND TOKENS.....oiurieueerereseressesesseessssesesessesesssessssesssssessssssessssesssssessssssssessssssssessessanses 358
D.2 OBJIECT VISIBILITY ouutetietusiersesesesessesesssessesessssessesessssssessssssssesesssesssssssssssssssssessssesssssesssnsssssssensassessenens 358

List of Figures

FIGURE 1, GENERAL CRYPTOKI IMODELveveeeeteeteeeeteeeeeee e eeeseneeesseeseseseeesseenssesssesnenesesens 13
FIGURE 2, OBIECT HIERARCHY ...t eteeeee et ettt et eeeeeeeeee et eeeeeseaeeesee e eneeeeneeseneeeeeeeeeeenesennens 14
FIGURE 3, READ-ONLY SESSION STATESvtvtteteetereeeeeeseessseesessseessseesssesssssseessseessssssesesensens 19

Copyright © 1994-2001 RSA Security Inc.

X PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FIGURE 4, READ/WRITE SESSION STATEScecitieiieiteesieeiteesieesteesseessseesssesseessesssesssessnseens 20
FIGURES, OBJECT ATTRIBUTE HIERARCHYceiiiiiiiiiiesieeesieeestee st e s e s s ssee e s 74
FIGURE 6, HARDWARE FEATURE OBJECT ATTRIBUTE HIERARCHYcovvviieiiieecciree e 79
FIGURE 7, CERTIFICATE OBJECT ATTRIBUTE HIERARCHYutiiiiiiiesiie et 83
FIGURE 8, KEY ATTRIBUTE DETAIL...utttiitiieiieeesiiesesiteessieeesieeessaesssee s ssseessssessnnnessnsnessnseeas 87
FIGUREQ, DOMAIN PARAMETER ATTRIBUTE DETAIL ..eeiivieiiiiesiee e 122

List of Tables

TABLE L, SYMBOLS.....eevtteteteteeeteeeeseseseeteesseessseeseseseessseseesasesssseesesesesssseesesesassseesaressseneesenes 9
TABLE 2, PREFIXES ... tveeeeteeeeteeeteeeeeeseeeeeaesseeteseeeessseassseeeesesessseeesseneaseessaseesessenssssensaseneasees 9
TABLE 3, CHARACTER SET ...ttt eeteeeteeeeseeteseteeesseeteseessssseeseseesssessasaneessseseseneassseesesesssennanans 11
TABLE 4, READ-ONLY SESSION STATES ..veuteteeeeteeeeeeeeeesseesseeessssesessesesssesssseessessessssnsssnes 19
TABLE S, READ/MWRITE SESSION STATESvveveveeeeeeeeseeeessseessseesessseesssessesesssssseesesessssessnans 20
TABLE 6, ACCESS TO DIFFERENT TYPES OBXECTSBY DIFFERENT TYPESOF SESSIONS............. 21
TABLE 7, SESSION EVENTS. ...vt sttt eteeteteeteseeeesseeeteseesseeeesesesssessasaneessseesesesesssseesesesssennananes 21
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONSeveeteteetetsteeteeeeeeeseeeeseseseseeseeseseseesessesennnsens 28
TABLE D, SLOT INFORMATION FLAGS ... eteveeeeeeeeeeeeeeeeeeeeeeseessseeseseneessseesesessessseeseseesssenenanes 40
TABLE 10, TOKEN INFORMATION FLAGS.....vvtevteeeteeeeeeeeeeeeeeeeeeeeeeeseeeeseseeeseeeesseeeseesesseeennnses 44
TABLE 11, SESSION INFORMATION FLAGSvevtveeeeeeeee et et et e eeeeeeeeeee e eseeessneeseseesssennenanes 50
TABLE 12, MECHANISM INFORMATION FLAGSvveeeeeeeeeeeeeeeeeeeeseeeesee e eeeeeeseeeseesesseeenannens 62
TABLE 13, C_INITIALIZE PARAMETER FLAGS......cocvivieiieietsestsisestsistseseseststs s ssesnnnns 72
TABLE 14, COMMON OBJIECT ATTRIBUTES ...veveveteeeeeeeeeeesseeesseeessssesassessseseessssesssessessssnnssees 78
TABLE 15, HARDWARE FEATURE COMMON ATTRIBUTESvtvevteeeteeteeeeeeseseesseeseseesseenensnes 79
TABLE 16, CLOCK OBJIECT ATTRIBUTES. ... vevteteeeeteeeeeeeeeeesseeessseessssesessesesssesssssssssessesssessssees 79
TABLE 17, MONOTONIC COUNTER ATTRIBUTES. ...c.vcvteveetetereetsseesessseeesseesesesessseeseseessssssnanes 80
TABLE 18, COMMON STORAGE OBJECT ATTRIBUTES.....ve.veveteeeeeeeseeeeseeesesesssseesssssessesenssses 81
TABLE 19, DATA OBJIECT ATTRIBUTES.tveteeteteeteeeeesseeeessseesssesssssssessseesssesssssessssessssessnanes 82
TABLE 20, COMMON CERTIFICATE OBJECT ATTRIBUTES. ...veteveeteeeeeeeseeeeeeeeeeseeeseesessesnsenens 83
TABLE 21, X.509 CERTIFICATE OBJECT ATTRIBUTESvtuveveeteeeeeeeeeeeeseeeeesessssseessseessseesnanes 84
TABLE 22, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTESvtveeeeeeeeeeeeeeeeeeesseenennnns 86
TABLE 23, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLES......vcveeeveeeeeeeeeseeeseseesseeesnanes 87
TABLE 24, COMMON KEY ATTRIBUTESeveveeteeeeeeeeeeeeeeeessteessseessssesesseseseseesssseessessessesnsnsnes 89
TABLE 25, COMMON PUBLIC KEY ATTRIBUTESvvevtevetteteteetsseeseesseeesseesesessssseeseseesssssenans 90
TABLE 26, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC
KEY S arttttururuuusssrssssssssssesssssssssssssssssssssssssssssssesesesasssesesessbesebebsbebesessbabesebabebebebennbabnnnrnrnrnnns 91
TABLE 27, RSA PUBLIC KEY OBIECT ATTRIBUTESouvevtteteeteeeeeeeseeeeseseseseesesseeessesessesnseses 91
TABLE 28, DSA PUBLIC KEY OBIECT ATTRIBUTEScuvevteeteeeseeeeeeeeeeesseesesessssseeseseesssesensnes 92
TABLE 29, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTES w...euveveeeeeeeeeeeeeseeeeeesessesnensens 93
TABLE 31, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES.....eveeeveeereeeeeseeereseeeseeesnsnns 94
TABLE 32, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ...c.veveeereeeeeeeeeeneennns 95
TABLE 33, KEA PUBLICKEY OBIECT ATTRIBUTES....c.vevteteteetseeeeeeereeesseesesessssseeseseessssssnans 96
TABLE 34, COMMON PRIVATE KEY ATTRIBUTESvtvetteeeteeteeeeeeeseeeesesesesesssseessessessesnsnses 97

Copyright © 1994-2001 RSA Security Inc.

TABLE 35, MAPPING OF X.509 KEY USAGE FLAGSTO CRYPTOKI ATTRIBUTES FOR PRIVATE

22 TSP 99
TABLE 36, RSA PRIVATE KEY OBJECT ATTRIBUTESccutiuieeeieeeseestessessessesseeseessessessessessens 99
TABLE 37, DSA PRIVATE KEY OBJECT ATTRIBUTES....cueueetirieeeresieseesesiessesessessesesessesseens 101
TABLE 38, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTES......oiiiieereereneenieseesenseesnenne 102
TABLE 40, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES....c.ceteteeteeeresteseeenseseenens 103
TABLE 41, X9.42 DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES......cceiieriereereennenne 105
TABLE 42, KEA PRIVATE KEY OBJECT ATTRIBUTES....cveuerterteeeresteseesessessesessessessssessessnnens 106
TABLE 43, COMMON SECRET KEY ATTRIBUTES.....ccttitieteeeeeeseeseessessessessessenseesssssessessessenns 108
TABLE 44, GENERIC SECRET KEY OBJECT ATTRIBUTEScoutrierieuesteseesesrestesessesseseesessesennens 109
TABLE 45, RC2 SECRET KEY OBJECT ATTRIBUTES ...c.vtiterieeieeesiessessessessessesseesssssessessessenns 110
TABLE 46, RC4 SECRET KEY OBIECTcoviieiieienieiesesteseeessessesessessessesessessessssessesssessessenens 110
TABLE A7, RCA SECRET KEY OBECTccuieiiieriestestestesseeseeeesaessessessessessessesseesssssessessessenns 111
TABLE 48, AES SECRET KEY OBJECT ATTRIBUTES ...cveveueeterieeesesteseesessestesessessesessessessenens 112
TABLE 49, DES SECRET KEY OBECTccuveieieriestestesresseeeeseessessessessessessessesssessssssssessessenes 112
TABLE 50, DES2 SECRET KEY OBJECT ATTRIBUTEScveueetirieeesesteseesessessesessessesessessesseens 113
TABLE 51, DES3 SECRET KEY OBJECT ATTRIBUTESccvtiuierieieseeseesteseessessesseeseessesssseessenns 114
TABLE 52, CAST SECRET KEY OBJECT ATTRIBUTES ...cuveutiuiieeeresieseeesressesessessessesessesennens 115
TABLE 53, CAST3 SECRET KEY OBJECT ATTRIBUTEScoveeuieieiestesteseessessesseesesseeseeseessenns 115
TABLE 54, CAST 128 (CAST5) SECRET KEY OBJECT ATTRIBUTES......cctvevieeeeseeeeeeneeseeenens 116
TABLES5, IDEA SECRET KEY OBIECT....cuiiiiieiesiesiestesseeeseesae e ssestessessessesseessessessessessenns 117
TABLE 56, CDMF SECRET KEY OBECT ...eveuieiisteieresiesieesieseesessessessesessessesessessesssnessessnnens 118
TABLE 57, SKIPJACK SECRET KEY OB ECTutiiiiiieeitieeeieeesseeesseessseessssesesssessnssesssens 118
TABLE 58, BATON SECRET KEY OBIECT ...ccuvitiieieiisiesieesieseesessesseseeessessesessessesssnessesennens 120
TABLE 59, JUNIPER SECRET KEY OBECT ...uviiiiiiiiiiieesiieesiseeesseeesseessssesssssesssssessnssessnenas 121
TABLE 60, COMMON FOOTNOTES FOR DOMAIN PARAMETER ATTRIBUTE TABLES............... 122
TABLE 61, COMMON DOMAIN PARAMETER ATTRIBUTES......eiuiiteriestesiensesseseeseeseeseeseessenns 123
TABLE 62, DSA DOMAIN PARAMETER OBJECT ATTRIBUTES.....cutitirtererresteesressesesessesenens 123
TABLE 63, DIFFIE-HELLMAN DOMAIN PARAMETER OBJECT ATTRIBUTEScovveriererseenenn 124
TABLE 64, MECHANISMSVS. FUNCTIONSucettiterieristesieesteseesessesseseesessessesessessesssnessessenens 229
TABLE 65, PKCS#1 RSA: KEY AND DATA LENGTH....ceiiiiieienie et 236
TABLE 66, PKCS #1 RSA: MESSAGE GENERATION FUNCTIONS.....cceviveseeeenenieseeeseesennens 237
TABLE67, PKCS#1 RSA OAEP: ENCODING PARAMETER SOURCES.......coeeeeieseeseeseensenne 237
TABLE 68, PKCS#1 RSA OAEP: KEY AND DATA LENGTH w.cuceviiiiieceiesiesesiesie e seenens 239
TABLE 69, |SO/IEC 9796 RSA: KEY AND DATA LENGTHcoviivievieeiesiesrceeeee e see e 241
TABLE 70, X.509 (RAW) RSA: KEY AND DATA LENGTHocveviieieciesieesie e esee e 243
TABLE 71, ANSI X9.31 RSA: KEY AND DATA LENGTH....coitiiiirieriesiesieerceeeee e 244
TABLE 72, PKCS#1 RSA SIGNATURESWITHMD2, MD5, OR SHA-1: KEY AND DATA

LENGTH .ttt sttt sttt et e be s beebeeseese e st e e e tesaenbesseeseeseeneentensenseseennenreas 245
TABLE 73, ANSI X9.31 RSA SIGNATURESWITH SHA-1: KEY AND DATA LENGTH.......... 246
TABLE 74, DSA: KEY AND DATA LENGTH....cctiitiitiitestieieeeeeesiesie e ste e ssesseeeesaessessessessenns 248
TABLE 75, DSA WITH SHA-1: KEY AND DATA LENGTH ...cutiuiieiiriinieeeiesie st seeesne e 248
TABLE 76, FORTEZZA TIMESTAMP. KEY AND DATA LENGTH...ccoiiivinririnierie e e 249

Copyright © 1994-2001 RSA Security Inc.

Xii PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 77, EC: KEY DERIVATION FUNCTIONS.....cctiiiieeiireeeiteeesseessseessseessssesesssessnssesssens 253
TABLE 80, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS.......ceviiiieiiieeeiiee i 260
TABLE 81, KEA PARAMETER VALUESAND OPERATIONS.....ccciitiieiieeesreeessresesssessnseeesseens 269
TABLE 82, RC2-ECB: KEY AND DATA LENGTH ...oociiiiiiiie s 276
TABLE 83, RC2-CBC: KEY AND DATA LENGTH....cittieiiieeiieeeiieestee s sree e essses e s 277
TABLE 84, RC2-CBC WITH PKCS PADDING. KEY AND DATA LENGTH....cveviiieeiiiee e 278
TABLE 85, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH....ccccvvivieeiieeciiee e 278
TABLE 86, RC2-MAC: KEY AND DATA LENGTH....coiiiiiiiiiinieniini s 279
TABLE 87, RC4: KEY AND DATA LENGTHvtiiiiiiiiiieesiieeesieeesitee s stee e sree s essnessnaessnneeas 280
TABLE 88, RC5-ECB: KEY AND DATA LENGTH ...oociiiiiiiiii s 283
TABLE 89, RC5-CBC: KEY AND DATA LENGTH...cccutiiiieieenieesiee e esiee e s see e ee e 284
TABLE 90, RC5-CBC WITH PKCS PADDING. KEY AND DATA LENGTH.....ceviiieeeiiee e, 285
TABLE 91, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH....cccvviiie e cieee e 286
TABLE 92, RC5-MAC: KEY AND DATA LENGTH....coviiiiiii s 286
TABLE 93, AES-ECB: KEY AND DATA LENGTH ..cciiiiiiiiee e ciee s ciee s sree s s 288
TABLE 94, AES-CBC: KEY AND DATA LENGTH....cviiiiiiiiii e 289
TABLE 95, AES-CBC WITH PKCS PADDING. KEY AND DATA LENGTH...ccceiiveiieeeieenen. 290
TABLE 96, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTH....cceviiieieiiee e 290
TABLE 97, AES-MAC: KEY AND DATA LENGTH...ccuviieiieeeiiieesiee s siee e sree e essses e s 291
TABLE 98, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH....ccveviiieeeiiee e 293
TABLE 99, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH ...cocviiiieeiieesieeeieeee 294

TABLE 100, GENERAL BLocK CIPHER CBC WITH PKCS PADDING. KEY AND DATA LENGTH295
TABLE 101, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH.296

TABLE 102, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH ...covvveviiieeeiiee e, 296
TABLE 103, SKIPJACK-ECB64: DATA AND LENGTH ...vviiiiiiesiieeciee e esree e 301
TABLE 104, SKIPJACK-CBC64: DATA AND LENGTH....cccoiiiiniiiiineeis e 301
TABLE 105, SKIPJACK-OFB64: DATA AND LENGTH ...ceiiiiiieiiieecieeesiee e esvees e s 302
TABLE 106, SKIPJACK-CFB64: DATA AND LENGTHcccviiiiiiiiniiecee e 302
TABLE 107, SKIPJACK-CFB32: DATA AND LENGTH ...cviiiiiiieiir e ciee e esree e 303
TABLE 108, SKIPJACK-CFB16: DATA AND LENGTH ...occcviiiiiiiniineciise s 303
TABLE 109, SKIPJACK-CFB8: DATA AND LENGTHvvviiiiieciie e siee e 304
TABLE 110, BATON-ECB128: DATA AND LENGTH.....cciiiiiiiiiniiniisecise e 305
TABLE 111, BATON-ECBO96: DATA AND LENGTH....ciiiiieiiieeciieecieeessee s essses e s 305
TABLE 112, BATON-CBC128: DATA AND LENGTH ...cociiiiiiiiiniieccs e 306
TABLE 113, BATON-COUNTER: DATA AND LENGTH...cccctteiitieecieeeseee e esneessveee s 306
TABLE 114, BATON-SHUFFLE: DATA AND LENGTH.....ccciiiiiiniiec e 307
TABLE 115, JUNIPER-ECB128: DATA AND LENGTH...ccutiiiiiiiiieieseeniecre e 308
TABLE 116, JUNIPER-CBC128: DATA AND LENGTH....ociciiiiiiiiriieescre e 308
TABLE 117, JUNIPER-COUNTER: DATA AND LENGTH.....cioiiiiiriiieeirecre e 309
TABLE 118, JUNIPER-SHUFFLE: DATA AND LENGTH ..ccviiiiiiiiie e 309
TABLE 119, MD2: DATA LENGTH...uuviiiiieeiiieesiiisesitesesseeesssaessssaessseessssesssssesenssessnsenssnsenas 310
TABLE 120, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH....cveviiieerieee e, 310
TABLE 121, MD5: DATA LENGTH...cttiiiiieeiiieesiiesesisesesieeesssaessssaessseessssesssssesenssessnssnssnsenas 312

Copyright © 1994-2001 RSA Security Inc.

INTRODUCTION Xiii

TABLE 122, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH...ccceiiiiiieeeieenen. 312
TABLE 123, SHA-1: DATA LENGTH....occiiiiiiiiiiiii e 314
TABLE 124, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH....ccccviieeaieenen. 314
TABLE 125, FASTHASH: DATA LENGTH.....ciiiiiiiiiiniiniie s 316
TABLE 126, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS........... 319
TABLE 127, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCES......ccciiieiniirinnsieesnennnas 320
TABLE 128, MD5 MACINGIN SSL 3.0: KEY AND DATA LENGTH ..cooiveiiieeiee e 334
TABLE 129, SHA-1 MACINGIN SSL 3.0: KEY AND DATA LENGTH ..cocviiiiniiniriisecsiee 335
TABLE 130, RIPE-MD 128: DATA LENGTH.....coiiiiiiieiiiie e 346
TABLE 131, GENERAL-LENGTH RIPE-MD 128-HMAC..........coooiii, 347
TABLE 132, RIPE-MD 160: DATA LENGTH.....coiiiiiiieiticie et 347
TABLE 133, GENERAL-LENGTH RIPE-MD 160-HMAC..........ccooiii, 348

Copyright © 1994-2001 RSA Security Inc.

1. INTRODUCTION 1

1. Introduction

As cryptography begins to see wide gpplication and acceptance, one thing is increasingly clear:
if it is going to be as effective as the underlying technology dlows it to be, there must be
interoperable standards. Even though vendors may agree on the basic cryptographic
techniques, compatibility between implementations is by no means guaranteed. Interoperability
requires strict adherence to agreed- upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives of
indugtry, academia and government, a family of standards called Public-Key Cryptography
Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-
key and related technology. It is RSA Laboratories intention to improve and refine the
gandards in conjunction with computer system developers, with the goal of producing standards
that most if not all developers adopt.

Therole of RSA Laboratoriesin the standards-making processis four-fold:
1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or necessary
changes and extensions.

3. Publish revised standards when agppropriate.
4, Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains find authority on each
document, though input from reviewers is clearly influentid. However, RSA Laboratories goa
is to accelerate the development of forma standards, not to compete with such work. Thus,
when a PKCS document is accepted as a base document for a forma standard, RSA
Laboratories relinquishes its “ownership” of the document, giving way to the open standards
development process. RSA Laboratories may continue to develop related documents, of
course, under the terms described above.

PKCS documents and information are avallable online a
http://ww.rsasecurity.con rsal abs/ PKCS/. There is an dectronic
maling lid, “cryptoki”, a rsasecurity.com gsecficdly for discusson and
devdopment of PKCS #11 To subscribe to this i, send emal to
maj or dono@r sasecurity. comwith the line “subscri be cryptoki” inthe
message body. To unsubscribe, send e-mall tonaj or donmo@r sasecuri ty. comwith
theline“unsubscri be crypt oki ” inthe message body.

Copyright © 1994-2001 RSA Security Inc.

2 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

PKCS Editor

RSA Laboratories

20 Crosby Drive

Bedford, MA 01730 USA
pkcs-editor@sasecurity.com

http://ww. rsasecurity. conirsal abs/ PKCS/

It would be difficult to enumerate dl the people and organizations who helped to produce
PKCS#11. RSA Laboratoriesis grateful to each and every one of them. Specid thanks go to
Bruno Couillard of Chrysdis-ITS and John Centafont of NSA for the many hours they spent
writing up parts of this document.

For Verson 1.0, PKCS #11's document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt Kaiski of
RSA Laboratories. For Verson 2.01, Ray Sidney served as document editor and project
coordinator. Matthew Wood of Intel was document editor and project coordinator for Verson
210 and Version 2.11.

2. Scope

This gandard specifies an agpplication programming interface (APF), cdled “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface” follows a smple
object-based approach, addressing the gods of technology independence (any kind of device)
and resource sharing (multiple gpplications accessng multiple devices), presenting to
applications acommon, logica view of the device called a* cryptographic token”.

This document specifies the data types and functions available to an agpplication requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typicdly be provided via C header files by the supplier of a Cryptoki library.
Generic ANSI C header files for Cryptoki are available from the PKCS Web page. This
document and up-to-date erratafor Cryptoki will also be available from the same place.

Additiona documents may provide a generic, language-independent Cryptoki interface and/or
bindings between Cryptoki and other programming languages.

Cryptoki isolates an gpplication from the details of the cryptographic device. The gpplication
does not have to change to interface to a different type of device or to run in a different
environment; thus, the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, athough some conventions for the support of multiple types of
device will be addressed here and possibly in a separate document.

Copyright © 1994-2001 RSA Security Inc.

3. REFERENCES 3

A number of cryptographic mechaniams (dgorithms) are supported in this verson. In addition,
new mechanisms can be added later without changing the generd interface. It is possible that
additiond mechanisms will be published from time to time in separate documents; it is aso
possble for token vendors to define their own mechanisms (athough, for the sake of
interoperability, registration through the PKCS processis preferable).

Cryptoki Verson 2.11 is intended for cryptographic devices associated with a single user, 0
some features that might be included in a generd-purpose interface are omitted. For example,
Cryptoki Verson 2.11 does not have a means of distinguishing multiple users. Thefocusison a
sangle user’s keys and perhaps a smal number of certificates related to them. Moreover, the
emphasis is on cryptogrgphy. While the device may perform useful non-cryptographic
functions, such functions are lft to other interfaces.

3. References

ANSI C ANSI/ISO. ANS/ISO 9899: American National Sandard for
Programming Languages— C. 1990.

ANSI X9.31 Accredited Standards Committee X9. Digital Sgnatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). September 9, 1998.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. March 9, 2001.

ANS| X9.62 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve Digital Sgnature
Algorithm (ECDSA). 1998.

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography. Working draft, November 8, 2000.

CDPD Ameritech Mobile Communications et a. Cellular Digital Packet Data
System Specifications. Part 406: Airlink Security. 1993.

FIPSPUB 46-3 Nationd Inditute of Standards and Technology (formerly Nationa Bureau
of Standards). FIPS PUB 46-3. Data Encryption Sandard. October
25, 1999.

FIPSPUB 74 Nationd Indtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 74: Guidelines for Implementing and Using
the NBS Data Encryption Standard. April 1, 1981.

Copyright © 1994-2001 RSA Security Inc.

4 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FIPS PUB 81

FIPSPUB 113

FIPS PUB 180-1

FIPS PUB 186-2

FORTEZZA CIPG

GCS-AP

1SO 7816-1

SO 7816-4

ISO/IEC 9796

PCMCIA

PKCS#1

PKCS#3

PKCS#5

PKCS#7

Nationa Ingtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 81: DES Modes of Operation. December
1980.

Nationa Indtitute of Standards and Technology (formerly Nationa Bureau
of Standards). FIPS PUB 113: Computer Data Authentication. May
30, 1985.

Nationd Indtitute of Standards and Technology. FIPSPUB 180-1: Secure
Hash Sandard. April 17, 1995.

Nationd Ingtitute of Standards and Technology. FIPS PUB 186-2: Digital
Sgnature Sandard. January 27, 2000.

NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service API (GCSAPI),
Base - Draft 2. February 14, 1995.

I1SO. International Standard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1. Physical
Characteristics. 1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchange. Committee draft,
1993.

ISO/IEC. International Standard 9796: Digital Sgnature Scheme
Giving Message Recovery. July 1991.

Persond Computer Memory Card Internationa Association. PC Card
Sandard. Release2.1, July 1993.

RSA Laboratories. RSA Encryption Standard. Version 2.0, October 1,
1998.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Verson
1.4, November 1993.

RSA Laboratories. Password-Based Encryption Sandard. Version 2.0,
March 25, 1999.

RSA Laboratories. Cryptographic Message Syntax Standard. Verson
1.5, November 1993.

Copyright © 1994-2001 RSA Security Inc.

3. REFERENCES

PKCS#8

PKCS#12

RFC 1319

RFC 1321

RFC 1421

RFC 2246

RFC 2279

RFC 2743

RFC 2744

SEC1

SEC 2

X.500

X.509

RSA Laboratories. Private-Key Information Syntax Standard. Version
1.2, November 1993.

RSA Laboratories. Personal Information Exchange Syntax Standard.
Version 1.0, June 24, 1999.

B. Kdiski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

J Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail:
Part |. Message Encryption and Authentication Procedures. 1AB IRTF
PSRG, IETF PEM WG, February 1993.

T. Dieks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999

F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998.

J Linn. RFC 2743. Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000

J Wray. RFC 2744. Generic Security Services APl Version 2. G
bindings. Iris Associates, January 2000.

Standards for Efficient Cryptography Group (SECG). Sandards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography. Verson
1.0, September 20, 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Efficent Cryptography (SEC) 2. Recommended Elliptic Curve Domain
Parameters. Version 1.0, September 20, 2000.

ITU-T (formerly CCITT). Recommendation X.500: The Directory—
Overview of Concepts, Models and Services. 2001.

ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Public-Key and Attribute Certificate Frameworks. 2000.

Copyright © 1994-2001 RSA Security Inc.

6 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

X.680 ITU-T (formerly CCITT). Recommendation X.680: Information
Technology-- Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. July 1994.

X.690 ITU-T (formerly CCITT). Recommendation X.690: Information
Technology—ASN.1 Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 1994.

4. Definitions

For the purposes of this standard, the following definitions gpply:

API Application programming interface.

Application Any computer program that calls the Cryptoki interface.

ASN.1 Absract Syntax Notation One, as defined in X.680.

Attribute A characteristic of an object.
BATON MISSI’s BATON block cipher.
BER Basic Encoding Rules, as defined in X.690.

CAST Entrugt Technologies proprietary symmetric block cipher.
CAST3 Entrust Technologies proprietary symmetric block cipher.
CAST5 Another name for Entrust Technologies symmetric block

cipher CAST128. CAST128 isthe preferred name.

CAST 128 Entrust Technologies symmetric block cipher.

CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.
CDMF Commercid Data Masking Facility, ablock encipherment
method specified by International Business Machines
Corporation and based on DES.
Certificate A sgned message binding a subject name and a public
key, or asubject name and a set of attributes.
Cryptographic Device A device storing cryptographic information and possibly

Copyright © 1994-2001 RSA Security Inc.

performing cryptographic functions. May be implemented

4. DEFINITIONS

Cryptoki

Cryptoki library

DER
DES

DSA

EC

ECDH
ECDSA
ECMQV
FASTHASH
IDEA
JUNIPER
KEA
LYNKS
MAC

MD2

MD5

M echanism

MQV

asasmart card, smart disk, PCMCIA card, or with some
other technology, including software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in this
standard.

Digtinguished Encoding Rules, as defined in X.690.
Data Encryption Standard, as defined in FIPS PUB 46-3.

Digitd Signature Algorithm, as defined in FIPS PUB 186-
2.

Elliptic Curve ECB Electronic Codebook mode, as
defined in FIPS PUB 81.

Bliptic Curve Diffie-Hdlman.

Elliptic Curve DSA, asin ANSI X9.62.

Elliptic Curve Menezes- Qu-Vangone

MISSI’s FASTHA SH message- digegting dgorithm.
Ascom Systec’s symmetric block cipher.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPY RUS.

Message Authentication Code.

RSA Data Security, Inc.'s MD2 message-digest dgorithm,
as defined in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest dgorithm,
as defined in RFC 1321

A process for implementing a cryptographic operation.

Menezes-Qu-Vanstone

Copyright © 1994-2001 RSA Security Inc.

8 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

OAEP

Object

PIN
RSA
RC2

RC4

RC5

Reader

Session
SET

SHA-1

Slot
SKIPJACK
SSL

Subject Name

SO

Token

User

UTF-8

Copyright © 1994-2001 RSA Security Inc.

Optima Asymmetric Encryption Padding for RSA.

An item that is stored on atoken. May be data, a
certificate, or akey.

Persona Identification Number.
The RSA public-key cryptosystem.
RSA Data Security’s RC2 symmetric block cipher.

RSA Data Security’s proprietary RC4 symmetric stream
cipher.

RSA Data Security’ s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logica connection between an application and atoken.
The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in FIPS
PUB 180-1.

A logicd reader that potentidly contains a token.
MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocal.

The X.500 digtinguished name of the entity to which akey
isassigned.

A Security Officer user.

Thelogicd view of a cryptographic device defined by
Cryptoki.

The person using an gpplication that interfaces to Cryptoki.

Universal Character Set (UCS) transformation format
(UTF) that represents SO 10646 and UNICODE strings
with avariable number of octets.

5. SYMBOLSAND ABBREVIATIONS

5. Symbols and abbreviations

The following symbols are used in this sandard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description
C_ Function
CK_ Datatype or general congtant
CKA_ | Attribute

CKC_ | Cetificate type

CKD_ | Key derivaion function

CKF_ | Bitflag

CKG_ | Mask generation function
CKH_ | Hardware feature type

CKK_ | Key type

CKM_ | Mechaniam type

CKN_ [Natification

CKO_ | Object class

CKP_ | Pseudo-random function

CKS_ | Sesson gstate

CKR_ | Returnvdue

CKU_ | Usertype

CKZ_ | Sdt/Encoding parameter source
h ahandle

aCK_ULONG
p apointer
pb apointer toaCK_BYTE

Copyright © 1994-2001 RSA Security Inc.

10 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Prefix | Description
ph apointer to ahandle
pul apointer toaCK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK_CHAR

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK_UTF8CHAR;

/* a BYTE-sized Bool ean flag */
typedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK ULONG

/* a signed value, the sane size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d, which
are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */

CK _UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG _PTR /[* Pointer to a CK ULONG */
CK VO D _PTR /[* Pointer to a void */

Cryptoki aso defines apointer to aCK_VOID_PTR, which isimplementation-dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is digtinct from any valid pointer:

NULL_PTR /* A NULL pointer */

Copyright © 1994-2001 RSA Security Inc.

5. SYMBOLSAND ABBREVIATIONS 11

It follows that many of the data and pointer types will vary somewhat from one environment to
another .g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 hits).

However, these details should not affect an gpplication, assuming it is compiled with Cryptoki

header files consgstent with the Cryptoki library to which the application is linked.

All numbers and vaues expressed in this document are decimd, unless they are preceded by
“Ox”, inwhich case they are hexadecimal vaues.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXY Za
bcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphiccharacters [!'“#% & ()* +,-./:;<=>?[\]" _{|} ~

Blank character ‘!

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in
RFC2279. UTF-8 dlows internationdization while maintaining backward compatibility with the
Locd String definition of PKCS#11 version 2.01.

In Cryptoki, aflag is a Boolean flag that can be TRUE or FALSE. A zero vaue meansthe flag
is FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these macros, if
needed:

#i f ndef FALSE
#defi ne FALSE 0
#endi f

#i f ndef TRUE

#define TRUE (! FALSE)

#endi f
Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are idedl
tools for implementing public-key cryptography, as they provide away to store the private-key
component of a public-key/private-key pair securely, under the control of a Sngle user. With
such a device, a cryptographic application, rather than performing cryptographic operations
itsdf, utilizes the device to perform the operations, with sendtive information such as private
keys never being reveded. As more gpplications are developed for public-key cryptography, a
gtandard programming interface for these devices becomes increasingly valuable. This standard
addresses this need.

Copyright © 1994-2001 RSA Security Inc.

12 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

6. General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between gpplications and dl kinds
of portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and
smart diskettes. There are dready standards (de facto or officia) for interfacing to these
devices a some level. For ingtance, the mechanica characterigtics and electrical connections
are well-defined, as are the methods for supplying commands and receiving results. (See, for
example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It would
not be enough smply to define command sets for each kind of device, as that would not solve
the generd problem of an application interface independent of the device. To do sois ill a
long-term god, and would certainly contribute to interoperability. The primary goa of Cryptoki
was a lower-level programming interface that absiracts the details of the devices, and presents
to the gpplication a common mode of the cryptographic device, called a“cryptographic token”
(or smply “token”).

A secondary god was resource-sharing. As desktop multi-tasking operating systems become
more popular, a single device should be shared between more than one application. In addition,
an gpplication should be able to interface to more than one device a a given time.

It is not the goa of Cryptoki to be a generic interface to cryptographic operations or security
sarvices, dthough one certainly could build such operations and services with the functions that
Cryptoki provides. Cryptoki isintended to complement, not compete with, such emerging and
evolving interfaces as “Generic Security Services Application Programming Interface’ (RFC
2743 and RFC 2744) and * Generic Cryptographic Service API” (GCS-AP!) from X/Open.

6.2 General moded

Cryptoki's generd modd is illudrated in the following figure. The modd begins with one or
more agpplications that need to perform certain cryptographic operations, and ends with one or
more cryptographic devices, on which some or dl of the operations are actualy performed. A
user may or may not be associated with an application.

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 13

Application 1 Application k
Other Security Lavers Other Security Lavers |
Crvptoki Cryptoki

= —

Slot 1 Slot n
Token 1 Token n
(Device 1) (Device n)

Figurel, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “dots’. Each dot, which corresponds to a physical reader or other
device interface, may contain a token. A token is typicdly “present in the dot” when a
cryptographic device is present in the reader. Of course, since Cryptoki provides alogicd view
of dots and tokens, there may be other physicd interpretations. It is possible that multiple dots
may share the same physicd reader. The point is that a sysem has some number of dots, and
gpplications can connect to tokensin any or dl of those dots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typicadly passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logicdly like every other device, regardiess of the implementation technology. Thus
the gpplication need not interface directly to the device drivers (or even know which ones are
involved); Cryptoki hides these detalls. Indeed, the underlying “device’ may be implemented
entirdly in software (for ingtance, as a process running on a server)—no specia hardware is
necessary.

Cryptoki is likely to be implemented & a library supporting the functions in the interface, and
goplications will be linked to the library. An gpplication may be linked to Cryptoki directly;
dternatively, Cryptoki can be a so-cdled “shared” library (or dynamic link library), in which

Copyright © 1994-2001 RSA Security Inc.

14 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

case the gpplication would link the library dynamicaly. Shared libraries are fairly
sraightforward to produce in operating systems such as Microsoft Windows and OS/2, and
can be achieved without too much difficulty in UNIX and DOS systems.

The dynamic gpproach certainly has advantages as new libraries are made available, but from a
security perspective, there are some drawbacks. In particular, if a library is eadly replaced,

then there is the possibility that an attacker can subdtitute a rogue library that intercepts auser’s
PIN. From a security perspective, therefore, direct linking is generdly preferable, dthough

code-sgning techniques can prevent many of the security risks of dynamic linking. In any case,
whether the linking is direct or dynamic, the programming interface between the gpplication and
a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.

This standard specifies only the interface to the library, not its festures. In particular, not al

libraries will support dl the mechanisms (dgorithms) defined in thisinterface (Snce not al tokens
are expected to support al the mechanisms), and libraries will likely support only a subset of all

the kinds of cryptographic devices that are available. (The more kinds, the better, of course,
and it is anticipated thet libraries will be developed supporting multiple kinds of token, rather
than just those from a single vendor.) It is expected that as gpplications are developed that
interface to Cryptoki, standard library and token “profiles’ will emerge.

6.3 Logical view of atoken

Cryptoki’slogica view of atoken isadevice that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: data, certificates, and keys. A data object
is defined by an application. A certificate object stores a certificate. A key object stores a
cryptographic key. The key may be a public key, a private key, or a secret key; each of these
types of keys has subtypes for use in specific mechaniams. This view is illudrated in the
following figure

Object

m

Data Key Certificate

m

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 15

Objects are d o classfied according to ther lifetime and vighbility. “Token objects’ are visble
to al applications connected to the token that have sufficient permission, and remain on the
token even after the “sessons’ (connections between an gpplication and the token) are closed
and the token is removed from its dot. “Sesson objects’ are more temporary: whenever a
sesson is closed by any means, dl sesson objects created by that sesson are automaticaly
destroyed. In addition, session objects are only visible to the application which created them.

Further classfication defines access requirements. Applications are not required to log into the
token to view “public objects’; however, to view “private objects’, a user must be
authenticated to the token by a PIN or some other tokendependent method (for example, a
biometric device).

See Table 6 on page 21 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can dso
perform cryptographic functions with objects. A token may have an interna random number
generator.

It is important to distinguish between the logical view of atoken and the actua implementation,
because not al cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will smply have fixed storage places for
keys of a fixed agorithm, and be able to do a limited set of operations. Cryptoki's role is to
trandate this into the logica view, mapping attributes to fixed storage dements and so on. Not
al Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles’” will be developed, specifying sets of dgorithms to be supported.

“Attributes’ are characterigtics that distinguish an ingtance of an object. In Cryptoki, there are
generd attributes, such as whether the object is private or public. There are dso attributes that
are specific to a particular type of object, such as amodulus or exponent for RSA keys.

6.4 Users

This verson of Cryptoki recognizes two token user types. Onetypeis a Security Officer (SO).
The other type is the norma user. Only the norma user is dlowed access to private objects on
the token, and that access is granted only after the norma user has been autherticated. Some
tokens may aso require that a user be authenticated before any cryptographic function can be
performed on the token, whether or not it involves private objects. The role of the SO is to
initialize atoken and to set the normal user’s PIN (or otherwise define, by some method outsde
the scope of this verson of Cryptoki, how the norma user may be authenticated), and possibly
to manipulate some public objects. The norma user cannot log in until the SO has st the
normal user’s PIN.

Copyright © 1994-2001 RSA Security Inc.

16 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Other than the support for two types of user, Cryptoki does not address the reationship
between the SO and a community of users. In particular, the SO and the norma user may be
the same person or may be different, but such matters are outside the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that they
are variable-length gtrings of characters from the set in Table 3. Any trandation to the device's
requirements is left to the Cryptoki library. The following issues are beyond the scope of
Cryptoki:

Any padding of PINs.
How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an application (e.g., PINs entered via
a PINpad on the token) are even more abstract. Cryptoki knows how to wait (if need be) for
such aPIN to be supplied and used, and little more.

6.5 Applicationsand ther use of Cryptoki

To Cryptoki, an gpplication consgts of a single address space and dl the threads of control
running in it. An gpplication becomes a “Cryptoki gpplication” by caling the Cryptoki function
C_Initialize (see Section 11.4) from one of its threads, after this call is made, the application
can cdl other Cryptoki functions. When the gpplication is done using Cryptoki, it cals the
Cryptoki function C_Finalize (see Section 11.4) and ceasesto be a Cryptoki application.

6.5.1 Applicationsand processes

In genera, on most platforms, the previous paragraph means that an gpplication conssts of a
single process.

Consider a UNIX process P which becomes a Cryptoki application by cdling C_Initialize,
and then uses the f or k() system cadl to create a child process C. Since P and C have
separate address spaces (or will when one of them performs a write operation, if the operating
sysem follows the copy-on-write paradigm), they are not pat of the same application.
Therefore, if C needs to use Cryptoki, it needs to perform its own C_Initialize cal.
Furthermore, if C needs to be logged into the token(s) that it will access via Cryptoki, it needs
to log into them even if P already logged in, snce P and C are completely separate
goplications.

In this particular case (when C is the child of a process which is a Cryptoki application), the
behavior of Cryptoki is undefined if C triesto use it without itsown C_Initialize cdl. 1dedly,
such an attempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED; however,
because of theway f or k() works, indgsting on this return value might have a bad impact on

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 17

the peformance of libraries Therefore, the behavior of Cryptoki in this Studtion is left
undefined. Applications should definitedly not attempt to take advantage of any potentia
“shortcuts’ which might (or might not!) be available because of this.

In the scenario specified above, C should actudly cdl C_Initialize whether or not it needs to
use Cryptoki; if it has no need to use Cryptoki, it should then cal C_Finalize immediatdy
theregfter. This (having the child immediatdly cdl C_Initialize and then cadl C_Finalize if the
parent is usng Cryptoki) is congdered to be good Cryptoki programming practice, Snce it can
prevent the exisence of dangling duplicate resources that were created at the time of the
for k() cdl; however, itisnot required by Cryptoki.

6.5.2 Applicationsand threads

Some gpplications will access a Cryptoki library in a multi-threaded fashion. Cryptoki enables
goplications to provide information to libraries so that they can give appropriate support for
multi-threading. In particular, when an application initidizes a Cryptoki library with a cdl to
C_Initialize, it can specify one of four possible multi-threading behaviors for the library:

1. The gpplication can specify that it will not be accessing the library concurrently from multiple
threads, and so the library need not worry about performing any type of locking for the sake
of thread-sofety.

2. The gpplication can specify that it will be accessing the library concurrently from multiple
threads, and the library must be adle to use native operation system synchronization
primitives to ensure proper thread- safe behavior.

3. The gpplication can specify that it will be accessing the library concurrently from multiple
threads, and the library must use a set of gpplicationsupplied synchronization primitives to
ensure proper thread-safe behavior.

4. The gpplication can specify that it will be accessng the library concurrently from multiple
threads, and the library must use dther the naive operaion system synchronization
primitives or a set of applicationsupplied synchronization primitives to ensure proper
thread- safe behavior.

The 3% and 4" types of behavior listed above are appropriate for multi-threaded applications
which are not usng the native operating sysem thread model. The gpplication-supplied
gynchronization primitives congs of four functions for handling mutex (mutud exdusion)
objects in the gpplication’s threading modd. Mutex objects are smple objects which can bein
ether of two States a any given time: unlocked or locked. If acal is made by athread to lock
amutex which is dready locked, that thread blocks (waits) until the mutex is unlocked; then it
locks it and the cdll returns. If more than one thread is blocking on a particular mutex, and that
mutex becomes unlocked, then exactly one of those threads will get the lock on the mutex and

Copyright © 1994-2001 RSA Security Inc.

18 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

return control to the caler (the other blocking threads will continue to block and wait for their
turn).

See Section 9.7 for more information on Cryptoki’ s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initidization time, an application can dso pecify whether or not gpplication threads executing
library cals may use native operating system cals to spawn new threads.

6.6 Sessions

Cryptoki requires that an gpplication open one or more sessions with a token to gain access to
the token's objects and functions. A sesson provides a logicd connection between the
gpplication and the token. A session can be a read/write (R/W) session or a read-only (R/O)
sesson. Read/write and read-only refer to the access to token objects, not to sesson objects.
In both session types, an application can create, read, write and destroy session objects, and
read token objects. However, only in a read/write sesson can an gpplication create, modify,
and destroy token objects.

After it opens a sesson, an application has access to the token's public objects. All threads of
a given application have access to exactly the same sessons and the same session objects. To
gan access to the token's private objects, the norma user must log in and be authenticated.

When a sessionis closed, any session objects which were created in that session are destroyed.
This holds even for sesson objects which are “being used” by other sessons. That is, if asingle
gpplication has multiple sessons open with a token, and it uses one of them to create asession
object, then that sesson object is visible through any of that gpplication’s sessons. However,
as soon as the session that was used to create the object is closed, that object is destroyed.

Cryptoki supports multiple sessons on multiple tokens. An gpplication may have one or more
sessions with one or more tokens. In generd, a token may have multiple sessons with one or
more gpplications. A particular token may dlow an gpplication to have only alimited number of
sessions—or only alimited number of read/write sessons-- however.

An open session can be in one of severd states. The session state determines alowable access
to objects and functions that can be performed on them. The session dates are described in
Section 6.6.1 and Section 6.6.2.

6.6.1 Read-only session states

A read-only sesson can be in one of two Sates, asillugtrated in the following figure. When the
sesson isinitidly opened, it isin ether the “R/O Public Sesson” date (if the application has no

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 19

previoudy open sessions that are logged in) or the “R/O User Functions’ gtate (if the application
aready has an open sesson that islogged in). Note that read-only SO sessons do not exist.

R/O Public
Session

Close Session/

Open Session Device Removed

Login User
<4
Logout

Open Session Close Session/

Device Removed

R/O User
Functions

Figure 3, Read-Only Session States
The following table describes the sesson sates:

Table 4, Read-Only Session States

State Description

R/O Public Sesson | The application has opened aread-only sesson. The gpplication has
read-only access to public token objects and read/write access to
public session objects.

R/O User Functions | The norma user has been authenticated to the token. The application
has read-only accessto al token objects (public or private) and
read/write access to al sesson objects (public or private).

6.6.2 Read/write session states

A read/write sesson can be in one of three dates, as illudrated in the following figure. When
the sesson is opened, it is in dther the “R/W Public Sesson” gdate (if the application has no
previoudy open sessions that are logged in), the “R/W User Functions’ date (if the gpplication
dready has an open sesson that the norma user is logged into), or the “R/W SO Functions’
date (if the gpplication dready has an open sesson that the SO islogged into).

Copyright © 1994-2001 RSA Security Inc.

20 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Open Session

Open Session

R/W SO
Functions
Close Session/
Device Removed

Close Session/

R/W Public

Open Session

Session

Device Removed

Login User

Close Session/
Device Removed

R/W User
Functions

Figure4, Read/Write Session States

The following table describes the session dates.

Table5, Read/Write Session States

State

Description

R/W Public Sesson

The application has opened a read/write sesson. The application has
read/write access to al public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
gpplication has read/write access only to public objects on the token,
not to private objects. The SO can set the norma user’s PIN.

R/W User Functions | The normal user has been authenticated to the token. The gpplication

has read/write accessto dl objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of sesson has to each type of
object. A given type of sesson has ether read-only access, read/write access, or no access
whatsoever to agiven type of object.

Note that creating or deleting an object requires read/write access to it, eg., a “R/O User
Functions’ session cannot create or del ete a token object.

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 21

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O User R/W R/W
Typeof object Public Public User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previoudy indicated, the access to a given sesson object which isshown in Table 6 islimited
to sessons belonging to the application which owns that object (i.e., which created that object).

6.6.4 Session events

Session events cause the sesson state to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

LogInSO the SO is authenticated to the token.

Log In User the norma user is authenticated to the token.

Log Out the gpplication logs out the current user (SO or normal user).
Close Session the gpplication closes the sesson or closes dl sessions.
Device Removed | the device underlying the token has been removed from its dot.

When the device is removed, al sessons of al applications are atometically logged out.
Furthermore, al sessons any goplications have with the device are closed (this latter behavior
was not present in Version 1.0 of Cryptoki)—an application cannot have a sesson with a token
that is not present. Redligtically, Cryptoki may not be constantly monitoring whether or not the
token is present, and so the token’s absence could conceivably not be noticed until a Cryptoki
function is executed. If the token is re-inserted into the dot before that, Cryptoki might never
know thet it was missing.

Copyright © 1994-2001 RSA Security Inc.

22 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

In Cryptoki Verson 2.11, al sessons that an application has with a token must have the same
loginflogout stetus (i.e., for agiven gpplication and token, one of the following holds: dl sessons
are public sessons; dl sessons are SO sessions, or al sessons are user sessons). When an
gpplication’s sesson logs into a token, all of that goplication’ s sessions with that token become
logged in, and when an agpplication’s sesson logs out of a token, all of that gpplication’s
sessions with that token become logged out. Similarly, for example, if an application dready
has a R/O user session open with a token, and then opens a R/W session with that token, the
R/\W sesson is automatically logged in.

This implies that a given gpplication may not Smultaneoudy have SO sessons and user sessons
open with a given token. It dso implies that if an gpplication has a R/W SO sesson with a
token, then it may not open a R/O session with that token, since R/O SO sessions do not exist.
For the same reason, if an application has a R/O session open, then it may not log any other
session into the token as the SO.

6.6.5 Session handlesand object handles

A sesson handle is a Cryptoki-assgned vaue that identifies a sesson. It isin many ways akin
to afile handle, and is specified to functions to indicate which session the function should act on.
All threads of an application have equal accessto dl sesson handles. That is, anything that can
be accomplished with a given file handle by one thread can dso be accomplished with that file
handle by any other thread of the same application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki objects.
Object handles are amilar to sesson handles in the sense that vighbility of agiven object through
an object handle is the same among dl threads of a given gpplication. R/O sessons, of course,
only have read-only access to token objects, whereas R/W sessions have read/write access to
token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers convenience, Cryptoki defines the following symbolic vaue:

#def i ne CK_I NVALI D_HANDLE 0
6.6.6 Capabilities of sessions

Very roughly spesking, there are three broad types of operations an open session can be used
to perform: administrative operations (such as logging in); object management operations (such
as creating or destroying an object on the token); and cryptographic operations (such as
computing a message digest). Cryptographic operations sometimes require more than one
function call to the Cryptoki APl to complete. In generd, a Single sesson can perform only one
operdion & atime; for this reason, it may be desirable for a sngle gpplication to open multiple
sessons with a single token. For efficiency’s sake, however, a single sesson on some tokens
can peform the following pars of operation types smultaneoudy: message digesting and

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 23

encryption; decryption and message digesting; signature or MACing and encryption; ad
decryption and veifying sgnaiures or MACs. Deals on peforming smultaneous
cryptographic operations in one session are provided in Section 11.13.

A consequence of the fact that a Single sesson can, in generd, perform only one operation at a
time is tha an application should never make multiple simultaneous function calls to

Cryptoki which use a common session. If multiple threads of an application attempt to use a
common sesson concurrently in this fashion, Cryptoki does not define what happens. This
means that if multiple threads of an gpplication al need to use Cryptoki to access a particular
token, it might be appropriate for each thread to have its own sesson with the token, unless the
gpplication can ensure by some other means (e.g., by some locking mechanism) that no sessions
are ever used by multiple threads Smultaneoudy. This is true regardiess of whether or not the
Cryptoki library was initidized in a fashion which permits safe multi-threaded accessto it. Even
if it is safe to access the library from multiple threeds Smultaneoudly, it is still not necessarily safe
to use a particular session from multiple threads smultaneoudy.

6.6.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use of
sessons in a Cryptoki library. Despite the somewha panful levd of detal, we highly
recommend reading through this example carefully to understand sesson handles and object
handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki smultaneoudy; rather, it is meant to clarify what uses of Cryptoki’s
sessons and objects and handles are permissible. In other words, instead of demonstrating
good technique here, we demondtrate * pushing the envelope’.

For our example, we suppose that two applications, A and B, are usng a Cryptoki library to
access asingle token T. Each gpplication has two threads running: A hasthreads A1 and A2,
and B hasthreads B1 and B2. We assume in what follows that there are no instances where
multiple threeds of a single gpplication Smultaneoudy use the same sesson, and that the events
of our example occur in the order specified, without overlgpping each other intime.

1. Al and B1 esch initidize the Cryptoki library by cdling C_Initialize (the specifics of
Cryptoki functions will be explaned in Section 11). Note that exactly one cdl to
C_Initialize should be made for each application (as opposed to one cadl for every thread,
for example).

2. Al opensaR/W session and receives the sesson handle 7 for the sesson. Since thisis the
first sesson to be opened for A, it isa public sesson.

3. A2 opens a R/O sesson and receives the sesson handle 4. Since dl of A’sexiging
sessions are public sessions, sesson 4 isaso apublic sesson.

Copyright © 1994-2001 RSA Security Inc.

24

10.

11.

12.

13.

14,

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Al atempts to log the SO into sesson 7. The attempt fails, because if sesson 7 becomes
an SO session, then session 4 does, as wdl, and R/O SO sessions do not exist. Al
receives an error code indicating that the existence of a R/O session has blocked this
attempt tolog in (CKR_SESSION_READ_ONLY_EXISTS).

A2 logs the normd user into session 7. This turns sesson 7 into a R/W user sesson, and
turns session 4 into a R/O user session. Note that because A1 and A2 belong to the same
application, they have equal access to dl sessions, and therefore, A2 is adle to perform this
action.

A2 opens a R/W sesson and receives the sesson handle 9. Since dl of A’sexiging
Sessons are user sessIons, session 9 isaso auser sesson.

Al closes session 9.

B1 atemptsto log out sesson 4. The attempt fails, because A and B have no access rights
to each other's sessions or objects. B1 recaives an error message which indicates that
thereis no such session handle (CKR_SESSION_HANDLE _INVALID).

B2 atemptsto close sesson 4. The attempt failsin precisdy the sameway as B1's attempt
to log out session 4 failed {.e., B2 receives a CKR_SESSION_HANDLE INVALID
error code).

B1 opens a R/W sesson and receives the sesson handle 7. Note that, as far as B is
concerned, thisis the first occurrence of sesson handle 7. A’ssession 7 and B’ssession 7
are completely different sessons.

B1 logsthe SO into [B’s] sesson 7. Thisturns B’ssesson 7 into aR/W SO session, and
has no effect on ether of A’s sessions.

B2 attempts to open a R/O session. The attempt fails, snce B aready has an SO session
open, and R/O SO sessions do not exist. B1 receives an error message indicating thet the
exigence of an SO sesson has blocked this attempt to open a R/O sesson
(CKR_SESSION_READ_WRITE_SO _EXISTS).

Al uses[A’s] session 7 to create a session object O1 of some sort and receives the object
handle 7. Note that a Cryptoki implementation may or may not support separate spaces of
handles for sessons and objects.

B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the object
handle 7. As with sesson handles, different applications have no access rights to each
other’s object handles, and so B’s object handle 7 is entirdy different from A’s object
handle 7. Of course, anceB1 isan SO session, it cannot create private objects, and so O2
must be a public object (if B1 attempted to create a private object, the attempt would fall

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 25

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

with error code CKR_USER NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

B2 uses [B’s] sesson 7 to perform some operation to modify the object associated with
[B’s] object handle 7. This modifies O2.

Al uses [A’S] session 4 to perform an object search operation to get ahandle for O2. The
search returns object handle 1. Note that A’s object handle 1 and B’ s object handle 7 now
point to the same object.

Al atemptsto use [A’s] session 4 to modify the object associated with [A’ 5] object handle
1. The attempt fails, because A’s sesson 4 isa R/O sesson, and is therefore incapable of
modifying O2, which is a token object. Al receives an error message indicating that the
sesson isaR/O sesson (CKR_SESSION_READ_ONLY).

Al uses [A’S] session 7 to modify the object associated with [A’s] object handle 1. This
time, dnce A’ssesson 7 isaR/W sesson, the attempt succeedsin modifying O2.

B1 uses [B’s] sesson 7 to perform an object search operation to find O1. Since Olisa
session object belonging to A, however, the search does not succeed.

A2 uses [A’'s] session 4 to perform some operation to modify the object associated with
[A’s] object handle 7. This operation modifies O1.

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1. This
destroys O2.

B1 attempts to perform some operation with the object associated with [B’ 5] object handle
7. The atempt fals, snce there is no longer any such object. B1 receives an error
message indicating that its object handle is invdid
(CKR_OBJECT_HANDLE_INVALID).

Al logsout [A’'g sesson 4. Thisturns A’s sesson 4 into a R/O public sesson, and turns
A’ssesson 7 into a R/W public session.

Al closes [A’s] sesson 7. This destroys the session object O1, which was created by A’s
sesson 7.

A2 attempt to use [A’s] session 4 to perform some operation with the object associated
with [A’s] object handle 7. The atempt falls, Since there is no longer any such object. It
returnsa CKR_OBJECT_HANDLE_INVALID.

A2 executesacal to C_CloseAllSessions. Thiscloses[A’s] sesson4. At thispoint, if A
were to open a new session, the session would not be logged in (i.e., it would be a public
session).

Copyright © 1994-2001 RSA Security Inc.

26 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

27. B2 closes [B's sesson 7. At this point, if B were to open a new session, the ssson
would not be logged in.

28. A and B each cdl C_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary authentication (Deprecated)

Note: The information in this section, 6.7, related to secondary authentication in
Cryptoki has been deprecated in PKCS #11 v2.11 and higher. It is
included here for reasons of backward compatibility. New Cryptoki
implementations and Cryptoki aware applications should not implement
these features. It will not be present in the next major revision of the
specification. An alternative approach is presented in Appendix D.

Cryptoki dlows an application to specify that a private key should be protected by a secondary
authentication mechanism. This mechaniam is in addition to the sandard login mechanism
described in section 6.6 for sessons. The mechanism is mostly transparent to the gpplication
because the Cryptoki implementation does dmost al of the work.

The intent of gcondary authentication is to provide a means for a cryptographic token to
produce digital sgnatures for non-repudiation with reasonable certainty that only the authorized
user could have produced that signature. This capability is becoming increasingly important as
digitd sgnature laws are introduced worldwide.

The secondary authentication is based on the following principles:

1. The owner of the private key must be authenticated to the token before secondary
authentication can proceed (i.e. C_Login must have been cdled successfully).

2. If aprivate key is protected by a secondary authentication PIN, then the token must require
that the PIN be presented before each use of the key for any purpose.

3. All secondary authentication operations are done using a mechanism that is trangparent to
the Cryptoki client.

The secondary authentication mechanism adds a couple of subtle points to the way that an
goplication presents an object to a user and generates new private keys with the additiona

protections. The following sections detail the minor additions to applications that are required to
take full advantage of secondary authentication.

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW 27

6.7.1 Using keys protected by secondary authentication

Using a private key protected by secondary authentication uses the same process, and cdl
sequence, as usng a private key that is only protected by the login PIN. In fact, applications
written for Cryptoki Verson 2.01 will use secondary authentication without modification.

When a cryptographic operation, such as a digitd sgnature, is started using akey protected by
secondary authentication, a combination of the Cryptoki implementation and the token will
gather the required PIN vaue. If the PIN is correct, then the operation is alowed to complete.
Otherwise, the function will return an appropriate error code. The gpplication is not required to
gather PIN information from the user and send it through Cryptoki to the token. It is completely
transparent.

The gpplication can detect when Cryptoki and the token will gather a PIN for secondary
authentication by querying the key for the CKA_SECONDARY _AUTH attribute (see section
10.9). If the attribute vaue is TRUE, then the gpplication can present a prompt to the user.
Since Cryptoki Veson 201 applications will not be awae of the
CKA_SECONDARY_AUTH dtribute, the PIN gathering mechanism should make an
indication to the user that an authentication is required.

6.7.2 Generating private keys protected by secondary authentication

To generate a private key protected by secondary authentication, the application supplies the
CKA_SECONDARY_AUTH attribute with vaue TRUE in the private key template. If the
attribute does not exig in the template or has the vdue FALSE, then the private key is
generated with the norma login protection. See sections 10.9 and 11.14 for more information
about private key templates and key generation functions respectively.

If the new private key is protected by secondary authentication, a combination of the Cryptoki
implementation and the device will transparently gather the initid PIN vaue,

6.7.3 Changing the secondary authentication PIN value

The gpplication causes the device to change the secondary authentication PIN on a private key
usng the C_SetAttributeValue function. The template to the function should contain the
CKA_SECONDARY_AUTH attribute. The vdue of CKA_SECONDARY_AUTH in the
template does not matter.

When the Cryptoki implementation finds this attribute in a C_SetAttributeValue template, it
causes the device to gather the appropriate vaues. If C_SetAttributeValue is successful, the
PIN has been changed to the new value. See sections 10.9 and 11.7 for more information
about private key objectsand C_SetAttributeValue respectively.

Copyright © 1994-2001 RSA Security Inc.

28 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

6.7.4 Secondary authentication PIN collection mechanisms

Cryptoki does not specify a mechanism for secondary authentication PIN collection. The only
requirement is that the operation of the collection mechanism is transparent to the client.

Idedlly, secondary authentication PINs will be gathered using a protected path device, but that
can not dways be the case. A Cryptoki implementation may utilize platform specific services to
gather PIN vaues, including GUI didog boxes. While thisis different than the typica avoidance
of nonportable implementation requirements in the design of Cryptoki, it dlows secondary
authentication to be utilized by verson 201 aware agpplicaions without changes. If an
application requires PIN vaues to be collected from a protected path, it should insure that the
CKF_PROTECTED_AUTHENTICATION_PATH flag is st in the CK_TOKEN_INFO
structure.

6.8 Function overview

The Cryptoki APl conssts of a number of functions, spanning dot and token management and
object management, as well as cryptographic functions. These functions are presented in the
following teble:

Table 8, Summary of Cryptoki Functions

Category Function Description
Generd C Initidize initializes Cryptoki
purpose C Findize clean up miscellaneous Cryptoki- associated
functions resources
C_Getinfo obtains generd information about Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot andtoken | C_GetSlotList obtainsalis of dotsin the sysem
management C_GetSotinfo obtains information about a particular dot
functions C_GetTokeninfo obtains information about a particular token
C_WaitForSotEvent waits for adot event (token insertion,

removal, etc.) to occur

C_GetMechanismList obtainsalist of mechanisms supported by a

token

C_GetMechanisminfo obtains information about a particular
mechanism

C_InitToken initidizes a token

C _InitPIN initidizes the norma user’sPIN

Copyright © 1994-2001 RSA Security Inc.

6. GENERAL OVERVIEW

29

Category Function Description
C SetPIN modifiesthe PIN of the current user
Sesson C_OpenSession opens a connection between an application
management and a particular token or setsup an
functions application callback for token insartion
C CloseSession closesasesson
C CloseAllSessions closes al sessons with atoken
C GetSessoninfo obtains information about the sesson
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations State of a
session
C Login logsinto atoken
C_Logout logs out from atoken
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeVaue obtains an attribute value of an object
C_SetAttributevVaue modifies an attribute vaue of an object
C_FindObjectsnit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFina finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues amultiple-part encryption operation
C_EncryptFina finishes a multiple-part encryption operation
Decryption C_Decryptinit initializes a decryption operation
functions C_Decrypt decrypts Sngle-part encrypted data
C_DecryptUpdate continues amultiple-part decryption operation
C_DecryptFina finishes a multiple-part decryption operation
Message C _Digestinit initidizes a message- digesting operation
digesting C Digest digests Sngle-part data
functions C_DigestUpdate continues amultiple-part digesting operation
C DigestKey digests akey
C DigestFind finishes amultiple- part digesting operation

Copyright © 1994-2001 RSA Security Inc.

30

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Sgning C_Sgninit initializes a Sgnature operation
and MACing C Sgn ggnssngle-part data
functions C_SignUpdate continues amultiple-part signature operation
C_SignFind finishes a multiple-part Sgnature operation
C_SignRecoverlnit initidizes a 9gnature operation, where the data
can be recovered from the signature
C_SignRecover sgnssngle-part data, where the data can be
recovered from the sgnature
Functions for C_Veifylnit initidizes a verification operation
veifying
sgnatures C Veify verifies asgnature on Sngle-part data
and MACs C VerifyUpdate continues amultiple-part verification operation
C VeifyFind finishes amultiple- part verification operation
C_VeifyRecoverlnit initidizes a verification operation where the
data is recovered from the sgnature
C_VerifyRecover verifies asgnature on Sngle-part data, where
the data is recovered from the signature
Dua-purpose C _DigestEncryptUpdate | continues Smultaneous multiple- part digesting
cryptographic and encryption operations
functions C _DecryptDigestUpdate | continues Smultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues S multaneous multiple- part signature
and encryption operations
C_DecryptVerifyUpdate | continues Smultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) akey
C_UnwrapKey unwraps (decrypts) akey
C DeriveK ey derives a key from a base key

Copyright © 1994-2001 RSA Security Inc.

7. SECURITY CONSIDERATIONS 31

Category Function Description

Random number | C_SeedRandom mixesin additional seed materid to the

generation random number generator

functions C_GenerateRandom generates random data

Pardld function | C_GetFunctionStatus legecy function which aways returns

management CKR_FUNCTION_NOT_PARALLEL

functions C_CancdFunction legacy function which dways returns
CKR_FUNCTION_NOT_PARALLEL

Callback applicationsupplied function to process

function notifications from Cryptoki

7. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer
or communications sysem. Two of the particular feetures of the interface tha facilitate such
Security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic device
that implements the token may not be sufficient to useit; the PIN may aso be needed.

2. Additiona protection can be given to private keys and secret keys by marking them as
“sengtive’ or “unextractable’. Sendtive keys cannot be reveded in plaintext off the token,
and unextractable keys cannot be revedled off the token even when encrypted (though they
can gill be used as keys).

It is expected that access to private, sendtive, or unextractable objects by means other than
Cryptoki (e.g., other programming interfaces, or reverse engineering of the device) would be
difficullt.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sengitive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects
is |eft to the device implementation, however.

Based on these featuresiit should be possible to design applications in such away that the token
can provide adequate security for the objects the gpplications manage.

Of course, cryptography is only one dement of security, and the token is only one component in
a sysem. While the token itsedf may be secure, one must dso consder the security of the
operating system by which the application interfaces to it, especialy since the PIN may be
passed through the operating system. This @n make it easy for a rogue gpplication on the
operating sysem to obtain the PIN; it is aso possble that other devices monitoring

Copyright © 1994-2001 RSA Security Inc.

32 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

communication lines to the cryptographic device can obtain the PIN. Rogue applications and
devices may aso change the commands sent to the cryptographic device to obtain services
other than what the gpplication requested.

It isimportant to be sure that the system is secure againgt such attack. Cryptoki may well play a
role here; for instance, atoken may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,” since
akey that is sendtive will dways remain sendtive. Smilarly, a key that is unextractable cannot
be modified to be extractable.

An gpplication may aso want to be sure that the token is “legitimate’ in some sense (for a
variety of reasons, including export restrictions and basic security). This is outsde the scope of
the present standard, but it can be achieved by digtributing the token with a built-in, certified
public/private-key pair, by which the token can prove its identity. The certificate would be
sgned by an authority (presumably the one indicating that the token is*legitimate’) whose public
key is known to the application. The gpplication would verify the certificate and chalenge the
token to proveitsidentity by Sgning atime-varying message with its built-in private key.

Once a normd user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation supported
by the token. Some tokens may not even require any type of authentication to make use of its
cryptographic functions.

8. Platform- and compiler-dependent directivesfor C or C++

There is alarge array of Cryptoki-related data types which are defined in the Cryptoki header
files Certain packing- and pointer-related aspects of these types are platform- and compiler-
dependent; these aspects are therefore resolved on a platform-by-platform (or compiler-by-
compiler) basis outsde of the Cryptoki header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be issued
before including a Cryptoki header file. These directives are described in the remainder of
Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on the
Win32 and Win16 platforms, Cryptoki structures should be packed with 1-byte dignment. Ina
UNIX environment, it may or may not be necessary (or even possible) to dter the byte-
adignment of Structures.

Copyright © 1994-2001 RSA Security Inc.

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

8.2 Pointer-rdated macros

Because different platforms and compilers have different ways of deding with different types of
pointers, Cryptoki requires the following 6 macros to be set outside the scope of Cryptoki:

CK_PTR

CK_PTR isthe “indirection string” a given platform and compiler uses to make a pointer to an
object. Itisusad in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR
CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed ligt of arguments and a function definition, defines a Cryptoki APl function in a
Cryptoki library. r et ur nType isthereturn type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DEFI NE_FUNCTION(CK_RV, C_Initialize)(
CK VA D_PTR pReserved

)
{

}
CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et urnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a Cryptoki AP function in a
Cryptoki library. r et ur nType isthe return type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DECLARE_FUNCTI ON(CK_RV, C Initialize)(
CK VO D_PTR pReserved

)
CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, nane),whenfollowedby a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a
pointer to a Cryptoki API function in a Cryptoki library. r et ur nType isthe return type of
the function, and name isitsname. It can be used in either of the following fashionsto define a
function pointer variable, myC I ni ti al i ze, which can point to a C_Initialize functionin

Copyright © 1994-2001 RSA Security Inc.

33

34 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

a Cryptoki library (note that neither of the following code snippets actudly assigns a vdue to
myC Initialize):

CK_DECLARE_FUNCTI ON_POI NTER(CK_RV, myC I nitialize)(
CK_ VA D_PTR pReserved

)
or:

t ypedef CK_DECLARE_FUNCTI ON_PO NTER(CK_RYV,
myC InitializeType)(
CK VO D_PTR pReserved

)
myC InitializeType myC Initialize;

CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTI ON(returnType, nanme), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a
pointer to an gpplication calback function that can be used by a Cryptoki APl function in a
Cryptoki library. r et ur nType isthe return type of the function, and name isitsname. It
can be usd in dther of the following fashions to define a function pointer variable,
my Cal | back, which can point to an gpplication calback which takes argumentsar gs and
returns a CK_RV (note that neither of the following code snippets actudly assigns avaue to
my Cal | back):

CK_CALLBACK_FUNCTI ON(CK_RV, myCal | back) (args);
or:
t ypedef CK_CALLBACK_FUNCTI ON(CK_RV,
myCal | backType) (args);
myCal | backType myCal | back;
NULL _PTR

NULL_PTR is the vaue of a NULL pointer. In any ANS C environment—and in many
othersaswell—NUL L _PTR should be defined smply asO.

Copyright © 1994-2001 RSA Security Inc.

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 35

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers udang Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives before
including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#define CK_ | MPORT_SPEC _ decl spec(dllinmport)

/| * Define CRYPTOKI _EXPORTS during the build of
crypt oki

* libraries. Do not define it in applications.
*/

#1 fdef CRYPTOKI _EXPORTS

#defi ne CK_EXPORT_SPEC __ decl spec(dl | export)

#el se

#defi ne CK_EXPORT_SPEC CK | MPORT_SPEC

#endi f

/* Ensures the calling convention for Wn32 builds */
#define CK CALL_SPEC _ cdecl

#define CK PTR *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC narme

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC narme

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\

returnType CK_ I MPORT_SPEC (CK_CALL_SPEC CK_PTR hamne)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (CK_CALL_SPEC CK_PTR nane)

#i f ndef NULL_PTR

#define NULL PTR O
#endi f

After incdluding any Cryptoki heeder files, they might issue the following directives to reset the
Sructure packing to its earlier vaue:

Copyright © 1994-2001 RSA Security Inc.

36 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++ code
which implements or makes use of a Winl16 Cryptoki .dil might issue the following directives
before including any Cryptoki heeder files:

#pragma pack(1l)
#define CK PTR far *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType __export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType __export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\
returnType __export _far _pascal (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nane)

#1 f ndef NULL_PTR
#define NULL PTR O
#endi f

8.3.3 Generic UNIX

Deveopers performing generic UNIX development might issue the following directives before
including any Cryptoki header files

#define CK PTR *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 37

returnType (* nane)

#1 f ndef NULL_PTR
#define NULL PTR O
#endi f

9. General datatypes

The generd Cryptoki data types are described in the following subsections. The data types for
holding parameters for various mechanisms, and the pointers to those parameters, are not
described here; these types are described with the information on the mechanisms themsalves, in
Section 11.17.2.

A C or C++ sourcefile in a Cryptoki gpplication or library can define al these types (the types
described here and the types that are specificaly used for particular mechanism parameters) by
incduding the top-leve Cryptoki include file, pkcs11. h. pkcs11. h, inturn, includes the
other Cryptoki include files, pkcs11t . h and pkcs11f. h. A sourcefile can dsoindude
just pkcsl1llt. h (ingead of pkcs1l. h); this defines most (but not al) of the types
specified here.

When including ether of these header files, a source file must specify the preprocessor
directivesindicated in Section 8.
9.1 General information

Cryptoki represents generd information with the following types:

CK_VERSION; CK_VERSION_PTR

CK_VERSION is a dructure that describes the version of a Cryptoki interface, a Cryptoki
library, or an SSL implementation, or the hardware or firmware verson of adot or token. Itis
defined as follows:

typedef struct CK VERSI ON {
CK_BYTE mmj or;

CK_BYTE m nor;
} CK_VERSI ON;

Thefieds of the Sructure have the following meanings:
maj or mgor verson number (the integer portion of the verson)

minor minor version number (the hundredths portion of the
verson)

Copyright © 1994-2001 RSA Security Inc.

38 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For version 1.0, major = 1 and minor = 0. For verson 2.1, major = 2 and minor = 10.
Table 9 below lists the mgor and minor verson vaues for the dficidly published Cryptoki
Specifications.

Table 9, Major and minor version valuesfor published Cryptoki specifications

Version | maor | minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 Ox0a
211 0x02 OxOb

Minor revidons of the Cryptoki standard are dways upwardly compatible within the same
maor verson number.

CK_VERSION_PTR isapointer toaCK_VERSION.

CK_INFO; CK_INFO_PTR

CK_INFO provides generd information about Cryptoki. It isdefined asfollows

typedef struct CK_|I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manufacturerl D[32];
CK_FLAGS fl ags;
CK_UTF8CHAR | i braryDescri ption[32];
CK_VERSI ON | i braryVersi on;

} CK_I NFO

Thefieds of the sructure have the following meanings:

cryptokiVersion Cryptoki interface verdon number, for compatibility with
future revisons of thisinterface

manufacturer|D ID of the Cryptoki library manufacturer. Must be padded
with the blank character (* *). Should not be null-
terminated.

flags it flags reserved for future versons. Must be zero for this
verson

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 39

libraryDescription character-string description of the library. Must be
padded with the blank character (* *). Should not be null-
terminated.

libraryVersion Cryptoki library verson number

For libraries written to this document, the value of cryptokiVersion should be 2.11; the vaue of
libraryVersion isthe verson number of the library software itself.

CK_INFO_PTR isapointer toaCK_INFO.

CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
goplication. It isdefined as follows:

t ypedef CK_ULONG CK_NOTI FI CATI ON;

For this verson of Cryptoki, the following types of notifications are defined:
#def i ne CKN_SURRENDER 0

The natifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a sesson so that the gpplication may perform
other operations. After performing any desired operations,
the gpplication should indicate to Cryptoki whether to
continue or cancel the function (see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents dot and token information with the following types:

CK_SLOT ID; CK_SLOT_ID PTR

CK_SLOT_ID isaCryptoki-assgned vaue that identifiesadot. It isdefined asfollows
typedef CK _ULONG CK _SLOT_ I D;

A lig of CK_SLOT IDs is retuned by C _GetSotList. A priori, any vadue of

CK_SLOT_ID can be avdid dot identifier—in particular, a system may have a dot identified
by the vadlue 0. It need not have such adot, however.

Copyright © 1994-2001 RSA Security Inc.

40 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SLOT_ID PTR isapointertoaCK_SLOT _ID.

CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT_INFO providesinformation about adot. It isdefined asfollows.

typedef struct CK SLOT_I NFO {
CK_UTF8CHAR sl ot Descri ption[64];
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;

} CK_SLOT_I NFG;

Thefidds of the sructure have the following meanings:

slotDescription character-string description of the dot. Must be padded
with the blank character (* *). Should not be null-
terminated.

manufacturer|D ID of the dot manufacturer. Must be padded with the
blank character (*). Should not be null-terminated.

flags hitsflagsthat provide capabilities of the dot. Theflagsare
defined below

hardwareVersion verson number of the dot’s hardware
firmwareVersion verdon number of the dot's firmware

The following table defines the flags fidd:

Table 10, Sot Information Flags

Bit Flag M ask M eaning

CKF_TOKEN_PRESENT 0x00000001 | TRUE if atokenis present in the dot
(e.g., adeviceisin the reader)

CKF_REMOVABLE DEVICE | 0x00000002 | TRUE if the reader supports removable
devices

CKF_ HW_SLOT 0x00000004 | TRUE if the dot isahardware dot, as
opposed to a software dot implementing
a " soft token”

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 41

For a given dat, the vaue of the CKF_REMOVABLE_DEVICE flag never changes. In
addition, if this flag is not set for a given dat, then the CKF_TOKEN_PRESENT flag for that
dotisalways set. That is, if adot does not support a removable device, then that dot dways
hasatokeninit.

CK_SLOT_INFO_PTR isapointer toaCK_SLOT_INFO.

CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined asfollows:

typedef struct CK _TOKEN_ I NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturerl D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunmber [16] ;
CK_FLAGS fl ags;
CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;
CK_CHAR ut cTi ne[16] ;

} CK_TOKEN_I NFO,

The fidds of the structure have the following meanings:

label application-defined |abel, assigned during token
initidization. Must be padded with the blank character ('
‘). Should not be null-terminated.

manufacturer|D ID of the device manufacturer. Must be padded with the
blank character (* *). Should not be null-terminated.

model model of the device. Must be padded with the blank
character (* *). Should not be null-terminated.

Copyright © 1994-2001 RSA Security Inc.

42 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

serial Number

flags

ulMaxSessionCount

ul SessionCount

ulMaxRwSess onCount

ul RwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Copyright © 1994-2001 RSA Security Inc.

character-gtring serid number of the device. Must be
padded with the blank character (* *). Should not be null-
terminated.

bit flags indicating capakilities and status of the device as
defined below

maximum number of sessons that can be opened with the
token at one time by a single application (see note below)

number of sessonsthat this gpplication currently has open
with the token (see note below)

maximum number of read/write sessons that can be
opened with the token at one time by a single application
(see note below)

number of read/write sessons that this gpplication currently
has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin which
public objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for public objects (see note below)

the total amount of memory on the token in bytesin which
private objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for private objects (see note below)

verson number of hardware
verson number of firmware

current time as a character-gtring of length 16, represented
intheformat YYYYMMDDhhmmssxx (4 characters for
theyear; 2 characters each for the month, the day, the
hour, the minute, and the second; and 2 additional reserved
‘0’ characters). The vdue of thisfied only makes sense

9. GENERAL DATA TYPES 43

for tokens equipped with a clock, asindicated in the token
information flags (see Table 11)

Copyright © 1994-2001 RSA Security Inc.

44 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags fidd:

Table 11, Token Information Flags

Bit Flag

M ask

Meaning

CKF_RNG

(0x00000001

TRUE if thetoken
has its own random
number generator

CKF_WRITE_PROTECTED

(0x00000002

TRUE if thetokenis
write-protected (see
below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are

some cryptographic
functions that a user
must be logged into

perform

CKF_USER_PIN_INITIALIZED

(0x00000008

TRUE if the normd
user’s PIN has been
initidized

CKF_RESTORE_KEY_NOT_NEEDED

(0x00000020

TRUE if a
successful save of a
sesson's
cryptographic
operations state
always containsal
keys needed to
restore the state of
the sesson

CKF_CLOCK_ON_TOKEN

(0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has a
“protected
authentication path”,
whereby auser can
log into the token
without passing a
PIN through the
Cryptoki library

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES

45

Bit Flag

M ask

Meaning

CKF_DUAL_CRYPTO OPERATIONS

0x00000200

TRUE if asngle
sesson with the
token can perform
dud cryptographic
operations (see
Section 11.13)

CKF_TOKEN_INITIALIZED

0x00000400

TRUE if thetoken
has been initidized
using

C InitidizeToken or
an equivaent
mechanism outside
the scope of this
gandard. Calling
C_InitidizeToken
when thisflag is st
will cause the token
to berenitidized.

CKF_SECONDARY_AUTHENTICATION

(0x00000800

TRUE if the token
supports secondary
authentication for
private key objects.
(Deprecated; new
implementations
must never st this
flag to TRUE)

CKF_USER_PIN_COUNT_LOW

0x00010000

TRUEif an

incorrect user login
PIN has been
entered at least once
sncethe last
successful
authentication.

CKF_USER_PIN_FINAL_TRY

0x00020000

TRUE if supplying
an incorrect user
PIN will it to
become locked.

Copyright © 1994-2001 RSA Security Inc.

46 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag

M ask

Meaning

CKF_USER_PIN_LOCKED

(0x00040000

TRUE if the user
PIN has been
locked. User login
to the token is not

possible.

CKF_USER PIN_TO BE_CHANGED

(0x00080000

TRUE if the user
PIN vaueisthe
default value st by
token initidization or
meanufacturing, or
the PIN has been
expired by the card.

CKF_SO_PIN_COUNT_LOW

0x00100000

TRUE if an

incorrect SO login
PIN has been
entered at least once
sncethelast
successful
authentication.

CKF_SO _PIN_FINAL_TRY

0x00200000

TRUE if supplying
an incorrect SO
PIN will it to
become locked.

CKF_SO_PIN_LOCKED

0x00400000

TRUE if the SO
PIN has been
locked. User login
to the token is not
possible.

CKF_SO_PIN_TO_BE_CHANGED

0x00800000

TRUE if the SO
PIN vaueisthe
default value st by
token initidization or
manufacturing, or
the PIN has been
expired by the card.

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 47

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An
gpplication may be unable to perform certain actions on a write-protected token; these actions
can include any of the following, anong others.

Cresting/modifying/deleting any object on the token.
Creating/modifying/deleting a token object on the token.
Changing the SO's PIN.

Changing the normd user's PIN.

The token may change the vaue of the CKF_WRITE_PROTECTED flag depending on the
sesson date to implement its object management policy. For instance, the token may set the
CKF_WRITE_PROTECTED flag to TRUE unlessthe session state is R'W SO or R/W User
to implement a policy that does not dlow any objects, public or private, to be created,
modified, or deleted unless the user is has successfully caled C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may dways be
st to FALSE if the token does not support the functiondity or will not reved the information
because of its security policy.

The CKF_USER PIN_TO BE_CHANGED and CKF_SO PIN TO BE_CHANGED
flags may aways be sat to FALSE if the token does not support the functiondity. If aPIN is set
to the default value, or has expired, the appropriate CKF_USER_PIN_TO BE_CHANGED
or CKF_SO _PIN_TO BE_CHANGED flag is set to TRUE. When ether of these flags are
TRUE, logging in with the corresponding PIN will succeed, but only the C_SetPIN function can
be cdled. Cdling any other function that required the user to be logged in will cause
CKR_PIN_EXPIRED to be returned until C_SetPIN is caled successfully.

Note The fidds ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotal PublicMemory, ulFreePublicMemory, ulTotal PrivateMemory,
and ulFreePrivateMemory can have the Specid vaue
CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is unable
or unwilling to provide that information. In addition, the fidds ulMaxSessionCount and
ulMaxRwSessionCount can have the specid value CK_EFFECTIVELY _INFINITE, which
means that there is no practica limit on the number of sessons (rep. RW sessons) an
goplication can have open with the token.

These vaues are defined as

#define CK_UNAVAI LABLE_| NFORMATI ON (~0UL)
#define CK_EFFECTI VELY_I NFI NI TE 0

Copyright © 1994-2001 RSA Security Inc.

438 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It is important to check these fidds for these specid vaues. This is paticularly true for
CK_EFFECTIVELY_INFINITE, snce an @gpplication seeing this vadue in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it can't
open any sessions with the token, which isfar from being the case.

The upshot of dl thisis that the correct way to interpret (for example) the ulMaxSessionCount
fidd is something dong the lines of the following:

CK_TOKEN_I NFO i nf o;

i f ((CK_LONG) info.ul MaxSessi onCount
== CK_UNAVAI LABLE_I NFORVATI ON) {
/* Token refuses to give value of ul MaxSessi onCount
*/

} else if (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_I NFI NI TE) {
/* Application can open as many sessions as it wants

*/
} else {
/* ul MaxSessi onCount really does contain what it
should */

}

CK_TOKEN_INFO_PTR isapointer to aCK_TOKEN_INFO.

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 49

9.3 Session types

Cryptoki represents sesson information with the following types:

CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assgned vaue that identifies a sesson. It is defined
asfollows

t ypedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbalic vaue:

#defi ne CK_I NVALI D_HANDLE 0

CK_SESSION_HANDLE_PTR isapointer toaCK_SESSION_HANDLE.

CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 6.4. It isdefined as
follows

typedef CK_ULONG CK_USER TYPE;

For thisversgon of Cryptoki, the following types of users are defined:

#define CKU_SO O
#defi ne CKU_USER 1

CK_STATE

CK_STATE holds the session state, as described in Sections 6.6.1 and 6.6.2. It is defined as
follows

typedef CK _ULONG CK_STATE;

For thisverson of Cryptoki, the following sesson states are defined:

#define CKS_RO PUBLI C_SESSI ON 0
#def i ne CKS_RO_USER_FUNCTI ONS 1
#define CKS_RW PUBLI C_SESSI ON 2
#define CKS_RW USER_FUNCTI ONS 3
#define CKS_RW SO FUNCTIONS 4

Copyright © 1994-2001 RSA Security Inc.

50 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO providesinformation about a sesson. It is defined asfollows:
t ypedef struct CK_SESSI ON | NFO {
CK_SLOT_I D slot!D;
CK_STATE st at e;
CK_FLAGS fl ags;

CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFO;

Thefidds of the gructure have the following meanings:
dotlD ID of the dot that interfaces with the token
state the state of the session

flags hit flagsthat define the type of sesson; the flags are defined
below

ulDeviceError an error code defined by the cryptographic device. Used
for errors not covered by Cryptoki.

Thefollowing table defines the flags fidd:

Table 12, Session Information Flags

Bit Flag M ask M eaning

CKF_RW_SESSION 0x00000002 | TRUE if the onisreadwrite, FALSE if
the sesson is read-only

CKF_SERIAL_SESSION | 0x00000004 | Thisflagis provided for backward
compatibility, and should dways be set to
TRUE

CK_SESSION_INFO_PTR isapointer to aCK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is atokenspecific identifier for an object. 1t is defined asfollows:

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 51

t ypedef CK_ULONG CK_OBJECT HANDLE;

When an object is created or found on atoken by an application, Cryptoki assgnsit an object
handle for that application’s sessons to use to access it. A particular object on a token does
not necessarily have a handle which isfixed for the lifetime of the object; however, if aparticular
session can use a particular handle to access a particular object, then that sesson will continue
to be able to use that handle to access that object as long as the sesson continues to exig, the
object continues to exist, and the object continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symboalic vaue:

#defi ne CK_|I NVALI D_HANDLE 0

CK_OBJECT_HANDLE_PTR isapointer toaCK_OBJECT_HANDLE.

CK_OBJECT _CLASS; CK_OBJECT CLASS PTR

CK_OBJECT_CLASS isavaue that identifies the classes (or types) of objects that Cryptoki
recognizes. It isdefined asfollows

t ypedef CK_ULONG CK_OBJECT CLASS:

For this version of Cryptoki, the following classes of objects are defined:

#defi ne CKO_DATA 0x00000000
#defi ne CKO_CERTI FI CATE 0x00000001
#define CKO_PUBLI C_KEY 0x00000002
#defi ne CKO_PRI VATE_KEY 0x00000003
#def i ne CKO_SECRET_KEY 0x00000004
#defi ne CKO_HW FEATURE 0x00000005

#defi ne CKO_DOVAI N_PARAMETERS 0x00000006
#defi ne CKO_VENDOR_DEFI NED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their object classes through the PKCS
Pprocess.

CK_OBJECT_CLASS PTR isapointer toaCK_OBJECT CLASS.

CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE isavadue that identifies a hardware feature type of adevice. It is
defined asfollows:

Copyright © 1994-2001 RSA Security Inc.

52 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

typedef CK_ULONG CK_HW FEATURE_TYPE;

For thisverson of Cryptoki, the following hardware feature types are defined:

#def i ne CKH_MONOTONI C_COUNTER 0x00000001
#define CKH_CLOCK 0x00000002
#defi ne CKH_VENDOR_DEFI NED 0x80000000

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their festure types through the PKCS
process.

CK_KEY_TYPE

CK_KEY_TYPE isavaduethat identifies akey type. It is defined asfollows

typedef CK_ULONG CK_KEY_ TYPE;

For this verson of Cryptoki, the following key types are defined:

#defi ne CKK_RSA 0x00000000
#defi ne CKK_DSA 0x00000001
#defi ne CKK_DH 0x00000002
/* CKK_ECDSA is deprecated in v2.11 */
#defi ne CKK_ECDSA 0x00000003
#defi ne CKK_EC 0x00000003
#define CKK_X9_42 DH 0x00000004
#defi ne CKK_KEA 0x00000005
#defi ne CKK_GENERI C_SECRET 0x00000010
#defi ne CKK_RC2 0x00000011
#defi ne CKK_RC4 0x00000012
#defi ne CKK_DES 0x00000013
#defi ne CKK_DES2 0x00000014
#defi ne CKK_DES3 0x00000015
#defi ne CKK_CAST 0x00000016
#defi ne CKK_CAST3 0x00000017
/* CKK _CASTS5 is deprecated in v2.11 */
#def i ne CKK_CAST5 0x00000018
#defi ne CKK_CAST128 0x00000018
#defi ne CKK_RC5 0x00000019
#defi ne CKK_| DEA 0Ox0000001A
#def i ne CKK_SKI PJACK 0x0000001B
#defi ne CKK_BATON 0x0000001C
#defi ne CKK_JUNI PER 0x0000001D
#defi ne CKK_CDMF 0x0000001E

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 53

#defi ne CKK_AES 0x0000001F
#defi ne CKK_VENDOR_DEFI NED 0x80000000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should regigter their key types through the PKCS
process.

CK_CERTIFICATE _TYPE
CK_CERTIFICATE_TYPE isavduetha identifies a certificate type. It is defined as follows.

t ypedef CK_ULONG CK_CERTI FI CATE_TYPE;

For thisversion of Cryptoki, the following certificate types are defined:

#define CKC_X_509 0x00000000
#defi ne CKC_X_509_ATTR_CERT 0x00000001
#defi ne CKC_VENDOR_DEFI NED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should regigter their certificate types through the PKCS
process.

CK_ATTRIBUTE_TYPE
CK_ATTRIBUTE_TYPE isavauethat identifies an attribute type. It is defined as follows:

t ypedef CK_ULONG CK_ATTRI BUTE_TYPE;

For thisversgon of Cryptoki, the following attribute types are defined:

#define CKA CLASS 0x00000000
#define CKA_TOKEN 0x00000001
#define CKA_PRI VATE 0x00000002
#define CKA LABEL 0x00000003
#define CKA_APPLI CATI ON 0x00000010
#define CKA VALUE 0x00000011
#define CKA_OBJECT I D 0x00000012
#define CKA_CERTI FI CATE_ TYPE 0x00000080
#define CKA_I SSUER 0x00000081
#define CKA_SERI AL_NUVBER 0x00000082
#define CKA_AC | SSUER 0x00000083
#define CKA OANER 0x00000084
#define CKA_ATTR TYPES 0x00000085
#define CKA_TRUSTED 0x00000086

Copyright © 1994-2001 RSA Security Inc.

54 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKA _KEY_TYPE 0x00000100
#defi ne CKA_SUBJECT 0x00000101
#define CKA ID 0x00000102
#def i ne CKA_SENSI Tl VE 0x00000103
#def i ne CKA_ENCRYPT 0x00000104
#defi ne CKA_DECRYPT 0x00000105
#defi ne CKA WV\RAP 0x00000106
#defi ne CKA_UNWRAP 0x00000107
#defi ne CKA_SI GN 0x00000108
#defi ne CKA_SI GN_RECOVER 0x00000109
#defi ne CKA VERI FY 0x0000010A
#defi ne CKA_VERI FY_RECOVER 0x0000010B
#defi ne CKA_DERI VE 0x0000010C
#defi ne CKA _START_DATE 0x00000110
#defi ne CKA_END_DATE 0x00000111
#defi ne CKA_MODULUS 0x00000120
#defi ne CKA_MODULUS BI TS 0x00000121

#defi ne CKA_PUBLI C_EXPONENT 0x00000122
#def i ne CKA_PRI VATE_EXPONENT 0x00000123

#defi ne CKA_ PRI MVE_1 0x00000124
#defi ne CKA PRI ME_2 0x00000125
#defi ne CKA_EXPONENT_1 0x00000126
#defi ne CKA _EXPONENT_2 0x00000127
#def i ne CKA_COEFFI CI ENT 0x00000128
#defi ne CKA PRI ME 0x00000130
#defi ne CKA_SUBPRI ME 0x00000131
#defi ne CKA BASE 0x00000132
#define CKA_ PRI ME_BITS 0x00000133
#defi ne CKA _SUB_ PRI ME_BI TS 0x00000134
#defi ne CKA VALUE BITS 0x00000160
#defi ne CKA VALUE LEN 0x00000161
#defi ne CKA_EXTRACTABLE 0x00000162
#defi ne CKA_LOCAL 0x00000163

#defi ne CKA_NEVER _EXTRACTABLE 0x00000164
#defi ne CKA _ALWAYS_ SENSI Tl VE 0x00000165
#defi ne CKA_KEY_GEN_MECHANI SM 0x00000166

#def i ne CKA _MODI FI ABLE 0x00000170
/* CKA _ECDSA PARAMS is deprecated in v2.11 */
#defi ne CKA ECDSA PARAMS 0x00000180#defi ne
CKA EC_PARAMS 0x00000180
#defi ne CKA _EC PO NT 0x00000181
#defi ne CKA SECONDARY_AUTH 0x00000200
#defi ne CKA AUTH PI N FLAGS 0x00000201
#defi ne CKA HW FEATURE_TYPE 0x00000300
#define CKA RESET ON INIT 0x00000301
#defi ne CKA HAS RESET 0x00000302
#defi ne CKA VENDOR DEFI NED 0x80000000

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 55

Section 9.7 defines the atributes for each object class. Attribute types
CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should regigter their attribute types through the PK CS process.

CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a gructure that includes the type, vaue, and length of an atribute. It is
defined asfollows:

t ypedef struct CK _ATTRI BUTE {
CK_ATTRI BUTE_TYPE type;
CK_VA D_PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTRI BUTE;

Thefidds of the sructure have the following meanings:
type theattribute type
pValue pointer to the value of the attribute
ulValueLen lengthin bytes of the vaue

If an attribute has no vaue, then ulValueLen = 0, and the vaue of pValue isirrdevant. An
aray of CK_ATTRIBUTEs s cdled a “template’ and is used for cregting, manipulating and
searching for objects. The order of the attributes in a template never matters, even if the
template contains vendor-specific attributes. Note that pValue isa“void’ pointer, facilitating
the passing of arbitrary values. Both the gpplication and Cryptoki library must ensure that the
pointer can be safely cast to the expected type (i.e., without word-dignment errors).

CK_ATTRIBUTE_PTR isapointer toaCK_ATTRIBUTE.

CK_DATE

CK_DATE isadtructure that defines adate. It is defined as follows:
t ypedef struct CK DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;

CK_CHAR day|[2] ;
} CK_DATE;

Thefidds of the structure have the fallowing meanings.

year theyear (“1900” - “9999")

Copyright © 1994-2001 RSA Security Inc.

56

The fidds hold numeric characters from the character set in Table 3, not the litera byte vaues.

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

month themonth (*01” - “12”)

day theday (“01” - “31")

9.5 Datatypesfor mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a vaue tha identifies a mechaniam type. It is defined as

follows

typedef CK_ULONG CK_MECHANI SM TYPE;

For Cryptoki Verson 2.11, the following mechanism types are defined:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM_RSA_PKCS_KEY_PAI R_GEN
CKM_RSA_PKCS

CKM _RSA_9796

CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS

CKM SHAL RSA_PKCS

CKM_RI PEMD128_RSA_PKCS
CKM_RI PEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP

CKM RSA_X9 31 KEY_PAI R GEN
CKM_RSA_X9_31

CKM SHAL RSA X9 31

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x0000000B

0x0000000C#def i ne CKM_RSA_PKCS_PSS

0x0000000D

CKM_SHA1 RSA_PKCS_PSS

CKM _DSA_KEY_PAI R_GEN
CKM_DSA

CKM DSA_SHA1
CKM_DH_PKCS_KEY_PAI R_GEN
CKM_DH_PKCS_DERI VE
CKM_X9_42_DH KEY_PAI R_GEN
CKM _X9_42_DH_DERI VE
CKM_X9_42_DH_HYBRI D_DERI VE
CKM_X9_42_MQV_DERI VE

CKM RC2_KEY_GEN
CKM_RC2_ECB

Copyright © 1994-2001 RSA Security Inc.

0x0000000E
0x00000010
0x00000011
0x00000012
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000033
0x00000100
0x00000101

9. GENERAL DATA TYPES

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM_RC2_CBC
CKM_RC2_MAC
CKM_RC2_MAC_GENERAL
CKM_RC2_CBC_PAD
CKM_RC4_KEY_GEN
CKM_RC4

CKM DES_KEY_GEN
CKM_DES_ECB
CKM_DES_CBC

CKM _DES_MAC
CKM_DES_MAC_GENERAL
CKM_DES_CBC_PAD

CKM _DES2_KEY_GEN

CKM _DES3_KEY_GEN

CKM _DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC

CKM _DES3_MAC_GENERAL
CKM _DES3_CBC_PAD
CKM_CDMF_KEY_GEN
CKM_CDMF_ECB
CKM_CDMF_CBC
CKM_CDMF_MAC
CKM_CDMF_MAC_GENERAL
CKM_CDMF_CBC_PAD
CKM_MD2

CKM_MD2_HVAC
CKM_MD2_HMAC_GENERAL
CKM_MD5

CKM_MD5_HMAC
CKM_MD5_HMAC GENERAL
CKM_SHA_1
CKM_SHA_1_HMAC
CKM_SHA_1_HMAC_GENERAL
CKM_RI PEMD128

CKM_RI PEMD128_HVAC
CKM_RI PEMD128_HVAC_GENERAL
CKM_RI PEMD160

CKM_RI PEMD160_HVAC
CKM_RI PEMD160_HMAC_GENERAL
CKM_CAST_KEY_CGEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_ GEN
CKM_CAST3_ECB

0x00000102
0x00000103
0x00000104
0x00000105
0x00000110
0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000135
0x00000136
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000200
0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000230
0x00000231
0x00000232
0x00000240
0x00000241
0x00000242
0x00000300
0x00000301
0x00000302
0x00000303
0x00000304
0x00000305
0x00000310
0x00000311

57

Copyright © 1994-2001 RSA Security Inc.

58

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#define CKM_CAST3_CBC 0x00000312
#define CKM_CAST3_MAC 0x00000313
#defi ne CKM_CAST3_MAC_ GENERAL 0x00000314
#defi ne CKM_CAST3_CBC_PAD 0x00000315
#define CKM_CAST5_KEY_GEN 0x00000320
#define CKM_CAST128 KEY_ GEN 0x00000320
#define CKM_CAST5_ECB 0x00000321
#defi ne CKM_CAST128_ ECB 0x00000321
#define CKM_CAST5_CBC 0x00000322
#define CKM CAST128 CBC 0x00000322
#define CKM_CAST5_MAC 0x00000323
#def i ne CKM_CAST128_ MAC 0x00000323
#defi ne CKM_CAST5_MAC_GENERAL 0x00000324
#define CKM_CAST128 MAC GENERAL 0x00000324
#define CKM_CAST5_CBC_PAD 0x00000325
#defi ne CKM_CAST128_CBC_PAD 0x00000325
#define CKM_RC5_KEY_GEN 0x00000330
#define CKM_RC5_ECB 0x00000331
#define CKM _RC5_CBC 0x00000332
#defi ne CKM_RC5_MAC 0x00000333
#defi ne CKM_RC5_MAC_GENERAL 0x00000334
#defi ne CKM_RC5_CBC_PAD 0x00000335
#define CKM_ | DEA KEY GEN 0x00000340
#define CKM_| DEA_ECB 0x00000341
#define CKM_| DEA_CBC 0x00000342
#define CKM_ | DEA_MAC 0x00000343
#define CKM_ | DEA_MAC_GENERAL 0x00000344
#defi ne CKM_| DEA_CBC_PAD 0x00000345
#defi ne CKM_GENERI C_SECRET_KEY_GEN 0x00000350
#defi ne CKM_CONCATENATE BASE_AND KEY 0x00000360

#defi ne CKM_CONCATENATE_BASE_AND_DATA 0x00000362
#defi ne CKM_CONCATENATE_DATA_AND_BASE 0x00000363

#define CKM XOR BASE_AND DATA 0x00000364
#defi ne CKM_EXTRACT_KEY_FROM KEY 0x00000365
#define CKM SSL3_PRE_MASTER KEY GEN 0x00000370
#define CKM SSL3_MASTER KEY_DERI VE 0x00000371
#define CKM SSL3_KEY_AND MAC DERIVE 0x00000372

#define CKM SSL3_MASTER KEY DERI VE_DH 0x00000373

#define CKM TLS PRE_MASTER KEY_ GEN 0x00000374
#defi ne CKM_TLS_MASTER KEY_DERI VE 0x00000375
#defi ne CKM_TLS_KEY_AND_MAC_DERI VE 0x00000376
#define CKM TLS_MASTER KEY DERIVE_ DH 0x00000377
#define CKM SSL3_MD5_MAC 0x00000380
#define CKM SSL3_SHA1 MAC 0x00000381
#defi ne CKM_MD5_KEY_DERI VATI ON 0x00000390
#defi ne CKM MD2_KEY DERI VATI ON 0x00000391
#define CKM SHAL KEY DERI VATI ON 0x00000392
#def i ne CKM_PBE_NMD2_DES_CBC 0x000003A0

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES

#defi ne CKM_PBE_MD5_DES CBC 0x000003A1
#defi ne CKM _PBE_MD5_CAST_CBC 0x000003A2
#defi ne CKM PBE_NMD5_ CAST3_CBC 0x000003A3
#defi ne CKM_PBE_NMD5_CAST5_CBC 0x000003A4
#defi ne CKM _PBE_MD5_CAST128 CBC 0x000003A4
#defi ne CKM PBE_SHA1l CAST5_CBC 0x000003A5
#defi ne CKM PBE_SHAl CAST128 CBC 0x000003A5
#defi ne CKM _PBE_SHA1 RC4_128 0x000003A6
#defi ne CKM PBE_SHA1 RC4_40 0x000003A7
#defi ne CKM PBE_SHAl DES3_EDE_CBC 0x000003A8
#defi ne CKM PBE_SHAl DES2 EDE_ CBC 0x000003A9
#defi ne CKM_PBE_SHA1 RC2_128_CBC Ox000003AA
#defi ne CKM PBE_SHA1 RC2_40_CBC 0x000003AB
#defi ne CKM_PKCS5_PBKD2 0x000003B0
#defi ne CKM PBA SHA1 W TH_SHA1 HVAC 0x000003C0
#defi ne CKM_KEY_WRAP_LYNKS 0x00000400
#defi ne CKM _KEY_WRAP_SET_OAEP 0x00000401
#defi ne CKM_SKI PJACK_KEY_GEN 0x00001000
#defi ne CKM_SKI PJACK ECB64 0x00001001
#defi ne CKM_SKI PJACK CBC64 0x00001002
#defi ne CKM_SKI PJACK OFB64 0x00001003
#defi ne CKM_SKI PJACK_ CFB64 0x00001004
#defi ne CKM_SKI PJACK CFB32 0x00001005
#defi ne CKM_SKI PJACK CFB16 0x00001006
#defi ne CKM_SKI PJACK CFB8 0x00001007
#defi ne CKM_SKI PJACK_WRAP 0x00001008
#defi ne CKM_SKI PJACK_ PRI VATE_WRAP 0x00001009
#defi ne CKM_SKI PJACK_ RELAYX 0x0000100a
#defi ne CKM_KEA KEY_PAI R_GEN 0x00001010
#defi ne CKM _KEA_ KEY_DERI VE 0x00001011
#defi ne CKM FORTEZZA TI MESTAMP 0x00001020
#defi ne CKM _BATON_KEY_GEN 0x00001030
#defi ne CKM_BATON_ECB128 0x00001031
#defi ne CKM BATON_ECB96 0x00001032
#defi ne CKM BATON CBC128 0x00001033
#defi ne CKM_BATON_COUNTER 0x00001034
#defi ne CKM_BATON_SHUFFLE 0x00001035
#defi ne CKM _BATON_WRAP 0x00001036
/* CKM ECDSA KEY_PAIR GEN is deprecated in v2.11 */
#defi ne CKM_ECDSA KEY_PAI R_GEN 0x00001040
#defi ne CKM _EC _KEY_PAI R_GEN 0x00001040
#defi ne CKM_ECDSA 0x00001041
#defi ne CKM ECDSA SHAl 0x00001042
#defi ne CKM_ECDH1_DERI VE 0x00001050
#defi ne CKM_ECDH1_COFACTOR_DERI VE 0x00001051
#defi ne CKM_ECMQV_DERI VE 0x00001052
#defi ne CKM_JUNI PER_KEY_GEN 0x00001060
#defi ne CKM_JUNI PER_ECB128 0x00001061

59

Copyright © 1994-2001 RSA Security Inc.

60 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKM_JUNI PER_CBC128 0x00001062
#defi ne CKM_JUNI PER_COUNTER 0x00001063
#defi ne CKM_JUNI PER_SHUFFLE 0x00001064
#defi ne CKM_JUNI PER_W\RAP 0x00001065
#defi ne CKM_FASTHASH 0x00001070
#defi ne CKM_AES_KEY_GEN 0x00001080
#defi ne CKM_AES_ECB 0x00001081
#defi ne CKM_AES_CBC 0x00001082
#defi ne CKM_AES_MAC 0x00001083
#defi ne CKM_AES_MAC GENERAL 0x00001084

#defi ne CKM_AES_CBC_PAD
0x00001085#def i ne CKM_DSA_PARAMETER_GEN

0x00002000
#defi ne CKM DH_PKCS_PARAMETER_GEN 0x00002001
#define CKM X9 42 DH PARAMETER GEN 0x00002002
#defi ne CKM_VENDOR_DEFI NED 0x80000000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechanism types through the
PKCS process.

CK_MECHANISM_TYPE_PTR isapointer toaCK_MECHANISM_TYPE.

CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM isa dructure that pecifies a particular mechanism and any parameters it
requires. Itisdefined asfollows:

typedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK VO D_PTR pPar aneter;

CK_ULONG ul Par anet er Len;
} CK_MECHANI SM

Thefieds of the sructure have the following meanings:
mechanism thetype of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter isa“void” pointer, facilitating the passing of arbitrary vaues. Both the
gpplication and the Cryptoki library must ensure tha the pointer can be safdly cast to the
expected type (i.e., without word-aignment errors).

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 61

CK_MECHANISM_PTR isapointer toaCK_MECHANISM.

CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a dructure that provides information about a particular
mechanism. It is defined asfollows

typedef struct CK_MECHANI SM | NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM | NFG;

Thefidds of the sructure have the following meanings:

ulMinKeySze the minimum Sze of the key for the mechaniam (whether
thisis measured in bits or in bytesis mechanism:

dependent)

ulMaxKeySze the maximum size of the key for the mechanism (whether
thisis measured in bits or in bytesis mechaniam

dependent)
flags hit flags specifying mechanism capabilities
For some mechanisms, the ulMinKeyS ze and ulMaxKeyS ze fid ds have meaningless va ues.

The following table defines the flags fidd:

Copyright © 1994-2001 RSA Security Inc.

62 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 13, Mechanism Information Flags

Bit Flag M ask Meaning
CKF_HW 0x00000001 | TRUE if the mechanism is performed
by the device; FALSE if the mechanism
is performed in software
CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used
with C_Encryptlnit
CKF_DECRYPT 0x00000200 | TRUE if the mechanism can be used
with C_Decryptlnit
CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used
with C_DigestI nit
CKF_SIGN 0x00000800 | TRUE if the mechanism can be used
withC_Signinit
CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used
with C_SignRecover I nit
CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used
with C_Verifylnit
CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used
with C_VerifyRecover I nit
CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used
withC_GenerateK ey
CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used
with C_Gener ateK eyPair
CKF_WRAP 0x00020000 | TRUE if the mechanism can be used
withC_WrapKey
CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used
with C_UnwrapKey
CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used
withC_DeriveK ey
CKF EC F P 0x00100000 | TRUE if the mechanism can be used
with EC domain parameters over F,
CKF_EC F 2M 0x00200000 | TRUE if the mechanism can be used
with EC domain parameters over F,m
CKF_EC_ECPARAMETERS 0x00400000 | TRUE if the mechanism can be used
with EC domain parameters of the
choice ecParameters
CKF_EC NAMEDCURVE 0x00800000 | TRUE if the mechanism can be used
with EC domain parameters of the
choice namedCurve

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 63

Bit Flag M ask Meaning

CKF_EC_UNCOMPRESS 0x01000000 | TRUE if the mechanism can be used
with dliptic curve point uncompressed

CKF_EC_COMPRESS 0x02000000 | TRUE if the mechanism can be used
with dliptic curve point compressed

CKF_EXTENSION 0x80000000 | TRUE if thereis an extenson to the
flags, FALSE if no extensons. Mugt
be FALSE for thisversion.

CK_MECHANISM_INFO_PTR isapointer toaCK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

CK_RV
CK_RV isavduetha identifies the return vaue of a Cryptoki function. It is defined as follows:

typedef CK_ULONG CK_RYV;

For this versgon of Cryptoki, the following return vaues are defined:

#define CKR_OK
0x00000000

#defi ne CKR_CANCEL
0x00000001

#defi ne CKR_HOST_MEMORY
0x00000002

#define CKR_SLOT_|I D | NVALI D
0x00000003

#defi ne CKR_GENERAL_ERROR
0x00000005

#defi ne CKR_FUNCTI ON_FAI LED
0x00000006

#defi ne CKR_ARGUMENTS_BAD
0x00000007

#defi ne CKR_NO_EVENT
0x00000008

#defi ne CKR_NEED TO_CREATE_THREADS
0x00000009

#defi ne CKR_CANT_LOCK
0x0000000A

Copyright © 1994-2001 RSA Security Inc.

64 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKR_ATTRI BUTE_READ ONLY
0x00000010

#define CKR ATTRI BUTE_SENSI TI VE
0x00000011

#defi ne CKR_ATTRI BUTE_TYPE_I NVALI D
0x00000012

#define CKR_ATTRI BUTE_VALUE_| NVALI D
0x00000013

#defi ne CKR_DATA_I NVALI D
0x00000020

#define CKR DATA LEN RANGE
0x00000021

#defi ne CKR_DEVI CE_ERROR
0x00000030

#defi ne CKR_DEVI CE_MEMORY
0x00000031

#defi ne CKR_DEVI CE_REMOVED
0x00000032

#defi ne CKR_ENCRYPTED DATA | NVALI D
0x00000040

#defi ne CKR_ENCRYPTED DATA LEN_RANGE
0x00000041

#defi ne CKR_FUNCTI ON_CANCELED
0x00000050

#defi ne CKR_FUNCTI ON_NOT_PARALLEL
0x00000051

#defi ne CKR_FUNCTI ON_NOT_SUPPORTED
0x00000054

#defi ne CKR_KEY_HANDLE_ | NVALI D
0x00000060

#define CKR _KEY_SI ZE_ RANGE
0x00000062

#defi ne CKR_KEY_TYPE_| NCONSI STENT
0x00000063

#defi ne CKR_KEY_NOT NEEDED
0x00000064

#defi ne CKR_KEY_CHANGED
0x00000065

#defi ne CKR_KEY_NEEDED
0x00000066

#defi ne CKR_KEY_I NDI GESTI BLE
0x00000067

#defi ne CKR_KEY_FUNCTI ON_NOT_PERM TTED
0x00000068

#defi ne CKR_KEY_NOT_ WRAPPABLE
0x00000069

#define CKR _KEY_ UNEXTRACTABLE
0x0000006A

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 65

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

CKR_MECHANI SM_| NVALI D
0x00000070

CKR_MECHANI SM_PARAM | NVALI D
0x00000071
CKR_OBJECT_HANDLE_I NVALI D
0x00000082

CKR_OPERATI ON_ACTI VE
0x00000090
CKR_OPERATI ON_NOT_I NI TI ALI ZED
0x00000091
CKR_PI N_I NCORRECT
0x000000A0

CKR_PI N_I NVALI D

0x000000A1

CKR_PI N_LEN_ RANGE
0x000000A2

CKR_PI N_EXPI RED

0x000000A3

CKR_PI N_LOCKED

0x000000A4

CKR_SESSI ON_CLOSED
0x000000B0

CKR_SESSI ON_COUNT
0x000000B1

CKR_SESSI ON_HANDLE_| NVALI D
0x000000B3

CKR_SESSI ON_PARALLEL_NOT_SUPPORTED
0x000000B4

CKR_SESSI ON_READ_ONLY
0x000000B5

CKR_SESSI ON_EXI STS
0x000000B6
CKR_SESSI ON_READ ONLY_EXI STS
0x000000B7
CKR_SESSI ON_READ W\RI TE_SO EXI STS
0x000000B8

CKR_SI GNATURE_| NVALI D
0x000000C0

CKR_SI GNATURE_LEN RANGE
0x000000C1

CKR_TEMPLATE_| NCOVPLETE
0x000000D0
CKR_TEMPLATE_| NCONSI STENT
0x000000D1
CKR_TOKEN_NOT_PRESENT
0x000000EQ
CKR_TOKEN_NOT_RECOGNI ZED
0x000000E1

Copyright © 1994-2001 RSA Security Inc.

66 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKR_TOKEN_WRI TE_PROTECTED

0x000000E2

#defi ne CKR_UNWRAPPI NG _KEY_ HANDLE_I NVALI D
0x000000F0

#defi ne CKR_UNWRAPPI NG_KEY_SI ZE_RANGE
0x000000F1

#defi ne CKR_UNWRAPPI NG KEY_ TYPE_| NCONSI STENT
0x000000F2

#defi ne CKR_USER_ALREADY_ LOGGED | N
0x00000100

#define CKR USER NOT_LOGGED | N
0x00000101

#define CKR_USER_PI N_NOT_I NI TI ALI ZED
0x00000102

#define CKR_USER _TYPE_| NVALI D
0x00000103

#defi ne CKR_USER_ANOTHER ALREADY LOGGED | N
0x00000104

#define CKR USER TOO MANY TYPES
0x00000105

#defi ne CKR_WRAPPED_KEY_I NVALI D
0x00000110

#defi ne CKR WRAPPED KEY LEN RANGE
0x00000112

#defi ne CKR_WRAPPI NG_KEY_HANDLE_| NVALI D
0x00000113

#defi ne CKR WRAPPI NG KEY_SI ZE_RANGE
0x00000114

#defi ne CKR_WRAPPI NG _KEY_TYPE_| NCONSI STENT
0x00000115

#defi ne CKR_RANDOM SEED_ NOT_SUPPORTED
0x00000120

#defi ne CKR_RANDOM NO_RNG
0x00000121

#defi ne CKR_DOMAI N_PARANMS | NVALI D
0x00000130

#defi ne CKR_BUFFER TOO SMALL
0x00000150

#define CKR SAVED STATE_I NVALI D
0x00000160

#defi ne CKR_| NFORMATI ON_SENSI TI VE
0x00000170

#defi ne CKR_STATE_UNSAVEABLE
0x00000180

#defi ne CKR_CRYPTOKI _NOT_| NI TI ALI ZED
0x00000190

#define CKR CRYPTOKI _ALREADY_ | NI Tl ALl ZED
0x00000191

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 67

#define CKR_MUTEX_BAD

0x000001A0
#defi ne CKR_MUTEX_NOT_LOCKED
0x000001A1
#defi ne CKR_VENDOR_DEFI NED
0x80000000

Section 11.1 defines the meaning of each CK_RV vdue Reun vaues
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperakility, vendors should register their return values through the PKCS process.

CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification
cdlbacks. Itisdefined asfollows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VO D_PTR pApplication

);

The arguments to a natification calback function have the following meanings
hSession ~ Thehandle of the session performing the callback
event The type of natification callback

pApplication An application-defined vdue. Thisisthe samevdue as
was passed to C_OpenSession to open the sesson
performing the callback

CK_C_XXX

Cryptoki dso defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki APl (there are 68 such functions in Cryptoki Verson 2.11; see
Section 11 for detailed information about each of them), Cryptoki defines atype CK_C_ XXX,
which is a pointer to a function with the same arguments and return vaue as C_XXX has. An
appropriately-set variable of type CK_C XXX may be used by an gpplication to cdl the
Cryptoki function C_XXX.

Copyright © 1994-2001 RSA Security Inc.

68 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST PTR_PTR

CK_FUNCTION_LIST is a dructure which contains a Cryptoki verson and a function
pointer to each function in the Cryptoki API. It is defined asfollows:

typedef struct CK FUNCTI ON LI ST {
CK_VERSI ON versi on;
CK Clnitialize ClInitialize;
CK C Finalize C Finalize;
CK C GetlInfo C Cetlnfo;
CK_C Get FunctionLi st C_Get Functi onLi st;
CK C GetSlotList C GetSlotlList;
CK C GetSlotlnfo C GetSlotlnfo;
CK_C Get Tokenl nfo C_Get Tokenl nf o;
CK_C _Get Mechani snii st C_Get Mechani snLi st ;
CK_C Get Mechani smi nfo C_Get Mechani sm nf o;
CK C InitToken C InitToken;
CK CInitPINC.InitPIN;
CK_C SetPIN C_SetPIN;
CK_C OpenSessi on C _OpenSessi on;
CK _C Cl oseSession C Cl oseSessi on;
CK_C Cl oseAl | Sessions C _Cl oseAl | Sessi ons;
CK_C _Get Sessi onl nfo C_Get Sessi onl nf o;
CK C GetOperationState C GetOperationStat e;
CK _C Set OperationState C_Set Operati onStat e;
CK _C Login C _Login;
CK _C Logout C _Logout;
CK _C CreateObject C CreateObject;
CK_C CopyObj ect C CopyObj ect;
CK _C DestroyOhject C DestroyObject;
CK _C Get Onj ect Si ze C _Get Obj ect Si ze;
CK C GetAttributevValue C GetAttri buteVal ue;
CK C SetAttributeValue C SetAttri buteVal ue;
CK _C FindObjectslnit C FindObjectslnit;
CK_C _Fi ndOnj ects C _Fi ndObj ect s;
CK_C _Fi ndObj ect sFi nal C_Fi ndObj ect sFi nal ;
CK_C Encryptlinit C Encryptlnit;
CK_C Encrypt C _Encrypt;
CK_C Encrypt Update C _Encrypt Updat e;
CK_C_Encrypt Fi nal C_EncryptFi nal ;
CK _C Decryptlinit C Decryptlnit;
CK_C Decrypt C Decrypt;
CK_C Decrypt Update C Decrypt Updat e;
CK_C Decrypt Final C_DecryptFi nal;
CK C Digestlnit C Digestlnit;
CK_C Digest C Digest;

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 69

CK_C Di gest Updat e C _Di gest Updat e;
CK _C Di gest Key C Di gest Key;
CK_C Di gest Fi nal C_Di gest Fi nal ;
CK C Signlnit C.Signlnit;
CK _C Sign C_Sign;
CK_C_Si gnUpdat e C_Si gnUpdat e;
CK_C_Si gnFi nal C_Si gnFi nal ;
CK_C _SignRecoverlnit C_SignRecoverlnit;
CK_C Si gnRecover C_SignRecover;
CK C Verifylnit C Verifylnit;
CK_C Verify C Verify;
CK _C VerifyUpdate C VerifyUpdate;
CK _C VerifyFinal C VerifyFinal;
CK _C VerifyRecoverlnit C VerifyRecoverlnit;
CK _C VerifyRecover C VerifyRecover;
CK_C _Di gest Encrypt Updat e C _Di gest Encr ypt Updat e;
CK_C Decrypt Di gest Updat e C Decrypt Di gest Updat e;
CK_C_Si gnEncrypt Updat e C_Si gnEncr ypt Updat e;
CK _C Decrypt VerifyUpdate C Decrypt VerifyUpdat e;
CK_C _CGener at eKey C_Gener at eKey;
CK_C Gener at eKeyPair C _Gener at eKeyPai r;
CK_C W apKey C W apKey;
CK_C_Unwr apKey C_Unwr apKey;
CK_C DeriveKey C DeriveKey;
CK_C _SeedRandom C_SeedRandom
CK_C _Gener at eRandom C_Gener at eRandom
CK _C Get FunctionStatus C _Get FunctionSt at us;
CK_C Cancel Function C_Cancel Functi on;
CK_C Wi t For Sl ot Event C_ Wit For Sl ot Event ;
} CK_FUNCTI ON_LI ST;

Each Cryptoki library has a static CK_FUNCTION_LIST sructure, and a pointer to it (or to
a copy of it which is dso owned by the library) may be obtained by the C_GetFunctionL ist
function (see Section 11.2). The vaue that this pointer points to can be used by an gpplication
to quickly find out where the executable code for each function in the Cryptoki AP islocated.
Every function in the Cryptoki APl must have an entry point defined in the Cryptoki
library's CK_FUNCTION_LIST structure. If a paticular function in the Cryptoki API is
not supported by a library, then the function pointer for that function in the library's
CK_FUNCTION_LIST dructure should point to a function stub which smply returns
CKR_FUNCTION_NOT_SUPPORTED.

An agpplication may or may not be able to modify a Cryptoki library’'s datic
CK_FUNCTION_LIST gructure. Whether or not it can, it should never attempt to do so.

CK_FUNCTION_LIST_PTR isapointer toaCK_FUNCTION_LIST.

Copyright © 1994-2001 RSA Security Inc.

70 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_FUNCTION_LIST_PTR_PTR isapointer toaCK_FUNCTION_LIST_PTR.

9.7 Locking-related types

The types in this section are provided solely for applications which need to access Cryptoki
from multiple threads smultaneoudy. Applications which will not do this need not use any
of these types.

CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which
crestes anew mutex object and returns a pointer to it. It is defined asfollows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D_PTR_PTR ppMut ex

)i

Cdlinga CK_CREATEMUTEX function returns the pointer to the new mutex object in the
location pointed to by ppMutex. Such a function should return one of the following vaues:
CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an applicationsupplied function which
destroys an existing mutex object. It is defined asfollows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_DESTROYMUTEX) (
CK_VO D_PTR pMit ex

)i

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be
destroyed. Such a function should return one of the following vadues. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX isthetype of apointer to an application-supplied function which locks an
exiging mutex object. CK_UNLOCKMUTEX is the type of a pointer to an gpplication+
supplied function which unlocks an existing mutex object. The proper behavior for these types
of functionsis asfollows

If a CK_LOCKMUTEX function is caled on a mutex which is not locked, the cdling
thread obtains alock on that mutex and returns.

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES 71

If a CK_LOCKMUTEX function is cdled on a mutex which is locked by some thread
other than the cdling thread, the cdling thread blocks and waits for that mutex to be
unlocked.

If a CK_LOCKMUTEX function is cdled on a mutex which is locked by the cdling
threed, the behavior of the function call is undefined.

If a CK_UNLOCKMUTEX function is cdled on a mutex which is locked by the cdling
thread, that mutex is unlocked and the function cdl returns. Furthermore:

If exactly one thread was blocking on that particular mutex, then that threed stops
blocking, obtains alock on that mutex, and its CK_L OCKMUTEX cdl returns.

If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threads is selected somehow. That lucky thread stops blocking, obtains alock
on the mutex, and its CK_LOCKMUTEX cdl returns. All other threads blocking on
that particular mutex continue to block.

If a CK_UNLOCKMUTEX function is caled on a mutex which is not locked, then the
function call returnsthe error code CKR_MUTEX_NOT_LOCKED.

If a CK_UNLOCKMUTEX function is cdled on a mutex which is locked by some threed
other than the cdling threed, the behavior of the function call is undefined.

CK_LOCKMUTEX isdefined asfollows.

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_LOCKMUTEX) (
CK_VO D_PTR pMit ex

)i

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked.
Such a function chould retun one of the fdlowing vaues CKR OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX isdefined asfollows.

typedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D_PTR pMit ex

)i

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be
unlocked. Such a function should return one of the following vadues CKR _OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

Copyright © 1994-2001 RSA Security Inc.

72 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS PTR

CK_C_INITIALIZE_ARGS is a dructure containing the optiond arguments for the
C_Initialize function. For this verson of Cryptoki, these optiond arguments are dl concerned
with the way the library deds with threeds. CK_C INITIALIZE_ARGS is defined as
follows
typedef struct CK _C I NI TIALI ZE_ARGS {

CK_CREATEMUTEX Cr eat eMut ex;

CK_DESTROYMUTEX Dest r oyMit ex;

CK_LOCKMUTEX LockMut ex;

CK_UNLOCKMUTEX Unl ockMut ex;

CK_FLAGS fl ags;

CK VO D_PTR pReserved,;
} CK_C_I NI TI ALl ZE_ARGS:

Thefidds of the gructure have the following meanings:
CreateMutex pointer to afunction to use for cresating mutex objects
DestroyMutex pointer to afunction to use for destroying mutex objects
LockMutex pointer to afunction to use for locking mutex objects
UnlockMutex pointer to afunction to use for unlocking mutex objects

flags it flags pecifying optionsfor C_Initialize; the flags are
defined below

pReserved reserved for future use. Should be NULL_PTR for this
verson of Cryptoki

The falowing teble defines the flags fidd:

Table 14, C_Initialize Parameter Flags

Copyright © 1994-2001 RSA Security Inc.

9. GENERAL DATA TYPES

73

Bit Flag

M ask

Meaning

CKF_LIBRARY _CANT CREATE OS THREADS

0x00000001

TRUEif
gpplication
threads which are
executing cdlsto
the library may
not use native
operating system
cdlsto spawvn
new threads,
FALSE if they

may

CKF_OS_LOCKING_OK

0x00000002

TRUE if the
library can usethe
native operation
system threading
mode for locking;
FALSE otherwise

CK_C_INITIALIZE_ARGS PTR isapointer toaCK_C_INITIALIZE_ARGS.

Copyright © 1994-2001 RSA Security Inc.

74 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS
data type. An object conssts of a set of attributes, each of which has a given vaue. Each
atribute that an object possesses has precisady one vaue. The following figure illudrates the
high-level hierarchy of the Cryptoki objects and some of the attributes they support:

Object
Class
Storage HW Feature
Token Feature Type
Private
Label
Modifiable

Key

bata Domain Parameter
Application
Object Identifier >
Value Certificate

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in generd, and for
obtaining and modifying the values of ther attributes. Some of the cryptographic functions (e.g.,
C_GenerateK ey) dso create key objectsto hold their results.

Objects are dways “wdl-formed” in Cryptoki—that is, an object aways contains dl required
attributes, and the attributes are always consgstent with one another from the time the object is
created. This contrasts with some object-based paradigms where an object has no attributes
other than perhaps a dass when it is created, and is uninitidized for some time. In Cryptoki,
objects are dways initidized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data type of
the attribute value and the meaning of the atribute, which may include a default initid vaue.
Some of the data types are defined explicitly by Cryptoki €.9., CK_OBJECT_CLASS).
Attribute values may a0 take the following types:

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 75

Bytearay anahbitrary string (array) of CK_BYTES

Biginteger adlring of CK_BY TESrepresenting an unsigned integer of
arbitrary 9ze, most-sgnificant byte firs (e.g., the integer
32768 is represented as the 2-byte string 0x80 0x00)

Locd dring an unpadded string of CK_CHARS (see Table 3) with no
null-termination

RFC2279 gtring an unpadded string of CK_UTF8CHARs with no null-
termination

A token can hold severd identical objects, i.e,, it is permissible for two or more objects to have
exactly the same vaues for dl their attributes.

With the exception of RSA private key objects (see Section 10.9.1), each type of object in the
Cryptoki specification possesses a completely well-defined set of Cryptoki attributes. For
example, an X.509 public key certificate object (see Section 10.6.1) has precisdy the following
Cryptoki attributes: CKA_CLASS, CKA_TOKEN, CKA_PRIVATE,
CKA_MODIFIABLE, CKA_LABEL, CKA_CERTIFICATE_TYPE, CKA_SUBJECT,
CKA_ID, CKA_ISSUER, CKA_SERIAL_NUMBER, CKA_VALUE. Some of these
attributes possess default vaues, and need not be specified when creating an object; some of
these default values may even be the empty string (). Nonetheless, the object possesses these
attributes. A given object has a saingle vaue for each dtribute it possesses, even if the atribute
is a vendor-specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additiona vendor-specific
attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute vaues. Cryptographic functions that creete
objects (see Section 11.14) may aso contribute some additiond attribute vaues themsdves,
which atributes have vaues contributed by a cryptographic function cal depends on which
cryptographic mechanism is being performed (see Section 12). In any case, dl the required
attributes supported by an object class that do not have default values must be specified when
an object is created, either in the template or by the function itsdf.

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveK ey (see Section

Copyright © 1994-2001 RSA Security Inc.

76 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.14). In addition, copying an existing object (with the function C_CopyObject) aso creates
anew object, but we consider thistype of object creation separately in Section 10.1.3.

Attempting to create an object with any of these functions requires an appropriate template to
be supplied.

1. If the supplied template specifies a vaue for an invdid atribute, then the attempt should fall
with the error code CKR_ATTRIBUTE _TYPE INVALID. An atribute is vdid if it is
either one of the attributes described in the Cryptoki specification or an additiona vendor-
specific attribute supported by the library and token.

2. If the supplied template specifies an invdid vaue for a vdid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_VALUE INVALID. Thevdid vdues
for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a vaue for a read-only attribute, then the attempt should
fal with the error code CKR_ATTRIBUTE _READ_ONLY. Whether or not a given
Cryptoki atribute is read-only is explicitly stated in the Cryptoki specification; however, a
particular library and token may be even more redtrictive than Cryptoki specifies. In other
words, an attribute which Cryptoki says is not read-only may nonetheless be read-only
under certain circumstances (i.e., in conjunction with some combinations of other attributes)
for a particular library and token. Whether or not a given nonCryptoki attribute is read-
only is obvioudy outside the scope of Cryptoki.

4. If the atribute vaues in the supplied template, together with any default attribute vaues and
any dtribute values contributed to the object by the object-creation function itsdf, are
insufficient to fully specify the object to create, then the attempt should fal with the error
code CKR_TEMPLATE INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute values and
any dtribute values contributed to the object by the object-creation function itsdf, are
inconsdgent, then the atempt <should fal with the eror code
CKR _TEMPLATE INCONSISTENT. A st of attribute vauesisinconsgent if not al of
its members can be satisfied smultaneoudy by the token, dthough eech vaue individudly is
vaid in Cryptoki. One example of an inconagent template would be usng a template
which specifies two different vaues for the same attribute. Another example would be
trying to create an RC4 secret key object (see Section 10.10.3) withaCKA_MODULUS
attribute (which is appropriate for various types of public keys (see Section 10.8) or private
keys (see Section 10.9), but not for RC4 keys). A find example would be a template for
cregting an RSA public key with an exponent of 17 on a token which requires dl RSA
public keys to have exponent 65537. Note that this find example of an inconsstent
template is tokendependent—on a different token (one which permits the value of 17 for
an RSA public key exponent), such atemplate would not be inconsistent.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 77

6. If the supplied template specifies the same vaue for a particular attribute more than once (or
the template specifies the same vaue for a particular atribute that the object-creation
function itsdf contributes to the object), then the behavior of Cryptoki is not completely
specified. The attempt to create an object can either succeed—thereby creating the same
object that would have been created if the multiply-specified attribute had only appeared
once—or it can fal with error code CKR_TEMPLATE INCONSISTENT. Library
developers are encouraged to make their libraries behave as though the attribute had only
appeared once in the template; gpplication developers are strongly encouraged never to put
aparticular dtribute into a particular template more than once.

If more than one of the Stuations listed above applies to an attempt to create an object, then the
error code returned from the attempt can be any of the error codes from above that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 11.7).
The template supplied to C_SetAttributeValue can contain new vaues for attributes which the
object already possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may
not. In addition, atributes which Cryptoki specifies are modifiable may actudly not be
modifiable on sometokens. That is, if a Cryptoki attribute is described as being modifiable, that
redly means only that it is modifigble insofar as the Cryptoki specification is concerned. A
particular token might not actually support modification of some such attributes. Furthermore,
whether or not a particular attribute of an object on a particular token is modifiable might
depend on the vaues of certain attributes of the object. For example, a secret key object’s
CKA_SENSITIVE attribute can be changed from FALSE to TRUE, but not the other way
around.

All the scenarios in Section 10.1.1—and the error codes they return—agpply to modifying
objectswith C_SetAttributeValue, except for the possbility of atemplate being incomplete.

10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section 11.7). Inthe
process of copying an object, C_CopyObject dso modifies the attributes of the newly-created
copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of aC_CopyObj ect operation
are the same as the Cryptoki attributes which are described as being modifiable, plus the three
gpecid attributes CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE. To be
more precise, these attributes are modifiable during the course of a C_CopyObject operation
insofar as the Cryptoki specification is concerned. A particular token might not actualy

Copyright © 1994-2001 RSA Security Inc.

78 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

support modification of some such atributes during the course of a C_CopyObj ect operation.
Furthermore, whether or not a particular attribute of an object on a particular token is
modifiable during the course of a C_CopyODbject operation might depend on the vaues of
certain atributes of the object. For example, a secret key objects CKA_SENSITIVE
atribute can be changed from FALSE to TRUE during the course of a C_CopyObject
operation, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to copying objects
with C_CopyObj ect, except for the possibility of atemplate being incomplete.

10.2 Common attributes

The following table defines the attributes common to dl objects:

Table 15, Common Object Attributes

Attribute Data Type M eaning

CKA_CLASS' CK_OBJECT_CLASS | Object dass (type)

Must be specified when object is created

Cryptoki Verson 2.11 supports the following vaues for CKA_CLASS (i.e, the following
classes (types) of objects): CKO_HW_FEATURE, CKO_DATA, CKO_CERTIFICATE,
CKO_PUBLIC KEY, CKO_PRIVATE KEY, CKO_SECRET _KEY, and
CKO_DOMAIN_PARAMETERS.

10.3 Hardware Feature Objects

Hardware feature objects CKO_HW_FEATURE) represent features of the device. They
provide an easily expandable method for introducing new vaue-based features to the cryptoki
interface. The following figure illugtrates the hierarchy of hardware festure objects and some of
the attributes they support:

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 79

HW Feature

Feature Type

/\

Monotonic Clock
Counter
Value
Reset by Init
Has Been Reset
Value

Figure 6, Har dwar e Feature Object Attribute Hierarchy

When searching for objects usng C_FindObjectd nit and C_FindObjects, hardware feature
objects are not returned unless the CKA_CLASS dtribute in the template has the vaue
CKO_HW_FEATURE. This protects gpplications written to previous versons of cryptoki
from finding objects that they do not understand.

Table 16, Hardwar e Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE TYPE | CK_HW_FEATURE | Hardware feature (type)

Cryptoki Verson 2.11 supports the following vaues for CKA_HW_FEATURE_TYPE:
CKH_MONOTONIC_COUNTER, and CKH_CLOCK.

10.3.1 Clock Objects

Clock objects represent rea-time clocks that exist on the device. This represents the same
clock source asthe utcTime fidd inthe CK_TOKEN_INFO structure.

Table 17, Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE | CK_CHARJ[16] | Current time asa character-gring of length 16,
represented in the format YYY'Y MMDDhhmmssxx (4
charactersfor the year; 2 characters each for the
morth, the day, the hour, the minute, and the second,
and 2 additional reserved ‘0" characters).

Copyright © 1994-2001 RSA Security Inc.

80 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_VALUE attribute may be st usng the C_SetAttributeValue function if permitted
by the device. The sesson used to set the time must be logged in. The device may require the
SO to be the user logged in to modify the time vaue. C_SetAttributeValue will return the
eror CKR_USER NOT_LOGGED _IN to indicate that a different user type is required to set
the value.

10.3.2 Monotonic Counter Objects

Monotonic counter objects represent hardware counters that exist on the device. The counter is
guaranteed to increase each time its value is read, but not necessarily by one.

Table 18, Monotonic Counter Attributes

Attribute Data Type M eaning

CKA_RESET ON_INIT! | CK_BBOOL | Thevaue of the counter will reset to a
previoudy returned valueif the token is
initidizedusng C_InitializeT oken.

CKA_HAS RESET! CK_BBOOL | The vaue of the counter has been reset at least
once a some point in time.
CKA_VALUE' Byte Array The current version of the monotonic counter.

The vaueisreturned in big endian order.

'Read Only

The CKA_VALUE attribute may not be set by the client.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 81

10.4 Storage Objects

Table 19, Common Storage Object Attributes

Attribute Data Type M eaning

CKA_TOKEN CK_BBOOL TRUE if object isatoken object; FALSE
if object isasesson object (default
FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object isaprivate object;

FALSE if object isa public object.
Default value is token specific, and may
depend on the values of other attributes

of the object.

CKA_MODIFIABLE | CK_BBOOL TRUE if object can be modified (defauit
TRUE)

CKA_LABEL RFC2279 string Description of the object (default empty)

Only the CKA_LABEL atribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in
the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is atoken object or a session object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user
has been authenticated to the token.

The vdue of the CKA_MODIFIABLE attribute determines whether or not an object is read-
only. It may or may not be the case that an unmodifiable object can be del eted.

The CKA_LABEL éttributeisintended to assst usersin browsing.

10.5 Dataobjects

Data objects (object class CKO_DATA) hold information defined by an application. Other
than providing access to it, Cryptoki does not attach any specid meaning to a data object. The
following table lists the attributes supported by data objects, in addition to the common
atributeslisted in Table 15 and Table 19:

Copyright © 1994-2001 RSA Security Inc.

82 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 20, Data Object Attributes

Attribute Datatype | Meaning
CKA_APPLICATION | RFC2279 | Description of the gpplication that manages the
gring object (default empty)
CKA_OBJECT_ID Byte Array | DER-encoding of the object identifier indicating the
data object type (default empty)
CKA_VALUE Bytearray | Vdue of the object (default empty)

All of these attributes may be modified after the object is created.

The CKA_APPLICATION attribute provides a means for gpplications to indicate ownership
of the data objects they manage. Cryptoki does not provide a means of ensuring that only a
particular application has access to a data object, however.

The CKA_OBJECT _ID attribute provides an gpplication independent and expandable way to
indicate the type of the data object vaue. Cryptoki does not provide a means of insuring that
the data object identifier matches the data value.

The following is a sample template containing attributes for creeting a data object:

CK_OBJECT_CLASS cl ass = CKO_DATA;

CK_UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK _BYTE data[] = “Sanple data”;

CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (Il abel)-1},
{ CKA_APPLI CATI ON, application, sizeof(application)-
1},
{CKA VALUE, data, sizeof(data)}
b

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS

10.6 Certificate objects

The following figure illustrates details of certificate objects:

Certificate

Certificate Type
Trusted

X.509 Public
Key Certificate

X.509 Attribute
Certificate

Subject

ID

Issuer

Serial Number
Value

Owner

Issuer

Serial Number
Attribute Types
Value

Figure7, Certificate Object Attribute Hierarchy

83

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach any
gpecid meaning to certificates. The following table defines the common certificate object
attributes, in addition to the common attributes listed in Table 15 and Table 19:

Table 21, Common Certificate Object Attributes

Attribute Datatype Meaning

CKA_CERTIFICATE TY PE CK_CERTIFICATE_TYPE | Typeof certificate

CKA_TRUSTED CK_BBOOL The certificate can
be trusted for the
application thet it
was created.

"Must be specified when the object is created. The CKA_CERTIFICATE_TYPE atribute
may not be modified after an object is created.

Copyright © 1994-2001 RSA Security Inc.

84 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.6.1 The CKA_TRUSTED attribute cannot be set to TRUE by an application. It
must be set by a token initialization application. Trusted certificates cannot be
modified. X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X _509) hold X.509 public key certificates.
The following table defines the X.509 certificate object attributes, in addition to the common
atributeslisted in Table 15, Table 19 and Table 21:

Table 22, X.509 Certificate Object Attributes

Attribute Datatype | Meaning

CKA_SUBJECT! Bytearray | DER-encoding of the certificate subject
name

CKA_ID Bytearray | Key identifier for public/private key pair
(default empty)

CKA_ISSUER Bytearray | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER | Bytearray | DER-encoding of the certificate serid
number (default empty)

CKA_VALUE! Bytearray | BER-encoding of the certificate

Must be specified when the object is crested.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER dtributes may be
modified after the object is created.

The CKA_ID dtribute is intended as a means of didinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as wel as identifier, it is possble that keys for different subjects
may have the same CK A 1D vadue without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is
not required that al be stored in the same token). However, Cryptoki does not enforce this
asociation, or even the uniqueness of the key identifier for a given subject; in particular, an
gpplication may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensons to
X.509 cetificates, the key identifier may be carried in the certificate. It is intended that the
CKA_ID vaue be identica to the key identifier in such a certificate extension, athough thiswill
not be enforced by Cryptoki.

The following is a sample template for creating a certificate object:

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 85

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC X 509;
CK_UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}
b

10.6.2 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X 509 ATTR_CERT) hold X.509
attribute certificates. The following table defines the X.509 attribute certificate object attributes,
in addition to the common attributes liged in Table 15, Table 19 and Table 21.

Copyright © 1994-2001 RSA Security Inc.

86 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 23, X.509 Attribute Certificate Object Attributes

Attribute Data Type [Meaning

CKA_OWNER? Byte Array [DER-encoding of the attribute certificate's subject
fidd. Thisisdigtinct from the CKA_SUBJECT
attribute contained in CKC_X_509 certificates
because the ASN.1 syntax and encoding are
different.

CKA_AC_ISSUER Byte Array [DER-encoding of the attribute certificate's issuer
fidd. Thisisdiginct from the CKA_ISSUER
attribute contained in CKC_X_509 certificates
because the ASN.1 syntax and encoding are
different. (default empty)
CKA_SERIAL_NUMBER | Byte Array |DER-encoding of the certificate serid number.
(default empty)

CKA_ATTR_TYPES Byte Array [BER-encoding of a sequence of object identifier
v ues corresponding to the attribute types
contained in the certificate. When present, thisfield
offers an opportunity for applications to search for
a particular attribute certificate without fetching and
parsng the certificate itsdf. (default empty)

CKA_VALUE! Byte Array [BER-encoding of the certificate.
Must be specified when the object is created

Only the CKA_AC ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES
attributes may be modified after the object is created.

Thefollowing is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 509 _ATTR_CERT;
CK_UTF8CHAR | abel [] = "An attribute certificate
obj ect™;
CK_BYTE owner[] = {...};
CK _BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_OWNER, owner, sizeof (owner)},
{CKA VALUE, certificate, sizeof(certificate)}

b

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS

10.7 Key objects

The following figure illugtrates details of key objects:

Key

Key Type
ID

Start Date
End Date
Derive
Local

Key Gen Mechanism

m

Public Key

Subject
Trusted
Encrypt

Verify

Verify Recover
Wrap

Private Key*

Subject

Sensitive

Decrypt

Sign

Sign Recover
Unwrap
Extractable
Always Sensitive
Never Extractable

Secret Key

* Deprecated attributes are not shown.

Sensitive

Encrypt

Decrypt

Sign

Verify

Wrap

Unwrap
Extractable
Always Sensitive
Never Extractable

Figure 8, Key Attribute Detail

87

Key objects hold encryption or authentication keys, which can be public keys, private keys, or
secret keys. The following common footnotes gpply to dl the tables describing attributes of

keys.

Table 24, Common footnotesfor key attribute tables

! Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObj ect.

% Must be specified when object
C_GenerateK eyPair.

is generated with C_GenerateKey or

Copyright © 1994-2001 RSA Security Inc.

88 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* Mugt not be specified when object is generated with C_GenerateKey or
C_GenerateK eyPair.

> Must be specified when object is unwrapped with C_UnwrapK ey.
® Must not be specified when object is unwrapped with C_UnwrapK ey.

" Cannot be reveded if object has its CKA_SENSITIVE aitribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is crested with a C_SetAttributeValue cdl, or in the
process of copying object with a C_CopyObject cdl. Asmentioned previoudy, however, it
is possible that a particular token may not permit modification of the atribute, or may not
permit modification of the attribute during the course of aC_CopyObject call.

° Default vaue is token-specific, and may depend on the values of other attributes.

19 Can only be set to TRUE by the SO user.

The following table defines the atributes common to public key, private key and secret key
classes, in addition to the common atributes listed in Table 15 and Table 19:

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 89

Table 25, Common Key Attributes

Attribute Data Type M eaning

CKA_KEY_TYPE"** | CK_KEY_TYPE Type of key

CKA_ID® Byte array Key identifier for key (default empty)

CKA_START DATE® | CK_DATE Start date for the key (default empty)

CKA_END DATE® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL TRUE if key supports key derivation
(i.e, if other keys can be derived from
this one (default FALSE)

CKA_LOCAL**® CK_BBOOL TRUE only if key was either

- generated locdly (i.e., on the token)
withaC_GenerateKey or
C_GenerateKeyPair cdl
created with aC_CopyObject cdl
asacopy of akey which had its
CKA_LOCAL attribute set to

TRUE
CKA_KEY_GEN_ CK_MECHANISM_ | Identifier of the mechanism used to
MECHANISM?%® TYPE generate the key materid.

The CKA_ID fidd is intended to distinguish among multiple keys. In the case of public and
private keys, this fidd assgs in handling multiple keys held by the same subject; the key
identifier for a public key and its corresponding private key should be the sime. The key
identifier should also be the same as for the corresponding certificate, if one exigts. Cryptoki
does not enforce these associations, however. (See Section 10.6 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the gpplication.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any specid meaning to them. In particular, it does not redtrict
usage of akey according to the dates, doing thisis up to the application.

The CKA_DERIVE atribute has the vdue TRUE if and only if it is possble to derive other
keysfrom the key.

The CKA_LOCAL atribute has the vdue TRUE if and only if the vaue of the key was
origindly generated on the token by aC_GenerateK ey or C_GenerateK eyPair cdl.

The CKA_KEY_GEN_MECHANISM dtribute identifies the key generation mechanism
used to generate the key materid. It contains a vaid vaue only if the CKA_LOCAL attribute

Copyright © 1994-2001 RSA Security Inc.

90 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

has the vaue TRUE. If CKA_LOCAL has the vdue FALSE, the vdue of the attribute is
CK_UNAVAILABLE_INFORMATION.

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This verson of
Cryptoki recognizes the following types of public keys RSA, DSA, EC (adso reated to
ECDSA), Diffie-Hdlman, X9.42 Diffie-Helman and KEA. The fallowing table defines the
atributes common to dl public keys, in addition to the common attributes lisged in Table 15,
Table 19 and Table 25:

Table 26, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryptior?

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification where

the signature is an appendix to the data’

CKA_VERIFY_RECOVER? | CK_BBOOL | TRUE if key supports verification where
the data is recovered from the signature’

CKA_WRAP? CK_BBOOL | TRUE if key supportswrapping (i.e., can
be used to wrap other keys)®
CKA_TRUSTED™ CK_BBOOL | Thekey can be trusted for the application

that it was created.

It is intended in the interests of interoperability that the subject name and key identifier for a
public key will be the same as those for the corresponding certificate and private key.
However, Cryptoki does not enforce this, and it is not required that the certificate and private
key aso be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS

Table 27, Mapping of X.509 key usage flagsto cryptoki attributesfor public keys

91

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor
public key certificates public keys.

dataEncipherment CKA_ENCRYPT

digital Signature, keyCertSign, cRLSign CKA_VERIFY

digital Signature, keyCertSign, cRLSign CKA_VERIFY_RECOVER
keyAgreement CKA_DERIVE

keyEncipherment CKA_WRAP

nonRepudiation CKA_VERIFY

nonRepudiation CKA_VERIFY_RECOVER

10.8.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in addition
to the common attributes listed in Table 15, Table 19, Table 25, and Table 26:

Table 28, RSA Public Key Object Attributes

Attribute Datatype Meaning
CKA_MODULUS" Big integer Modulus n
CKA_MODULUS BITS?*? CK_ULONG | Lengthin bits of modulusn
CKA_PUBLIC EXPONENT"® | Biginteger Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1
for more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR Iabel[] = “An RSA public key object”;
CK_BYTE nodulus[] = {...};
CK_BYTE exponent[] = {...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA WRAP, &true, sizeof(true)},

Copyright © 1994-2001 RSA Security Inc.

92 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

1
10.8.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold
DSA public keys. The following table defines the DSA public key object attributes, in addition
to the common attributes listed in Table 15, Table 19, Table 25, and Table 26:

Table 29, DSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME"? Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME!? Biginteger | Subprime g (160 bits)

CKA_BASE'? Biginteger | Baseg

CKA_VALUE** Biginteger | Public vduey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively
the“DSA domain parameters’. See FIPS PUB 186-2 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_DSA,;
CK_UTF8CHAR | abel [] = “A DSA public key object”;
CK_BYTE prine[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA_BASE, base, sizeof(base)},
{CKA _VALUE, val ue, sizeof(value)}

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 93

10.8.3 ECDSA public key objects

EC (aso related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type
CKK_EC or CKK_ECDSA) hold EC public keys. See Section 12.3 for more information
about EC. The following table defines the EC public key object atributes, in addition to the
common atributeslisted in Table 15, Table 19, Table 25, and Table 26:

Table 30, Elliptic Curve Public Key Object Attributes

Attribute Datatype | Meaning

CKA_EC PARAMS'"® Bytearray | DER-encoding of an ANSI X9.62

(CKA_ECDSA_PARAMYS) Par anet er s vdue

CKA_EC _POINT"* Bytearray | DER-encoding of ANSI X9.62 ECPoi nt
vdue Q

The CKA_EC PARAMSor CKA_ECDSA_PARAM Sattribute vaue is known asthe “EC
domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paranmeters ::= CHO CE {
ecParaneters ECParaneters,
namedCur ve CURVES. & d({CurveNanes}),

inmplicitlyCA NULL
}

This dlows detailed specification of dl required values using choice ecPar ameter s, the use of a
namedCurve as an object identifier subdtitute for a particular set of dliptic curve domain
parameters, or implicitlyCA to indicate that the domain parameters are explicitly defined
elsawhere. The use of a namedCurve is recommended over the choice ecParameters. The
choice implicitlyCA must not be used in Cryptoki.

The following is a sample template for creeting an EC (ECDSA) public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;

CK_KEY_TYPE keyType = CKK_EC;

CK_UTF8CHAR | abel [] = “An EC public key object”;

CK_BYTE ecParans[] = {...};

CK _BYTE ecPoint[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

Copyright © 1994-2001 RSA Security Inc.

94 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA LABEL, | abel, sizeof(label)-1},
{ CKA_EC_PARAMS, ecParans, sizeof (ecParans)},
{CKA_EC PO NT, ecPoint, sizeof(ecPoint)}

}s
10.8.4 Diffie-Helman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH)
hald Diffie-Hdlman public keys. The following table defines the Diffie-Hdlman public key
object atributes, in addition to the common attributes listed in Table 15, Table 19, Table 25,
and Table 26:

Table 31, Diffie-Hellman Public Key Object Attributes

Attribute Datatype Meaning
CKA_PRIME"® Biginteger | Primep
CKA_BASE"® Biginteger | Baseg

CKA VALUE™ Biginteger | Publicvauey

The CKA_PRIME and CKA_BASE atribute vdues are callectively the “Diffie-Hdlman
domain parameters’. Depending on the token, there may be limits on the length of the key
components. See PKCS #3 for more information on Diffie-Helman keys.

Thefollowing is a sample template for cregting a Diffie-Hellman public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR | abel [] “A Diffie-Hellman public key
obj ect”;
CK_ BYTE prime[] ={...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA_BASE, base, sizeof(base)},
{CKA_VALUE, val ue, sizeof(value)}

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 95

10.8.5 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hdlman public keys. The following table defines the
X9.42 Diffie-Hdlman public key object attributes, in addition to the common attributes listed in
Table 15, Table 19, Table 25, and Table 26:

Table 32, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME"® Biginteger | Pimep (3 1024 bits, in steps of 256 hits)
CKA_BASE"® Biginteger | Baseg

CKA_SUBPRIME"? Biginteger | Subprimeq (¢ 160 hits)

CKA VALUE™ Biginteger | Publicvauey

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME dttribute vaues are collectively
the “X9.42 Diffie-Hellman domain parameters’. See the ANSI X9.42 standard for more
information on X9.42 Diffie-Hdlman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key object:

= CKO_PUBLI C_KEY;
CKK_X9 42 DH;

CK_OBJECT_CLASS cl ass
= “A X9.42 Diffie-Hellman public

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []
key object”;
CK_ BYTE prime[] ={...};
CK_BYTE base[] = {...};
CK_BYTE subprinme[] ={...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprine)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-2001 RSA Security Inc.

96 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.8.6 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in addition
to the common attributes listed in Table 15, Table 19, Table 25, and Table 26:

Table 33, KEA Public Key Object Attributes

Attribute Datatype M eaning

CKA_PRIME"? Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME!? Biginteger | Subprimeq (160 bits)

CKA_BASE'? Biginteger | Base g (512 to 1024 bits, in steps of 64 hits)
CKA_VALUE* Biginteger | Public vduey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively
the “KEA domain parameters’.

The following is a sample template for cresting a KEA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR | abel [] = “A KEA public key object”;
CK_BYTE prine[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA_BASE, base, sizeof(base)},
{CKA _VALUE, val ue, sizeof(value)}

3
10.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This verson of
Cryptoki recognizes the following types of private key: RSA, DSA, EC (adso reaed to
ECDSA), Diffie-Hdlman, X9.42 Diffie-Hellman, and KEA. The following table defines the

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS

97

atributes common to dl private keys, in addition to the common attributes listed in Table 15,

Table 19 and Table 25;

Table 34, Common Private Key Attributes

Attribute

Datatype

M eaning

CKA_SUBJECT®

Byte array

DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE® (see below)

CK_BBOOL

TRUE if key is senstive’

CKA_SECONDARY_AUTH

CK_BBOOL

TRUE isthe key requiresa
secondary authentication to take
place beforeits use it allowed.
(default FALSE) (Deprecated,;
applications must ways st to
FALSE or omit from templates)

CKA_AUTH_PIN_FLAGS?***®

CK_FLAGS

Mask indiceting the current state
of the secondary authentication
PIN. If
CKA_SECONDARY_AUTH is
FALSE, then this attribute is
zero. (Deprecated)

CKA_DECRYPT®

CK_BBOOL

TRUE if key supports
decryptior®

CKA_SIGN®

CK_BBOOL

TRUE if key supports sgnatures
where the Sgnatureisan
appendix to the data’

CKA_SIGN_RECOVER®

CK_BBOOL

TRUE if key supports sgnatures
where the data can be recovered
from the signature’

CKA_UNWRAP?

CK_BBOOL

TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)°

CKA_EXTRACTABLE® (see below)

CK_BBOOL

TRUE if key is extractable’

CKA_ALWAYS SENSITIVE?*®

CK_BBOOL

TRUE if key has always had the
CKA_SENSITIVE attribute set
to TRUE

CKA_NEVER EXTRACTABLE**®

CK_BBOOL

TRUE if key has never had the
CKA_EXTRACTABLE
attribute set to TRUE

Copyright © 1994-2001 RSA Security Inc.

98 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the
vadue TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE dtribute may
be changed, but only to the vdue FALSE. Attempts to make other changes to the vaues of
these attributes should return the error code CKR_ATTRIBUTE_READ ONLY.

If the CKA_SENSITIVE dtribute is TRUE, or if the CKA_EXTRACTABLE attribute is
FALSE, then certain attributes of the private key cannot be reveded in plaintext outsde the
token. Which attributes these are is specified for each type of private key in the attribute table
in the section describing thet type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key identifier for a
private key will be the same as those for the corresponding certificate and public key.
However, this is not enforced by Cryptoki, and it is not required that the certificate and public
key aso be stored on the token.

If the CKA_SECONDARY_AUTH dtribute is TRUE, then the Cryptoki implementation will
asociate the new private key object with a PIN that is gathered using a mechanism that is
transparent to the Cryptoki client. The new PIN must be presented to the token each time the
key is used for a cryptographic operation. See section 6.7 for the complete usage modd. If
CKA_SECONDARY_AUTH isTRUE, then CKA_EXTRACTABLE must be FALSE and
CKA_PRIVATE must be TRUE Attempts to copy privte keys with
CKA _SECONDARY_AUTH st to TRUE in a manner tha would violate the above
conditions mus fal. An agppliction can deemine whether the sdting the
CKA_SECONDARY_AUTH attribute to TRUE is supported by checking to see if the
CKF_SECONDARY_AUTHENTICATION flagissetinthe CK_TOKEN_INFO flags

The CKA_AUTH_PIN_FLAGS dtribute indicates the current dtate of the secondary
authentication PIN. This vaue is only vaid if the CKA_SECONDARY_AUTH aitribute is
TRUE. The valid flags for this atribute ae CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, CKF_USER_PIN_LOCKED, and
CKF_USER_PIN_TO _BE_CHANGED defined in Table 11 for the CK_TOKEN_INFO
flags fidd. CKF_USER_PIN_COUNT_LOW and CKF_USER_PIN_FINAL_TRY may
adways be st to FALSE if the token does not support the functiondity or will not reved the
information because of its security policy. The CKF_USER_PIN_TO_BE_CHANGED flag
may aways be FALSE if the token does not support the functionality.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS

Table 35, Mapping of X.509 key usage flags to cryptoki attributesfor private keys

99

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor
public key certificates private keys.

dataEncipherment CKA_DECRYPT

digital Signature, keyCertSign, cRLSign CKA_SIGN

digital Signature, keyCertSign, cRLSign CKA_SIGN_RECOVER
keyAgreement CKA_DERIVE

keyEncipherment CKA_UNWRAP

nonRepudiation CKA_SIGN

nonRepudiation CKA_SIGN_RECOVER

10.9.1 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold
RSA private keys. The following table defines the RSA pivate key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 34:

Table 36, RSA Private Key Object Attributes

Attribute Datatype | Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_PUBLIC_EXPONENT*® Biginteger | Public exponent e
CKA_PRIVATE_EXPONENT"*®’ | Biginteger | Private exponentd
CKA_PRIME 1*%7 Biginteger | Primep

CKA_PRIME 287 Biginteger | Primeq
CKA_EXPONENT_1*%7 Biginteger | Private exponent d modulo p-1
CKA_EXPONENT 27 Biginteger | Private exponent d modulo g-1
CKA_COEFFICIENT*®’ Biginteger | CRT coefficient g™ mod p

Depending on the token, there may be limits on the length of the key components. See PKCS
#1 for more information on RSA keys.

Tokens vary in what they actualy store for RSA private keys. Some tokens store dl of the
above attributes, which can asss in performing rapid RSA computations. Other tokens might
store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT vaues.

Because of this, Cryptoki is flexible in dedling with RSA private key objects. When a token
generates an RSA private key, it stores whichever of the fidds in Table 36 it keeps track of.
Later, if an gpplication asks for the vaues of the key's various attributes, Cryptoki supplies

Copyright © 1994-2001 RSA Security Inc.

100 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

vaues only for attributes whose vaues it can obtain (i.e., if Cryptoki isasked for the value of an
attribute it cannot obtain, the request fails). Note that a Cryptoki implementation may or may
not be able and/or willing to supply various attributes of RSA private keys which are not
actudly stored on the token. E.g., if a paticular token stores vaues only for the
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 atributes, then
Cryptoki is certainly able to report vaues for dl the attributes above (since they can dl be
computed efficiently from these three \Alues). However, a Cryptoki implementation may or
may not actudly do this extra computation. The only attributes from Table 36 for which a
Cryptoki implementation is required to be able to return values are CKA_MODUL US and
CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 36 are
supplied to the object creation call than are supported by the token, the extra attributes are
likely to be thrown away. If an attempt is made to create an RSA private key object on atoken
with insufficient attributes for that particular token, then the object creation cdl fails and returns
CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, thereisno CKA_MODULUS BI TS attribute
specified. Thisis because RSA private keys are only generated as part of an RSA key pair,
and the CKA_MODULUS BITS atribute for the pair is specified in the template for the RSA

public key.
Thefollowing is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR | abel [] “An RSA private key object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE nodul us[] = {...};
CK_BYTE publ i cExponent[]
CK_BYTE pri vat eExponent [
CK_BYTE prinmel[] ={...};
CK_BYTE prime2[] ={...}
CK_BYTE exponent1[] = {.
CK_BYTE exponent2[] = {...
CK_BYTE coefficient[] =
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof(keyType)},

{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (Il abel)-1},

{ CKA_SUBJECT, subject, sizeof(subject)},

{CKA ID, id, sizeof(id)},

{CKA_SENSI Tl VE, &true, sizeof(true)},

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 101

{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodulus)},
{ CKA_PUBLI C_EXPONENT, publ i cExponent,
si zeof (publ i cExponent)},
{ CKA_PRI VATE_EXPONENT, privateExponent,
si zeof (privat eExponent)},
{CKA PRI ME_1, prinel, sizeof(prinel)},
{CKA PRI ME_ 2, prinme2, sizeof(prine2)},
{ CKA_EXPONENT_1, exponentl, sizeof (exponentl)},
{ CKA_EXPONENT_2, exponent2, sizeof (exponent?2)},
{ CKA_COCEFFI Cl ENT, coefficient, sizeof(coefficient)}

1
10.9.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold
DSA private keys. The following table defines the DSA private key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 34:

Table 37, DSA Private Key Object Attributes

Attribute Data type M eaning

CKA_PRIME"*® Biginteger | Primep (512 to 1024 bits, in steps of 64 hits)
CKA_SUBPRIME"*® | Biginteger | Subprime q (160 bits)

CKA_BASE"*® Biginteger | Baseg

CKA_VALUE"*®’ Biginteger | Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are collectively
the “DSA domain parameters’. See FIPS PUB 186-2 for more information on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not pecified in
the key’stemplate. Thisis because DSA private keys are only generated as part of aDSA key
pair, and the DSA domain parameters for the pair are specified in the template for the DSA

public key.
The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;

CK_KEY_TYPE keyType = CKK_DSA;

CK_UTFBCHAR | abel [] = “A DSA private key object”;
CK_BYTE subj ect[] ={...};

CK_BYTE id[] {1 3},

CK_BYTE pri me[] ={...};

Copyright © 1994-2001 RSA Security Inc.

102 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE subprinme[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{ CKA _CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA_BASE, base, sizeof(base)},
{ CKA _VALUE, val ue, sizeof(value)}

1
10.9.3 Elliptic curve private key objects

EC (dso related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key
type CKK_EC or CKK_ECDSA) hold EC private keys. See Section 12.3 for more
information about EC. The following table defines the EC pivate key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 34:

Table 38, Elliptic Curve Private Key Object Attributes

Attribute Datatype | Meaning
CKA_EC_PARAMS'*® Bytearray | DER-encoding of an ANSI X9.62
(CKA_ECDSA_PARAMYS) Par anmet er s vdue
CKA_VALUE"*®’ Biginteger | ANSI X9.62 private value d

The CKA_EC_PARAMS or CKA_ECDSA_ PARAM Sattribute vaue is known asthe “EC
domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paranmeters ::= CHO CE {
ecParaneters ECParaneters,
namedCur ve CURVES. & d({CurveNanes}),

inmplicitlyCA NULL
}

This dlows detailed specification of dl required values usng choice ecParameters, the use of a
namedCurve as an object identifier subdtitute for a particular set of dliptic curve domain

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 103

parameters, or implicitlyCA to indicate that the doman parameters are explicitly defined
dsawhere. The use of a namedCurve is recommended over the choice ecParameters. The
choice implicitlyCA must not be used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not specified in
the key’stemplate. Thisis because EC private keys are only generated as part of an EC key
pair, and the EC domain parameters for the pair are specified in the template for the EC public

key.
Thefollowing isasample tenplate for creating an EC (ECDSA) private key object:

= CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR | abel [] “An EC private key object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE ecParanms[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{ CKA _CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},
{ CKA_EC_PARAMS, ecParans, sizeof(ecParans)},
{ CKA_VALUE, val ue, sizeof(value)}

b

10.9.4 Diffie-Hellman private key objects

CK_OBJECT_CLASS cl ass

DiffieeHdlman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_DH) hdd Diffie-Hdlman private keys. The following table defines the Diffie-Hdlman
private key object attributes, in addition to the common attributes listed in Table 15, Table 19,
Table 25, and Table 34:

Table 39, Diffie-Hellman Private Key Object Attributes

Copyright © 1994-2001 RSA Security Inc.

104

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Datatype M eaning

CKA_PRIME"*® Big integer Prime p

CKA_BASE"**® Big integer Baseg

CKA_VALUE"*®’ Big integer Private value x

CKA_VALUE BITS*® | CK_ULONG | Lengthin bitsof private value x

The CKA_PRIME and CKA_BASE dtribute vdues are callectively the “Diffie-Hdlman
domain parameters’. Depending on the token, there may be limits on the length of the key
components. See PKCS #3 for more information on Diffie-Hdlman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters are not
gpecified in the key’s template. This is because Diffie-Hdlman private keys are only generated
as pat of a Diffie-Hdlman key pair, and the Diffie-Helman parameters for the par are

gpecified in the template for the Diffie-Hdlman public key.
Thefallowing is a sample template for cregting a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;

CK_KEY_TYPE keyType CKK_DH,;

CK_UTF8CHAR | abel [] “A Diffie-Hellmn private key
obj ect”;

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE prinme[] ={...};

CK_BYTE base[] = {...};

CK _BYTE value[] ={...};

CK _BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (Il abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA_DERI VE, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prime)},
{ CKA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 105

10.9.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Helman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hdlman private keys. The following table defines the
X9.42 Diffie-Hedlman private key object attributes, in addition to the common attributes listed in
Table 15, Table 19, Table 25, and Table 34:

Table 40, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Datatype Meaning

CKA_PRIME"*® Big integer Primep (3 1024 bits, in steps of 256 bits)
CKA_BASE"**® Big integer Baseg

CKA_SUBPRIME"*® | Biginteger Subprime g (3 160 hits)
CKA_VALUE"*®’ Big integer Private value x

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute vaues are collectively
the “X9.42 Diffie-Helman domain parameters’. Depending on the token, there may be limits
on the length of the key components. See the ANS X9.42 standard for more information on
X9.42 Diffie-Helman keys.

Note that when generating a X9.42 Diffie-Hdlman private key, the X9.42 Diffie-Hdlman
domain parameters are not specified in the key's template. This is because X9.42 Diffie-
Hdlman private keys are only generated as part of a X9.42 Diffie-Hdlman key pair, and the
X9.42 Diffie-Hellman domain parameters for the pair are specified in the template for the X9.42
Diffie-Hdlman public key.

Thefollowing is a sample template for creating a X9.42 Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;

CK_KEY_TYPE keyType = CKK_X9 42 DH;

CK_UTF8CHAR | abel [] “A X9.42 Diffie-Hell man private

key object”;

CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE prinme[] ={...};

CK_BYTE base[] = {...};

CK_BYTE subprinme[] = {...};

CK _BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (Il abel)-1},

Copyright © 1994-2001 RSA Security Inc.

106 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{CKA_VALUE, val ue, sizeof(value)}
1

10.9.6 KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hold
KEA private keys. The following table defines the KEA private key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 34:

Table41, KEA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME-*® Biginteger | Primep (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME**® | Biginteger | Subprime q (160 bits)

CKA_BASE'**® Biginteger | Baseg (512 to 1024 bits, in steps of
64 hits)

CKA_VALUE"*®’ Biginteger | Private vauex

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively
the “KEA domain parameters’.

Note that when generating a KEA private key, the KEA parameters are not specified in the
key's template. This is because KEA private keys are only generated as part of a KEA key
pair, and the KEA parameters for the pair are specified in the template for the KEA public key.

The following is a sample template for cregting a KEA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType CKK_KEA,;

CK_UTF8CHAR | abel[] = “A KEA private key object”;
CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_ BYTE prime[] ={...};

CK_BYTE subprime[] = {...};

CK_BYTE
CK_BYTE

base[] = {...};
value[] = {...};

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 107

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA _SENSI TI VE, &true, sizeof(true)},
{CKA _DERI VE, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA BASE, base, sizeof(base)},
{ CKA_VALUE, val ue, sizeof(value)}

3
10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of
Cryptoki recognizes the following types of secret key: generic, RC2, RC4, RC5, DES, DES2,
DES3, CAST, CAST3, CAST128 @so known as CASTS5), IDEA, CDMF, SKIPJACK,
BATON, JUNIPER, and AES. The following table defines the attributes common to al secret
keys, in addition to the common attributes listed in Table 15, Table 19 and Table 25:

Copyright © 1994-2001 RSA Security Inc.

108

Table 42, Common Secret Key Attributes

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Datatype Meaning

CKA_SENSITIVE® (see below) CK_BBOOL | TRUE if object is sendtive (defaullt
FALSE)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryptior?

CKA_DECRYPT® CK_BBOOL | TRUE if key supports decryptior?

CKA_SIGN® CK_BBOOL | TRUE if key supports signatures
(i.e., authentication codes) where
the sgnature is an gppendix to the
data’

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification
(i.e., of authentication codes)
where the Sgnature is an gppendix
to the data’

CKA_WRAP? CK_BBOOL | TRUE if key supportswrapping
(i.e., can be used to wrap other
keys)®

CKA_UNWRAP? CK_BBOOL | TRUE if key supports unwrapping
(i.e., can be used to unwrap other
keys)®

CKA_EXTRACTABLE® (ssebdow) | CK_BBOOL | TRUE if key is extractable®

CKA_ALWAYS SENSITIVE**® CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set
to TRUE

CKA_NEVER EXTRACTABLE**® | CK_BBOOL | TRUE if key has never had the

CKA_EXTRACTABLE attribute
set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the
vaue TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE éttribute may
be changed, but only to the value FALSE. Attempts to make other changes to the vaues of
these attributes should return the error code CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE dtribute is TRUE, or if the CKA_EXTRACTABLE attribute is
FALSE, then certain attributes of the secret key cannot be reveded in plaintext outside the
token. Which atributes these are is specified for each type of secret key in the attribute table in

the section describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

Copyright © 1994-2001 RSA Security Inc.

10. OBJECTS 109

10.10.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be derived from
them. The following table defines the generic secret key object attributes, in addition to the
common dtributes liged in Table 15, Table 19, Table 25, and Table 42:

Table 43, Generic Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key vaue (arbitrary
length)

CKA VALUE LEN**® | CK_ULONG | Lengthin bytesof key
vaue

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_GENERI C_SECRET;
CK_UTF8CHAR | abel [] “A generic secret key object”
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA_DERI VE, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

3
10.10.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in addition to the
common dtributesliged in Table 15, Table 19, Table 25, and Table 42:

Copyright © 1994-2001 RSA Security Inc.

110 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table44, RC2 Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key value (1to 128
bytes)

CKA VALUE LEN**® | CK_ULONG | Lengthin bytesof key
vdue

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK_UTF8CHAR | abel [] “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

3
10.10.3 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in addition to the
common dtributeslisged in Table 15, Table 19, Table 25, and Table 42:

Table 45, RC4 Secret Key Object

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key value (1 to 256
bytes)

CKA VALUE LEN**® | CK_ULONG | Lengthin bytesof key
vdue

The following is a sample template for creating an RC4 secret key object:
CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_RC4;
CK_UTF8CHAR | abel [] = “An RC4 secret key object”;

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 111

CK _BYTE value[] ={...};

CK _BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA _VALUE, val ue, sizeof(value)}

1
10.10.4 RC5 secret key objects

RC5 secret key objects ©bject class CKO_SECRET_KEY, key type CKK_RC5) hold
RC5 keys. The following table defines the RC5 secret key object attributes, in addition to the
common atributeslisted in Table 15, Table 19, Table 25, and Table 42:

Table 46, RC5 Secret Key Object

Attribute Data type Meaning

CKA_VALUE"*®7 Byte array Key value (0 to 255
bytes)

CKA_VALUE_LEN%®*® | CK_ULONG | Lengthin bytesof key
vdue

The following is asample template for creating an RC5 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;

CK_UTF8CHAR | abel [] “An RC5 secret key object”;
CK _BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b

Copyright © 1994-2001 RSA Security Inc.

112 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.10.5 AESsecret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold
AES keys. The following table defines the AES secret key object attributes, in addition to the
common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table47, AES Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key value (16, 24, or 32
bytes)

CKA VALUE LEN**® | CK_ULONG | Lengthin bytesof key
vdue

Thefollowing is a sample template for creating an AES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_AES;
CK_UTF8CHAR | abel [] “An AES secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

3
10.10.6 DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold
angle-length DES keys. The following table defines the DES secret key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table 48, DES Secret Key Object

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 113

Attribute Datatype Meaning
CKA_VALUE"®" | Bytearray | Key vaue (dways 8 bytes
long)

DES keys must aways have their parity bits properly set as described in FIPS PUB 46-3.
Attempting to create or unwrap a DES key with incorrect parity will return an error.

Thefollowing is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK_UTF8CHAR | abel [] = “A DES secret key object”;
CK_BYTE value[8] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

3
10.10.7 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold
double-length DES keys. The following table defines the DES2 secret key object attributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table 49, DES2 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE**®" | Bytearray | Key vaue (aways 16 bytes
long)

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-3
(i.e., eech of the DES keys comprisng a DES2 key must have its parity bits properly set).
Attempting to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

Copyright © 1994-2001 RSA Security Inc.

114 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_KEY_TYPE keyType CKK_DES2;

CK_UTF8CHAR | abel [] “A DES2 secret key object”;
CK_BYTE val ue[16] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{ CKA _CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

}s
10.10.8 DES3 secret key objects

DESS secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold
triple-length DES keys. The following table defines the DES3 secret key object attributes, in

addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table 50, DES3 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE*®" | Bytearray | Key value (adways 24 bytes
long)

DES3 keys must dways have ther parity bits properly set as described in FIPS PUB 46-3
(i.e., eech of the DES keys comprisng a DES3 key must have its parity bits properly set).

Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for cregting a triple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;

CK_UTF8CHAR | abel [] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

b

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 115

10.10.9 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hold
CAST keys. The following table defines the CAST secret key object atributes, in addition to
the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table51, CAST Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key vaue (1 to 8 bytes)

CKA_VALUE_LEN%3*® | CK_ULONG | Lengthin bytesof key
vdue

Thefollowing is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;

CK_UTF8CHAR | abel [] = “A CAST secret key object”
CK _BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
10.10.10 CAST 3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST3 secret key object atributes, in
addition to the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table 52, CAST 3 Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®7 Byte array Key value (1 to 8 bytes)

CKA VALUE LEN**® | CK_ULONG | Lengthin bytesof key
vdue

Thefadlowing is a sample template for creating a CAST 3 secret key object:

Copyright © 1994-2001 RSA Security Inc.

116 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_CAST3;
CK_UTF8CHAR | abel [] “A CAST3 secret key object”;
CK _BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_VALUE, val ue, sizeof(value)}

3
10.10.11 CAST128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY,
key type CKK_CAST128 or CKK_CAST5) hold CAST128 keys. The following table
defines the CAST 128 secret key object attributes, in addition to the common attributes liged in
Table 15, Table 19, Table 25, and Table 42:

Table 53, CAST 128 (CAST5) Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®&7 Byte array Key value (1 to 16 bytes)

CKA_VALUE_LEN%3*® | CK_ULONG | Lengthin bytesof key
vaue

The following is a sample template for creating a CAST 128 (CAST5) secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
CK_UTF8CHAR | abel [] = “A CAST128 secret key object”
CK _BYTE value[] ={...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof(keyType)},

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 117

{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

3
10.10.12 IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK _IDEA) hold
IDEA keys. The following table defines the IDEA secret key object attributes, in addition to
the common attributes listed in Table 15, Table 19, Table 25, and Table 42:

Table 54, IDEA Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key value (adways 16 bytes
long)

Thefollowing is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY,
CK_KEY_TYPE keyType = CKK_| DEA;

CK_UTF8CHAR | abel [] = “An | DEA secret key object”;
CK_BYTE val ue[16] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{ CKA_CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_VALUE, val ue, sizeof(value)}

b
10.10.13 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold sngle-length CDMF keys. The following table defines the CDMF secret key object
atributes, in addition to the common attributes listed in Table 15, Table 19, Table 25, and
Table42:

Copyright © 1994-2001 RSA Security Inc.

118 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 55, CDMF Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key vaue (aways 8 byteslong)

CDMF keys must aways have their parity bits properly st in exactly the same fashion
described for DES keys in FIPS PUB 46-3. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

The following isasample template for creating a CDMF secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF;

CK_UTF8CHAR | abel [] = “A CDMF secret key object”;
CK _BYTE value[8] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
10.10.14 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type
CKK_SKIPJACK) holds a sngle-length MEK or a TEK. The following table defines the
SKIPJACK secret key object attributes, in addition to the common attributes listed in Table 15,
Table 19, Table 25, and Table 42:

Table 56, SKIPJACK Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key value (adways12 bytes
long)

SKIPJACK keys have 16 checksum hits, and these bits must be properly set. Attempting to
create or unwrap a SKIPJACK key with incorrect checksum bitswill return an error.

It is not clear that any tokens exist (or will ever exist) which permit an gpplication to create a
SKIPJACK key with a specified value. Nonetheless, we provide templates for doing so.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 119

The following is a sample template for creating a SKIPJACK MEK secret key object:

= CKO_SECRET_KEY;
CKK_SKI PJACK
“A SKI PJACK MEK secret key

CK_KEY_TYPE keyType

CK_UTF8CHAR | abel []
obj ect”;

CK_BYTE value[12] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{ CKA _CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA _TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

b

Thefollowing is asample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT_CLASS cl ass

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PJACK
CK_UTF8CHAR | abel [] = “A SKI PJACK TEK secret key
obj ect”;
CK_BYTE val ue[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{ CKA _VALUE, val ue, sizeof(value)}

Copyright © 1994-2001 RSA Security Inc.

120 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.10.15 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON)
had sangle-length BATON keys. The following table defines the BATON secret key object
atributes, in addition to the common attributes listed in Table 15, Table 19, Table 25, and
Table 42:

Table57, BATON Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key vaue (dways 40 bytes
long)

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to
create or unwrap aBATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to create a
BATON key with a specified value. Nonetheless, we provide templates for doing so.

Thefollowing is a sample template for creating aBATON MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR | abel [] = “A BATON MEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

b
Thefollowing is a sample template for cresting aBATON TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR | abel [] = “A BATON TEK secret key object”;
CK_BYTE value[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 121

{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},

{ CKA _VALUE, val ue, sizeof(value)}

1
10.10.16 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET _KEY, key type
CKK_JUNIPER) hold dngle-length JUNIPER keys. The following table defines the
JUNIPER secret key object atributes, in addition to the common attributes listed in Table 15,
Table 19, Table 25, Table 42:

Table 58, JUNIPER Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE*®" | Bytearray | Key value (adways40 bytes
long)

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting to
create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an gpplication to aeate a
JUNIPER key with a specified vaue. Nonetheless, we provide templates for doing so.

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_JUNI PER;
CK_UTF8CHAR | abel [] “A JUNI PER MEK secret key
obj ect”;
CK_BYTE value[40] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_VALUE, val ue, sizeof(value)}

b

Thefollowing is a sample template for cresting a JUNIPER TEK secret key object:

Copyright © 1994-2001 RSA Security Inc.

122 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY:

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

obj ect”;
CK_BYTE val ue[40] = {...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass,
{CKA KEY_TYPE, &keyType,
{ CKA_TOKEN, &true,

CKK_JUNI PER;
“A JUNI PER TEK secret key

si zeof (cl ass) },
si zeof (keyType) },
si zeof (true)},

{CKA_LABEL, | abel, sizeof (| abel)-1},

{ CKA_ENCRYPT, &true,
{ CKA_W\RAP, &true,

sizeof (true)},
si zeof (true)},

{CKA VALUE, val ue, sizeof(value)}

Hi

10.11 Domain parameter objects

Thefollowing figure illusrates details of domain parameter objects:

Domain Parameters

Key Type
Local
DSA Params DH Params X9.42 DH Params
Prime Prime Prime
Sub-Prime Base Sub-Prime
Base Prime Bits Base
Prime Bits Prime Bits

Figure 9, Domain Parameter Attribute Detail

Domain parameter objects (object classCKO_DOMAIN_PARAMETERS) hold public
domain parameters. Thisverson of Cryptoki recognizes the following types of domain
parameters DSA, Diffie-Hdlman, and X9.42 Diffie-Hdlman. The following common footnotes
apply to al the tables describing attributes of domain parameters:

Sub-Prime Bits

Table 59, Common footnotes for domain parameter attribute tables

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 123

! Must be specified when object is created with C_CreateObj ect.
2 Must not be specified when object is created with C_CreateObj ect.
% Must be specified when object is generated with C_Gener ateK ey.

* Must not be specified when object is generated with C_GenerateK ey.

The following table defines the attributes common to domain parameter objects in addition to
the common attributes listed in Table 15 and Table 19:

Table 60, Common Domain Parameter Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE! CK_KEY_TYPE | Typeof key the domain parameters can be
used to generate.

CKA_LOCAL?** CK_BBOOL TRUE only if domain parameters were
ether

generated locdly (i.e., on the token)
withaC_GenerateKey

created with aC_CopyObject cdl as
acopy of domain parameters which
had its CKA_L OCAL dttribute set to
TRUE

The CKA LOCAL atribute has the vdue TRUE if and only if the vdue of the doman
parameters were originaly generated on the token by aC_GenerateK ey cdl.
10.11.1 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key type
CKK_DSA) hold DSA domain parameters. The following table defines the DSA domain
parameter object attributes, in addition to the common attributes lised in Table 15, Table 19,
and Table 60:

Table 61, DSA Domain Parameter Object Attributes

Copyright © 1994-2001 RSA Security Inc.

124 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Datatype Meaning

CKA_PRIME"* Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME** Big integer Subprime g (160 bits)

CKA_BASE™* Big integer Baseg

CKA_PRIME BITS*® | CK_ULONG | Length of the prime value.

The CKA_PRIME, CKA_SUBPRIME and CKA_ BASE datribute values are collectively
the “DSA domain parameters’. See FIPS PUB 186-2 for more information on DSA domain
parameters.

Thefollowing is asample template for cregting a DSA domain parameter object:

CK_OBJECT_CLASS cl ass = CKO_DOWVAI N_PARAMETERS
CK_KEY_TYPE keyType = CKK_DSA,;
CK_UTF8CHAR | abel [] = “A DSA domai n paraneter object”;
CK_BYTE prine[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (Il abel)-1},
{CKA PRI ME, prine, sizeof(prinme)},
{ CKA_SUBPRI ME, subprinme, sizeof (subprinme)},
{ CKA_BASE, base, sizeof(base)},
1

10.11.2 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class CKO_DOMAIN_PARAMETERS,
key type CKK_DH) had Diffie-Hdlman domain parameters. The following table defines the
Diffie-Hellman domain parameter object attributes, in addition to the common attributeslisted in
Table 15, Table 19, and Table 60:

Table 62, Diffie-Hellman Domain Parameter Object Attributes

Attribute Datatype Meaning
CKA_PRIME** Big integer Prime p

CKA_BASE™* Big integer Baseg

CKA_PRIME BITS*® | CK_ULONG | Length of the prime vaue.

Copyright © 1994-2001 RSA Security Inc.

10. OBXECTS 125

The CKA_PRIME and CKA_BASE atribute vaues are callectivdy the “Diffie-Hdlman
domain parameters’. Depending on the token, there may be limits on the length of the key
components. See PKCS #3 for more information on Diffie-Hellman domain parameters.

Thefollowing is a sample template for cregting a Diffie-Hellman domain parameter object:

CK_OBJECT_CLASS cl ass = CKO_DOMAI N_PARAMETERS;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR | abel [] = “A Diffie-Hell man domain
par anmet ers object”;
CK BYTE prinme[] ={...};
CK_BYTE base[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof(base)},

b
10.11.3 X9.42 Diffie-Hellman domain parameter s objects

X9.42 Diffie-Hellman domain parameters objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_X9 42 DH) hold X9.42 Diffie-
Hellman domain parameters. The following table defines the X9.42 Diffie-Hdlman domain
parameters object attributes, in addition to the common attributes listed in Table 15, Table 19,
and Table 60:

Table xx, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Datatype Meaning

CKA_PRIME"* Big integer Primep (3 1024 bits, in steps of 256 bits)
CKA_BASE"* Big integer Baseg

CKA_SUBPRIME"* Big integer Subprime g (3 160 bits)

CKA_PRIME BITS?? CK_ULONG | Length of the prime vaue.
CKA_SUBPRIME_BITS?*® | CK_ULONG | Length of the subprime vaue.

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute values are collectively
the “X9.42 Diffie-Helman domain parameters’. Depending on the token, there may be limits
on the length of the domain parameters components. See the ANS X9.42 standard for more
information on X9.42 Diffie-Hellman domain parameters.

Copyright © 1994-2001 RSA Security Inc.

126 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following is a sample template for cregting a X9.42 Diffie-Hellman doman parameters
object:

CK_OBJECT_CLASS cl ass = CKO_DOMAI N_PARAMETERS;
CK_KEY_TYPE keyType = CKK_X9 42 DH:
CK_UTF8CHAR | abel [] = “A X9.42 Diffie-Hellmn domain
par anmet ers object”;
CK BYTE prinme[] ={...};
CK_BYTE base[] = {...};
CK_BYTE subprinme[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{ CKA _CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI ME, prinme, sizeof(prine)},
{ CKA_BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 127

11. Functions
Cryptoki's functions are organized into the following categories:
genera- purpose functions (4 functions)
dot and token management functions (9 functions)
sesson management functions (8 functions)
object management functions (9 functions)
encryption functions (4 functions)
decryption functions (4 functions)
message digesting functions (5 functions)
sggning and MACing functions (6 functions)
functions for verifying sgnatures and MACs (6 functions)
dud- purpose cryptographic functions (4 functions)
key management functions (5 functions)
random number generation functions (2 functions)
pardle function management functions (2 functions)

In addition to these 68 functions in the Cryptoki Version 2.11 API proper, Cryptoki can use
application-supplied calback functions to notify an application of certain events, and can aso
use application-supplied functions to handle mutex objects for safe multi-threaded library
access.

Execution of a Cryptoki function cdl is in generd an dl-or-nothing &ffair, i.e., afunction cdl
accomplishes ether its entire god, or nothing at al.

If a Cryptoki function executes successfully, it returns the value CKR_OK.

If a Cryptoki function does not execute successtully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function cdl. If the
function call was supposed to modify the contents of certain memory addresses on the host
computer, these memory addresses may have been modified, despite the failure of the
function.

Copyright © 1994-2001 RSA Security Inc.

128 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

In unusud (and extremely unpleasant!) circumstances, a function can fal with the return
vaue CKR_GENERAL_ERROR. When this happens, the token and/or host computer
may be in an inconsgent date, and the gods of the function may have been patidly
achieved.

There are asmal number of Cryptoki functions whose return vaues do not behave precisdy as
described above; these exceptions are documented individualy with the description of the
functions themsdves.

A Cryptoki library need not support every function in the Cryptoki API. However, even an
unsupported function must have a “sub’ in the library which damply returns the vaue
CKR_FUNCTION_NOT_SUPPORTED. The function's entry in the library’s
CK_FUNCTION_LIST dructure (as obtained by C_GetFunctionList) should point to this
stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section
11.1, we enumerate the various possible return vaues for Cryptoki functions, most of the
remainder of Section 11 details the behavior of Cryptoki functions, including what values each
of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
goplications atempt to give some leeway when interpreting Cryptoki functions' return vaues.
We have attempted to specify the behavior of Cryptoki functions as completely as was feasible;
nevertheless, there are presumably some gaps. For example, it is possible that a particular error
code which might gpply to aparticular Cryptoki function is unfortunately not actuadly listed in the
description of that function as a possible error code. It is conceivable that the developer of a
Cryptoki library might neverthdess permit hisher implementation of that function to return that
error code. It would clearly be somewhat ungraceful if a Cryptoki gpplication using thet library
were to terminate by abruptly dumping core upon receiving that error code for that function. It
would be far preferable for the gpplication to examine the function’s return vaue, see that it
indicates some sort of error (even if the application doesn’t know precisely what kind of error),
and behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make an
goplication that accommodates a range of behaviors from Cryptoki libraries.

1111 Universal Cryptoki function return values

Any Cryptoki function can return any of the following vaues:

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 129

CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
word casg, it is possble that the function only partialy succeeded, and that the computer
and/or token isin an incongstent State.

CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed
information about why not is not available in this error return. If the falled function uses a
session, it is possble that the CK_SESSION_INFO gructure that can be obtained by
cdling C_GetSessioninfo will hold useful information about what happened in its
ulDeviceError fidd. In any event, dthough the function cdl faled, the Stuation is not
necessarily totaly hopdess, as it is likdy to be when CKR_GENERAL_ERROR is
returned. Depending on what the root cause of the error actudly was, it is possible that an
attempt to make the exact same function call again would succeed.

CKR_OK: The function executed successfully. Technicadly, CKR _OK is not quite a
“universd” return vaue in paticular, the legacy functions C_GetFunctionStatus and
C_CanceFunction (see Section 11.16) cannot return CKR_OK.

The rdative priorities of these errors are in the order lisged above, e.g., if ather of
CKR_GENERAL_ERROR or CKR_HOST MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

11.1.2 Cryptoki function return valuesfor functionsthat use a sesson handle

Any Cryptoki function that takes a sesson handle as one of its arguments (i.e., any Cryptoki
function except for C Initialize, C Finalize, C_Getinfo, C_GetFunctionLig,
C_GetSlotList, C_GetSotlnfo, C_GetTokenlnfo, C_WaitFor SotEvent,
C_GetMechanismList, C_GetMechanisminfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following vaues:

CKR_SESSION_HANDLE_INVALID: The specified sesson handle was invaid at the
time that the function was invoked. Note that this can happen if the sesson’s token is
removed before the function invocation, Snce removing atoken closes dl sessonswith it.

CKR_DEVICE_REMOVED: The token was removed from its dot during the execution
of the function.

CKR_SESSION_CLOSED: The sesson was closed during the execution of the
function. Note that, as stated in Section 6.6.6, the behavior of Cryptoki is undefined if
multiple threads of an application attempt to access a common Cryptoki session
smultaneoudy. Therefore, there is actudly no guarantee thet a function invocation could
ever return the value CKR_SESSION_CLOSED—if one thread is usng a sesson when

Copyright © 1994-2001 RSA Security Inc.

130 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

another thread closes that sesson, that is an instance of multiple threads accessng a
common session Smultaneoudy.

The relative priorities of these errors are in the order listed above, e.g., if ather of
CKR_SESSION_HANDLE_INVALID or CKR DEVICE REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE INVALID should be returned.

In practice, it is often not crucia (or possible) for a Cryptoki library to be able to make a
digtinction between a token being removed before a function invocation and a token being
removed during afunction execution.

11.1.3 Cryptoki function return valuesfor functionsthat use a token

Any Cryptoki function that uses a particular token {.e., any Cryptoki function except for
C_Initialize, C _Finalize, C_Getlnfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, or C_WaitFor SlotEvent) can return any of the following values:

CKR_DEVICE_MEMORY:: The token does not have sufficient memory to perform the
requested function.

CKR_DEVICE_ERROR: Some problem has occurred with the token and/or dot. This
error code can be returned by more than just the functions mentioned above; in particular, it
ispossblefor C_GetSlotlnfo to return CKR_DEVICE_ERROR.

CKR_TOKEN_NOT_PRESENT: The token was not present in its dot at the time that
the function was invoked.

CKR_DEVICE_REMOVED: The token was removed from its dot during the execution
of the function.

The redive priorities of these errors are in the order listed above, e.g., if ather of
CKR_DEVICE_MEMORY or CKR_DEVICE ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possble) for a Cryptoki library o be able to make a
diginction between a token being removed before a function invocation and a token being
removed during afunction execution.

1114 Special return value for application-supplied callbacks

There is a specid-purpose return value which is not returned by any function in the actud
Cryptoki AP1, but which may be returned by an applicationsupplied calback function. Itis

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 131

CKR_CANCEL: When afunction executing in serid with an gpplication decides to give the
gpplication a chance to do some work, it cals an gpplication-supplied function with a
CKN_SURRENDER callback (see Section 11.17). If the callback returns the vaue
CKR_CANCEL, then the function aborts and returns CKR_FUNCTION_CANCELED.

11.1.5 Special return valuesfor mutex-handling functions

There are two other specid-purpose return values which are not returned by any actud
Cryptoki functions. These values may be returned by applicationsupplied mutex-handing
functions, and they may safely be ignored by application devel opers who are not using their own
threading modd. They are:

CKR_MUTEX_BAD: This error code can be returned by mutex- handling functions who
are passed a bad mutex object as an argument. Unfortunately, it is possible for such a
function not to recognize a bad mutex object. There is therefore no guarantee that such a
function will successfully detect bad mutex objects and return this vaue.

CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was not
locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the
descriptions of particular error codes, there are in generd no particular priorities among the
errors listed below, i.e., if more than one error code might apply to an execution of a function,
then the function may return any applicable error code.

CKR_ARGUMENTS BAD: This is a rather generic error code which indicates that the
arguments supplied to the Cryptoki function were in some way not appropriate.

CKR_ATTRIBUTE _READ_ONLY: An atempt was made to set a vaue for an attribute
which may not be set by the gpplication, or which may not be modified by the gpplication.
See Section 10.1 for more information.

CKR_ATTRIBUTE_SENSITIVE: An atempt was made to obtain the value of an attribute
of an object which cannot be satisfied because the object is either sensitive or unextractable.

CKR_ATTRIBUTE_TYPE_INVALID: An invdid atribute type was specified in a
template. See Section 10.1 for more information.

CKR_ATTRIBUTE VALUE_INVALID: An invdid vaue was specified for a particular
attribute in atemplate. See Section 10.1 for more informeation.

Copyright © 1994-2001 RSA Security Inc.

132 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_BUFFER TOO_SMALL: The output of the function istoo large to fit in the supplied
buffer.

CKR_CANT_LOCK: This vaue can only be returned by C_Initialize. It means that the
type of locking requested by the application for thread-safety is not available in thislibrary,
and s the gpplication cannot make use of thislibrary in the pecified fashion.

CKR_CRYPTOKI_ALREADY _INITIALIZED: This vadue can only be returned by
C_Initialize. 1t means that the Cryptoki library has aready been initidized (by a previous
cdl to C_Initialize which did not have amaiching C_Finalize cal).

CKR_CRYPTOKI_NOT _INITIALIZED: This vaue can be returned by any function
other than C Initialize and C_GetFunctionList. It indicates that the function cannot be
executed because the Cryptoki library has not yet been initidized by acdl to C_Initialize.

CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invaid.
At present, this error only agpplies to the CKM_RSA_X_509 mechaniam; it is returned
when plaintext is supplied that has the same number of bytes as the RSA modulus and is
numericaly a least as large as the modulus. This return vaue has lower priority than
CKR_DATA_LEN_RANGE.

CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a
bad length. Depending on the operation’s mechanism, this could mean that the plaintext
data is too short, too long, or is not a multiple of some particular blocksize. This return
vaue has higher priority than CKR_DATA_INVALID.

CKR_DOMAIN_PARAMS INVALID: Invdid or unsupported domain parameters were
supplied to the function. Which representation methods of domain parameters are
supported by a given mechanism can vary from token to token.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation
has been determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its length.
Depending on the operation’s mechanism, this could mean that the ciphertext is too short,
too long, or is not a multiple of some particular blocksze. This return vaue has higher
priority than CKR_ENCRYPTED_DATA_INVALID.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application calback which returns CKR_CANCEL (see CKR_CANCEL). It also happens
to afunction that performs PIN entry through a protected path. The method used to cancel
aprotected path PIN entry operation is device dependent.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 133

CKR_FUNCTION_NOT_PARALLEL: Thereis currently no function executing in pardle
in the gecified sesson. This is alegacy error code which is only returned by the legacy
functions C_GetFunctionStatus and C_CancelFunction.

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this
Cryptoki library. Even unsupported functions in the Cryptoki APl should have a“gub” in
the library; this sub should amply return the vaue
CKR_FUNCTION_NOT_SUPPORTED.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained
because the token considersit sendtive, and is not able or willing to reved it.

CKR_KEY_CHANGED: This vdue is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
origind saved sesson.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key
for a cryptographic purpose that the key’'s atributes are not set to dlow it to do. For
example, to use akey for performing encryption, that key must have its CKA_ENCRYPT
attribute set to TRUE (the fact that the key must have a CKA_ENCRYPT déttribute implies
that the key cannot be a private key). This return vaue has lower priority than
CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not vdid. It may be the
case that the specified handle is avdid handle for an object which is not a key. We
reiterate here that O is never avalid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestK ey. It
indicates that the value of the specified key cannot be digested for some reason (perhaps
the key isn't a secret key, or perhaps the token smply can't digest thiskind of key).

CKR_KEY_NEEDED: Thisvadueisonly returned by C_SetOperationState. It indicates
that the sesson state cannot be restored because C_SetOperationState needs to be
supplied with one or more keys that were being used in the origind saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOper ationState.
For example, an attempt was made to restore a session that had been performing a message
digesting operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not
have its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the token) is
unable to wrap the key as requested (possibly the token can only wrap a given key with
certain types of keys, and the wrapping key specified is not one of these types). Compare
with CKR_KEY_UNEXTRACTABLE.

Copyright © 1994-2001 RSA Security Inc.

134 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actualy do it
because the supplied key's Sze is outside the range of key Szesthat it can handle.

CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to
use with the specified mechanian. This return vdue has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

CKR_KEY_UNEXTRACTABLE: The specified private or secret key can't be wrapped
because its CKA_UNEXTRACTABLE attribute is set to TRUE. Compare with
CKR_KEY_NOT_WRAPPABLE.

CKR_MECHANISM_INVALID: An invaid mechanisn was gpecified to the
cryptographic operation. This error code is an appropriate return vaue if an unknown
mechanism was specified or if the mechanism specified cannot be used in the sdlected token
with the selected function.

CKR_MECHANISM_PARAM_INVALID: Invaid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter vaues are
supported by a given mechanism can vary from token to token.

CKR_NEED_TO CREATE THREADS. This vaue can only be returned by
C Initialize. Itisreturned when two conditions hold:

1. The application cdled C_Initialize in a way which tdls the Cryptoki library that
gpplication threads executing cdls to the library cannot use native operating system
methods to spawn new threads.

2. Thelibrary cannot function properly without being able to spawn new threads in the
above fashion.

CKR_NO_EVENT: This vaue can only be returned by C_GetSotEvent. It is returned
when C_GetSlotEvent is cdled in non-blocking mode and there are no new dot events to
return.

CKR_OBJECT_HANDLE INVALID: The specified object handle is not vdid. We
reiterate here that O is never avalid object handle.

CKR_OPERATION_ACTIVE: There is dready an active operation (or combination of
active operaions) which prevents Cryptoki from activating the specified operation. For
example, an active object-searching operation would prevent Cryptoki from activating an
encryption operation with C_Encryptinit. Or, an active digesting operation and an active
encryption operation would prevent Cryptoki from activating a Sgnature operation. Or, on
atoken which doesn't support smultaneous dua cryptographic operations in a sesson (see
the description of the CKF_DUAL_CRYPTO _OPERATIONS flg in the

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 135

CK_TOKEN_INFO dructure), an active sgnature operation would prevent Cryptoki
from activating an encryption operation.

CKR_OPERATION_NOT _INITIALIZED: Thereis no active operation of an appropriate
type in the specified sesson. For example, an gpplication cannot cal C_Encrypt in a
session without having cdled C_Encryptlnit firgt to activate an encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation cannot
be carried out unless C_SetPIN is cdled to change the PIN vaue. Whether or not the
norma user’s PIN on atoken ever expires varies from token to token.

CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN
stored on the token. More generally-- when authentication to the token involves something
other than a PIN-- the attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN hasinvaid charactersinit. Thisreturn code only
goplies to functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code
only applies to functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of falled authentication attempts has been reached, the
token is unwilling to permit further attempts at authentication. Depending on the token, the
specified PIN may or may not remain locked indefinitely.

CKR_RANDOM_NO RNG: This vaue can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number
generator. This return vaue has higher priority than
CKR_RANDOM_SEED NOT_SUPPORTED.

CKR_RANDOM_SEED NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not accept
seeding from an application. This return vadue has lower priority than
CKR_RANDOM_NO_RNG.

CKR _SAVED STATE INVALID: This vdue can only be reuned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations state
isinvalid, and s0 it cannot be restored to the specified session.

CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too many
sessions dready open, or because the token has too many read/write sessons aready

open.

Copyright © 1994-2001 RSA Security Inc.

136 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates
that a session with the token is aready open, and so the token cannot be initidized.

CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support pardld sessons. Thisis a legacy error code—in Cryptoki Version 2.01 and up,
no token supports parallel sessons. CKR_SESSION_PARALLEL_NOT_SUPPORTED
can only be returned by C_OpenSession, and it isonly returned when C_OpenSession is
cdled in aparticular [deprecated] way.

CKR_SESSION_READ_ONLY': The specified sesson was unable to accomplish the
desired action because it is a read-only sesson. This return vaue has lower priority than
CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session dready exigts, and so the
SO cannot be logged in.

CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists,
and so aread-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided sgnature/MAC can be seen to be
invaid soldy on the bass of its length. This return vadue has higher priority than
CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided sgnaureMAC isinvaid. Thisreturn vaue
has lower priority than CKR_SIGNATURE_LEN_RANGE.

CKR_SLOT _ID_INVALID: The specified dot ID isnot vaid.

CKR_STATE _UNSAVEABLE: The cryptographic operations date of the specified
sesson cannot be saved for some reason (possibly the token is Smply unable to save the
curent date). This retun vdue has lower priority than
CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more information.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has
conflicting attributes. See Section 10.1 for more information.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or dot does not
recognize the token in the dot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return vaue has higher priority than
CKR_SESSION_READ ONLY.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 137

CKR_UNWRAPPING_KEY_ HANDLE INVALID: This vaue can only be returned by
C_UnwrapKey. It indicates that the key handle specified to be used to unwrap another
key isnot vdid.

CKR_UNWRAPPING KEY_SIZE RANGE: This vdue can only be returned by
C_UnwrapKey. It indicates that dthough the requested unwrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actudly do it
because the supplied key’'s Sze is outside the range of key Szesthat it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This vaue can only be returned
by C_UnwrapKey. Itindicates that the type of the key specified to unwrap another key is
not consstent with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: Thisvaue can only bereturned by C_Login. It
indicates that the specified user cannot be logged into the sesson, because it is aready
logged into the sesson. For example, if an application has an open SO sesson, and it
attemptsto log the SO into it, it will receive this error code.

CKR_USER_ ANOTHER ALREADY_LOGGED_IN: Thisvaue can only be returned by
C_Login. It indicates tha the specified user cannot be logged into the session, because
another user is dready logged into the sesson. For example, if an gpplication has an open
SO session, and it attempts to log the norma user into it, it will receive this error code.

CKR_USER NOT_LOGGED _IN: The desred action cannot be performed because the
appropriate user (or an appropriate user) is not logged in. One example is that a session
cannot be logged out unlessit islogged in. Another example is that a private object cannot
be crested on a token unless the sesson attempting to create it is logged in as the norma
user. A find example is that cryptographic operations on certain tokens cannot be
performed unless the norma user islogged in.

CKR_USER PIN_NOT_INITIALIZED: This vaue can only be returned by C_Login. It
indicates that the norma user’s PIN has not yet been initidized with C_InitPIN.

CKR_USER TOO_MANY_TYPES: An attempt was made to have more distinct users
smultaneoudy logged into the token than the token and/or library permits. For example, if
some application has an open SO session, and another application attempts to log the
norma user into a sesson, the attempt may return this error. 1t is not required to, however.
Only if the smultaneous distinct users cannot be supported does C_L ogin have to return
thisvaue. Notethat this error code generdizes to true multi-user tokens.

CKR_USER TYPE_INVALID: An invaid value was specified as a CK_USER_TYPE.
valid typesare CKU_SO and CKU_USER.

CKR_WRAPPED_KEY_INVALID: This vaue can only be returned by C_UnwrapKey.
It indicates that the provided wrapped key isnot vaid. If acdl ismadeto C_UnwrapKey

Copyright © 1994-2001 RSA Security Inc.

138 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

to unwrap a particular type of key (i.e., some particular key type is specified in the template
provided to C_UnwrapKey), and the wrapped key provided to C_UnwrapKey is
recognizably not a wrapped key of the proper type, then C_UnwrapKey should return
CKR_WRAPPED KEY_INVALID. This return vadue has lower priority than
CKR_WRAPPED_KEY LEN_RANGE.

CKR WRAPPED_KEY_LEN RANGE: This vaue can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invdid
soldy on the bass of its length This return vaue has higher priority than
CKR_WRAPPED_KEY_INVALID.

CKR_WRAPPING_KEY_HANDLE INVALID: This vaue can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another key is
not vaid.

CKR_WRAPPING_KEY_SIZE RANGE: This vaue can only be reurned by
C WrapKey. It indicates that dthough the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actudly do it
because the supplied wrapping key’ s Sze is outsde the range of key szesthat it can handle.

CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This vaue can only be returned by
C_WrapKey. It indicates that the type of the key specified to wrap another key is not
conggtent with the mechanism specified for wrapping.

11.1.7 Moreon relative prioritiesof Cryptoki errors

In generd, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from Section
11.1.6. One minor implication of this is that functions that use a sesson handle (.e., most
functionsl) never return the error code CKR_TOKEN_NOT_PRESENT (they return
CKR_SESSION_HANDLE_INVALID ingtead). Other than these precedences, if more than
one error code applies to the result of a Cryptoki call, any of the applicable error codes may be
returned. Exceptionsto thisrule will be explicitly mentioned in the descriptions of functions.

11.1.8 Error code “gotchas’

Hereisashort ligt of afew particular things about return values that Cryptoki developers might
want to be aware of:

1. Asmentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to make a
digtinction between a token being removed before a function invocation and a token being
removed during afunction invocation.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 139

2. As mentioned in Section 11.1.2, an gpplication should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE can
be somewhat subtle. Unless an gpplication needs to be able to digtinguish between these
return values, it is best to aways treat them equivaently.

4. Smilarly, the difference between CKR_ENCRYPTED _DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN RANGE, and between
CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED_KEY_LEN_RANGE, can
be subtle, and it may be best to treat these return vaues equivaently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library developer
to know which of CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, or CKR_TEMPLATE_INCONSISTENT to
return. When possible, it is recommended that application developers be generous in their
interpretations of these error codes.

11.2 Conventionsfor functionsreturning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic
mechanism. The amount of output returned by these functions is returned in a variable-length
gpplicationsupplied buffer. An example of a function of this sort is C_Encrypt, which takes
some plaintext as an argument, and outputs a buffer full of ciphertext.

These functions have some common cdling conventions, which we decribe here. Two of the
arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a
location which will hold the length of the output produced (say pulBufLen). There are two
ways for an gpplication to cal such afunction:

1. If pBuf isNULL_PTR, then dl that the function does is return (in * pul BufLen) anumber of
bytes which would suffice to hold the cryptographic output produced from the input to the
function. This number may somewhat exceed the precise number of bytes needed, but
should not exceed it by alarge amount. CKR_OK is returned by the function.

2. If pBuf isnot NULL_PTR, then *pulBufLen must contain the Sze in bytes of the buffer
pointed to by pBuf. If that buffer islarge enough to hold the cryptographic output produced
from the input to the function, then that cryptographic output is placed there, and CKR_OK
is retuned by the function. If the buffer is not large enough, then
CKR_BUFFER TOO_SMALL isreturned. In ether case, *pulBufLen is set to hold the
exact number of bytes needed to hold the cryptographic output produced from the input to
the function.

All functions which use the above convention will explicitly say so.

Copyright © 1994-2001 RSA Security Inc.

140 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Cryptographic functions which return output in a varigble-length buffer should dways return as
much output as can be computed from what has been passed in to them thus far. As an
example, condder a sesson which is performing a multiple-part decryption operation with DES
in cipher-block chaining mode with PKCS padding. Suppose thet, initidly, 8 bytes of
ciphertext are passed to the C_DecryptUpdate function. The blocksize of DES s 8 bytes, but
the PKCS padding makes it unclear at this stage whether the ciphertext was produced from
encrypting a 0-byte gtring, or from encrypting some string of length at leest 8 bytes. Hence the
cdl to C_DecryptUpdate should return O bytes of plaintext. If a Sngle additiona byte of
ciphertext is supplied by a subsequent cdl to C_DecryptUpdate, then that cal should return 8
bytes of plaintext (one full DES block).

11.3 Disclaimer concer ning sample code

For the remainder of Section 11, we enumerate the various functions defined in Cryptoki. Most
functions will be shown in use in a least one sample code snippet. For the sake of brevity,
sample code will frequently be somewhat incomplete. In particular, sample code will generdly
ignore possible error returns from C library functions, and aso will not ded with Cryptoki error
returnsin aredidic fashion.

11.4 General-purpose functions

Cryptoki provides the following generd- purpose functions.

C_Initialize

CK_DEFI NE_FUNCTION(CK_RV, C_Initialize)(
CK_ VO D _PTR plnitArgs
) ;

C_Initialize initidizes the Cryptoki library. plnitArgs ether has the vdue NULL_PTR or
pointsto a CK_C _INITIALIZE_ARGS dructure containing information on how the library
should ded with multi-threaded access. If an application will not be accessing Cryptoki through
multiple threads smultaneoudy, it can generdly supply the vdue NULL_PTR to C_Initialize
(the consequences of supplying this vaue will be explained below).

If plnitArgs is nonNULL_PTR, C_Initialize sould cast it to a
CK_C_INITIALIZE_ARGS PTR and then dereference the resulting pointer to obtain the
CK_C_INITIALIZE_ARGS fidds CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL_PTR; if it's not, then C_lInitialize should return with the vaue
CKR_ARGUMENTS BAD.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 141

If the CKF_LIBRARY_CANT_CREATE_OS THREADS flagin theflags fild is s, that
indicates that application threads which are executing cals to the Cryptoki library are not
permitted to use the native operation system calls to spawn off new threads. In other words,
the library’s code may not creste its own threads. If the library is unable to function properly
under this redriction, C_Initialize shoud reun with the vdue
CKR_NEED _TO_CREATE_THREADS.

A cdl to C_Initialize specifies one of four different ways to support multi-threaded access via
the vaue of the CKF_OS LOCKING_OK flag in the flags fidd and the vaues of the
CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer fields:

1. If theflag isn't set, and the function pointer fields aren’t supplied (.e., they dl have the
vaue NULL_PTR), that means that the application won't be accessng the Cryptoki library
from multiple threeds smultaneoudly.

2. If theflag is s, and the function pointer fields aren’t supplied (i.e., they dl have the value
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki
access, and the library needs to use the native operating system primitives to ensure safe
muilti-threaded access. If the library is unable to do this, C_Initialize should return with the
value CKR_CANT_LOCK.

3. If theflag isn't sat, and the function pointer fields are supplied (.e., they dl have nor+
NULL_PTR vaues), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the supplied function pointers for mutex-
handling to ensure safe multi-threaded access. If the library is unable to do this,
C_Initialize should return with the value CKR_CANT _LOCK.

4. If the flag is s&t, and the function pointer fidds are supplied {.e., they dl have non
NULL_PTR vaues), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use ether the native operating system primitives or
the supplied function pointers for mutex-handling to ensure safe multi-threaded access. If
the library is undble to do this C_Initialize should return with the vaue
CKR_CANT_LOCK.

If some, but not dl, of the supplied function pointersto C_Initialize are non-NULL_PTR, then
C_Initialize should return with the vdlue CKR_ARGUMENTS BAD.

A cdl to C_Initialize with pInitArgs set to NULL_PTR is treated like a call to C_Initialize
with plnitArgs pointing to a CK_C _INITIALIZE_ARGS which has the CreateMutex,
DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to NULL_PTR, and has
theflags field set to O.

C _Initialize should be the firs Cryptoki cal made by an gpplication, except for cdls to
C_GetFunctionList. What this function actudly does is implementationdependent; typicaly,

Copyright © 1994-2001 RSA Security Inc.

142 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

it might cause Cryptoki to initidize its internd memory buffers, or any other resources it
requires.

If severd applications are usng Cryptoki, each one should cdl C Initialize. Every cdl to
C_Initialize should (eventually) be succeeded by asngle cal to C_Finalize. See Section 6.5
for more details.

Return values CKR_ARGUMENTS BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI|_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_NEED_TO_CREATE_THREADS, CKR_OK.

Example see C_GetlInfo.

C _Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C _Finali ze) (
CK VO D_PTR pReserved

),

C Finalize is cdled to indicate that an goplication is finished with the Cryptoki library. It
should be the last Cryptoki call made by an gpplication. The pReserved parameter is reserved
for future vergons, for this version, it should be set to NULL_PTR (if C_Finalize iscdled with
a nonrNULL_PTR vdue for pReserved, it <should retun the vdue
CKR_ARGUMENTS BAD.

If severd gpplications are using Cryptoki, each one should cal C_Finalize. Each application’s
cdl to C_Finalize should be preceded by asingle cdl to C_Initialize; in between the two cals,
an gpplication can make cdlsto other Cryptoki functions. See Section 6.5 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for
safe multi-threaded access to a Cryptoki library, the behavior of C _Finalize is
nevertheless undefined if it is called by an application while other threads of the
application are making Cryptoki calls. The exception to this exceptional behavior of
C_Finalize occurs when a thread calls C_Finalize while another of the application’s
threadsis blocking on Cryptoki’s C_WaitFor SlotEvent function. When this happens, the
blocked thread becomes unblocked and returns the value
CKR_CRYPTOKI_NOT _INITIALIZED. See C_WaitForSlotEvent for more information.

Return values CKR_ARGUMENTS _BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example see C_GetlInfo.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 143

C_Getinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get I nf o) (
CK_I NFO_PTR pl nf o

)

C_GetlInfo returns generd information about Cryptoki. plnfo points to the location that
receives the information.

Return values CKR_ARGUMENTS _BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example

CK_I NFO i nf o;
CK_RV rv;
CK_C INTIALI ZE_ARGS I ni t Args;

I nitArgs. CreateMiutex = &WCreat eMut ex;

I nit Args. DestroyMut ex = &WDestroyMit ex;
I nitArgs. LockMutex = &WLockMit ex;

I nitArgs. Unl ockMiut ex = &WUnl ockMit ex;
InitArgs. flags = CKF_OS _LOCKI NG CK;

I nitArgs. pReserved = NULL_PTR;

rv = Clnitialize((CK VO D _PTR) &l nitArgs);
assert(rv == CKR_OK);

rv = C_Getlnfo(& nfo);
assert(rv == CKR_OK);
i f(info.version.mjor == 2) {
/* Do lots of interesting cryptographic things with
t he token */

}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_(K);

Copyright © 1994-2001 RSA Security Inc.

144 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

)

C_GetFunctionList obtains a pointer to the Cryptoki library’s lig of function pointers.
ppFunctionList points to a vaue which will receve a pointer to the library's
CK_FUNCTION_LIST dructure, which in turn contains function pointers for al the Cryptoki
AP routines in the library. The pointer thus obtained may point into memory which is
owned by the Cryptoki library, and which may or may not be writable. Whether or not this
isthe case, no attempt should be made to write to this memory.

C_GetFunctionLigt is the only Cryptoki function which an gpplication may cal before caling
C_Initialize. Itisprovided to make it easier and faster for gpplications to use shared Cryptoki
libraries and to use more than one Cryptoki library smultaneoudly.

Return vaues CKR_ARGUMENTS BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example
CK_FUNCTI ON_LI ST_PTR pFuncti onLi st;

CK Clnitialize pClnitialize;

CK_RV rv;

/* 1t’s OK to call C_GetFunctionList before calling
Clnitialize */

rv = C_Get Functi onLi st (&pFuncti onLi st);

assert(rv == CKR_OK);

pC Initialize = pFunctionList -> C.lnitialize;

/* Call the Clnitialize function in the library */
rv = (*pC_lnitialize)(NULL_PTR);

115 Sot and token management functions

Cryptoki provides the following functions for dot and token management:

C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sl ot Li st) (
CK _BBOOL t okenPresent,
CK_SLOT_I D PTR pSl ot Li st,
CK_ULONG_PTR pul Count

)

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 145

C_GetSlotList is used to obtain a list of dots in the system. tokenPresent indicates whether
the list obtained includes only those dots with a token present (TRUE), or al dots (FALSE);
pul Count pointsto the location that receives the number of dots.

There are two ways for an gpplicationto cal C_GetSlotList:

1. If pSotList isNULL_PTR, then dl that C_GetSlotL ist doesis return (in *pulCount) the
number of dots, without actudly returning a list of dots. The contents of the buffer pointed
to by pulCount on entry to C_GetSlotL ist has no meaning in this case, and the cal returns
the vaue CKR_OK.

2. If pSotList is not NULL_PTR, then *pulCount must contain the dze (in terms of
CK_SLOT_ID dements) of the buffer pointed to by pSotList. If that buffer is large
enough to hold the list of dots, then the ligt is returned in it, and CKR_OK is returned. |If
not, then the cal to C_GetSlotList returnsthe vadlue CKR_BUFFER_TOO SMALL. In
ether case, the value * pul Count is et to hold the number of dots.

Because C_GetSlotList does not dlocate any space of its own, an application will often call
C_GetSotList twice (or sometimes even more times—if an gpplication istrying to get alist of
al dots with a token present, then the number of such dots can (unfortunately) change between
when the gpplication asks for how many such dots there are and when the application asks for
the dots themsalves). However, multiple cdlsto C_GetSlotL ist are by no means required.

All dots which C_GetSlotList reports must be able to be queried as vdid dots by
C_GetSotInfo. Furthermore, the set of dots accessible through a Cryptoki library is fixed at
the time that C_Initialize is cdled. If an gpplication calls C_Initialize and C_GetSlotList,
and then the user hooks up a new hardware device, that device cannot suddenly appear as a
new dot if C_GetSlotList iscdled again. To recognize the new device, C_lInitialize needsto
be called again (and to be able to cal C_Initialize successtully, C_Finalize needsto be called
fird). BEvenif C_Initialize is successfully cdled, it may or may not be the case that the new
device will then be successfully recognized. On some platforms, it may be necessary to restart
the entire system.

Retun vaues CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR OK.

Example
CK_ULONG ul Sl ot Count, ul SI ot Wt hTokenCount;
CK_SLOT_ID PTR pSlotList, pSlotWthTokenLi st;
CK_RV rv;

/* Get list of all slots */
rv = C _GetSlotList(FALSE, NULL_ PTR, &ul Sl ot Count);

Copyright © 1994-2001 RSA Security Inc.

146 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

if (rv == CKR_OK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_I D)) ;
C GetSlotList(FALSE, pSlotList, &ulSlotCount);
rv == CKR_OK) {
Now use that list of all slots */

rv
i f

*]

/

}

free(pSlotlList);
}

/* Get list of all slots with a token present */
pSl ot Wt hTokenLi st = (CK_SLOT_ID PTR) mal | oc(0);
ul SI ot Wt hTokenCount = O;
while (1) {
rv = C _GetSlotList(
TRUE, pSlotWthTokenList, ul Sl ot WthTokenCount);
if (rv !'= CKR_BUFFER TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st ,
ul Sl ot Wt hTokenLi st*si zeof (CK_SLOT_ID));

}

if (rv == CKR_OK) {
/* Now use that list of all slots with a token
present */

}
free(pSl ot WthTokenLi st);

C_GetSotinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Sl ot | nf 0) (
CK_SLOT_I D sl ot D,
CK_SLOT_I NFO_PTR pl nfo

)

C_GetSlotl nfo obtains information about a particular dot in the sysem. dotID isthe ID of the
dot; plnfo points to the location that receives the dot information.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 147

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST _MEMORY, CKR_OK, CKR_SLOT_ID_INVALID.

Example see C_GetTokenl nfo.

C_GetTokenlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Tokenl nf 0) (
CK_SLOT I D sl ot D,
CK_TOKEN_| NFO_PTR pl nf o

)

C_GetTokenlnfo obtains information about a particular token in the syssem. dotID isthelD
of the token’'s dot; plnfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR _DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example

CK_ULONG ul Count;
CK_SLOT_I D _PTR pSl ot Li st ;
CK_SLOT_I NFO sl ot I nf o;
CK_TOKEN_| NFO t okenl nf o;
CK_RV rv;

= C _GetSlotList(FALSE, NULL_PTR, &ul Count);
((rv == CKR_OK) && (ul Count > 0)) {
pSlotList = (CK_SLOT_I D _PTR)
mal | oc(ul Count *si zeof (CK_SLOT_I1D));
rv = C _GetSlotList(FALSE, pSlotlList, &ul Count);
assert(rv == CKR_(XK);

rv
i f

[* Get slot information for first slot */
rv = C GetSlotlInfo(pSlotList[0], &slotlnfo);
assert(rv == CKR_OK);

/* Get token information for first slot */

rv = C_Get Tokenlnfo(pSlotList[0], &t okenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) {

Copyright © 1994-2001 RSA Security Inc.

148 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

%ree(pSl ot List);
}

C_WaitFor SotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C_Wai t For Sl ot Event) (
CK_FLAGS f I ags,
CK_SLOT_I D_PTR pSl ot
CK VO D_PTR pReserved

),

C_WaitForSotEvent waits for a dot event, such as token insartion or token remova, to
occur. flags determines whether or not the C_WaitFor SlotEvent call blocks (i.e., waitsfor a
dot event to occur); pSot pointsto alocation which will receive the ID of the dot that the event
occurred in. pReserved isreserved for future versons, for this verson of Cryptoki, it should be
NULL_PTR.

At present, the only flag defined for usein the flags argument isCKF_DONT_BL OCK:

#defi ne CKF_DONT_BLOCK 1
Interndly, each Cryptoki application has a flag for each dot which is used to track whether or
not any unrecognized events involving that dot have occurred. When an goplication initidly cals
C _Initialize, every dot's evert flag is cleared. Whenever a dot event occurs, the flag
corresponding to the dot in which the event occurred is .

If C_WaitForSotEvent is cdled with the CKF_DONT_BLOCK flag st in the flags
argument, and some dot’s event flag is sat, then that event flag is cleared, and the cdl returns
with the ID of that dot in the location pointed to by pSot. If more than one dot's event flag is
st at the time of the call, one such dot is chosen by the library to have its event flag cleared and
to haveitsdot ID returned.

If C_WaitForSotEvent is cdled with the CKF_DONT_BLOCK flag st in the flags
argument, and no dot's event flag is s&t, then the call returns with the vdlue CKR_NO_EVENT.
In this case, the contents of the location pointed to by pSot when C_WaitFor SotEvent are
undefined.

If C_WaitForSlotEvent is cdled with the CKF_DONT_BLOCK flag dear in the flags
argument, then the call behaves as above, except that it will block. That is, if no dot’s event flag
is st a the time of the cdl, C_WaitForSotEvent will wat until some dot's event flag
becomes set. If a thread of an gpplication has a C_WaitFor SotEvent cal blocking when
another thread of that gpplication cals C_Finalize, the C_WaitFor SlotEvent cdl returnswith
thevalue CKR_CRYPTOKI_NOT _INITIALIZED.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 149

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous callsto C_WaitFor SlotEvent.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_NO_EVENT, CKR_OK.

Example

CK_FLAGS flags = 0;
CK_SLOT_I D sl ot D
CK_SLOT_I NFO sl ot I nf o;

/* Block and wait for a slot event */
rv = C_WaitForSlotEvent (flags, &slotlD, NULL PTR);
assert(rv == CKR_XK);

/* See what’s up with that slot */

rv = C GetSlotlInfo(slotlD, &slotlnfo);
assert(rv == CKR_XK);

C_GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Mechani snLi st) (
CK_SLOT_I D sl ot D,
CK_MECHANI SM _TYPE_PTR pMechani smnii st
CK_ULONG_PTR pul Count

)

C_GetMechanismList is used to obtain a list of mechanism types supported by a token.
SotID isthe ID of the token's dot; pul Count points to the location that receives the number of
mechanisms

There are two ways for an gpplicationto cal C_GetM echanismList:

1. If pMechanismList isSNULL_PTR, then dl that C_GetM echanismL ist doesisreturn (in
*pul Count) the number of mechanisms, without actudly returning alist of mechanisms. The
contents of *pulCount on entry to C_GetM echanismList has no meaning in this case,
and the cdll returns the value CKR_OK.

Copyright © 1994-2001 RSA Security Inc.

150 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. If pMechanismList is not NULL_PTR, then *pulCount must contain the Sze (in terms of
CK_MECHANISM_TYPE dements) of the buffer pointed to by pMechanismList. If
that buffer is large enough to hold the list of mechanisms, then the ligt is returned in it, and
CKR _OK isreturned. If not, then the cdl to C_GetMechanismList returns the vaue
CKR_BUFFER_TOO_SMALL. In ether case, the vaue *pulCount is st to hold the
number of mechanisms.

Because C_GetM echanismList does not alocate any space of its own, an gpplication will
oftencal C_GetMechanismL ist twice. However, this behavior is by no means required.

Return values CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ ARGUMENTS BAD.

Example

CK_SLOT_ID slotl D

CK_ULONG ul Count;

CK_MECHANI SM _TYPE_PTR pMechani smii st ;
CK RV rv;

rv = C_Get Mechani snlList(slotlD, NULL PTR, &ul Count);
if ((rv == CKR_OK) && (ul Count > 0)) {
pMechani snii st =
(CK_MECHANI SM_TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani sniList(slotlD, pMechanisnii st,
&ul Count) ;
if (rv == CKR_OK) {

}
free(pMechani snLi st);

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 151

C_GetMechanisminfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani sm nf o) (
CK_SLOT_I D sl ot D,
CK_MECHANI SM TYPE t ype,
CK_MECHANI SM_| NFO_PTR pl nf o

)

C_GetMechanismlnfo obtains information about a particular mechanism possibly supported
by atoken. dotlD isthe ID of the token's dot; type is the type of mechanism; plnfo pointsto
the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example

CK_SLOT_I D slotl D
CK_MECHANI SM_|I NFO i nf o;
CK_RV rv;

/* Get information about the CKM MD2 nechani sm for
this token */

= C_Get Mechani sm nfo(slotlD, CKM M2, & nfo);

(rv == CKR_OK) {

if (info.flags & CKF_DI GEST) {

rv
i f

Copyright © 1994-2001 RSA Security Inc.

152 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_InitToken) (
CK_SLOT_ID slotlD,
CK_UTF8CHAR _PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR_PTR pLabel

)

C_InitToken initidizes a token. dotID isthe ID of the token's dot; pPin points to the SO's
initid PIN (which need not be null-terminated); ulPinLen is the length in bytes of the PIN;
pLabel points to the 32-byte labd of the token (which must be padded with blank characters,
and which mugt not be null-terminated). This standard dlows PIN values to contain any vaid
UTF8 character, but the token may impose subset restrictions.

If the token has not been initidized (i.e. new from the factory), then the pPin parameter
becomes the initid vaue of the SO PIN. If the token is being reinitidized, the pPin parameter is
checked againgt the existing SO PIN to authorize the initidization operation. In both cases, the
SO PIN is the vaue pPin after the function completes successfully. If the SO PIN islogt, then
the card must be renitidized usng a mechanism outside the scope of this sandard. The
CKF_TOKEN_INITIALIZED flaginthe CK_TOKEN_INFO dgructure indicates the action
that will result from caling C_InitToken. If s, the token will be reinitidized, and the client
must supply the existing SO password in pPin.

When atoken isinitidized, dl objects that can be destroyed are destroyed (i.e., dl except for
“indestructible’ objects such as keys built into the token). Also, access by the normd user is
disabled until the SO sets the norma user’s PIN. Depending on the token, some “default”
objects may be created, and attributes of some objects may be set to default vaues.

If the token has a “protected authentication path’, as indicaed by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
s, then that means that there is some way for a user to be authenticated to the token without
having the gpplication send a PIN through the Cryptoki library. One such possibility isthat the
user enters a PIN on a PINpad on the token itself, or on the dot device. To initidize a token
with such a protected authentication path, the pPin parameter to C_InitToken should be
NULL_PTR. During the execution of C_InitToken, the SO's PIN will be entered through the
protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitT oken can be used to initidize the token.

A token cannot be initidlized if Cryptoki detects that any application has an open sesson withit;
when a cdl to C_InitToken is made under such circumstances, the cdl fals with error
CKR_SESSION_EXISTS. Unfortunatdly, it may happen when C_InitToken is cdled that
some other gpplication does have an open sesson with the token, but Cryptoki cannot detect

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 153

this, because it cannot detect anything about other gpplications using the token. If thisis the
case, then the consequences of the C_InitToken cal are undefined.

The C_InitToken function may not be sufficient to properly initidize complex tokens. In these
gtuations, an initidization mechanism outside the scope of Cryptoki must be employed. The
definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS BAD.

Example
CK_SLOT_ID slotlD;

CK_UTF8CHAR_PTR pin = “MyPIN’;
CK_UTF8CHAR | abel [32] ;

CK RV rv;

ﬁemset(label, ‘', sizeof (label));

mencpy(l abel, “My first token”, strlen(“My first
t oken”));

rv = C InitToken(slotlD, pin, strlen(pin), |abel);
if (rv == CKR_OK) {

}

C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C InitPIN)(
CK_SESSI ON_HANDLE hSessi on,
CK_UTF8CHAR PTR pPin,

CK_ULONG ul Pi nLen

)

C_InitPIN initidizes the norma user’'s PIN. hSession is the sesson’s handle; pPin points to
the norma user's PIN; ulPinLen is the length in bytes of the PIN. This standard dlows PIN
vaues to contain any valid UTF8 character, but the token may impose subset redtrictions.

Copyright © 1994-2001 RSA Security Inc.

154 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_InitPIN can only be cdled in the “R/W SO Functions’ state. An atempt to cdl it from a
sesson in any other gate failswith error CKR_USER _NOT_LOGGED _IN.

If the token has a “protected authentication path’, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
s, then that means that there is some way for a user to be authenticated to the token without
having the application send a PIN through the Cryptoki library. One such possibility is that the
user entersa PIN on a PINpad on the token itsdf, or on the dot device. To initidize the normd
user’s PIN on a token with such a protected authentication path, the pPin parameter to
C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO will enter the
new PIN through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitPIN can be used to initidize the normal user’ s token access.

Return vaues CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_ TOKEN_WRITE_PROTECTED,
CKR_USER NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example
CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR newPi n[]= {“NewPl N'};
CK_ RV rv;

rv = C InitPIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 155

C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C_Set PI N) (
CK_SESSI ON_HANDLE hSessi on,
CK_UTF8CHAR _PTR pd dPi n,

CK_ULONG ul A dLen,
CK_UTF8CHAR_PTR pNewPi n,
CK_ULONG ul NewLen

),

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER PIN if
the sesson is not logged in. hSession is the sesson’s handle, pOldPin points to the old PIN;
ulOldLen is the length in bytes of the old PIN; pNewPin points to the new PIN; ulNewLen is
the length in bytes of the new PIN. This standard alows PIN vauesto contain any valid UTF3
character, but the token may impose subset restrictions.

C_SetPIN can only be cdled in the “R/W Public Sesson” state, “R/W SO Functions’ state, or
“R/W User Functions’ gtate. An attempt to cal it from a sesson in any other gate fails with
error CKR_SESSION_READ _ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
s, then that means that there is some way for a user to be authenticated to the token without
having the application send a PIN through the Cryptoki library. One such possibility is that the
user enters a PIN on a PINpad on the token itsdf, or on the dot device. To modify the current
user's PIN on a token with such a protected authentication path, the pOIdPin and pNewPin
parameters to C_SetPIN should be NULL_PTR. During the execution of C_SetPIN, the
current user will enter the old PIN and the new PIN through the protected authentication path.
It is not specified how the PINpad should be used to enter two PINS; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,

CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example
CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR ol dPin[] = {“OdPIN'};

Copyright © 1994-2001 RSA Security Inc.

156 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_UTF8CHAR newPi n[] = {“NewPIN'};
CK_RV rv;

rv = C_Set PI N(
hSessi on, ol dPin, sizeof(oldPin), newPin,

si zeof (newPi n)) ;
if (rv == CKR_OK) {

}

11.6 Sesson management functions

A typica gpplication might perform the following series of steps to make use of a token (note
that there are other reasonable sequences of events that an gpplication might perform):

1. Select atoken.
2. Make one or more calsto C_OpenSession to abtain one or more sessions with the token.

3. Cdl C_Login to log the user into the token. Since dl sessons an gpplication has with a
token have a shared login state, C_L ogin only needsto be called for one of the sessions.

4. Perform cryptographic operations using the sessons with the token.

5. Cdl C_CloseSession once for each sesson that the gpplication has with the token, or call
C_CloseAllSessions to close dl the gpplication’ s sessons smultaneoudly.

As has been observed, an gpplication may have concurrent sessions with more than one token.
It is also possible for atoken to have concurrent sessions with more than one application.

Cryptoki provides the following functions for session management:

C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_OpenSessi on) (
CK_SLOT_I D slotlD,
CK_FLAGS f I ags,
CK_VO D_PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON_HANDLE_PTR phSessi on

)

C_OpenSession opens a session between an application and a token in a particular dot.
dotID is the dot’s ID; flags indicates the type of sesson; pApplication is an applicationt
defined pointer to be passed to the naotification calback; Notify isthe address of the notification

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 157

calback function (see Section 11.17); phSession points to the location that receives the handle
for the new session.

When opening a sesson with C_OpenSession, the flags parameter conssts of the logicd OR
of zero or more bit flags defined in the CK_SESSION_INFO datatype. For legacy reasons,
the CKF_SERIAL_SESSION bit must dways be s; if acal to C_OpenSession does not
have this bit s, the cdl should return unsuccessfully with the error code
CKR_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessons an gpplication may have with the
token, which may depend on whether the session is “read-only” or “read/write’. An attempt to
open a session which does not succeed because there are too many existing sessons of some
type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO sructure), then only
read-only sessons may be opened withiit.

If the application cdling C_OpenSession dready has a R/W SO session open with the token,
then any atempt to open a R/O sesson with the token fals with eror code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 6.6.7).

The Notify calback function is used by Cryptoki to notify the application of certain events. If
the application does not wish to support calbacks, it should pass avaue of NULL_PTR as the
Notify parameter. See Section 11.17 for more information about application calbacks.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ WRITE_SO EXISTS, CKR _SLOT ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ ARGUMENTS _BAD.

Example sse C_CloseSession.

C_CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cl oseSessi on) (
CK_SESSI ON_HANDLE hSessi on

)

C_CloseSession closes a sesson between an application and a token. hSession is the
sesson’s handle.

Copyright © 1994-2001 RSA Security Inc.

158 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

When asession is closed, dl sesson objects created by the sesson are destroyed automaticaly,
even if the gpplication has other sessions “using” the objects (see Sections 6.6.5-6.6.7 for more
detalls).

If this function is successful and it closes the last sesson between the gpplication and the token,
the login state of the token for the gpplication returns to public sessons. Any new sessons to
the token opened by the application will be either R/O Public or R/W Public sessons.

Depending on the token, when the last open sesson any agpplication has with the token is
closed, the token may be “gected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return vaue
CKR_SESSION_CLOSED isan error return. It actudly indicates the (probably somewhat
unlikdy) event that while this function cal was executing, ancther cdl was made to
C_CloseSession to close this particular sesson, and that cal finished executing first. Such
uses of sessons are a bad idea, and Cryptoki makes little promise of what will occur in generd
if an gpplication indulgesin this sort of behavior.

Return values CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example

CK _SLOT_ID slotl D

CK_BYTE application;
CK_NOTI FY MyNoti fy;
CK_SESSI ON_HANDLE hSessi on;
CK_ RV rv;

application = 17;
MyNotify = &Encrypti onSessi onCal | back;
rv = C_OpenSessi on(
sl ot1 D, CKF_RW SESSI ON, (CK_VO D_PTR) &application,
MyNot i fy,
&hSessi on) ;
if (rv == CKR_OK) {

C_Cl oseSessi on(hSessi on);

}

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 159

C_CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cl oseAl | Sessi ons) (
CK_SLOT_ID slotlD

)

C_CloseAllSessions closes dl sessions an gpplication has with a token. dotlD specifies the
token's dot.

When asessionis closed, al session objects created by the sesson are destroyed automaticaly.

After successful execution of this function, the login sate of the token for the gpplication returns
to public sessons. Any new sessions to the token opened by the application will be either R/O
Public or R/W Public sessions.

Depending on the token, when the last open sesson any application has with the token is
closed, the token may be “gected” from its reader (if this capability exigts).

Return values; CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,

CKR_SLOT ID_INVALID, CKR TOKEN_NOT_PRESENT.

Example
CK_SLOT_I D sl ot D;
CK_ RV rv;
rv = C_CloseAl |l Sessions(slotlID);

C_GetSessioninfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sessi onl nf 0) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_I NFO_PTR pl nf o

)

C_GetSessioninfo obtains information aout a sesson. hSession is the sesson’s handle;
pl nfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS BAD.

Copyright © 1994-2001 RSA Security Inc.

160 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK_RV rv;

= C_Get Sessi onl nfo(hSessi on, &i nfo);
(rv == CKR_CK) {
if (info.state == CKS_RW USER_FUNCTI ONS) {

}

C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet OperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pOQOper ati onSt at e,
CK_ULONG_PTR pul Operati onSt at eLen

)

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the sesson’s handle; pOperationState points to the
location that receives the state; pul OperationStatel.en points to the location that receives the
length in bytes of the Sate.

Although the saved dae output by C_GetOperationState is not redly produced by a
“cryptographic mechaniam”, C_GetOper ationState nonethel ess uses the convention described
in Section 11.2 on producing output.

Precisely what the “cryptographic operations state’ this function saves is varies from token to
token; however, this state is what is provided asinput to C_SetOper ationState to restore the
cryptographic activities of a sesson.

Congder a sesson which is performing a message digest operation usng SHA-1 (.e, the
sesson is usng the CKM_SHA 1 mechanism). Suppose that the message digest operation
was initialized properly, and that precisely 80 bytes of data have been supplied so far asinput to
SHA-1. The application now wants to “save the state’ of this digest operation, so thet it can
continueit later. Inthis particular case, snce SHA-1 processes 512 hits (64 bytes) of input at a

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 161

time, the cryptographic operations state of the sesson most likely congsts of three distinct parts:
the state of SHA-1's 160-hit internd chaining variable; the 16 bytes of unprocessed input data;
and some adminigrative data indicating that this saved state comes from a sesson which was
performing SHA-1 hashing. Taken together, these three pieces of information suffice to
continue the current hashing operation at alater time.

Congder next a sesson which is performing an encryption operation with DES (a block cipher
with a block sze of 64 hits) in CBC (cipher-block chaining) mode (i.e., the sesson isusing the
CKM_DES CBC mechanism). Suppose that precisdy 22 bytes of data (in addition to an 1V
for the CBC mode) have been supplied so far as input to DES, which means that the first two
8-byte blocks of ciphertext have dready been produced and output. In this case, the
cryptographic operations state of the sesson most likely congsts of three or four distinct parts:
the second 8-byte block of ciphertext (thiswill be used for cipher-block chaining to produce the
next block of ciphertext); the 6 bytes of data till awaiting encryption; some adminigrative data
indicating that this saved state comes from a sesson which was performing DES encryption in
CBC mode; and possibly the DES key being used for encryption (see C_SetOper ationState
for more information on whether or not the key is present in the saved date).

If asesson is performing two cryptographic operations smultaneoudy (see Section 11.13), then
the cryptographic operations state of the sesson will contain al the necessary information to
restore both operations.

An attempt to save the cryptographic operations state of a sesson which does not currently
have some active saveable cryptographic operation(s) (encryption, decryption, digesting, Signing
without message recovery, verification without message recovery, or some lega combination of
two of these) should fail withthe error CKR_OPERATION_NOT INITIALIZED.

An atempt to save the cryptographic operations state of a sesson which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of various
reasons (certain necessary dtate information and/or key information can't leave the token, for
example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE,
CKR_ARGUMENTS BAD.

Example ssce C_SetOperationState.

Copyright © 1994-2001 RSA Security Inc.

162 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C_Set OperationState) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pOQOper ati onSt at e,
CK_ULONG ul Operati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

),

C_SetOperationState restores the cryptographic operations state of a sesson from a sring of
bytes obtaned with C_GetOperationState. hSession is the sesson’'s handle
pOperationSate points to the location holding the saved sate; ul OperationSatelen holdsthe
length of the saved dtate; hEncryptionKey holds a handle to the key which will be used for an
ongoing encryption or decryption operation in the restored sesson (or O if no encryption or
decryption key is needed, either because no such operation is ongoing in the stored session or
because dl the necessary key information is present in the saved state); hAuthenticationKey
holds a handle to the key which will be used for an ongoing sgnature, MACing, or verification
operation in the restored sesson (or O if no such key is needed, either because no such
operation isongoing in the stored session or because dl the necessary key information is present
in the saved dtate).

The state need not have been obtained from the same session (the “source sesson”) asiit is
being restored to (the “destination sesson’). However, the source sesson and destination
sesson should have a common sesson dtate €.9., CKS RW_USER_FUNCTIONS), and
should be with a common token. There is aso no guarantee that cryptographic operations state
may be carried across logins, or across different Cryptoki implementations.

If C_SetOperationState is supplied with aleged saved cryptographic operations state which it
can determineis not valid saved State (or is cryptographic operations state from a sesson with a
different sesson date, or is cryptographic operations Sate from a different token), it falls with
the error CKR_SAVED_STATE_INVALID.

Saved gate obtained from calsto C_GetOperationState may or may not contain informetion
about keys in use for ongoing cryptographic operations. If a saved cryptographic operations
gate has an ongoing encryption or decryption operation, and the key in use for the operation is
not saved in the date, then it must be supplied to C_SetOperationState in the
hEncryptionKey argument. If it is not, then C_SetOperationState will fall and return the
eror CKR_KEY_NEEDED. If the key in use for the operation is saved in the Sate, then it
can be supplied in the hEncryptionKey argument, but this is not required.

Smilaly, if a saved cryptographic operations date has an ongoing signature, MACing, or

verification operaion, and the key in use for the operation is not saved in the state, then it must
be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is not, then

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 163

C_SetOperationState will fail with the error CKR_KEY_NEEDED. |If the key in use for the
operation is saved in the gate, then it can be supplied in the hAuthenti cationKey argument, but
thisis not required.

If an irrelevant key is supplied to C_SetOperationState cdl (e.g., a nonzero key handle is
submitted in the hEncryptionKey argument, but the saved cryptographic operations State
supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_KEY _NOT_NEEDED.

If akey is aupplied as an argument to C_SetOperationState, and C_SetOper ationState can
somehow detect that this key was not the key being used in the source session for the supplied
cryptographic operations state (it may be able to detect this if the key or a hash of the key is
present in the saved date, for example), then C_SetOperationState fails with the error
CKR_KEY_CHANGED.

An agpplication can look a the CKF_RESTORE_KEY_NOT_NEEDED flag in theflagsfidd
of the CK_TOKEN_INFO field for a token to determine whether or not it needs to supply
key handles to C_SetOperationState cdls. If this flag is TRUE, then a cdl to
C_SetOperationState never needs a key handle to be supplied to it. If this flag is FALSE,
then a leest some of the time, C_SetOperationState requires a key handle, and so the
goplication should probably always pass in any rdevant key handles when restoring
cryptographic operations state to a sesson.

C_SetOperationState can successfully restore cryptographic operations date to a sesson
even if thet sesson has active cryptographic or object search operations when
C_SetOperationState is caled (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR _DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_KEY_CHANGED,
CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK_BYTE dat a3[] {0x10, OxOF, OxOE, 0xO0D, 0xO0C};
CK_BYTE pDi gest [20];

CK_ULONG ul Di gest Len;

CK_ RV rv;

Copyright © 1994-2001 RSA Security Inc.

164 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMechanism;
assert(rv == CKR_OK);

/* Start hashing */
rv = C _Di gestUpdat e(hSessi on, datal, sizeof(datal));
assert(rv == CKR_OK);

/* Find out how big the state m ght be */

rv = C_GetOperationState(hSession, NULL_PTR,
&ul St at eLen);

assert(rv == CKR_OK);

/* Allocate sone nenory and then get the state */
pState = (CK _BYTE_PTR) nmall oc(ul StatelLen);
rv = C_GetOperationState(hSession, pState,

&ul St at eLen);

/* Continue hashing */
rv = C_Di gestUpdat e(hSessi on, data2, sizeof(data2));
assert(rv == CKR_(K);

/* Restore state. No key handl es needed */

rv = C_Set OperationState(hSession, pState, ul StatelLen,
0, 0);

assert(rv == CKR_OK);

/* Continue hashing from where we saved state */
rv = C_Di gest Updat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_OK);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDi gest);
rv = C_Di gestFinal (hSession, pDigest, &ul Di gestlLen);
if (rv == CKR_OK) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 165

C _Login

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logi n) (
CK_SESSI ON_HANDLE hSessi on,
CK_USER _TYPE user Type,
CK_UTF8CHAR_PTR pPi n,

CK_ULONG ul Pi nLen

)

C _Login logs a user into a token. hSession is a sesson handle; user Type is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN. This standard dlows PIN
vaues to contain any valid UTF8 character, but the token may impose subset redtrictions.

Depending on the user type, if the call succeeds, each of the gpplication’s sessions will enter
ather the “R/W SO Functions’ date, the “R/W User Functions’ sate, or the “R/O User
Functions’ state.

If the token has a “protected authentication path’, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO beng
s, then that means that there is some way for a user to be authenticated to the token without
having the application send a PIN through the Cryptoki library. One such possibility is that the
user enters a PIN on a PINpad on the token itself, or on the dot device. Or the user might not
even use a PIN—authentication could be achieved by some fingerprint-reading device, for
example. To log into a token with a protected authentication path, the pPin parameter to
C_Login should be NULL_PTR. When C_Login returns, whatever authentication method
supported by the token will have been performed; a return value of CKR_OK means that the
user was successfully authenticated, and a return vaue of CKR_PIN_INCORRECT means
that the user was denied access.

If there are any active cryptographic or object finding operations in an gpplication’s sesson, and
then C_L ogin is successfully executed by that application, it may or may not be the case that
those operations are il active. Therefore, before logging in, any active operations should be
finished.

If the gpplication caling C_L ogin has a R/O sesson open with the token, then it will be unable
to log the SO into a session (see Section 6.6.7). An attempt to do this will result in the error
code CKR_SESSION_READ_ONLY_EXISTS.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS,
CKR_USER _ALREADY_LOGGED N,

Copyright © 1994-2001 RSA Security Inc.

166 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_USER_ANOTHER ALREADY LOGGED IN,
CKR_USER_PIN_NOT_INITIALIZED, CKR_USER TOO MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example see C_L ogout.

C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_HANDLE hSessi on
),

C_Logout logs auser out from atoken. hSession isthe sesson’s handle,

Depending on the current user type, if the cal succeeds, each of the gpplication’s sessons will
enter ether the “R/W Public Sesson” gtate or the “R/O Public Sesson” sate.

When C_Logout successfully executes, any of the gpplication’s handles to private objects
become invaid (even if auser islater logged back into the token, those handles remain invaid).
In addition, al private sesson objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session,
and then C_L ogout is successfully executed by that application, it may or may not be the case
that those operations are till active. Therefore, before logging out, any active operations should
be finished.

Return values; CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER NOT_LOGGED _IN.

Example
CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR userPIN] = {“MWPIN'};
CK_RV rv;

rv = C_Logi n(hSession, CKU USER, userPIN,
si zeof (userPIN));
if (rv == CKR_OK) {

'rv == C_Logout (hSessi on);
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 167

}
}

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additiond functions provided
specificaly for managing key objects are described in Section 11.14.

C_CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C CreateOnject) (
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phQbj ect

)

C_CreateObject creates a new object. hSession is the sesson’s handle; pTemplate pointsto
the object’s template; ulCount is the number of attributes in the template; phObject points to
the location that receives the new object’s handle.

If acdl to C_CreateObject cannot support the precise template supplied to it, it will fail and
return without cresting any object.

If C_CreateObject isused to create a key object, the key object will have its CKA_LOCAL
attribute set to FALSE. If that key object is a secret or private key then the new key will have
the CKA_ALWAYS SENSITIVE atribte st to FALSE, and the
CKA_NEVER_EXTRACTABLE éattribute set to FALSE.

Only session objects can be created during a read-only sesson. Only public objects can be
crested unless the norma user islogged in.

Return values CKR_ARGUMENTS BAD, CKR_ ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_DOMAIN_PARAMS INVALID, CKR_ FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR TEMPLATE INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED IN.

Copyright © 1994-2001 RSA Security Inc.

168 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_OBJECT_CLASS
dat aCl ass = CKO _DATA,
certificateClass = CKO_CERTI FI CATE
keyCl ass = CKO _PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK RSA;
CK _CHAR application[] = {“My Application”};
CK_BYTE dataVaIue[] = { I
CK_BYTE subj ect[] {. }
CK_BYTE id[] = {...},
CK_BYTE certificatevalue[] = {...};
CK_BYTE nodulus[] = {...};
CK_BYTE exponent[] = {...};
CK BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{ CKA_CLASS, &dataCl ass, sizeof(dataCl ass)},
{CKA _TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{ CKA _VALUE, dataVal ue, sizeof (dataVal ue)}
1
CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificateC ass,
sizeof (certificateCl ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificateVal ue,
si zeof (certificateVal ue)}
1

CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyCl ass, sizeof(keyCl ass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodulus)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}
1
CK_ RV rv;

/* Create a data object */

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 169

rv = C _Creat eObj ect (hSessi on, &dataTenpl ate, 4,
&hDat a) ;
if (rv == CKR_OK) {

}

/* Create a certificate object */
rv = C CreateObject(

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_OK) {

}

/* Create an RSA public key object */
rv = C_CreateObject(hSession, &keyTenplate, 5, &hKey);
if (rv == CKR_OK) {

}
C_CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyObj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phNewObj ect

),

C_CopyObject copies an object, creating anew object for the copy. hSession isthe sesson’s
handle; hObject is the object’s handle; pTemplate points to the template for the new object;
ulCount is the number of attributes in the template; phNewObject points to the location that
receives the handle for the copy of the object.

The template may specify new vaues for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key’'s CKA_EXTRACTABLE
attribute may be changed from TRUE to FALSE, but not the other way around. If this change
is made, the new key's CKA_NEVER_EXTRACTABLE dtribute will have the vaue
FALSE. Smilarly, the template may specify that the new key’'s CKA_SENSITIVE attribute
be TRUE; the new key will have the same vdue for its CKA_ALWAYS SENSITIVE
atribute as the origind key). It may dso specify new vdues of the CKA_TOKEN and

Copyright © 1994-2001 RSA Security Inc.

170 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the template
specifies a value of an atribute which is incompetible with other exigting atributes of the object,
the call faillswith the return code CKR_TEMPLATE _INCONSISTENT.

If acdl to C_CopyObject cannot support the precise template supplied to it, it will fall and
return without creating any object.

Only session objects can be created during a read-only sesson. Only public objects can be
created unless the normd user islogged in.

Return values CKR_ARGUMENTS BAD, CKR ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE _VALUE INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCONSISTENT,

CKR TOKEN_WRITE_PROTECTED, CKR_USER NOT_LOGGED IN.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] = {...};
CK_BYTE fal se = FALSE;
CK_BYTE true = TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyCl ass, sizeof(keyCl ass)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &fal se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA_VALUE, keyVal ue, sizeof (keyVal ue)}
1
CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)}
} B

Ci(_RV rv,

/* Create a DES secret key session object */

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 171

C Createbj ect (hSessi on, &keyTenplate, 5, &hKey);
rv == CKR_OK) {

Create a copy which is a token object */

v = C _CopyObj ect (hSession, hKey, ©Tenpl ate, 1,
&hNewKey) ;

rv
i f

/
r

}

C_DestroyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C DestroyOnject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQOnhj ect

)

C_DestroyObject destroys an object. hSession is the sesson’s handle; and hObject isthe
object’s handle.

Only session objects can be destroyed during a read-only sesson. Only public objects can be
destroyed unless the norma user islogged in.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR _DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example see C_GetObjectSize.

C_GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Obj ect Si ze) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQnbj ect,

CK_ULONG PTR pul Si ze

)

C_GetObjectSize gets the sze of an object in bytes. hSession is the sesson’s handle;
hObject is the object’s handle; pul Sze points to the location that receives the sze in bytes of
the object.

Cryptoki does not specify what the precise meaning of an object’'ssizeis. Intuitively, it is some
measure of how much token memory the object takes up. If an gpplication deletes (say) a

Copyright © 1994-2001 RSA Security Inc.

172 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

private object of Sze S, it might be reasonable to assume that the ulFreePrivateMemory fidd

of thetoken's CK_TOKEN_INFO gructure increases by approximatdy S.

Return values: CKR_ARGUMENTS _BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.
Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_OBJECT _CLASS dat aCl ass = CKO _DATA,

CK _CHAR application[] = {“My Application”};
CK_BYTE datavalue[] = {...};

CK_BYTE value[] = {...};

CK_BYTE true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{ CKA CLASS, &dataCl ass, sizeof(dataClass)},
{CKA TOKEN, &true, sizeof(true)},

{ CKA_APPLI CATI ON, application, sizeof(application)},

{CKA_VALUE, val ue, sizeof(value)}
1
CK_ULONG ul Si ze;
CK_ RV rv;

rv = C _CreateObj ect (hSession, &tenplate, 4, &hObject);

if (rv == CKR_OK) {
rv = C_Get ObjectSize(hSession, hObject, &ul Size);
if (rv 1= CKR_| NFORMATI ON_SENSI TI VE) {

rv = C DestroyObject (hSession, hObject);

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 173

C_GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C GetAttri buteVal ue)(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_GetAttributeValue obtains the vaue of one or more attributes of an object. hSession is
the sesson’s handle, hObject is the object’s handle; pTemplate points to a template that
specifies which atribute values are to be obtained, and receives the atribute vaues, ulCount is
the number of attributes in the template.

For each (type, pValue, ulValuelen) triple in the template, C_GetAttributeValue performs
the following dgorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot
be reveded because the object is sengtive or unextractable, then the ulValuelLen fidd in
that triple is modified to hold the value -1 (i.e., when it is cast to aCK_LONG, it holds-1).

2. Otherwisg, if the specified atribute for the object is invaid (the object does not possess
such an attribute), then the ulValuelLen fidd in thet triple is modified to hold the value - 1.

3. Otherwisg, if the pValue fidd has the vaue NULL_PTR, then the ulValuelLen fidd is
modified to hold the exact length of the specified attribute for the object.

4. Otherwisg, if the length specified in ulValuelLen is large enough to hold the vaue of the
specified attribute for the object, then that attribute is copied into the buffer located at
pValue, and the ulValueLen field is modified to hold the exact length of the attribute.

5. Othewise, the ulVValuelen fidd is modified to hold the value - 1.

If case 1 applies to any of the requested attributes, then the call should return the vaue
CKR_ATTRIBUTE_SENSITIVE. If case 2 gppliesto any of the requested attributes, then the
cdl should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 appliesto any of
the requested attributes, then the call should return the value CKR_BUFFER_TOO_SMALL.
Asusud, if more than one of these error codes is applicable, Cryptoki may return any of them.
Only if none of them gppliesto any of the requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO_SMALL do not denote
true errors for C_GetAttributeValue. If acdl to C_GetAttributeValue returns any of these
three values, then the cadl must nonetheless have processed every atribute in the template
supplied to C_GetAttributeValue. Each atribute in the template whose vaue can be

Copyright © 1994-2001 RSA Security Inc.

174 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

reurned by the cal to C_GetAttributeValue will be retuned by the cdl to
C_GetAttributeValue.

Return values CKR_ARGUMENTS BAD, CKR ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenplate[] = {

{ CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

b
CK RV rv;

rv = C GetAttributeVal ue(hSession, hObject, &t enplate,
2);
if (rv == CKR_OK) {
pModul us = (CK_BYTE_PTR)
mal | oc(tenpl at e[0] . ul Val ueLen) ;
tenpl at e[0] . pVal ue = pMbdul us;
/* tenpl ate[O] .ul Val ueLen was set by
C GetAttributeVvVal ue */

pExponent = (CK_BYTE_PTR)
mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenplate[1].ul Val ueLen was set by
C GetAttributeVal ue */

rv = C_ GetAttributeVal ue(hSessi on, hObject,

& enpl ate, 2);
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 175

free(pModul us);
free(pExponent);

}
C_SetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C_Set Attri buteVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_SetAttributeValue modifies the value of one or more atributes of an object. hSession is
the sesson’s handle, hObject is the object’s handle; pTemplate points to a template that
gpecifies which attribute values are to be modified and their new vaues;, ulCount is the number
of attributes in the template.

Only sesson objects can be modified during a read-only sesson.

The template may specify new values for any atributes of the object that can be modified. If
the template pecifies a value of an atribute which is incompatible with other existing attributes
of the object, the cdl fails with the return code CKR_TEMPLATE INCONSISTENT.

Not al attributes can be modified; see Section 9.7 for more detalls.

Return values CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE VALUE_INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_OBJECT _HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_ TOKEN_WRITE_PROTECTED,
CKR_USER NOT_LOGGED _|IN.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK_UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, | abel, sizeof(label)-1
}.

Ci(_RV rv;

Copyright © 1994-2001 RSA Security Inc.

176 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

.rv = C_Set Attri buteVal ue(hSessi on, hObject, &tenplate,
1);
if (rv == CKR_OK) {

}
C_FindObjectd nit

CK_DEFI NE_FUNCTI ON(CK_RV, C _Fi ndObj ectslnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_FindObjectd nit initializes a search for token and sesson objects that match a template.
hSession is the sesson’'s handle, pTemplate points to a search template that specifies the
attribute values to match; ulCount is the number of attributes in the search template. The
matching criterion is an exact byte-for-byte match with al attributes in the template. To find dl
objects, set ulCount to 0.

After cdling C_FindODbjectsinit, the gpplication may cdl C_FindObjects one or more times
to obtan handles for objects matching the template, and then eventudly cal
C_FindObjectsFinal to finish the active search operation. At most one search operation may
be active & agiven timein agiven sesson.

The object search operation will only find objects that the sesson can view. For example, an
object search in an “R/W Public Sesson” will not find any private objects (even if one of the
atributesin the search template specifies that the search isfor private objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by the
search operation. Note that this means that, under these circumstances, the search operation
may return invaid object handles.

Even though C_FindObjectd nit can return the values CKR_ATTRIBUTE_TYPE _INVALID
and CKR_ATTRIBUTE_VALUE_INVALID, itisnot required to. For example, if itisgvena
search template with nonexigent atributes in it, it can reun
CKR_ATTRIBUTE _TYPE_INVALID, or it can initidize a search operation which will match
no objects and return CKR_OK.

Return values CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 177

CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example see C_FindObjectsFinal.

C_FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phQnbj ect,

CK_ULONG ul MaxObj ect Count
CK_ULONG_PTR pul Obj ect Count

)

C_FindODbjects continues a search for token and sesson objects that match a template,
obtaining additiona object handles. hSession is the sesson’s handle; phObject points to the
location that receives the list (array) of additional object handles, ulMaxObjectCount is the
maximum number of doject handles to be returned; pul ObjectCount points to the location that
receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pul ObjectCount
points to receives the value 0.

The search mugt have been initidized with C_FindObj ectdl nit.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_FindObjectsFinal.

C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect sFi nal) (
CK_SESSI ON_HANDLE hSessi on

)

C_FindObjectsFinal terminates a search for token and sesson objects. hSession is the
sesson’s handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

Copyright © 1994-2001 RSA Security Inc.

178 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK_ULONG ul Obj ect Count ;

CK RV rv;

rv = C_FindObjectslnit(hSession, NULL PTR, 0);
assert(rv == CKR_OK);
while (1) {
rv = C_FindObj ects(hSession, &Object, 1,
&ul Obj ect Count) ;
if (rv I'= CKR.OK || ul ObjectCount == 0)
br eak;

}

rv = C_FindObjectsFinal (hSession);
assert(rv == CKR_XK);

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

C_Encryptinit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptlnit initidizes an encryption operation. hSession is the sesson’s handle

pMechanism points to the encryption mechanism; hKey isthe handle of the encryption key.

The CKA_ENCRYPT atribute of the encryption key, which indicates whether the key

supports encryption, must be TRUE.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 179

After cdling C_Encryptlnit, the application can either cal C_Encrypt to encrypt data in a
sngle part; or cal C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to
encrypt datain multiple parts. The encryption operation is active until the gpplication uses acdl
to C_Encrypt or C_EncryptFinal to actually obtain thefind piece of ciphertext. To process
additiond data (in sngle or multiple parts), the gpplication must cal C_EncryptlInit agan.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example s.e C_EncryptFinal.

C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

)

C_Encrypt encrypts sngle-part data. hSession is the sesson’s handle; pData points to the
data; ulDatalen is the length in bytes of the data; pEncryptedData points to the location that
receives the encrypted data; pul EncryptedDatalen points to the location that holds the length
in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initidized with C_Encryptlnit. A call to C_Encrypt
dways teminates the active encryption opeation unless it returns
CKR_BUFFER TOO SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be caled after
C_Encryptlnit without intervening C_EncryptUpdate cdls.

For some encryption mechanisms, the input plaintext data has certain length congtraints (either
because the mechanism can only encrypt eatively short pieces of plaintext, or because the

Copyright © 1994-2001 RSA Security Inc.

180 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

mechanism’s input data must congst of an integral number of blocks). If these condraints are
not satisfied, then C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plantext and ciphertext can be in the same place, i.e, it is OK if pData and
pEncryptedData point to the same location.

For most mechaniams, C Encrypt is equivdent to a sequence of C_EncryptUpdate
operationsfollowed by C_EncryptFinal.

Return values. CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_EncryptFinal for an example of amilar functions.

C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

),

C_EncryptUpdate continues a multiple-part encryption operation, processing another data
part. hSession is the sesson’s handle; pPart points to the data part; ulPartLen isthe length of
the data part; pEncryptedPart points to the location that receives the encrypted data part;
pul EncryptedPartLen points to the location that holds the length in bytes of the encrypted data
part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing outpt.

The encryption operation must have been initidized with C_Encryptinit. Thisfunction may be
cdled any number of timesin successon. A cdl to C_EncryptUpdate which resultsin an error
other than CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pPart and
pEncryptedPart point to the same location.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 181

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_EncryptFinal.

C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt Final) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG_PTR pul Last Encrypt edPart Len

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession isthe sesson’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;

pul LastEncryptedPartLen points to the location that holds the length of the last encrypted data
part.

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initidized with C_Encryptinit. A cdl to
C _EncryptFinal dways terminates the active encryption operation unless it returns
CKR_BUFFER TOO_SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechaniams, the input plaintext data has certain length
congraints, because the mechanism’s input deta must consst of an integra number of blocks. If
these condraints are not sdidfied, then C_EncryptFinal will fal with return code
CKR_DATA_LEN_RANGE.

Return values CKR_ARGUMENTS BAD, CKR BUFFER TOO_SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR DATA_LEN_ RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

Copyright © 1994-2001 RSA Security Inc.

182 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne PLAI NTEXT_BUF_SZ 200
#define Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE i v[8];
CK_MECHANI SM nechani sm = {

CKM DES CBC PAD, iv, sizeof(iv)
} .

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] :

CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Encrypt edDat allen;

CK_ULONG ul Encrypt edDat a2Len;

CK_ULONG ul Encrypt edDat a3Len;

CK RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT_BUF_SZ-firstPi eceLen;
rv = C_Encryptinit(hSession, &mechanism hKey);
if (rv == CKR_OK) {
/* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encryptedDat a);
rv = C_Encrypt Updat e(
hSessi on,
&data[0], firstPiecelLen,
&encrypt edDat a[0], &ul Encrypt edDat allLen);
if (rv !'= CKR.OK) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[firstPieceLen], secondPi ecelLen
&encrypt edDat a[ul Encrypt edDat allLen],
&ul Encr ypt edDat a2Len) ;
if (rv 1= CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 183

}

/[* Get last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encrypt edDat alLen-
ul Encrypt edDat a2Len;
rv = C_EncryptFinal (
hSessi on,

&encr ypt edDat a] ul Encr ypt edDat alLen+ul Encr ypt edD
at a2lLen],

&ul Encrypt edDat a3Len) ;
if (rv = CKR. OK) {

}

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C _Decryptlnit initidizes a decryption operation. hSession is the sesson’s handle
pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.

The CKA DECRYPT atribute of the decryption key, which indicates whether the key
supports decryption, must be TRUE.

After cdling C_Decryptlnit, the gpplication can either cdl C_Decrypt to decrypt data in a
gngle pat; or cal C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to
decrypt datain multiple parts. The decryption operation is active until the gpplication uses acdll
to C_Decrypt or C_DecryptFinal to actually obtain the fina piece of plaintext. To process
additiond data (in single or multiple parts), the gpplication must cal C_Decryptlnit again

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

Copyright © 1994-2001 RSA Security Inc.

184 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example see C_DecryptFinal.

C_Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Decrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG_PTR pul Dat aLen

)

C_Decrypt decrypts encrypted data in a sngle pat. hSession is the sesson’s handle
pEncryptedData points to the encrypted data; ulEncryptedDatalen is the length of the
encrypted data; pData points to the location that receives the recovered data; pulDatal.en
points to the location that holds the length of the recovered data.

C_Decrypt usesthe convention described in Section 11.2 on producing output.

The decryption operation mugt have been initidized with C_Decryptinit. A cal to C_Decrypt
dways teminates the active decryption operation unless it returns
CKR_BUFFER TOO SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

C _Decrypt can not be used to terminate a multi-part operation, and must be caled after
C_Decryptlnit without intervening C_DecryptUpdate cdls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and
pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an ingppropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivadent to a sequence of C_DecryptUpdate
operationsfollowed by C_DecryptFinal.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 185

Retun values. CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DecryptFinal for an example of smilar functions.

C_DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Decrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul Part Len

)

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the sesson’s handle; pEncryptedPart points to the encrypted
data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the
location that receives the recovered data part; pul PartLen points to the location that holds the
length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initidized with C_Decryptinit. Thisfunction may be
cdled any number of times in succession. A cal to C_DecryptUpdate which results in an
error other than CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and
pPart point to the same location.

Return values; CKR_ARGUMENTS BAD, CKR_BUFFER TOO_SMALL,
CKR_CRYPTOKI_NOT INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA _LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Copyright © 1994-2001 RSA Security Inc.

186 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example See C_DecryptFinal.

C_DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _DecryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR plLast Part,
CK_ULONG_PTR pul Last Part Len

),

C_DecryptFinal finishesamultiple-part decryption operation. hSession is the sesson’s handle;
pLastPart points to the location that receives the last recovered data part, if any;
pul LastPartLen pointsto the location that holds the length of the last recovered data part.

C_DecryptFinal usesthe convention described in Section 11.2 on producing outpui.

The decryption operation must have been initidized with C_Decryptinit. A cdl to
C _DecryptFinal adways terminates the active decryption operation unless it returns
CKR_BUFFER TOO SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an ingppropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

#defi ne Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPi ecelLen,
secondEncrypt edPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE i v[8];
CK_MECHANI SM nechani sm = {
CKM DES CBC PAD, iv, sizeof(iv)

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 187

1
CK_BYTE dat a[PLAI NTEXT_BUF_SZ] :

CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len
CK_RV rv;

firstEncryptedPi eceLen = 90;
secondEncrypt edPi eceLen = Cl PHERTEXT_BUF_SZ-
firstEncryptedPi ecelLen;
rv = C Decryptlnit(hSession, &mrechani sm hKey);
if (rv == CKR_OK) {
/* Decrypt first piece */
ul Dat alLen = si zeof (data);
rv = C _Decrypt Updat e(
hSessi on,
&encryptedDat a[O], firstEncryptedPi eceLen
&dat a[0], &ul DatallLen);
if (rv 1= CKR_OK) {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (data)-ul Dat allLen;
rv = C_Decrypt Updat e(
hSessi on,
&encrypt edDat a[first Encrypt edPi eceLen],
secondEncrypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Dat a2Len);
if (rv I'= CKR._OK) {

}

/* Get last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat alLen- ul Dat a2Len;
rv = C_DecryptFinal (
hSessi on,
&dat a[ul Dat alLen+ul Dat a2Len], &ul Dat a3Len);
if (rv 1= CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

188 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

C_DigestInit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm

)

C_DigestInit initidizes a message-digesting operaion. hSession is the sesson’s handle
pMechanism points to the digesting mechanism.

After cdling C_Digestlnit, the gpplication can ether cal C_Digest to digest datain asingle
part; or cal C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data
in multiple parts. The message-digesting operation is active until the application uses a cal to
C_Digest or C_DigestFinal to actually obtain the find piece of ciphertext. To process
additiond data (in sngle or multiple parts), the application must call C_Digestlnit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example see C_DigestFinal.

C_Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest) (

CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

) ;

C_Digest digests data in a single part. hSession is the sesson’s handle, pData points to the
data; ulDatalen is the length of the data; pDigest points to the location that receives the
message digest; pul DigestLen points to the location that holds the length of the message digest.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 189

C_Digest usesthe convention described in Section 11.2 on producing output.

The digest operation must have been initidized with C_Digestinit. A cdl to C_Digest dways
terminates the active digest operation unless it returns CKR_BUFFER _TOO SMALL orisa
successful cdl (i.e., one which returns CKR_OK) to determine the length of the buffer needed
to hold the message digest.

C_Digest can not be used to terminate a multi-part operation, and must be cdled after
C_DigestInit without intervening C_DigestUpdate cdls.

The input data and digest output can be in the same place, i.e., it isOK if pData and pDigest
point to the same location.

C_Digest is equivdent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

Return vaues CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of smilar functions.

C_DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

),

C_DigestUpdate continues a multiple-part message-digesting operation, processing another
data part. hSession is the sesson’'s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The message-digesting operation must have been initidized with C_Digestlnit. Cdls to this
function and C_DigestK ey may be interspersed any number of timesin any order. A cdl to
C_DigestUpdate which resultsin an error terminates the current digest operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

Copyright © 1994-2001 RSA Security Inc.

190 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_DigestFinal.

C_DigestKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Di gest Key) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

)

C_DigestK ey continues a multiple- part message-digesting operation by digesting the vaue of a
secret key. hSession is the sesson’s handle; hKey is the handle of the secret key to be
digested.

The message-digesting operation must have been initidized with C_DigestInit. Cdls to this
function and C_DigestUpdate may be interspersed any number of timesin any order.

If the value of the supplied key cannot be digested purdly for some reason related to its length,
C_DigestK ey should return the error code CKR_KEY_SIZE RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_DigestFinal.

C_DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C Di gest Fi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

) ;

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message
digest. hSession isthe sesson’s handle; pDigest points to the location that receives the message
digest; pul DigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 11.2 on producing output.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 191

The digest operation must have been initidized with C_Digestinit. A cdl to C_DigestFinal
aways terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful cal (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the message digest.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM nmechani sm = {
CKM_MD5, NULL_PTR, O

} B

CK_BYTE data[] = {...}:
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;
CK RV rv;

irv = C _Digestlnit(hSession, &mrechanism;
if (rv = CKR_OK) {

}

rv = C_Di gest Updat e(hSessi on, data, sizeof(data));
if (rv I'= CKR.OK) {

}

rv = C_Di gest Key(hSessi on, hKey);
if (rv I'= CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

192 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ul Di gestLen = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ul Di gestlLen);

11.11 Signing and MACing functions

Cryptoki provides the following functions for Sgning data (for the purposes of Cryptoki, these
operations aso encompass message authentication codes):

C_Signinit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Signlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Signinit intidizes a Sgnature operation, where the signature is an appendix to the data.
hSession is the sesson’s handle; pMechanism points to the Sgnature mechanism; hKey isthe
handle of the Sgnature key.

The CKA_SIGN dtribute of the sgnature key, which indicates whether the key supports
sgnatures with gppendix, must be TRUE.

After cdling C_Signinit, the gpplication can ether cal C_Sign to Sgn in asingle pat; or cdl
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts.
The sgnature operation is active until the application uses acdl to C_Sign or C_SignFinal to
actually obtain the signature. To process additiond deta (in sngle or multiple parts), the
goplication must cal C_Signlnit again.

Return values CKR_ARGUMENTS_BAD, CKR_CRYPTOKI|_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_FUNCTION_NOT PERMITTED,CKR KEY HANDLE_INVALID,
CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example see C_SignFinal.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 193

C_Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gn) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ur eLen

),

C_Sign sgns data in a single part, where the signature is an appendix to the data. hSession is
the sesson’s handle; pData points to the data; ulDatalen isthe length of the data; pSgnature
points to the location that receives the signature; pul Sgnaturelen points to the location that
holds the length of the Sgnature.

C_Sign uses the convention described in Section 11.2 on producing outpt.

The sgning operation must have been initidized with C_Signinit. A cdl to C_Sign dways
terminates the active signing operation unless it returns CKR_BUFFER TOO SMALL orisa
successful cdl (i.e., one which returns CKR_OK) to determine the length of the buffer needed
to hold the signature.

C_Sign can not be used to terminate a multi-part operation, and must be caled after
C_Signlnit without intervening C_SignUpdate cdls.

For most mechanisms, C_Sign is equivdent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,

CKR DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_SignFinal for an example of amilar functions.

Copyright © 1994-2001 RSA Security Inc.

194 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul Part Len

)

C_SignUpdate continues a multiple-part signature operation, processing another data part.
hSession is the sesson’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The sgnature operation must have been initidized with C_Signinit. This function may be caled
any number of times in successon. A cdl to C_SignUpdate which results in an error
terminates the current Sgnature operation.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example seeC_SignFinal.

C_SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnFi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG _PTR pul Si gnat urelLen

)

C_SignFinal finishes a multiple-part Sgnature operation, returning the sgnature. hSession isthe
sesson’'s handle; pSignatur e points to the location that receives the signature; pul Sgnaturelen
points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 11.2 on producing outpuit.
The sgning operation must have been initidized with C_Signinit. A cdl to C_SignFinal
adways terminates the active sgning operation unlessiit returns CKR_BUFFER_ TOO _SMALL

or is a successful cal (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the signature.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_ DATA_LEN_RANGE,

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 195

CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM mechani sm = {

CKM_DES_MAC, NULL_PTR, O
} .

CK_BYTE data[] = {...};
CK_BYTE mac[4] ;
CK_ULONG ul MacLen;
CK_RV rv;

.rv = C_Signlnit(hSession, &mechanism hKey);
if (rv == CKR_OK) {
rv = C_SignUpdat e(hSessi on, data, sizeof(data));

ul MacLen = si zeof (mac);
rv = C_SignFinal (hSessi on, mac, &ul MacLen);

}

C_SignRecover I nit

CK_DEFI NE_FUNCTI ON(CK_RV, C _Si gnRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_SignRecover I nit initidizes a signature operation, where the data can be recovered from the
ggnature. hSession is the sesson’s handle; pMechanism points to the structure that specifies
the sgnature mechanism; hKey is the handle of the Sgnature key.

The CKA_SIGN_RECOVER attribute of the sgnature key, which indicates whether the key
supports signatures where the data can be recovered from the signature, must be TRUE.

Copyright © 1994-2001 RSA Security Inc.

196 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After cdling C_SignRecover I nit, the application may cdl C_SignRecover to 9gninasngle
part. The sgnature operation is active until the application uses a cal to C_SignRecover to
actually obtain the sgnature. To process additiond data in a Sngle part, the gpplication must
cdl C_SignRecover|nit agan.

Return values CKR_ ARGUMENTS BAD, CKR_CRYPTOKI|_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE INVALID,
CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _|IN.

Example see C_SignRecover.

C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ur eLen

),

C_SignRecover signs data in a single operation, where the data can be recovered from the
dggnature. hSession is the sesson’s handle; pData points to the data; uLDatalen isthe length
of the data; pSignature points to the location that receives the signature; pul Sgnaturelen
points to the location that holds the length of the Sgnature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The dgning operaion must have been initidized with C_SignRecoverinit. A cdl to
C_SignRecover dways teminates the active dgning operaion unless it returns
CKR_BUFFER _TOO SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the signature.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,

CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 197

CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nechani sm = {

CKM_RSA 9796, NULL_PTR, O
} B

CK _BYTE data[] = {...};
CK_BYTE signature[128];
CK_ULONG ul Si gnat ur eLen;
CK_ RV rv;

rv = C_SignRecoverlnit(hSession, &wmechanism hKey);
if (rv == CKR_OK) {
ul Si gnatureLen = sizeof (si gnature);
rv = C_SignRecover (
hSessi on, data, sizeof(data), signature,
&ul Si gnat urelLen) ;
if (rv == CKR_OK) {

}
}

11.12 Functionsfor verifying signaturesand MACs

Cryptoki provides the following functions for verifying Sgnatures on data (for the purposes of
Cryptoki, these operations also encompass message authentication codes):

C_Veifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Verifylnit initidizes a verification operation, where the Sgnature is an appendix to the data.
hSession is the sesson’'s handle; pMechanism points to the structure that specifies the
verification mechanism; hKey isthe handle of the verification key.

Copyright © 1994-2001 RSA Security Inc.

198 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_VERIFY dtribute of the verification key, which indicates whether the key supports
verification where the Signature is an gppendix to the data, must be TRUE.

After cdling C_Verifylnit, the gpplication can ether cdl C_Verify to verify asgnature on data
in adngle pat; or cdl C_VerifyUpdate one or more times, followed by C_VerifyFinal, to
verify a dgnature on daa in multiple parts. The verification operdion is active until the
goplication cdls C_Verify or C_VerifyFinal. To process additiond data (in single or multiple
parts), the gpplication must cal C_Verifylnit agan.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example s2e C_VerifyFinal.

C Verify

CK_DEFI NE_FUNCTI ON(CK_RV, C_Verify)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C_Verify veifies a Sgnature in a Sngle-part operation, where the signature is an gppendix to
the data. hSession is the session’s handle; pData pointsto the data; ulDatalen isthe length of
the data; pSgnature points to the Sgnature; ul Sgnaturelen isthe length of the sgnature.

The verification operation must have been initidized with C_Verifylnit. A cdl to C Verify
aways terminates the active verification operation.

A successful cdl to C_Verify should return either the value CKR_OK (indicating that the
supplied sgnature is vaid) or CKR_SIGNATURE _INVALID (indicating that the supplied
sgnaure isinvaid). If the Sgnature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
sSgning operation is terminated.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 199

C_Verify can not be used to terminate a multi-part operation, and must be caled after
C_Verifylnit without intervening C_VerifyUpdate cdls.

For most mechanisms, C_Verify is equivdent to a sequence of C_VerifyUpdate operations
followed by C_VerifyFinal.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR _DATA_INVALID, CKR DATA_LEN_RANGE, CKR DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE LEN_RANGE.

Example: see C_VerifyFinal for an example of amilar functions.

C_VerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Veri fyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

),

C_VerifyUpdate continues a multiple-part verification operation, processing another data part.
hSession is the sesson’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The verification operation must have been initidized with C_Verifylnit. This function may be
cdled any number of timesin successon. A cdl to C_VerifyUpdate which resultsin an error
terminates the current verification operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR _DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_VerifyFinal.

Copyright © 1994-2001 RSA Security Inc.

200 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_VerifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession
is the session’'s handle; pSignature points to the signature; ulSgnaturelen is the length of the
sggnature.

The verificaion operation must have been initidized with C Verifylnit. A cdl to
C_VeifyFinal dwaysterminates the active verification operation.

A successful cdl to C_VerifyFinal should return ether the value CKR_OK (indicating that the
supplied sgnature is vaid) or CKR_SIGNATURE_INVALID (ndicaing thet the supplied
sgnaure isinvaid). If the dgnature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
verifying operation is terminated.

Retunvalues CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nechani sm = {

CKM_DES_MAC, NULL_PTR, O
} .

CK_BYTE data[] = {...};
CK_BYTE mac| 4] ;
CK_RV rv;

.rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_OK) {
rv = C VerifyUpdat e(hSession, data, sizeof(data));

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 201

'rv = C VerifyFinal (hSession, mac, sizeof(mc));

}

C_VeifyRecover|nit

CK_DEFI NE_FUNCTI ON(CK_RV, C _VerifyRecoverlnit)/(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM _PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VeifyRecover|nit initidizes a Sgnature verification operation, where the data is recovered
from the sgnature. hSession is the sesson’s handle; pMechanism points to the structure that
specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER atribute of the verification key, which indicates whether the
key supports verification where the data is recovered from the signature, must be TRUE.

After cdling C_VerifyRecoverInit, the gpplication may cal C_VerifyRecover to verify a
ggnature on datain asingle part. The verification operation is active until the application uses a
cdl to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Exanple sse C_VerifyRecover.

Copyright © 1994-2001 RSA Security Inc.

202 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_VerifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen,
CK_BYTE_PTR pDat a,
CK_ULONG_PTR pul Dat aLen

),

C_VerifyRecover verifies adggnaure in a Sngle-part operation, where the data is recovered
from the ggnaiure. hSession is the sesson’s handle, pSignature points to the signature;
ulSgnaturelen is the length of the Sgnature; pData points to the location that receives the
recovered data; and pulDatalen points to the location that holds the length of the recovered
data

C_VerifyRecover uses the convention described in Section 11.2 on producing outpui.

The verification operaion must have been initidized with C_VerifyRecoverinit. A cdl to
C_VeifyRecover dways teminates the active verification operation unless it returns
CKR_BUFFER TOO SMALL or is a successful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the recovered data.

A successful cdl to C_VerifyRecover should return ether the vdlue CKR_OK (indicating that
the supplied signature is vaid) or CKR_SIGNATURE _INVALID (indicating that the supplied
sggnature is invdid). If the Sgnature can be seen to be invdid purdy on the basis of its length,
then CKR_SIGNATURE_LEN RANGE should be returned. The return codes
CKR_SIGNATURE_INVALID and CKR_SIGNATURE LEN _RANGE have a higher
priority than the return code CKR_BUFFER _TOO SMALL, i.e,if C_VerifyRecover is
supplied with an invadid signature, it will never return CKR_BUFFER TOO_SMALL.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,

CKR DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID.

Example

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM _RSA 9796, NULL_PTR, O

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 203

1
CK_BYTE data[] = {...};
CK_ULONG ul Dat aLen;
CK_BYTE signature[128];
CK_RV rv;

rv = C_VerifyRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_OK) {
ul Dat aLen = si zeof (data);
rv = C VerifyRecover (
hSessi on, signature, sizeof(signature), data,
&ul Dat aLen) ;

}
11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to peform two cryptographic operations
“dmultaneoudy” within a sesson. These functions are provided so as to avoid unnecessarily
passing data back and forth to and from a token.

C_DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing
another data part. hSession is the sesson’s handle; pPart points to the data part; ulPartLen is
the length of the data part; pEncryptedPart pointsto the location that receives the digested and
encrypted data part; pul EncryptedPartLen points to the location that holds the length of the
encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing output.
If a C_DigestEncryptUpdate cal does not produce encrypted output (because an error
occurs, or because pEncryptedPart has the vadue NULL _PTR, or because

Copyright © 1994-2001 RSA Security Inc.

204 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

pul EncryptedPartLen is too smdl to hold the entire encrypted part output), then no plaintext is
passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initidized with
C_Digestlnit and C_Encryptinit, respectively). This function may be cdled any number of
times in successon, and may be interspersed with C_DigestUpdate, C_DigestK ey, and
C EncryptUpdate cdls (it would be somewhat unusud to intersperse cdls to
C_DigestEncryptUpdate with cdisto C_DigestK ey, however).

Return values CKR_ARGUMENTS BAD, CKR_BUFFER TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v[8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

} .

Ci(_I\/ECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
}.

CK_BYTE encr ypt edDat a[BUF_SZ] ;
CK_ULONG ul Encrypt edDat aLen;
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_ RV rv;

int i;

menmset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C_Encryptlnit(hSession, &encryptionMechani sm
hKey) ;

if (rv I'= CKR.OK) {

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 205

}
rv = C Digestlnit(hSession, &digestMechanisn;
if (rv = CKR_OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SzZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The last portion of the buffer needs to be handl ed
with
* gseparate calls to deal with padding issues in ECB
node
*/

/* First, conplete the digest on the buffer */
rv = C_Di gest Updat e(hSessi on, &data[BUF_SZ*2], 5);

ﬁlDigestLen = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ul Di gestlLen);

/* Then, pad last part with 3 0x00 bytes, and conplete
encryption */

Copyright © 1994-2001 RSA Security Inc.

206 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

for(i=0;i<3;i++)
dat a[((BUF_SZ*2) +5) +i] = 0x00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get |last piece of ciphertext (should have |length O,
here) */

ul Encr ypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFinal (hSessi on, encryptedDat a,
&ul Encr ypt edDat aLen) ;

C_DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG _PTR pul PartLen

)

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. hSession is the sesson’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data part;
pPart points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing output.
If a C_DecryptDigestUpdate cal does not produce decrypted output (because an error
occurs, or because pPart has the vdue NULL_PTR, or because pulPartLen istoo smdl to
hold the entire decrypted part output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations must both be active (they must have been initidized with
C_Decryptinit and C_DigestInit, respectively). This function may be cdled any number of
times in succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 207

C_DigestKey cdls (it would be somewhat unusud to intersperse cdls to
C_DigestEncryptUpdate with cdlsto C_DigestK ey, however).

Use of C_DecryptDigestUpdate involves a pipdining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is
because when C_DigestEncryptUpdate is cdled, precisey the same input is passed to both
the active digesting operation and the active encryption operation; however, when
C_DecryptDigestUpdate is cdled, the input passed to the active digesting operation is the
output of the active decryption operation. This issue comes up only when the mechanism used
for decryption performs padding.

In particular, envison a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consder an gpplication which will
smultaneoudy decrypt this ciphertext and digest the origind plaintext thereby obtained.

After initidizing decryption and digesing operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns
exactly 16 bytes of plaintext, since at this point, Cryptoki doesn't know if there's more
ciphertext coming, or if the last block of ciphertext held any padding. These 16 bytes of
plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the gpplication cals C_DecryptFinal. This tells Cryptoki
that thereé's no more ciphertext coming, and the cdl returns the last 2 bytes of plaintext.
However, since the active decryption and digesting operations are linked only through the
C_DecryptDigestUpdate cdl, these 2 bytes of plaintext are not passed on to be digested.

A cdl to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of
the plaintext, not the message digest of the entire plaintext. It is crucid that, before
C_DigestFinal is cdled, the last 2 bytes of plaintext get passed into the active digesting
operation viaaC_DigestUpdate cal.

Because of this, it is critica that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the
active digesting operation. Extreme caution is warranted when using a padded decryption
mechanismwith C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ ENCRYPTED DATA_LEN_ RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Copyright © 1994-2001 RSA Security Inc.

208 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v[8];

CK_MECHANI SM decryptionMechani sm = {
CKM DES ECB, iv, sizeof(iv)

} .

Ck_NECHANISM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O
} .

CK_BYTE encryptedDat a[(2* BUF_SZ) +8] ;
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK_RV rv;

menmset (iv, 0, sizeof(iv));

nmenmset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C_Decryptlnit(hSession, &decryptionMechani sm
hKey) ;

if (rv I'= CKR_OK) {

}
rv = C Digestlnit(hSession, &digestMechanisn;
if (rv I'= CKR_OK){

}

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
dat a, &ul Dat aLen);

ul Dat aLen = si zeof (dat a);

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 209

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
dat a, &ul Dat aLen);

/*
* The last portion of the buffer needs to be handl ed
with
* gseparate calls to deal with padding issues in ECB
node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

dat a, &ul Last Updat eSi ze) ;

/* Get last piece of plaintext (should have |ength O,
here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C_DecryptFinal (hSessi on, &dataf ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv = CKR_OK) {

}

/* Digest last bit of plaintext */
rv = C_Di gest Updat e(hSessi on, &data[BUF_SZ*2], 5);
if (rv = CKR_OK) {

}

ul Di gestLen = si zeof (di gest);

rv = C_DigestFinal (hSession, digest, &ul Di gestlLen);
if (rv I'= CKR.OK) {

Copyright © 1994-2001 RSA Security Inc.

210 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)

C_SignEncryptUpdate continues a multiple-pat combined dgnature and encryption
operation, processing another data part. hSession is the sesson’s handle; pPart points to the
data part; ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives he digested and encrypted data part; and pul EncryptedPart points to the location
that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing output. If
a C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or
because pEncryptedPart has the vdlue NULL_PTR, or because pul EncryptedPartLen istoo
smdl to hold the entire encrypted part output), then no plaintext is passed to the active 9gning
operation.

Signature and encryption operations must both be active (they must have been initidized with
C_Signinit and C_Encryptinit, respectively). This function may be cdled any number of
times in succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate
cdls.

Return vaues CKR_ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_ DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK_BYTE i v[8];
CK_MECHANI SM si gnMechani sm = {

CKM DES MAC, NULL_PTR, O
b

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 211

CK_MECHANI SM encrypti onMechani sm = {
CKM DES _ECB, iv, sizeof(iv)
} B

CK_BYTE encr ypt edDat a[BUF_SZ] ;
CK_ULONG ul Encrypt edDat aLen;
CK_BYTE MAC[4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_RV rv;

int i;

menset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm
hEncr ypti onKey) ;

if (rv = CKR_OK) {

}
rv = C_Signlnit(hSession, &signMechani sm hMacKey);
if (rv I'= CKR.OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_SignEncrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_SignEncrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*

Copyright © 1994-2001 RSA Security Inc.

212 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* The last portion of the buffer needs to be handl ed
with

* separate calls to deal with padding issues in ECB
node

*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_Sz*2], 5);

ul MacLen = si zeof (MAC);
rv = C_DigestFinal (hSession, MAC, &ul MacLen);

/* Then pad |ast part with 3 0x00 bytes, and conpl ete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0x00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen) ;

/* Get last piece of ciphertext (should have |length O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFinal (hSessi on, encryptedDat a,
&ul Encr ypt edDat aLen) ;

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 213

C_DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Veri fyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul Part Len

),

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the sesson’'s handle; pEncryptedPart
points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data; pPart
points to the location that receives the recovered data; and pul PartLen points to the location
that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing output.
If a C_DecryptVerifyUpdate cal does not produce decrypted output (because an error
occurs, or because pPart has the vdue NULL_PTR, or because pulPartLen istoo smdl to
hold the entire encrypted part output), then no plaintext is passed to the active verificaion
operation.

Decryption and signature operations must both be active (they must have been initidized with
C_Decryptlnit and C_Verifylnit, respectively). This function may be caled any number of
times in succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate
cdls.

Use of C_DecryptVerifyUpdate involves a pipdining issue that does not arise when using
C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. Thisis because
when C_SignEncryptUpdate is caled, precisdy the same input is passed to both the active
ggning operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is cdled, the input passed to the active verifying operation is the
output of the active decryption operaion. Thisissue comes up only when the mechanism used
for decryption performs padding.

In particular, envison a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which will
amultaneoudy decrypt this ciphertext and verify a sgnaure on the origind plaintext thereby
obtained.

After initidizing decryption and verification operations, the gpplication passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns
exactly 16 bytes of plaintext, snce a this point, Cryptoki doesn't know if theré's more
ciphertext coming, or if the last block of ciphertext held any padding. These 16 bytes of
plaintext are passed into the active verification operation.

Copyright © 1994-2001 RSA Security Inc.

214 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Since there is no more ciphertext, the gpplication cals C_DecryptFinal. This tells Cryptoki
that theré's no more ciphertext coming, and the cal returns the last 2 bytes of plaintext.

However, since the active decryption and verification operations are linked only through the
C_DecryptVerifyUpdate cal, these 2 bytes of plaintext are not passed on to the verification
mechanism.

A cdl to C_VerifyFinal, therefore, would verify whether or not the signature supplied isavdid
ggnature on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucid that,
before C_VerifyFinal is cdled, the last 2 bytes of plaintext get passed into the active
verification operation viaaC_VerifyUpdate cdl.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the
active veification operation. Extreme caution is warranted when using a padded
decryption mechanismwith C_DecryptVerifyUpdate

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ ENCRYPTED DATA_LEN_ RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;

CK_BYTE i v[8];

CK_MECHANI SM decrypti onMechani sm = {
CKM_DES_ECB, iv, sizeof(iv)

} B

Ck_l\/ECHANI SM veri fyMechani sm = {
CKM DES_MAC, NULL_PTR, 0
} B

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE MAC] 4] ;

CK_ULONG ul MaclLen;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK_RV rv;

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 215

menset (iv, 0, sizeof(iv));

nmenmset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm
hDecr ypti onKey) ;

if (rv = CKR_OK) {

rv = C Verifylnit(hSession, &verifyMechani sm
hMacKey) ;
if (rv I'= CKR_OK){

}

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
dat a, &ul Dat aLen);

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
dat a, &ul datalen);

/*
* The last portion of the buffer needs to be handl ed
with
* gseparate calls to deal with padding issues in ECB
node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

Copyright © 1994-2001 RSA Security Inc.

216 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

dat a, &ul Last Updat eSi ze) ;

/* Get last little piece of plaintext. Should have
| ength 0 */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C_DecryptFinal (hSessi on, &dataf ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv = CKR_OK) {

}

/* Send last bit of plaintext to verification
operation */

rv = C VerifyUpdat e(hSessi on, &data[BUF_SzZ*2], 5);

if (rv = CKR_OK) {

}
rv = C VerifyFinal (hSession, MAC, ul MaclLen);

if (rv == CKR_SI GNATURE_ | NVALI D) {

}

11.14 Key management functions

Cryptoki provides the following functions for key management:

C_GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM_PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phKey

)

C_GenerateK ey generates a secret key or set of domain parameters, creating a new object.
hSession is the sesson’s handle; pMechanism points to the generation mechanism; pTemplate
points to the template for the new key or set of domain parameters; ulCount is the number of

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 217

attributes in the template; phKey points to the location that receives the handle of the new key
or set of domain parameters.

If the generation mechaniam is for doman parameter generation, the CKA_CLASS attribute
will have the vdue CKO DOMAIN PARAMETERS, othewise, it will have the vadue
CKO_SECRET KEY.

Since the type of key or doman parameters to be generated is implicit in the generation
mechaniam, the template does not need to supply akey type. If it does supply akey type which
isinconggent with the generation mechaniam, C_Gener ateK ey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated smilarly.

If acdl to C_GenerateK ey cannot support the precise template supplied to it, it will fail and
return without creating an object.

The object created by a successful cal to C_GenerateKey will have its CKA_LOCAL
attribute set to TRUE.

Retun values CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_ HOST MEMORY, CKR_ MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,

CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,

CKR TOKEN_WRITE_PROTECTED, CKR USER NOT_LOGGED IN.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nechani sm = {

CKM _DES_KEY_GEN, NULL_PTR, O
} B

Ci(_RV rv,

irv = C_Cener at eKey(hSessi on, &mechani sm NULL PTR, O,
&hKey) ;
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

218 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
C_GenerateK eyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eKeyPai r) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri buteCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE_PTR phPri vat eKey

)

C_GenerateK eyPair generates a public/private key pair, creating new key objects. hSession
is the sesson’s handle pMechanism points to the key generaion mechaniam,
pPublicKeyTemplate points to the template for the public key; ul PublicKeyAttributeCount is
the number of atributes in the public-key template; pPrivateKeyTemplate points to the
template for the private key; ulPrivateKeyAttributeCount is the number of atributes in the
private-key template; phPublicKey points to the location that receives the handle of the new

public key; phPrivateKey points to the location that recaives the handle of the new private key.

Since the types of keys to be generated are implicit in the key par generation mechanism, the
templates do not need to supply key types. If one of the templates does supply a key type
which is inconsgent with the key generation mechaniam, C_GenerateK eyPair fals and
returns the error code CKR_TEMPLATE _INCONSISTENT. The CKA_CLASS attribute is
trested Smilarly.

If acal to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fall
and return without creating any key objects.

A cdl to C_GenerateK eyPair will never cregte just one key and return. A cdl can fail, and
create no keys,; or it can succeed, and create a matching public/private key pair.

The key objects crested by a successful call to C_GenerateKeyPair will have ther
CKA_LOCAL atributes set to TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return vadues: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 219

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER NOT_LOGGED _|N.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPri vat eKey;
CK_MECHANI SM mechani sm = {

CKM_RSA_PKCS_KEY_PAI R_GEN, NULL_PTR, O
} .

CK_ULONG modul usBits = 768;
CK_BYTE publi cExponent[] = { 3 };
CK_BYTE subject[] ={...};
CK_ BYTE id[] = {123};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenplate[] = {
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{ CKA_WRAP, &true, sizeof(true)},
{CKA_MODULUS BI TS, &npdul usBits,
si zeof (nmodul usBits)},
{ CKA_PUBLI C_EXPONENT, publicExponent, si zeof
(publ i cExponent)}
1
CK_ATTRI BUTE privat eKeyTenmpl ate[] = {
{CKA TOKEN, &true, sizeof(true)},
{ CKA_ PRI VATE, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA _SENSI TI VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA _SIGN, &true, sizeof(true)},
{ CKA_UNWRAP, &true, sizeof(true)}
1
CK_RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &nmechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,

Copyright © 1994-2001 RSA Security Inc.

220 PKCS #11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
&hPubl i cKey, &hPrivat eKey);
if (rv == CKR_OK) {

}
C_WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_ W apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen

)

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the sesson’s handle;
pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping
key; hKey is the handle of the key to be wrapped; pWrappedKey points to the location that
receives the wrapped key; and pulWrappedKeyLen points to the location that recelves the

length of the wrapped key.

C_WrapK ey uses the convention described in Section 11.2 on producing outpui.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports
wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped
must dso be TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having
its CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key
and mechanism solely because of its length, then C_WrapKey fals with eror code
CKR_KEY_SIZE RANGE.

C_WrapK ey can be used in the following Stuations
To wrap any secret key with an RSA public key.

To wrap any secret key with any other secret key other than a SKIPJACK, BATON, or
JUNIPER key.

To wrap a SKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON,
or JUNIPER key (the two keys need not be the same type of key).

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 221

To wrgp an RSA, Diffie-Hdlman, X9.42 Diffie-Hellman, EC (dso related to ECDSA) or
DSA private key with any secret key other than a SKIPJACK, BATON, or JUNIPER

key.
Towrap aKEA or DSA private key with a SKIPJACK key.
Of course, tokens vary in which types of keys can actudly be wrapped with which mechanisms.

Return Values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT WRAPPABLE, CKR KEY_SIZE_RANGE,
CKR_KEY_UNEXTRACTABLE, CKR MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN,
CKR_WRAPPING_KEY_HANDLE_INVALID,

CKR_ WRAPPING _KEY_SIZE RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nechani sm = {

CKM DES3_ECB, NULL_PTR, 0
} B

Ci(_BYTE wr appedKey| 8] ;
CK_ULONG ul W appedKeyLen;
CK_RV rv;

ul W appedKeyLen = si zeof (wr appedKey) ;
rv = C_WapKey(

hSessi on, &mechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeyLen);
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

222 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unwr apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret
key object. hSession is the sesson’'s handle; pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to
the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate points to
the template for the new key; ulAttributeCount is the number of attributes in the template;
phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP atribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS SENSITIVE attribute set to FALSE, and the
CKA_NEVER_EXTRACTABLE attribute set to FALSE. The CKA_EXTRACTABLE
atribute is by default set to TRUE.

When C_UnwrapKey is used to unwrap a key with the CKM_KEY_WRAP_SET_OAEP
mechanism (see Section 12.35.1), additiond “extradata’ is decrypted at the same time that the
key is unwrgpped. The return of this data follows the convention in Section 11.2 on producing
output. If the extra data is not returned from a cal to C_UnwrapK ey (either because the call
was only to find out how large the extra data is, or because the buffer provided for the extra
datawastoo smdl), then C_UnwrapK ey will not create a new key, either.

If acdl to C_UnwrapKey cannot support the precise template supplied to it, it will fall and
return without creeting any key object.

The key object created by a successful cal to C_UnwrapKey will have its CKA LOCAL
attribute set to FALSE.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 223

CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED,

CKR_UNWRAPPING_KEY HANDLE_INVALID,

CKR_UNWRAPPING KEY_SIZE_RANGE
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,

CKR_USER _NOT_LOGGED_IN, CKR_ WRAPPED_KEY_INVALID,
CKR_WRAPPED KEY LEN_RANGE.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nechani sm = {

CKM DES3_ECB, NULL_PTR, 0
} B

CK_BYTE wr appedKey[8] = {...};
CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &keyCl ass, sizeof(keyCl ass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)}

1
CK_RV rv;

rv = C_Unw apKey(

hSessi on, &nechani sm hUnw appi ngKey,

wr appedKey, sizeof (wappedKey), tenplate, 4, &hKey);
if (rv == CKR_OK) {

Copyright © 1994-2001 RSA Security Inc.

224 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Deri veKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the
sesson’'s handle; pMechanism points to a structure that specifies the key derivation mechanism;
hBaseKey is the handle of the base key; pTemplate points to the template for the new key;
ulAttributeCount is the number of attributes in the template; and phKey pointsto the location
that receives the handle of the derived key.

Thevauesof the CK_SENSITIVE, CK_ALWAYS SENSITIVE, CK_EXTRACTABLE,
and CK_NEVER_EXTRACTABLE atributes for the base key affect the vaues that these
atributes can hold for the newly-derived key. See the description of each particular key-
derivation mechaniamin Section 11.17.2 for any congraints of thistype.

If acdl to C_DeriveKey cannot support the precise template supplied to it, it will fal and
return without creating any key object.

The key object created by a successful cal to C_DeriveKey will have its CKA_LOCAL
attribute set to FALSE.

Return values CKR_ARGUMENTS BAD, CKR ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR ATTRIBUTE VALUE_INVALID,
CKR_CRYPTOKI_NOT INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY HANDLE_INVALID, CKR KEY_ SIZE RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,

CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,

CKR TOKEN_WRITE_PROTECTED, CKR_USER NOT_LOGGED IN.

Example
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey, hKey;

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 225

CK_MECHANI SM keyPai r Mechani sm = {
CKM DH_PKCS_KEY_PAI R_GEN, NULL_PTR, 0
}.

CK_ BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE publicVal ue[128];
CK_BYTE ot her Publ i cVal ue[128] ;
CK_MECHANI SM nechani sm = {

CKM DH_PKCS DERI VE, ot her Publi cVal ue,

si zeof (ot her Publ i cVal ue)

1
CK_ATTRI BUTE pTenpl ate[] = {

CKA VALUE, &publicVval ue, sizeof(publicValue)}
}.

CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK_BBOOL true = TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{CKA PRI ME, prinme, sizeof(prinme)},

{ CKA_BASE, base, sizeof (base)}

1
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA_DERI VE, &true, sizeof(true)}

}.

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyCl ass, sizeof(keyC ass)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}

H
CK_ RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &keyPairMechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&hPubl i cKey, &hPri vat eKey);
if (rv == CKR_OK) {
rv = C GetAttributeVal ue(hSessi on, hPubli cKey,
&pTenpl ate, 1);
if (rv == CKR_OK) {
/* Put other guy’s public value in
ot her Publ i cval ue */

Copyright © 1994-2001 RSA Security Inc.

226 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

rv = C_DeriveKey(
hSessi on, &mechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKR_OK) {

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

C_SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

)

C_SeedRandom mixes additional seed materid into the token's random number generator.
hSession is the sesson’s handle; pSeed points to the seed materid; and ul SeedLen isthe length
in bytes of the seed materidl.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_ RANDOM_SEED NOT_SUPPORTED,
CKR_RANDOM_NO RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example ss.e C_GenerateRandom.

Copyright © 1994-2001 RSA Security Inc.

11. FUNCTIONS 227

C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_GCener at eRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randomien

)

C_GenerateRandom generates random or pseudo-random data. hSession is the sesson’'s
handle; pRandomData points to the location that receives the random data; and ulRandomLen
isthelength in bytes of the random or pseudo-random data to be generated.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example
CK_SESSI ON_HANDLE hSessi on;
CK _BYTE seed[] ={...};
CK_BYTE randonData[] = {...};
CK_RV rv;

.rv = C_SeedRandom hSessi on, seed, sizeof(seed));
if (rv = CKR_OK) {

rv = C_Gener at eRandom hSessi on, randonDat a,
si zeof (randonDat a)) ;
if (rv == CKR_OK) {

}

11.16 Paralld function management functions

Cryptoki provides the following functions for managing pardlel execution of cryptographic
functions. These functions exist only for backwards compatibility.

Copyright © 1994-2001 RSA Security Inc.

228 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Functi onSt at us) (
CK_SESSI ON_HANDLE hSessi on

)

In previous versons of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in parald with an application. Now, however, C_GetFunctionStatus is a legacy
function which should smply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

C_CancdFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on

)

In previous versons of Cryptoki, C_CancelFunction cancdled a function running in pardld
with an application. Now, however, C_CancelFunction is a legacy function which should
simply return the vdlue CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

11.17 Callback functions

Cryptoki sessons can use function pointers of type CK_NOTIFY to notify the gpplication of
certain events.

11.17.1 Surrender callbacks

Cryptographic functions {.e., any functions fdling under ane of these categories. encryption
functions, decryption functions, message digesting functions, sgning and MACing functions,
functions for verifying sgnatures and MACs, dud-purpose cryptographic functions, key
management functions, random number generation functions) executing in Cryptoki sessons can
periodicaly surrender control to the application who cdled them if the sesson they ae
executing in had a notification calback function associated with it when it was opened. They do
ths by cdling the sesson's cdlback with the aguments (hSessi on,

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 229

CKN_SURRENDER, pApplication),wheehSessi on isthe sesson’shandle and
pApplication was supplied to C_OpenSession when the sesson was opened.
Surrender callbacks should return ether the value CKR_OK (to indicate that Cryptoki should
continue executing the function) or the value CKR_CANCEL (to indicate that Cryptoki should
abort execution of the function). Of course, before returning one of these values, the callback
function can perform some computation, if desired.

A typicd use of a surrender calback might be to give an gpplication user feedback during a
lengthy key pair generation operation. Each time the gpplication receives a calback, it could
display an additiond “.” to the user. It might aso examine the keyboard' s activity since the last
surrender callback, and abort the key pair generation operation (probably by returning the value
CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

11.17.2 Vendor-defined callbacks

Library vendors can aso define additiona types of cdlbacks. Because of this extenson
capability, applicationsupplied notification callback routines should examine each cdlback they
recave, and if they are unfamiliar with the type of that cadlback, they should immediately give
control back to the library by returning with the value CKR_OK.

12. Mechanisms
A mechanism specifies precisaly how a certain cryptographic processis to be performed.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a
subset of the mechaniams ligted. There is dso no guarantee that a token which supports one
mechanism for some operation supports any other mechanism for any other operation (or even
supports that same mechanism for any other operation). For example, even if atoken isableto
creste RSA digitd sgnatures with the CKM_RSA PKCS mechaniam, it may or may not be
the case that the same token can dso perform RSA encryption with CKM_RSA_PKCS.

Table 63, Mechanismsvs. Functions

Functions

Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive

Decrypt | Verify | VR? Key | Unwrap

Pair

CKM_RSA_PKCS _KEY_PAIR_GEN v
CKM_RSA_X9 31 KEY_PAIR_GEN v
CKM_RSA _PKCS v? v? v v

Copyright © 1994-2001 RSA Security Inc.

230 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR? Key | Unwrap
Pair
CKM_RSA_PKCS OAEP v? v
CKM_RSA_PKCS PSS v?
CKM_RSA_9796 % v
CKM_RSA_X_509 v? v? v v
CKM_RSA_X9 31 v?
CKM_MD2 RSA_PKCS v
CKM_MD5 RSA_PKCS v
CKM_SHA1 RSA_PKCS v
CKM_RIPEMD128 RSA_PKCS v

v

v

v

CKM_RIPEMD160_RSA_PKCS
CKM_SHA1_RSA_PKCS PSS
CKM_SHA1 RSA_X9 31
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA PARAMETER_GEN v
CKM_DSA %
CKM_DSA_SHA1 v
CKM_FORTEZZA_TIMESTAMP v?

CKM_EC_KEY_PAIR_GEN v
(CKM_ECDSA_KEY_PAIR_GEN)

CKM_ECDSA V2
CKM_ECDSA_SHA1 v
CKM_ECDH1_DERIVE v
CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE v
CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS DERIVE v
CKM_X9 42 DH_KEY_PAIR_GEN v

CKM_X9_42_DH_PKCS_PARAMETER_GE v
N

CKM_X9_42 DH_DERIVE v
CKM_X9_42 DH_HYBRID_DERIVE v
CKM_X9 42 MQV_DERIVE v
CKM_KEA_KEY_PAIR_GEN v
CKM_KEA_KEY_DERIVE v
CKM_GENERIC_SECRET_KEY_GEN v
CKM_RC2 KEY_GEN v
CKM_RC2_ECB v v
CKM_RC2_CBC
CKM_RC2_CBC_PAD v v
CKM_RC2 MAC_GENERAL v
CKM_RC2_MAC v
CKM_RC4_KEY_GEN v

<\

AN
<

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 231

Functions
Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR? Key | Unwrap
Pair
CKM_RC4 v
CKM_RC5_KEY_GEN v
CKM_RC5_ECB v v
CKM_RC5_CBC 4 v
CKM_RC5_CBC_PAD v v
CKM_RC5_MAC_GENERAL v
CKM_RC5_MAC v
CKM_AES KEY_GEN v
CKM_AES _ECB v v
CKM_AES CBC v v
CKM_AES CBC_PAD v v
CKM_AES MAC_GENERAL v
CKM_AES MAC v
CKM_DES KEY_GEN v
CKM_DES _ECB v v
CKM_DES CBC 4 v
CKM_DES CBC_PAD v v
CKM_DES MAC_GENERAL v
CKM_DES MAC v
CKM_DES2_KEY_GEN v
CKM_DES3 KEY_GEN v
CKM_DES3_ECB v v
CKM_DES3 CBC v v
CKM_DES3_CBC_PAD 4 v
CKM_DES3_MAC_GENERAL v
CKM_DES3 MAC v
CKM_CAST_KEY_GEN 4
CKM_CAST_ECB 4 v
CKM_CAST_CBC v v
CKM_CAST_CBC_PAD v v
CKM_CAST_MAC_GENERAL v
CKM_CAST_MAC v
CKM_CAST3 KEY_GEN v
CKM_CAST3 ECB v v
CKM_CAST3_CBC v v
CKM_CAST3_CBC_PAD 4 v
CKM_CAST3 MAC_GENERAL v
CKM_CAST3 MAC v
CKM_CAST128 KEY_GEN 4
(CKM_CAST5_KEY_GEN)
CKM_CAST128 ECB (CKM_CAST5_ECB) v v
CKM_CAST128 CBC (CKM_CAST5_CBC) 4 v

CKM_CAST128 CBC_PAD v v

Copyright © 1994-2001 RSA Security Inc.

232 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR? Key | Unwrap
Pair

(CKM_CAST5_CBC_PAD)

CKM_CAST128 MAC_GENERAL v
(CKM_CAST5_MAC_GENERAL)

CKM_CAST128 MAC (CKM_CAST5_MAC) v
CKM_IDEA_KEY_GEN v
CKM_IDEA_ECB v v
CKM_IDEA_CBC
CKM_IDEA_CBC_PAD v v
CKM_IDEA_MAC_GENERAL v
CKM_IDEA_MAC v
CKM_CDMF _KEY_GEN v
CKM_CDMF_ECB v v
CKM_CDMF_CBC
CKM_CDMF_CBC_PAD v v
CKM_CDMF_MAC_GENERAL v
CKM_CDMF_MAC v
CKM_SKIPIACK_KEY_GEN v
CKM_SKIPJACK_ECB64
CKM_SKIPJACK_CBC64
CKM_SKIPJACK_OFB64
CKM_SKIPJACK_CFB64
CKM_SKIPJACK_CFB32
CKM_SKIPJACK_CFB16
CKM_SKIPJACK_CFB8
CKM_SKIPJACK_WRAP v
CKM_SKIPJACK_PRIVATE_WRAP v
CKM_SKIPJACK_RELAYX V3
CKM_BATON_KEY_GEN v
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP v
CKM_JUNIPER_KEY_GEN v
CKM_JUNIPER_ECB128
CKM_JUNIPER_CBC128
CKM_JUNIPER_COUNTER
CKM_JUNIPER_SHUFFLE
CKM_JUNIPER_WRAP v
CKM_MD2 v
CKM_MD2_HMAC_GENERAL v
CKM_MD2_HMAC v

AN
<

AN
<

ANERNERN BN ERN ERN BN

ANERNERNERN BN

ANERNERN RN

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS

233

M echanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Digest

Gen.
Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_MD2_KEY_DERIVATION

CKM_MD5

CKM_MD5_HMAC_GENERAL

CKM_MD5_HMAC

CKM_MD5_KEY_DERIVATION

CKM_SHA 1

CKM_SHA_1 HMAC_GENERAL

CKM_SHA_1 HMAC

CKM_SHA1 _KEY_DERIVATION

CKM_RIPEMD128

CKM_RIPEMD128_HMAC_GENERAL

CKM_RIPEMD128_HMAC

CKM_RIPEMD160

CKM_RIPEMD160_HMAC_GENERAL

CKM_RIPEMD160_HMAC

CKM_FASTHASH

CKM_PBE_MD2_DES CBC

CKM_PBE_MD5 DES CBC

CKM_PBE_MD5_CAST_CBC

CKM_PBE_MD5_CAST3 CBC

NI INEN

CKM_PBE_MD5_CAST128_CBC
(CKM_PBE_MD5_CAST5_CBC)

CKM_PBE_SHA1 CAST128 CBC
(CKM_PBE_SHA1_CAST5_CBC)

<

CKM_PBE_SHA1_RC4 128

CKM_PBE_SHA1 RC4 40

CKM_PBE_SHA1 DES3 EDE_CBC

CKM_PBE_SHA1 DES2 EDE_CBC

CKM_PBE_SHA1 RC2 128 CBC

CKM_PBE_SHA1 RC2 40 CBC

CKM_PBA_SHAL WITH_SHA1 HMAC

CKM_PKCS5_PBKD2

NIENIENENENEN NN

CKM_KEY_WRAP_SET_OAEP

CKM_KEY_WRAP_LYNKS

CKM_SSL3_PRE_MASTER KEY_GEN

CKM_SSL3 MASTER_KEY_DERIVE

CKM_SSL3 MASTER_KEY_DERIVE_DH

<\

CKM_SSL3 KEY_AND_MAC DERIVE

CKM_SSL3 MD5_MAC

CKM_SSL3_SHA1 MAC

CKM_TLS PRE_MASTER_KEY_GEN

CKM_TLS MASTER KEY_DERIVE

CKM_TLS_MASTER_KEY_DERIVE_DH

Copyright © 1994-2001 RSA Security Inc.

234 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions
Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR? Key | Unwrap

Pair

CKM_TLS KEY_AND_MAC_DERIVE
CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY

! SR = SignRecover, VR = VerifyRecover.

NIENIENIENIEN RN

2 Sngle-part operations only.
® Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section 11.17.2 will present in detail the mechanisms supported by Cryptoki
Verson 2.11 and the parameters which are supplied to them.

In generd, if a mechaniam makes no mention of the ulMinKeyLen and ulMaxKeyLen fidds of
the CK_MECHANISM_INFO structure, then those fields have no meaning for that particular
mechaniam.

12.1 RSA mechanisms

12.1.1 PKCS#1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted
CKM_RSA PKCS KEY_PAIR_GEN, is a key par generation mechanism based on the
RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits
and public exponent, as specified in the CKA _MODULUS BITS and
CKA_PUBLIC_EXPONENT dtributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT dtributes to the new public key. It contributes the
CKA _CLASSand CKA_KEY_TYPE dtributes to the new private key; it may aso contribute
some of the fdlowing atributes to the new privle key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT 1, CKA_EXPONENT _2, CKA_COEFFICIENT

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 235

(see Section 10.9.1). Other attributes supported by the RSA public and private key types
(specificdly, the flags indicating which functions the keys support) may aso be specified in the
templatesfor the keys, or dse are assgned default initia values.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

12.1.2 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted
CKM_RSA X9 31 KEY_PAIR_GEN, is a key par generation mechanism based on the
RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits
and public exponent, a soecified in the CKA_MODULUS BITS ad
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechaniam contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT dtributes to the new public key. It contributes the
CKA_CLASSand CKA_KEY_TYPE dtributes to the new private key; it may aso contribute
some of the fdlowing atributes to the new privale key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT
(see Section 10.9.1). Other attributes supported by the RSA public and private key types
(specificdly, the flags indicating which functions the keys support) may also be specified in the
templates for the keys, or dse ae asigned default initid vaues. Unlike the
CKM_RSA PKCS KEY_PAIR_GEN mechanigm, this mechanism is guaranteed to
generate p and q values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet the
strong primes requirement of X9.31.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RSA modulus Sizes, in
bits.

12.1.3 PKCS#1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA PKCS, is a multi-purpose mechanism
based on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It
supports sSngle-part encryption and decryption; single-part sgnatures and verification with and
without message recovery; key wrapping; and key unwrapping. This mechanism corresponds

Copyright © 1994-2001 RSA Security Inc.

236 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

only to the part of PKCS #1 that involves RSA; it does not compute a message digest or a
Digesinfo encoding as gpecified for the nd2w t hRSAEncrypti on and
md5wi t hRSAEncr ypt i on dgorithmsin PKCS #1.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key thet it
supports. For wrapping, the “input” to the encryption operaion is the vdue of the
CKA_VALUE attribute of the key that is wrapped; smilarly for unwrgpping. The mechanism
does not wrap the key type or any other information about the key, except the key length; the
goplication must convey these separatdy. In particular, the mechanism contributes only the
CKA_CLASSand CKA_VALUE (and CKA_VALUE_LEN, if the key hasiit) attributes to
the recovered key during unwrapping; other attributes must be specified in the template.

Congtraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may begin
a the samelocation in memory. Inthetable, k isthe length in bytes of the RSA modulus.

Table 64, PKCS#1 RSA: Key And Data L ength

Function Key type I nput Output Comments
length length

C_Encrypt! RSA public key £k-11 k block type 02
C Decrypt! RSA private key K £k-11 block type 02
C Sgn* RSA private key £k-11 k block type 01
C_SignRecover RSA private key £k-11 Kk block type 01
C Veify' RSA publickey | £ k-11, K N/A block type 01
C VeifyRecover | RSA public key k £k-11 block type 01
C_WrapKey RSA public key £k-11 Kk block type 02
C _UnwrapKey RSA private key k £k-11 block type 02

! Sngle-part operations only.

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of

CK_MECHANISM _INFO dgructure specify the supported range of RSA modulus sizes, in

bits.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 237

12.1.4 PKCS#1 RSA OAEP mechanism parameters

CK_RSA PKCS MGF_TYPE; CK_RSA_PKCS MGF TYPE_PTR

CK_RSA_PKCS MGF_TYPE isused to indicate the Message Generation Function (MGF)
gpplied to a message block when formatting a message block for the PKCS #1 OAEP
encryption scheme or the PKCS #1 PSS sgnature scheme. It is defined asfollows:

typedef CK_ULONG CK_RSA PKCS MGF_TYPE;

The following MGFs ae defined in PKCS #1 v2.0. The following table lists the defined
functions.

Table 65, PKCS#1 RSA: Message Generation Functions

Sour ce | dentifier Value
CKG_MGF1 SHA1 0x00000001

CK_RSA_PKCS MGF_TYPE_PTR isapointer toaCK_RSA_PKCS MGF TYPE.

CK_RSA_PKCS OAEP_SOURCE_TYPE;
CK_RSA_PKCS OAEP _SOURCE_TYPE_PTR

CK_RSA PKCS OAEP_SOURCE_TYPE is used to indicate the source of the encoding
parameter when formatting a message block for the PKCS #1 OAEP encryption scheme. It is
defined asfollows:

typedef CK_ULONG CK_RSA PKCS_ OAEP_SOURCE_TYPE;
The following encoding parameter sources are defined in PKCS #1 v2.0. The following table

lists the defined sources dong with the corresponding data type for the pSour ceData fidd in the
CK_RSA_PKCS OAEP_PARAM Sdtructure defined below.

Table 66, PKCS#1 RSA OAEP: Encoding parameter sources

Source | dentifier Value Data Type

CKZ_DATA_SPECIFIED | 0x00000001 | Array of CK_BYTE containing the vaue of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ul SourceDatal.en must be zero.

CK_RSA PKCS OAEP SOURCE_TYPE PTR is a poner to a
CK_RSA_PKCS OAEP _SOURCE_TYPE.

Copyright © 1994-2001 RSA Security Inc.

238 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_RSA_PKCS OAEP PARAMS; CK_RSA PKCS OAEP_PARAMS PTR

CK_RSA PKCS OAEP_PARAMS is a dructure that provides the parameters to the
CKM_RSA _PKCS OAEP mechaniam. The structureis defined as follows:

typedef struct CK_RSA PKCS_ OAEP_PARAMS {
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS_ MGF_TYPE ngf;
CK_RSA PKCS_OAEP_SOURCE_TYPE source;
CK_VO D_PTR pSour ceDat a;
CK_ULONG ul Sour ceDat aLen;

} CK_RSA_PKCS_OAEP_PARAMS;

Thefidds of the sructure have the following meanings:

hashAlg mechanism ID of the message digest dgorithm used to
cdculate the digest of the encoding parameter

mgf mask generation function to use on the encoded block
source source of the encoding parameter
pSourceData data used asthe input for the encoding parameter source
ulSourceDataLen length of the encoding parameter source input

CK_RSA_PKCS OAEP_PARAMS PTR IS a pointer to a
CK_RSA_PKCS OAEP_PARAMS

12.1.5 PKCS#1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA PKCS OAEP, is a multi-
purpose mechanism based on the RSA public-key cryptosystem and the OAEP block format
defined in PKCS #1. It supports single-part encryption and decryption; key wrapping; and key
unwrapping.

It has a parameter, aCK_RSA PKCS OAEP_PARAM Sdtructure.

This mechanism can wrgp and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key thet it
supports. For wrapping, the “input” to the encryption operation is the vaue of the
CKA_VALUE atribute of the key that is wrapped; smilarly for unwrapping. The mechanism
does not wrap the key type or any other information about the key, except the key length; the
goplication must convey these separatdly. In particular, the mechanism contributes only the

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 239

CKA_CLASSand CKA_VALUE (and CKA_VALUE_LEN, if the key hasiit) attributes to
the recovered key during unwrapping; other attributes must be specified in the template.

Congraints on key types and the length of the data are summarized in the following table. For
encryption and decryption, the input and output data may begin a the same location in memory.
In the table, k isthe length in bytes of the RSA modulus, and hLen is the output length of the
message diget dgorithm specified by the hashAlg fidd of the
CK_RSA PKCS OAEP_PARAM Sstructure.

Table 67, PKCS#1 RSA OAEP: Key And Data L ength

Function Key type Input length Output
length
C_Encrypt! RSA publickey | £ k-2-2hLen K
C Decrypt! RSA private key K £ k-2-2hLen
C_WrapKey RSA public key £ k-2-2hLen k
C_UnwrapKey RSA private key k £ k-2-2hLen
! Sngle-part operations only.
For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the

CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

12.1.6 PKCS#1 RSA PSS mechanism parameters

CK_RSA_PKCS PSS PARAMS; CK_RSA_PKCS PSS PARAMS PTR

CK_RSA PKCS PSS PARAMS is a dructure that provides the parameters to the
CKM_RSA_PKCS PSS mechanism. The gructure is defined as follows:

typedef struct CK RSA PKCS PSS PARAMS {
CK_MECH_TYPE hashAl g;

CK_RSA PKCS MG _TYPE ngf;
CK_ULONG sLen;
} CK_RSA PKCS PSS PARAMS;

Thefields of the structure have the following meanings:

hashAlg hash dgorithm used in the PSS encoding; if the Sgnature
mechanism does not include message hashing, then this
vaue must be the mechanism used by the gpplication to

generate the message hagh; if the Sgnature mechanism

Copyright © 1994-2001 RSA Security Inc.

240 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

includes hashing, then this vaue must match the hash type
indicated by the Sgnature mechanism

mgf mask generation function to use when generating the
encoded block

sLen length, in octets, of the salt vaue used in the PSS encoding;
typica vaues are the length of the hash function used on
the message and zero

CK_RSA_PKCS PSS PARAMS PTR is a pointer to a
CK_RSA_PKCS PSS PARAMS

12.1.7 PKCS#1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA PKCS PSS, is a mechaniam
based on the RSA public-key cryptosystem and the PSS block format defined in PKCS#1. It
upports dngle-part Sgnature generation and verification without message recovery. This
mechanism corresponds only to the part of PKCS #1 that involves block formatting and RSA;
the input must be the result of a hash function over the message to be signed.

It has a parameter, a CK_RSA_PKCS PSS PARAMS dructure. The sLen fidd mugt be
less than or equd to k*-2-hLen and hLen is the length of the input to the C_Sign or C Verify
function. k* is the length in bytes of the RSA modulus, except if the length in bits of the RSA
modulus is one more than a multiple of 8, in which case k* is one lessthan the length in bytes of
the RSA modulus.

Congraints on key types and the length of the data are summarized in the following table. Inthe
table, k™ is the length in bytes of the RSA modulus as described above and sLen is the sdlt

length in bytes.

Table 68, PKCS#1 RSA PSS: Key And Data L ength

Function Key type Input length Output
length
C Sgn* RSA privatekey | £k’ -2-sLen K
C Veify' RSA public key K N/A
! Sngle-part operations only.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 241

12.1.8 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA 9796, is a mechaniam for sngle-
pat sgnatures and verification with and without message recovery based on the RSA public-
key cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

Datais converted between byte and bit string formats by interpreting the most-ggnificant bit
of the leading byte of the byte string as the leftmost bit of the bit string, and the leadt-
ggnificant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this
assumes the length in bits of the datais amultiple of 8).

A sgnaure is converted from a bit string to a byte string by padding the bit string on the left
with O to 7 zero bits so thet the resulting length in bits isa multiple of 8, and converting the
resulting bit string as above; it is converted from a byte string to a bit string by converting the
byte string as above, and removing bits from the left so that the resulting length in bitsis the
same asthat of the RSA modulus.

This mechanism does not have a parameter.

Congraints on key types and the length of input and output data are summarized in the following
table. Inthetable, k isthelength in bytes of the RSA modulus.

Table 69, | SO/IEC 9796 RSA: Key And Data L ength

Function Key type Input Output
length length
C Sgn'* RSA private key £ &/20 k
C_SignRecover RSA private key £ &/20 k
C Veify' RSA publickey | £ &/20, k? N/A
C VeifyRecover | RSA public key k £ &/20
! Sngle-part operations only.

2 Datalength, signature length.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

Copyright © 1994-2001 RSA Security Inc.

242 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.1.9 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports sngle-part encryption and
decryption; single-part signatures and verification with and without message recovery; key
wrapping; and key unwrapping. All these operations are based on so-cdled “raw” RSA, as
assumed in X.5009.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-Sgnificant
byte firgt, applying “raw” RSA exponentiation, and converting the result to a byte string, most-
sgnificant byte first. The input dring, consdered as an integer, must be less than the modulus,
the output string is dso less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrgp and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the vaue of the
CKA_VALUE attribute of the key that is wrapped; smilarly for unwrapping. The mechanism
does not wrap the key type, key length, or any other information about the key; the application
must convey these separately, and supply them when unwrapping the key.

Unfortunately, X509 does not specify how to perform padding for RSA encryption. For this
mechanism, padding should be performed by prepending plaintext data with O-vaued bytes. In
effect, to encrypt the sequence of plaintext bytesh b, ... b, (n £ k), Cryptoki forms P=2"
Yo, +2%p,+...+b,. This number must be less than the RSA modulus. The k-byte ciphertext (k
is the length in bytes of the RSA modulus) is produced by raisng P to the RSA public exponent
modulo the RSA modulus. Decryption of ak-byte ciphertext C is accomplished by raisng Cto
the RSA private exponent modulo the RSA modulus, and returning the resulting value as a
sequence of exactly k bytes. If the resulting plaintext is to be used to produce an unwrapped
key, then however many bytes are specified in the template for the length of the key are taken
fromthe end of this sequence of bytes.

Technicdly, the above procedures may differ very dightly from certain detals of what is
specified in X.509.

Executing cryptographic operations usng this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numeicdly a leet a lage a the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same length as
the RSA modulus and is numericaly at least as large as the modulus).

Congraints on key types and the length of input and output data are summarized in the following
table. Inthetable, k isthelength in bytes of the RSA modulus.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 243

Table 70, X.509 (Raw) RSA: Key And Data Length

Function Key type I nput Output length
length

C Encrypt* RSA public key £k K

C Decrypt! RSA private key K k

C Sign RSA private key £k K

C_SignRecover RSA private key £k k

C Veify' RSA publickey | £k, k? N/A

C_VeifyRecover | RSA public key k k

C_WrapKey RSA public key £k k

C_UnwrapKey RSA private key k £ k (specified in template)

! Sngle-part operations only.
2 Datalength, signature length.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

This mechanism is intended for compatibility with goplications that do not follow the PKCS #1
or ISO/IEC 9796 block formats.

12.1.10 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA X9 31, is a mechaniam for sngle-
pat sgnatures and verification without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encgpsulation. Thetraller fied
must be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings.
Accordingly, the following transformations are performed:

Data is converted between byte and bit string formats by interpreting the most-ggnificant bit
of the leading byte of the byte string as the leftmost bit of the bit string, and the leadt-
ggnificant bit of the tralling byte of the byte string as the rightmost bit of the bit string (this
assumes the length in bits of the datais amultiple of 8).

A dgnature is converted from a bit string to a byte string by padding the bit string on the lft
with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the

Copyright © 1994-2001 RSA Security Inc.

244 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

resulting bit string as above; it is converted from a byte string to a bit string by converting the
byte string as above, and removing bits from the left so that the resulting length in bits is the
same asthat of the RSA modulus.

This mechanism does not have a parameter.

Congraints on key types and the length of input and output data are summarized in the following
table. Inthe table, k isthe length in bytes of the RSA modulus. For al operations, the k vaue
must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 71, ANSI X9.31 RSA: Key And Data L ength

Function Key type Input Output
length length
C Sgn* RSA private key £k-2 k
C Veify' RSA public key £ k-2, k? N/A
! Sngle-part operations only.

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RSA modulus Sizes, in
bits.

12.1.11 PKCS #1 RSA signature with MD2, MD5, SHA-1, RIPE-MD 128 or RIPE-
MD 160

The PKCS #1 RSA dgnature with MD2 mechanism, denoted CKM_MD2 RSA_PKCS,
performs angle- and multiple- part digita sgnatures and verification operations without message
recovery. The operations performed are as described in PKCS #1 with the object identifier
md2WithRSAEncryption.

Smilaly, the PKCS #1 RSA dgnaure with MD5 mechanism, denoted
CKM_MD5 RSA PKCS, performs the same operations described in PKCS #1 with the
object identifier md5WithRSAEncryption. The PKCS #1 RSA dgnature with SHA-1
mechanism, denoted CKM_SHA1 RSA PKCS, performs the same operations, except that it
uses the hash function SHA-1 with object identifier shalWithRSAEncryption. The PKCS #1
RSA sgnature with RIPEMD-128 or RIPEMD- 160, denoted
CKM_RIPEMD128 RSA PKCS and CKM_RIPEMD160 RSA PKCS respectively,
perform the same operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 245

Congraints on key types and the length of the data for these mechanisms are summarized in the
folowing table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1
RSA sgnature with MD2 and PKCS #1 RSA sgnature with MD5 mechanisms, k must be at
least 27; for the PKCS #1 RSA signature with SHA-1 mechanism, k must be at least 31.

Table 72, PKCS #1 RSA Signatures with MD2, MD5, or SHA-1: Key And Data
Length

Function Key type Input length | Output length| Comments

C_Sgn RSA private key any Kk block type
01

C Veify RSA public key any, k? N/A block type
01

2 Data length, Sgnature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

12.1.12 PKCS#1 RSA PSSsgnaturewith SHA-1

The PKCS #1 RSA PSS dgnature with SHA-1 mechanism, denoted
CKM_SHA1 RSA PKCS PSS, paforms dngle- and multiple-part digitd sgnatures and
verification operations without message recovery. The operations performed are as described
in PKCS#1 with the object identifier id-RSASSA-PSS.

It has a parameter, a CK_RSA_PKCS PSS PARAMS dructure. The sLen fiedd must be
less than or equd to k-2-hLen, where k is the length in bytes of the RSA modulus and hLen is
the length in bytes of the SHA-1 hash.

It has a parameter, a CK_RSA PKCS PSS PARAMS dructure. The sLen fidd must be
less than or equd to k*-2-hLen where hLen is the length of a SHA-1 hash. k* isthelengthin
bytes of the RSA modulus, except if the length in bits of the RSA modulus is one more than a
multiple of 8, inwhich case k* is one less than the length in bytes of the RSA modulus.

Congraints on key types and the length of the data are summarized in the following table. Inthe
table, k™ isthe length in bytes of the RSA modulus as described above.

Copyright © 1994-2001 RSA Security Inc.

246 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 73, PKCS#1 RSA PSS Signatureswith SHA-1: Key And Data L ength

Function Key type Input length | Output length
C Sgn RSA private key any Kk
C Veify RSA public key any, k2 N/A

2 Datalength, signature length.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RSA modulus Szes, in
bits.

12.1.13 ANSl X9.31 RSA signature with SHA-1

The ANS X931 RSA dggnaure with SHA-1 mechanism, denoted
CKM_SHA1 RSA X9 31, peforms dngle- and multiple-pat digitd dgnatures and
verification operations without message recovery. The operations performed are as described
in ANSI X9.31.

This mechanism does not have a parameter.

Congraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k isthe length in bytes of the RSA modulus. For al operations, the
k vaue must be at least 128 and a multiple of 32 as specified in ANSI X9.31.

Table 74, ANSI X9.31 RSA Signatureswith SHA-1: Key And Data L ength

Function Key type Input length | Output length
C_Son RSA private key any Kk
C Vaify RSA public key any, k? N/A

? Datalength, signature length.

For these mechaniams, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RSA modulus sizes, in
bits.

12.2 DSA mechanisms

12.2.1 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA _KEY_PAIR_GEN, isakey
par generation mechanism based on the Digitd Signature Algorithm defined in FIPS PUB 186-
2.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 247

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE dttributes of
the template for the public key.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the new private key.
Other attributes supported by the DSA public and private key types (specificaly, the flags
indicating which functions the keys support) may aso be specified in the templates for the keys,
or else are assigned default initid vaues.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

12.2.2 DSA domain parameter generation

The DSA domain parameter generaion mechanism, denoted
CKM_DSA PARAMETER_GEN, is adoman parameter generation mechanism based on
the Digitd Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits, as
gpecified inthe CKA_PRIME_BI TS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE and CKA_PRIME_BITS attributes to the new object.
Other attributes supported by the DSA domain parameter types may aso be specified in the
template, or else are assgned default initid values

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.
12.2.3 DSA without hashing

The DSA without hashing mechanism, denoted CKM _DSA, is a mechanism for sngle-part
sgnatures and verification based on the Digitd Signature Algorithm defined in FIPS PUB 186-
2. (This mechanism corresponds only to the part of DSA that processes the 20- byte hash vaue;
it does not compute the hash vaue.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA vauesr and s, each represented most-Sgnificant bytefird.

Copyright © 1994-2001 RSA Security Inc.

248

It does not have a parameter.

Condgraints on key types and the length of data are summarized in the following table:

Table 75, DSA: Key And Data L ength

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Function Key type Input length Output
length
C Sgn* DSA private key 20 40
C Veify' DSA public key 20, 40° N/A
! Sngle-part operations only.
2 Data length, Signature length.
For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the

CK_MECHANISM _INFO dructure specify the supported range of DSA prime Sizes, in bits.

12.2.4 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechaniam for sngle-
and multiple-part Sgnatures and verification based on the Digitd Signature Algorithm defined in
FIPS PUB 186-2. This mechaniam computes the entire DSA specification, including the
hashing with SHA-1.

For the purposes of this mechanism, a DSA sgnature is a 40-byte string, corresponding to the
concatenation of the DSA vauesr and s, each represented most-Sgnificant byte first.

This mechanism does not have a parameter.

Condgraints on key types and the length of data are summarized in the following teble:

Table 76, DSA with SHA-1: Key And Data Length

Function Key type Input length Output
length
C Sgn DSA private key any 40
C Veify DSA public key any, 407 N/A
? Data length, signature length.
For this mechanigm, the ulMinKeySze and ulMaxKeySze fidds of the

CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 249

12.2.5 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP, isa
mechanism for angle-part Sgnatures and verification. The Sgnatures it produces and verifiesare
DSA digita signatures over the provided hash vaue and the current time.

It has no parameters.

Condgraints on key types and the length of data are summarized in the following table. The input
and output data may begin a the same location in memory.

Table 77, FORTEZZA Timestamp: Key And Data L ength

Function Key type Input length Output
length
C Sgn* DSA private key 20 40
C Veify' DSA public key 20, 407 N/A
! Single-part operations only.

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

12.3 About Elliptic Curve

The EC cryptosystem (also related to ECDSA) in this document is the one described in the
ANSl X9.62 standard and the ANSl X9.63 draft developed by the ANSI X9F1 working

group.
In these standards, there are two different varieties of EC defined:

1. ECusng afidd with an odd prime number of eements (i.e. thefinite fidd Fy).
2. ECusdng afidd of characterigtic two (i.e. the finite fidd F,m).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It is
preferable that a Cryptoki library, which can perform EC mechanisms, be capable of
performing operations with the two varigties of EC, however this is not required. The
CK_MECHANISM _INFO gructure CKF_EC F P flag identifies a Cryptoki library
supporting EC keys over F, whereas the CKF_EC_F_2M flag dentifies a Cryptoki library
supporting EC keys over Fom. A Cryptoki library that can perform EC mechanisms must st
either or both of these flags for each EC mechanism.

Copyright © 1994-2001 RSA Security Inc.

250 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

In these specifications there are dso three representation methods to define the domain
parameters for an EC key. Only the ecParameters and the namedCurve choices are
supported in Cryptoki. The CK_MECHANISM _INFO structure
CKF_EC ECPARAMETERS flag identifies a Cryptoki library supporting the
ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC
mechanisms must set ether or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the
ecParameter s choice is used can be represented as an octet string of the uncompressed form
or the compressed form. The CK_MECHANISM INFO dructure
CKF_EC_UNCOMPRESS flag identifies a Cryptoki library supporting the uncompressed
form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library supporting the
compressed form. A Cryptoki library that can perform EC mechanisms must set either or both
of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety, one
representation of domain parameters or one form may encounter difficulties achieving
interoperability with other implementations.

If an attempt to create, generate, derive, or unwrap an EC key of an unsupported variety (or of
an unsupported Size of a supported variety) is made, that attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT. If an attempt to create, generate, derive, or unwrap
an EC key with invdid or of an unsupported representation of domain parameters is made, that
attempt should fail with the error code CKR_DOMAIN_PARAMS INVALID. If an attempt
to create, generate, derive, or unwrap an EC key of an unsupported form is made, that attempt
should fail with the error code CKR_TEMPLATE _INCONSISTENT.

124 124 Elliptic curve mechanisms

12.4.1 12.4.1 Elliptic curve key pair generation

The EC (dso reaed to ECDSA) key par generation mechanism, denoted
CKM_EC KEY_PAIR_GEN or CKM_ECDSA KEY_PAIR _GEN, is a key par
generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain parameters, as
specified inthe CKA_EC_PARAMSor CKA_ECDSA_PARAM Sattribute of the template
for the public key. Note that this verson of Cryptoki does not include a mechanism for
generating these EC domain parameters.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 251

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT
atributes to the new public key and the CKA _CLASS, CKA KEY_TYPE,
CKA_EC PARAMSor CKA_ECDSA PARAMSand CKA _CKA VALUE attributesto
the new private key. Other attributes supported by the EC public and private key types
(spedificdly, the flags indicating which functions the keys support) may dso be specified in the
templates for the keys, or else are assgned default initid vaues.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of hitsin the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA
using afidd of characteristic 2 which has between 2°° and 2°® dements, then ulMinKeySize =
201 and ulMaxKeySize = 301 (when written in binary notation, the number 2°° consists of a1
bit followed by 200 O bits. It is therefore a 201-bit number. Smilarly, 2% is a 301-hit
numbe).

12.4.2 12.4.2 ECDSA without hashing

The ECDSA without hashing mechanism, denoted CKM _ECDSA, is a mechanism for angle-
part sgnatures and verification for ECDSA. (This mechanism corresponds only to the part of
ECDSA that processes the hash vaue, which should not be longer than 1024 hits; it does not
compute the hash value)

For the purposes of this mechanism, an ECDSA dgnature is an octet string of length two times
nLen, where nLen is the length in octets of the base point ader n, and corresponds to the
concatenation of the ECDSA vaues r and s, each represented as an octet string of length nLen
mogt-sgnificant byte fird. If the length of the hash value islarger than the bit length of n, only the
leftmogt bit of the hash up to the length of n will be used.

This mechanism does not have a parameter.

Congraints on key types and the length of dataare summarized in the following table:

Table 66, ECDSA: Key And Data Length

Function Key type Input length Output
length
C Sgn* ECDSA private key ay® 2nLen
C Veify' ECDSA publickey | any? 2nLen? N/A
! Sngle-part operations only.

? Data length, Signeture length.

% Truncated to the appropriate number of bits.

Copyright © 1994-2001 RSA Security Inc.

252 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only ECDSA
using a fidd of characteristic 2 which has between 2%° and 2% dements (indusive), then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the number
2?% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°%
is a301-bit number).

12.4.3 12.4.3 ECDSA with SHA-1

The ECDSA wth SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for
sngle- and multiple-part signatures and verification for ECDSA. This mechanism computes the
entire ECDSA specification, including the hashing with SHA- 1.

For the purposes of this mechanism, an ECDSA sgnature is an octet string of length two times
nLen, where nLen is the length in octets of the base point order n, and corresponds to the
concatenation of the ECDSA vaues r and s, each represented as an octet string of length nLen
mogt-dgnificant byte firgt.

This mechanism does not have a parameter.

Congraints on key types and the length of dataare summarized in the following table:

Table 67, ECDSA with SHA-1: Key And Data L ength

Function | Key type Input length Output
length

C Sgn ECDSA private key any 2nLen

C Veify | ECDSA publickey | any, 2nLen? N/A

2 Datalength, signature length.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only ECDSA
using afidd of characteristic 2 which has between 2°° and 2°® dements, then ulMinKeySize =
201 and ulMaxKeySize = 301 (when written in binary notation, the number 2°° consigts of a1
bit followed by 200 O bits. It is therefore a 201-bit number. Similarly, 2% is a 301-hit
number).

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 253

12.4.4 EC mechanism parameters
CK_EC KDF TYPE,CK_EC KDF TYPE_PTR

CK_EC_KDF_TYPE isused to indicate the Key Derivation Function (KDF) applied to derive
keying data from a shared secret. The key derivation function will be used by the EC key
agreement schemes. It is defined asfollows:

typedef CK_ULONG CK_EC KDF_TYPE;

The following table ligts the defined functions.

Table 78, EC: Key Derivation Functions

Sour ce | dentifier Value
CKD_NULL 0x00000001
CKD_SHA1 KDF 0x00000002

The key derivation function CKD_NUL L produces araw shared secret vaue without applying
any key derivation function wheress the key derivation function CKD_SHA1 KDF, which is
based on SHA-1, derives keying data from the shared secret value as defined in the ANSI

X9.63 draft.

CK_EC_KDF_TYPE_PTR isapointer toaCK_EC_KDF_TYPE.
CK_ECDH1 DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS PTR

CK_ECDH1 DERIVE_PARAMS is a dructure that provides the parameters for the
CKM_ECDH1 DERIVE and CKM_ECDH1 COFACTOR_DERIVE key derivation
mechanisms, where each party contributes one key pair. The structure is defined as follows:

typedef struct CK _ECDH1 DERI VE_PARAMS {
CK_EC KDF_TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_ECDH1l_DERI VE_PARAMS;

Thefields of the structure have the following meanings:
kdf key derivation function used on the shared secret vaue

ulSharedDatalLen thelength in bytes of the shared info

Copyright © 1994-2001 RSA Security Inc.

254 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

pSharedData some data shared between the two parties
ulPublicDataLen thelength in bytes of the other party’s EC public key
pPublicData pointer to other party’s EC public key vaue

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDatalLen must be zero. With the key derivation function CKD_SHA1 KDF, an
optiond pSharedData may be supplied, which consists of some data shared by the two parties
intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal_en must be zero.

CK_ECDH1 DERIVE_PARAMS PTR is a pointer to a
CK_ECDH1 DERIVE_PARAMS

CK_ECDH2 DERIVE_PARAMS, CK_ECDH2 _DERIVE_PARAMS PTR

CK_ECDH2 DERIVE_PARAMS is a dructure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key
pars. The sructureis defined as follows:

typedef struct CK ECDH2 DERI VE_PARAMS {
CK_EC_KDF_TYPE kdf ;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Privat eDat aLen;
CK_OBJECT _HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;

} CK_ECDH2_DERI VE_PARAMS;

Thefidds of the sructure have the following meanings
kdf key derivation function used on the shared secret vaue
ulSharedDatalLen thelength in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDatalLen the length in bytes of the other party’ sfirst EC public key
pPublicData pointer to other party’ sfirst EC public key vaue

ulPrivateDataLen thelength in bytes of the second EC private key

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 255

hPrivateData key handle for second EC private key vaue

ulPublicDataLen2 thelength in bytes of the other party’s second EC public
key

pPublicData2 pointer to other party’s second EC public key vaue

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDatal.en must be zero. With the key derivation function CKD_SHA1 KDF, an
optiona pSharedData may be supplied, which conssts of some data shared by the two parties
intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal.en must be zero.

CK_ECDH2 DERIVE_PARAMS PTR is a pointer to a
CK_ECDH2 DERIVE_PARAMS

12.4.5 Elliptic curve Diffie-Hellman key derivation

The dliptic curve DiffieeHdlman (ECDH) key derivation mechanism, denoted
CKM_ECDH1 DERIVE, is a mechanism for key derivation based on the Diffie-Hdlman
verson of the dliptic curve key agreement scheme, as defined in the ANSI X9.63 draft, where
each party contributes one key pair dl usng the same EC domain parameters.

It has a parameter, aCK_ECDH1 DERIVE_PARAM Sdiructure.

This mechanism derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supportsit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute
of the new key; other attributes required by the key type must be specified in the template.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevadue asits CKA_SENSITIVE atribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its

Copyright © 1994-2001 RSA Security Inc.

256 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute set to the opposite vadue from its
CKA _EXTRACTABLE dttribute.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only EC using
afield of characteristic 2 which has between 22 and 2*® dements, then ulMinKeySze = 201
and ulMaxKeySize = 301 (when written in binary notation, the number 2 consists of a 1 bit
followed by 200 O bits. It istherefore a 201-bit number. Similarly, 2°® is a 301-bit number).

12.4.6 Elliptic curve Diffie-Hellman with cofactor key derivation

The dliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted
CKM_ECDH1 COFACTOR_DERIVE, is a mechaniam for key derivation based on the
cofector Diffie-Helman verson of the dliptic curve key agreement scheme, as defined in the
ANS X9.63 draft, where each party contributes one key pair dl usng the same EC domain
parameters. Cofactor multiplication is computationdly efficient and helps to prevent security
problems like smal group attacks.

It has a parameter, aCK_ECDH1 DERIVE_PARAM Sdiructure.

This mechanism derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE dtribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute
of the new key; other attributes required by the key type must be specified in the template.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key hasits CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevdue asits CKA_SENSITIVE atribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE attribute st to the opposite vdue from its
CKA_EXTRACTABLE dattribute.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 257

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only EC using
afidd of characteristic 2 which has between 2% and 2°® dements, then ulMinKeySize = 201
and ulMaxKeySize = 301 (when written in binary notation, the number 2 consists of a 1 bit
followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2°® is a 301-bit number).

12.4.7 Elliptic curve M enezes-Qu-Vanstone key derivation

The dliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the
dliptic curve key agreement scheme, as defined in the ANSI X9.63 draft, where each party
contributes two key pairs al using the same EC domain parameters.

It has a parameter, aCK_ECDH2 DERIVE_PARAM Sdtructure.

This mechanisn derives a secret vdue, and truncates the result according to the
CKA_KEY_TYPE dtribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret vaue.) The mechanism contributes the result asthe CKA_VAL UE attribute of
the new key; other attributes required by the key type must be specified in the template.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE atribute set to
the samevaue asits CKA_SENSITIVE attribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE aitribute st to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vaue from its
CKA_EXTRACTABLE attribute.

For this mechanisn, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only EC usng
afidd of characteristic 2 which has between 2% and 2°® dements, then ulMinKeySize = 201

Copyright © 1994-2001 RSA Security Inc.

258 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

and ulMaxKeySize = 301 (when written in binary notation, the number 2 consists of a 1 bit
followed by 200 O bits. It istherefore a201-bit number. Similarly, 2°® is a 301-bit number).

125 Diffie-Hdlman mechanisms

12.5.1 PKCS#3 Diffie-Hellman key pair generation

The PKCS #3 DiffieeHdlman key par genedion mechanian, denoted
CKM_DH_PKCS KEY_PAIR_GEN, is akey pair generation mechanism based on Diffie-
Hedlman key agreement, as defined in PKCS#3. Thisiswhat PKCS#3 cdls“phasel”.

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and
base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the
public key. If the CKA_VALUE_BITS dtribute of the private key is specified, the mechanism
limits the length in bits of the private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_BASE, and CKA_VALUE (and the CKA_VALUE_BITS attribute, if it isnot dready
provided in the template) attributes to the new private key; other attributes required by the
Diffie-Hellman public and private key types must be specified in the templates.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of Diffie-Hdlman prime
Szes in bits.

12.5.2 PKCS#3 Diffie-Hellman domain parameter generation

The PKCS #3 DiffieeHdlman doman parameter generation mechanism, denoted
CKM_DH_PKCS PARAMETER_GEN, is a doman parameter generation mechanism
based on Diffie-Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Helman domain parameters with a particular prime length in
bits, as specified inthe CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, CKA_PRIME,
CKA _BASE, and CKA_PRIME_BITS attributes to the new object. Other attributes
supported by the Diffie-Helman domain parameter types may aso be specified in the template,
or e ae assgned default initid vaues.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 259

For this mechanisn, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of Diffie-Hdlman prime
gzes, in bits.

12.5.3 PKCS#3 Diffie-Helman key derivation

The PKCS #3 Diffie-Hdlman key derivation mechanism, denoted
CKM_DH_PKCS DERIVE, is a mechaniam for key derivation based on Diffie-Hdlman key
agreement, as defined in PKCS #3. Thisiswhat PKCS#3 calls“phase11”.

It has a parameter, which is the public value of the other party in the key agreement protocol,
represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-sgnificant byte first).

This mechanism derives a secret key from a Diffie-Helman private key and the public vaue of
the other party. It computes a Diffie-Hellman secret vaue from the public vaue and private key
according to PKCS #3, and truncates the result according to the CKA_KEY_TYPE atribute
of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN
atribute of the template. (The truncation removes bytes from the leading end of the secret
vaue) The mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

This mechanism has the following rules about key sensitivity and extractability':

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevdue asits CKA_SENSITIVE dtribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute set to the opposite vadue from its
CKA_EXTRACTABLE dttribute.

" Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE,
CKA_ALWAYS SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version 2.11
to match the policy wused by other key derivation mechanisms such as
CKM_SSL.3 MASTER_KEY_DERIVE

Copyright © 1994-2001 RSA Security Inc.

260 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of Diffie-Hdlman prime
gzes, in bits.

12.6 X9.42 Diffie-Hellman mechanism parameters

CK_X9 42 DH_KDF TYPE, CK_X9 42 DH_KDF TYPE_PTR

CK_X9 42 DH_KDF_TYPE isused to indicate the Key Derivation Function (KDF) gpplied
to derive keying data from a shared secret. The key derivation function will be used by the
X9.42 Diffie-Helman key agreement schemes. It is defined as follows:

typedef CK_ULONG CK_X9 42 DH_KDF_TYPE;

The following table ligts the defined functions.

Table 79, X9.42 Diffie-Hellman Key Derivation Functions

Sour ce | dentifier Value

CKD_NULL 0x00000001
CKD_SHA1 KDF _ASN1 0x00000003
CKD_SHA1 KDF CONCATENATE 0x00000004

The key derivation function CKD_NULL produces araw shared secret value without applying
any key derivaion function whereas the key derivation functions CKD_SHA1 KDF_ASN1
and CKD_SHA1 KDF_CONCATENATE, which are both based on SHA-1, derive keying
data from the shared secret vaue as defined in the ANSI X9.42 standard.

CK_X9 42 DH_KDF TYPE_PTR isapointer toaCK_X9 42 DH_KDF_TYPE.

CK_X9 42 DH1 DERIVE_PARAMS,
CK_X9 42 DH1 DERIVE_PARAMS PTR

CK_X9 42 DH1 DERIVE_PARAMS is a gructure that provides the parameters to the
CKM_X9 42 DH_DERIVE key derivation mechanism, where each party contributes one
key pair. The structure is defined asfollows:

typedef struct CK X9 42 DH1l DERI VE_PARAMS {
CK_X9 42 DH KDF_TYPE kdf;
CK_ULONG ul O her I nfoLen;
CK_BYTE_PTR pOQt her | nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
} CK X9 42 DH1 DERI VE_PARAMS;

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 261

Thefieds of the sructure have the following meanings:
kdf key derivation function used on the shared secret vaue
ulOtherinfoLen the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDataLen thelength in bytes of the other party’s X9.42 Diffie-
Hellman public key

pPublicData pointer to other party’s X9.42 Diffie-Hellman public key
vaue

With the key derivaion function CKD_NULL, pOtherinfo must be NULL and
ulOtherInfoLen must be zero. With the key derivation function CKD_SHA1 KDF_ASN1,
pOtherinfo must be supplied, which contains an octet string, specified in ASN.1 DER
encoding, consging of mandatory and optiond data shared by the two parties intending to
shae the <dhared seCre. With the key derivation function
CKD_SHA1 KDF_CONCATENATE, an optiond pOtherinfo may be supplied, which
conssts of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.

CK_X9 42 DH1 DERIVE_PARAMS PTR is a ponter to a
CK_X9 42 DH1 DERIVE_PARAMS

CK_X9 42 DH2 DERIVE_PARAMS,
CK_X9 42 DH2 _DERIVE_PARAMS PTR

CK_X9 42 DH2 DERIVE_PARAMS is a dructure that provides the parameters to the
CKM_X9 42 DH_HYBRID_DERIVE ad CKM_X9 42 MQV_DERIVE key
derivation mechanisms, where each party contributes two key pairs. The structure is defined as
follows

typedef struct CK X9 42 DH2_ DERI VE_PARAMS {
CK_X9 42 DH _KDF_TYPE kdf ;
CK_ULONG ul O her I nfoLen;
CK_BYTE_PTR pOQt her | nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Privat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;

} CK X9 42 DH2 DERI VE_PARAMS;

Copyright © 1994-2001 RSA Security Inc.

262 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Thefieds of the sructure have the following meanings:
kdf key derivation function used on the shared secret vaue
ulOtherinfoLen thelength in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDataLen thelength in bytes of the other party’ sfirst X9.42 Diffie-
Hellman public key

pPublicData pointer to other party’ sfirst X9.42 Diffie-Hdlman public
key vadue

ulPrivateDataLen thelength in bytes of the second X9.42 Diffie-Helman
private key

hPrivateData key handle for second X9.42 Diffie-Hdlman private key
vaue

ulPublicDataLen2 thelength in bytes of the other party’ s second X9.42
Diffie-Hellman public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hdlman
public key vdue

With the key derivation funcion CKD_NULL, pOtherinfo must be NULL and
ulOtherInfoLen must be zero. With the key derivation function CKD_SHA1 KDF_ASN1,
pOtherinfo must be supplied, which contains an octet string, specified in ASN.1 DER
encoding, consisting of mandatory and optiond data shared by the two parties intending to
shae the <dhared seCret. With the key derivation function
CKD_SHA1 KDF_CONCATENATE, an optiond pOtherinfo may be supplied, which
congsts of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.

CK_X9 42 DH2 DERIVE_PARAMS PTR is a ponter to a
CK_X9 42 DH2 DERIVE_PARAMS

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 263

12.7 X9.42 Diffie-Hdlman mechaniams

12.7.1 X9.42 Diffie-Hellman key pair generation

The X942 DiffieeHdlman key par generaion mechanism, denoted
CKM_X9 42 DH_KEY_PAIR_GEN, isakey par generation mechanism based on Diffie-
Hellman key agreement, as defined in the ANS| X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular prime,
base and subprime, as specified in the CKA_PRIME, CKA_BASE and CKA_SUBPRIME
attributes of the template for the public key.

The mechaniam contributes the CKA_CLASS, CKA KEY_TYPE, and CKA VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA BASE, CKA_SUBPRIME, and CKA_VALUE attributes to the new private key;
other attributes required by the X9.42 Diffie-Hdlman public and private key types must be
specified in the templates.

For this mechanisn, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of X9.42 Diffie-Hdlman
prime sizes, in bits, for the CK A_PRIM E dtribute.

12.7.2 X9.42 Diffie-Hdlman domain parameter generation

The X942 DiffieeHdlman doman paameer generation mechanism, denoted
CKM_X9 42 DH_PARAMETER_GEN, is a doman parameters generation mechanism
based on X9.42 Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechaniam generates X9.42 Diffie-Hdlman domain parameters with particular prime and
ubprime length in bits a gedfied in the CKA PRIME BITS and
CKA_SUBPRIME_BITS dtributes of the template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA _KEY _TYPE, CKA_PRIME,
CKA_BASE, CKA_SUBPRIME, CKA PRIME_BITS and CKA_SUBPRIME_BITS
attributes to the new object. Other attributes supported by the X9.42 Diffie-Hdlman domain
parameter types may aso be specified in the template for the domain parameters, or else are
assigned default initid values.

Copyright © 1994-2001 RSA Security Inc.

264 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of X9.42 Diffie-Hdlman
prime Szes, in bits.

12.7.3 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted CKM_X9 42 DH_DERIVE,
is a mechanism for key derivation based on the Diffie-Hellman key agreement scheme, as
defined in the ANSI X9.42 gandard, where each party contributes one key pair, dl usng the
same X9.42 Diffie-Helman domain parameters.

It has a parameter, aCK_X9 42 DH1 DERIVE_PARAM Sdtructure.

This mechanism derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE atribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.)) The mechanism contributes the result as the CKA_VALUE attribute
of the new key; other attributes required by the key type must be specified in the template. Note
that in order to vaidate this mechanism it may be required to use the CKA VAL UE attribute
as the key of a generad-length MAC mechanism (eg. CKM_SHA 1 HMAC_GENERAL)
over some test data.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE dtribute set to
the samevaue asits CKA_SENSITIVE attribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechanisn, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of X9.42 Diffie-Hdlmen
prime Szes, in bits, for the CKA_PRIM E dtribute.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 265

12.7.4 X9.42 Diffie-Hdlman hybrid key derivation

The X942 DiffieeHdlman hybrid key derivation mechaniam, denoted
CKM_X9 42 DH_HYBRID_DERIVE, is a mechanism for key derivation based on the
Diffie-Hellman hybrid key agreement scheme, as defined in the ANSI X9.42 standard, where
each paty contributes two key par, dl usng the same X9.42 Diffie-Hdlman doman
parameters.

It has aparameter, aCK_X9 42 DH2 DERIVE_PARAM Sstructure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE dtribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute
of the new key; other attributes required by the key type must be specified in the template. Note
that in order to vaidate this mechanism it may be required to use the CKA VAL UE attribute
as the key of a genera-length MAC mechanism (eg. CKM_SHA 1 HMAC_GENERAL)
over some test data.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE atribute set to
the samevaue asits CKA_SENSITIVE attribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the deived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE aitribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of X9.42 Diffie-Hdlmen
prime sizes, in bits, for the CK A_PRIM E dtribute.

12.7.5 X9.42 Diffie-Hellman M enezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hdlman Menezes-Qu-Vanstone (MQV) key derivation mechanism, denoted
CKM_X9 42 MQV_DERIVE, isamechanism for key derivation based the MQV scheme,

Copyright © 1994-2001 RSA Security Inc.

266 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

as defined in the ANSI X9.42 standard, where each party contributes two key pairs, al using
the same X 9.42 Diffie-Hellman domain parameters.

It hasaparameter, aCK_X9 42 DH2 DERIVE_PARAM Sdtructure.

This mechanism derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE dtribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret vaue.) The mechanism contributes the result asthe CKA_VAL UE éttribute of
the new key; other attributes required by the key type must be specified in the template. Note
that in order to vaidate this mechaniam it may be required to use the CKA VAL UE attribute
as the key of a generd-length MAC mechanism (eg. CKM_SHA 1 HMAC_GENERAL)
over some test data.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSTIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE atribute set to
the samevaue asits CKA_SENSITIVE attribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE aitribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

12.8 For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of X9.42
Diffie-Hdllman prime szes, in bits, for the CKA_PRIME attributeKEA
mechanism parameters

CK_KEA_DERIVE_PARAMS CK_KEA DERIVE_PARAMS PTR

CK_KEA_DERIVE_PARAMS is a dructure that provides the parameters to the
CKM_KEA_DERIVE mechaniam. It isdefined asfollows:

typedef struct CK_KEA DERI VE_PARAMS {
CK_BBOOL i sSender;

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 267

CK_ULONG ul RandonLen;

CK_BYTE_PTR pRandonhA,;

CK_BYTE_PTR pRandonB;

CK_ULONG ul Publ i cDat aLen;

CK_BYTE_PTR pPubl i cDat a;
} CK_KEA DERI VE_PARAMS;

Thefidds of the gructure have the following meanings:

isSender Option for generating the key (cdled a TEK). Thevdueis
TRUE if the sender (originator) generatesthe TEK,
FALSE if the recipient is regenerdting the TEK.

ulRandomLen size of random Raand Rb, in bytes
pRandomA pointer to Radata
pRandomB pointer to Rb data
ulPublicDataLen other party’s KEA public key sze
pPublicData pointer to other party’s KEA public key vaue

CK_KEA_DERIVE_PARAMS PTR isapointer toaCK_KEA_DERIVE_PARAMS

129 KEA mechanisms

12.9.1 KEA key pair generation

The KEA key par geneaion mechanism, denoted CKM_KEA KEY_PAIR_GEN,
generates key pairs for the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK and
KEA Algorithm Specification Verson 2.07, 29 May 1998.

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BA SE attributes of
the template for the public key. Note tha this verson of Cryptoki does not include a
mechanism for generating these KEA domain parameters.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA BASE, and CKA_VALUE attributes to the new private key.
Other attributes supported by the KEA public and private key types (specificdly, the flags

Copyright © 1994-2001 RSA Security Inc.

268 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

indicating which functions the keys support) may aso be specified in the templates for the keys,
or else are assigned default initid vaues.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of KEA prime Szes, in bits.

12.9.2 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, isamechanism for key
derivation based on KEA, the Key Exchange Algorithm, as defined by NIST's “SKIPJACK
and KEA Algorithm Specification Verson 2.07, 29 May 1998.

It has a parameter, aCK_KEA_DERIVE_PARAM Sdtructure.

This mechanism derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE dtribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.)) The mechanism contributes the result as the CKA_VALUE attribute
of the new key; other attributes required by the key type must be specified in the template.

As defined in the Specification, KEA can be used in two different operational modes: full mode
and email mode. Full mode is a two-phase key derivation sequence that requires red-time
parameter exchange between two parties. E-mall mode is a one-phase key derivation sequence
that does not require real-time parameter exchange. By convention, e mail mode is designated
by use of afixed vaue of one (1) for the KEA parameter R, (pRandomB).

The operation of this mechanism depends on two of the vaues in the supplied
CK_KEA_DERIVE_PARAMS dructure, as detalled in the table below. Note that, in dl

cases, the data buffers pointed to by the parameter structure fields pRandomA and pRandomB
must be dlocated by the cdler prior to invoking C_DeriveK ey. Also, the vaues pointed to by
pRandomA and pRandomB are represented as Cryptoki “Big integer” data (i.e., a sequence of
bytes, most-ggnificant byte first).

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 269

Table 80, KEA Parameter Values and Operations

Valueof | Valueof big
boolean integer Token Action
isSender pRandomB (after checking parameter and template vaues)
TRUE 0 Compute KEA R, vaue, goreitin pRandomA, return
CKR_OK. No derived key object is created.
TRUE 1 Compute KEA R, vaue, goreit in pRandomA, derive
key vdue usng e-mail mode, create key object, return
CKR_OK.
TRUE >1 Compute KEA R, vaue, goreit in pRandomA, derive
key value using full mode, create key object, return
CKR_OK.
FALSE 0 Compute KEA R, vdue, soreit in pRandomB, return
CKR_OK. No derived key object is created.
FALSE 1 Derive key vdue usng e-mail mode, create key object,
return CKR_OK.
FALSE >1 Derive key vadue using full mode, create key object,
return CKR_OK.

Note that the parameter vaue pRandomB==0 is a flag that the KEA mechanism is being
invoked to compute the party’s public random vaue (R, or R, for sender or recipient,
respectively), not to derive a key. In these cases, any object template supplied as the
C_DeriveK ey pTemplate argument should be ignored.

This mechanism has the fallowing rules about key sensitivity and extractability*:

The CKA_SENSITIVE and CKA_EXTRACTABLE dtributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key hasits CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswdl. If the base key has its CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE atribute set to
the samevdue asits CKA_SENSITIVE dtribute.

* Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE,
CKA_ALWAYS SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version 2.11
to match the policy wused by other key derivation mechanisms such as
CKM_SSL.3 MASTER_KEY_DERIVE

Copyright © 1994-2001 RSA Security Inc.

270 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the deived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE attribute st to the opposite vdue from its
CKA_EXTRACTABLE dttribute.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of KEA prime sizes, in bits.

12.10 Generic secret key mechanisms

12.10.1 Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the C_GenerateK ey
cdl, and the CKA_VALUE_LEN attribute specifies the length of the key to be generated.

It does not have a parameter.

The template supplied must specify a vdue for the CKA_VALUE_LEN attribute. If the
template specifies an object type and a class, they must have the following vaues

CK_OBJECT_CLASS=CKO_SECRET KEY;
CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of key sizes, in bits.

12.11 Wrapping/unwrapping private keys

Cryptoki Versgons 2.01 and up alow the use of secret keys for wrapping and unwrapping RSA
private keys, Diffie-Helman private keys, X9.42 Diffie-Hellman private keys, EC (d<o rlated
to ECDSA) private keys and DSA private keys. For wrapping, a private key is BER-encoded
according to PKCS #8's PrivateKeylnfo ASN.1 type. PKCS #8 requires an agorithm
identifier for the type of the private key. The object identifiers for the required dgorithm
identifiers are asfollows:

rsaEncryption OBJECT I DENTIFIER ::= { pkcs-1 1}

dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1}

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 271

dhpubl i cnumber OBJECT IDENTIFIER ::= { iso(1l) nenber-
body(2) us(840) ansi-x942(10046) nunber-type(2) 1}

i d-ecPublicKey OBJECT IDENTIFIER ::= { iso(1l) menber-
body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1
}

i d-dsa OBJECT I DENTIFIER ::= {
i so(1) nenber-body(2) us(840) x9-57(10040) x9cm(4) 1
}
where
pkcs-1 OBJECT | DENTIFIER :: = {
iso(1l) nmenber-body(2) US(840) rsadsi (113549) pkcs(1)
1}
pkcs-3 OBJECT | DENTIFIER :: = {
iso(1l) nmenber-body(2) US(840) rsadsi (113549) pkcs(1)
31}

These parameters for the dgorithm identifiers have the following types, respectively:

NULL
DHPar anmet er ::= SEQUENCE ({
prime | NTEGER, -- p
base | NTEGER, -- ¢
privateVal ueLength | NTEGER OPTI ONAL
}
Domai nPar aneters ::= SEQUENCE ({
prime | NTEGER, -- p
base | NTEGER, -- ¢
subpri nme | NTEGER, -- q
cof act or | NTEGER OPTI ONAL, -- |
val i dati onPar s Val i dati onPar ns OPTI ONAL
}
Val i dati onParnms ::= SEQUENCE {
Seed BIT STRING -- seed
PGenCount er | NTEGER -- paraneter verification
}
Paraneters ::= CHO CE {
ecParanmeters ECParaneters,
namedCur ve CURVES. & d({CurveNanes}),

inplicitlyCA NULL

Copyright © 1994-2001 RSA Security Inc.

272 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}

Dss-Parnms ::= SEQUENCE {
p | NTEGER,
g | NTEGER,
g | NTEGER

}

For the X942 Diffie-Hdlman doman parameters, the cofactor and the validationParms
optiond fields should not be used when wrapping or unwrapping X9.42 Diffie-Helman private
keys since their vaues are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeylnfo type:

RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1
type. This type requires vaues to be present for all the attributes specific to Cryptoki’s
RSA private key objects. In other words, if a Cryptoki library does not have vaues for an
RSA private key's CKA_MODULUS, CKA_PUBLIC_EXPONENT,
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT2, and CKA_COEFFICIENT vaues, it
cannot create an RSAPrivateKey BER-encoding of the key, and so it cannot prepare it for

wrapping.
Diffie-Hellman private keys are represented as BER-encoded ASN. 1 type INTEGER.

X9.42 Diffie-Hdlman private keys are represented as BER-encoded ASN.1 type
INTEGER.

EC (dso rdated with ECDSA) private keys are BER-encoded according to SECG SEC 1
ECPrivateKey ASN.1 type:

ECPri vat eKey ::= SEQUENCE ({
Ver si on | NTEGER { ecPrivkeyVer1(1l) }
(ecPrivkeyVerl),
privat eKey OCTET STRI NG,
par aneters [0] Paraneters OPTI ONAL,
publ i cKey [1] BIT STRI NG OPTI ONAL

}

Since the EC domain parameters are placed in the PKCS #8's privateKeyAlgorithm field,
the optional parameters fidd in an ECPrivateKey must be omitted. A Cryptoki
gpplication must be able to unwrap an ECPrivateK ey that contains the optiona publicK ey
fidd; however, what is done with this publicK ey fidd is outsde the scope of Cryptoki.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 273

DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeylnfo type, the resulting string of
bytes is encrypted with the secret key. This encryption must be done in CBC mode with
PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The data thereby obtained are
parsed as a PrivateKeylnfo type, and the wrapped key is produced. An error will result if the
origina wrapped key does not decrypt properly, or if the decrypted unpadded data does not
parse properly, or its type does not match the key type specified in the template for the new
key. The unwrapping mechanism contributes only those attributes pecified in the
PrivateKeylnfo type to the newly-unwrapped key; other attributes must be specified in the
template, or will take their default vaues.

Earlier drafts of PKCS#11 Verson 2.0 and Verson 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm 12 }
al gorithm OBJECT I DENTI FIER :: = {
iso(l) identifier-organization(3) oiw 14) secsig(3)
algorithm 2) }

with associated parameters
DSAPar aneters ::= SEQUENCE ({
primel | NTEGER, -- nodulus p
prime2 | NTEGER, -- nodulus q
base I NTEGER -- base ¢
}

for wrapping DSA private keys. Note that dthough the two structures for holding DSA domain
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

12.12 About RC2

RC2 is a block cipher which is trademarked by RSA Data Security. It has a variable keysize
and an additiona parameter, the “effective number of bits in the RC2 search space’, which can
take on vaues in the range 1-1024, inclusve. The effective number of bits in the RC2 search
gpace is sometimes specified by an RC2 “verson numbe™; this “verson numbe™ is not the
same thing as the “ effective number of bits’, however. Thereisacanonica way to convert from
one to the other.

Copyright © 1994-2001 RSA Security Inc.

274 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.13 RC2 mechanism parameters

CK_RC2 PARAMS; CK_RC2 PARAMS PTR

CK_RC2 PARAMS provides the parameters to the CKM_RC2 ECB and
CKM_RC2 MAC mechaniams. It holds the effective number of bits in the RC2 search
goace. It isdefined asfollows:

typedef CK _ULONG CK_RC2_PARAMS;

CK_RC2 PARAMS PTR isapointer toaCK_RC2 PARAMS

CK_RC2 CBC_PARAMS; CK_RC2 CBC _PARAMS PTR

CK_RC2 CBC_PARAMS is a dructure that provides the parameters to the
CKM_RC2 CBCand CKM_RC2 CBC_PAD mechanisms. It isdefined asfollows:

typedef struct CK RC2_CBC PARAMS {
CK_ULONG ul Ef fectiveBits;
CK_BYTE i v[8];
} CK_RC2_CBC_PARAMS;
Thefidds of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space
Iiv theinitidization vector (V) for cipher block chaining mode

CK_RC2 CBC_PARAMS PTR isapointer toaCK_RC2 _CBC_PARAMS
CK_RC2 MAC_GENERAL PARAMS;
CK_RC2 MAC_GENERAL_PARAMS PTR

CK_RC2 MAC_GENERAL_PARAMSi s a dructure that provides the parameters to the
CKM_RC2 MAC_GENERAL mechaniam. It isdefined asfollows.

typedef struct CK_RC2_MAC_GENERAL_PARAMS ({
CK_ULONG ul EffectiveBits;
CK_ULONG ul MacLengt h;
} CK_RC2_MAC_GENERAL _PARANS;
Thefidds of the sructure have the following meanings:

ulEffectiveBits the effective number of bitsin the RC2 search space

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 275

ulMacLength length of the MAC produced, in bytes

CK_RC2 MAC_GENERAL PARAMS PTR is a ponter to a
CK_RC2 MAC_GENERAL_PARAMS

12.14 RC2 mechanisms

12.14.1 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2 KEY_GEN, is a key generation
mechanism for RSA Data Security’ s block cipher RC2.

It does not have a parameter.

The mechaniam generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (pecificdly, the flags
indicating which functions the key supports) may be specified in the template for the key, or ese
are assigned default initiad vaues.

For this mechanisn, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure specify the supported range of RC2 key sizes, in hits.

12.14.2 RC2-ECB

RC2-ECB, denoted CKM_RC2 ECB, is a mechanism for sngle- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC2 and eectronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_PARAM S which indicates the effective number of bitsin the
RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dttribute of the key that is wrapped, padded on the
trailing end with up to seven null bytes so tha the resulting length is a multiple of eight. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports

Copyright © 1994-2001 RSA Security Inc.

276 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

it, the CKA_VALUE_LEN dtribute of the template. The mechanism contributes the result as
the CKA_VALUE attribute of the new key; other attributes required by the key type must be
gpecified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Table 81, RC2-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same asinput length no find part
C_Decrypt RC2 multiple of 8 same asinput length no find part
C WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multipleof 8 | determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of RC2 effective number of
bits.

12.14.3 RC2-CBC

RC2-CBC, denoted CKM_RC2 CBC, is a mechanisn for dngle- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAM S sructure, where the firg fied indicates the
effective number of bitsin the RC2 search space, and the next field is the initidization vector for
cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the vaue of the CKA_VALUE dattribute of the key that is wrapped, padded on the
tralling end with up to seven null bytes so tha the resulting length is a multiple of eght. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the gpplication must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN aitribute of the template. The mechanism contributes the result as

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 277

the CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Congraints on key types and the length of data are summarized in the following table:

Table 82, RC2-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same asinput length no find part
C Decrypt RC2 multiple of 8 same asinput length no find part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey | RC2 multipleof 8 | determined by type of key

being unwrapped or

CKA_VALUE _LEN

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RC2 effective number of
bits.

12.14.4 RC2-CBC with PK CS padding

RC2-CBC with PKCS padding, denoted CKM_RC2 _CBC_PAD, isamechanian for angle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
RSA Data Security’s block cipher RC2; cipher-block chaining mode as defined in FIPS PUB
81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAM S gructure, where the firg field indicates the
effective number of bitsin the RC2 search space, and the next fidld is the initidization vector.

The PKCS padding in this mechaniam dlows the length of the plaintext vaue to be recovered
from the ciphertext vaue. Therefore, when unwrapping keys with this mechanism, no vaue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Helman, X942 Diffie-Hdlman, EC (aso related to ECDSA) and DSA private
keys (see Section Error! Reference source not found. for details). The entriesin Table 83
for data length congtraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

278 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 83, RC2-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC2 any input length rounded up to
multiple of 8
C Decrypt RC2 multipleof 8 | between 1 and 8 bytes shorter
then input length
C WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multipleof 8 | between 1 and 8 bytes shorter
then input length

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gtructure specify the supported range of RC2 effective number of
bits.

12.14.5 General-length RC2-MAC

Generd-length RC2-MAC, denoted CKM_RC2 MAC_GENERAL, is a mechaniam for
dngle- and multiple-part signatures and verification, based on RSA Data Security’ s block cipher
RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter, aCK_RC2 MAC_GENERAL_PARAM S dructure, which specifiesthe
effective number of bits in the RC2 search space and the output length desired from the
mechanism.

The output bytes from this mechanism are taken from the gtart of the find RC2 cipher block
produced in the MACing process.

Congraints on key types and the length of dataare summarized in the following table:

Table 84, General-length RC2-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sgn RC2 any 0-8, as specified in parameters
C Veify RC2 any 0-8, as specified in parameters

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 279

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC2 effective number of
bits.

12.14.6 RC2-MAC

RC2-MAC, denoted by CKM_RC2 MAC, is a specid case of the generd-length RC2-
MAC mechanisn (see Section 12.14.5). Intead of teking a
CK_RC2 MAC_GENERAL_PARAMS parameter, it takes a CK_RC2 PARAMS
parameter, which only contains the effective number of bits in the RC2 search space. RC2-
MAC aways produces and verifies 4-byte MACs.

Condgraints on key types and the length of data are summarized in the following table:

Table 85, RC2-MAC: Key And Data Length

Function Key type | Datalength Signaturelength
C Sgn RC2 any 4
C Veify RC2 any 4

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RC2 effective number of
bits.

12.15 RC4 mechanisms

12.15.1 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY_GEN, is akey generation
mechanism for RSA Data Security’s proprietary stream cipher RCA.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes as specified in the
CKA _VALUE_LEN dtribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specificaly, the flags
indicating which functions the key supports) may be specified in the template for the key, or ese
are assgned default initid vaues.

Copyright © 1994-2001 RSA Security Inc.

280 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC4 key sizes, in hits.
12.15.2 RC4

RC4, denoted CKM_RC4, is a mechanism for sngle- and multiple-part encryption and
decryption based on RSA Data Security’ s proprietary stream cipher RCA.

It does not have a parameter.

Condtraints on key types and the length of input and output data are summarized in the following
table:

Table 86, RC4: Key And Data Length

Function Key type | Input length Output length Comments
C_Encrypt RC4 any sameasinput length | no find part
C Decrypt RC4 any sameasinput length | no find part

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC4 key Szes, in hits.

12.16 About RC5

RCS is a parametrizable block cipher patented by RSA Data Security. It has a variable
wordsze, avariable keysize, and a variable number of rounds. The blocksize of RC5 is dways
equal to twice itswordsize.

12.17 RC5 mechanism parameters

CK_RC5 PARAMS; CK_RC5 PARAMS PTR

CK_RC5 PARAMS provides the parameters to the CKM_RC5 ECB and
CKM_RC5 MAC mechaniams. It isdefined asfollows

typedef struct CK_RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;

} CK_RC5_PARANS;

Thefidds of the sructure have the following meanings:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 281

ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment

CK_RC5 PARAMS PTR isapointer toaCK_RC5 PARAMS

CK_RC5 CBC_PARAMS; CK_RC5 CBC_PARAMS PTR

CK_RC5 CBC _PARAMS is a dructure that provides the parameters to the
CKM_RC5 CBCand CKM_RC5 CBC_PAD mechaniams. It isdefined asfollows:

typedef struct CK RC5_CBC PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul IvLen;
} CK_RC5_CBC_PARAMS;
Thefidds of the gructure have the following meanings:
uWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment
plv pointer to initidization vector (1V) for CBC encryption
ullvLen length of initidization vector (must be same as blocksize)

CK_RC5 CBC_PARAMS PTR isapointer toaCK_RC5 CBC_PARAMS.

CK_RC5 MAC_GENERAL_PARAMS;
CK_RC5 MAC_GENERAL_PARAMS PTR

CK_RC5 MAC_GENERAL_PARAMSi s a dructure that provides the parameters to the
CKM_RC5 MAC_GENERAL mechaniam. It isdefined asfollows

typedef struct CK _RC5_MAC GENERAL_ PARAMS ({
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;

} CK_RC5_MAC_GENERAL _PARANS;

Thefieds of the sructure have the following meanings:

uWordsize wordsize of RC5 cipher in bytes

Copyright © 1994-2001 RSA Security Inc.

282 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulRounds number of rounds of RC5 encipherment
ulMacLength length of the MAC produced, in bytes

CK_RC5 MAC_GENERAL_PARAMS PTR is a ponter to a
CK_RC5 MAC_GENERAL PARAMS

12.18 RC5 mechanisms

12.18.1 RC5key generation

The RC5 key generation mechanism, denoted CKM _RC5 KEY_GEN, is akey generation
mechanism for RSA Data Security’s block cipher RC5.

It does not have a parameter.

The mechaniam generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanian contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type (specificaly, the flags
indicating which functions the key supports) may be specified in the template for the key, or ese
are assgned default initid vaues.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of RC5 key szes, in bytes.

12.18.2 RC5-ECB

RC5-ECB, denoted CKM_RC5 ECB, is a mechanism for sngle- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC5 and e ectronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 PARAMS which indicates the wordsize and number of
rounds of encryption to use.

This mechanism can wrgp and unwrgp any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the vaue of the CKA_VALUE attribute of the key that is wrapped, padded on the
tralling end with null bytes so that the resulting length is a multiple of the cipher blocksize (twice
the wordsize). The output data is the same length as the padded input data. It does not wrap the
key type, key length, or any other information about the key; the gpplication must convey these

separately.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 283

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attributes of the template and, if it has one, and the key type
supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the
result as the CKA_VALUE attribute of the new key; other attributes required by the key type
must be specified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Table 87, RC5-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC5 multiple of same asinput length no find part
blocksze
C Decrypt RC5 multiple of same asinput length no find part
blocksize
C WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of determined by type of key
blocksze being unwrapped or
CKA_VALUE_LEN

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key szes, in bytes.

12.18.3 RC5-CBC

RC5-CBC, denoted CKM_RC5 CBC, is a mechaniam for dngle- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 _CBC_PARAM S structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initidization vector for cipher block
chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the vaue of the CKA_VALUE attribute of the key that is wrapped, padded on the
trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the application must convey these separately.

Copyright © 1994-2001 RSA Security Inc.

284 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as
the CKA_VALUE attribute of the new key; other attributes required by the key type must be
gpecified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Table 88, RC5-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC5 multiple of same asinput length no find part
blocksze
C Decrypt RC5 multiple of same asinput length no find part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of determined by type of key
blocksze being unwrapped or
CKA_VALUE_LEN

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in bytes.

12.18.4 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5 CBC_PAD, isamechanian for angle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
RSA Data Security’s block cipher RC5; cipher-block chaining mode as defined in FIPS PUB
81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5 CBC_PARAM S dructure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initidization vector for cipher block
chaining mode.

The PKCS padding in this mechanism dlows the length of the plaintext vaue to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no vadue
should be specified for the CKA_VALUE_LEN dttribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Helman, X942 Diffie-Hellman, EC (also related to ECDSA) and DSA private

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 285

keys (see SectionError! Reference source not found. for details). The entriesin Table 89
for data length congtraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Condgraints on key types and the length of data are summarized in the following table:

Table 89, RC5-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C Decrypt RC5 multipleof | between 1 and blocksize bytes
blocksze shorter than input length
C WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multipleof | between 1 and blocksize bytes
blocksze shorter than input length

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC5 key szes, in bytes.
12.18.,5 General-length RC5-MAC

Generd-length RC5-MAC, denoted CKM_RC5 MAC_GENERAL, is a mechanism for
angle- and multiple- part signatures and verification, based on RSA Data Security’ s block cipher
RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter, aCK_RC5 MAC_GENERAL_PARAM Sdtructure, which specifiesthe
wordsize and number of rounds of encryption to use and the output length desired from the
mechanism.

The output bytes from this mechanism are taken from the start of the find RC5 cipher block
produced in the MACing process.

Congtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

286 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 90, General-length RC2-MAC: Key And Data Length

Function Key type | Datalength Signature length
C Sgn RC5 any 0-blocksize, as specified in parameters
C Veify RC5 any 0-blocksize, as specified in parameters

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC5 key sizes, in bytes.

12.18.6 RC5-MAC

RC5-MAC, denoted by CKM_RC5 MAC, is a specid case of the generd-length RC5-
MAC mechanism (see Section 0). Insteed of taking a
CK_RC5 MAC_GENERAL_PARAMS parameter, it takes a CK_RC5 PARAMS
parameter. RC5-MAC aways produces and verifies MACs hdf as large as the RC5
blocksize.

Congraints on key types and the length of data are summarized in the following table:

Table91, RC5-MAC: Key And Data Length

Function Key type | Datalength Signaturelength
C Sgn RC5 any RC5 wordsize = édlocksze/20
C Veify RC5 any RC5 wordsi ze = édlocksze/20

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC5 key szes, in bytes.

12.19 AES mechanisms

12.19.1 AESKkey generation

The AES key generation mechanism, denoted CKM _AES KEY_GEN, is a key generdion
mechanism for NIST’ s Advanced Encryption Standard.

It does not have a parameter.

The mechaniam generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 287

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the AES key type (specificdly, the flags
indicating which functions the key supports) may be specified in the template for the key, or else
are assigned default initiad vaues.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of AES key szes, in bytes.

12.19.2 AES-ECB

AES-ECB, denoted CKM_AES ECB, is a mechanian for dnge- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST Advanced
Encryption Standard and e ectronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the vaue of the CKA_VALUE attribute of the key that is wrapped, padded on the
tralling end with up to block sze minus one null bytes so that the resulting length isamultiple of
the block size. The output data is the same length as the padded input data. It does not wrap the
key type, key length, or any other information about the key; the application must convey these

separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN aitribute of the template. The mechanism contributes the result as
the CKA_VALUE attribute of the new key; other attributes required by the key type must be
gpecified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

288 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 92, AES-ECB: Key And Data L ength

Function Key Input length Output length Comments
type

C_Encrypt AES multiple of same asinput length no find part
block sze

C _Decrypt AES multiple of same asinput length no fina part
block sze

C WrapKey AES ay input length rounded up to

multiple of block Sze

C_UnwrapKey AES multiple of determined by type of key

block sze being unwrapped or

CKA_VALUE LEN

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of AES key sizes, in bytes.

12.19.3 AES-CBC

AES-CBC, denoted CKM_AES CBC, is a mechanisn for dngle- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST’s Advanced
Encryption Standard and cipher-block chaining mode.

It has a parameter, a 16-byteinitidization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the vaue of the CKA_VALUE dattribute of the key that is wrapped, padded on the
trailling end with up to block sze minus one null bytes so that the resulting length is a multiple of
the block size. The output data is the same length as the padded input data. It does not wrap the
key type, key length, or any other information about the key; the application must convey these

separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as
the CKA_VALUE dtribute of the new key; other aitributes required by the key type must be
gpecified in the template.

Condtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 289

Table 93, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt AES multiple of same asinput length no find part
block sze

C _Decrypt AES multiple of same asinput length no fina part
block sze

C WrapKey AES ay input length rounded up to

multiple of the block size

C_UnwrapKey AES multiple of determined by type of key

block sze being unwrapped or

CKA_VALUE LEN

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of AES key szes, in bytes.

12.19.4 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES CBC_PAD, isamechanism for Sngle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
NIST's Advanced Encryption Standard; cipher-block chaining mode; and the block cipher
padding method detailed in PKCS #7.

It has a parameter, a 16-byte initidization vector.

The PKCS padding in this mechanism dlows the length of the plaintext vaue to be recovered
from the ciphertext vaue. Therefore, when unwrapping keys with this mechanism, no vaue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Helman, X942 Diffie-Hdlman, EC (aso related to ECDSA) and DSA private
keys (see Section Error! Reference source not found. for details). The entriesin Table 94
for data length congtraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

290 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 94, AES-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C Decrypt AES multiple of between 1 and block size
block sze bytes shorter than input length
C WrapKey AES any input length rounded up to
multiple of the block size
C UnwrapKey | AES multiple of between 1 and block length
block sze bytes shorter than input length

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of AES key szes, in bytes.
12.19.5 General-length AES-MAC

Generd-length AES-MAC, denoted CKM_AES MAC_GENERAL, is a mechaniam for
angle- and multiple-part sgnatures and verification, based on NIST Advanced Encryption
Standard.

It has aparameter,aCK_MAC_GENERAL _PARAM S gructure, which specifies the output
length desired from the mechanism.

The output bytes from this mechanism are taken from the gart of the find AES cipher block
produced in the MACing process.

Congraints on key types and the length of dataare summarized in the following table:

Table 95, General-length AES-MAC: Key And Data L ength

Function Key type | Datalength Signature length
C _Sign AES any 0-block Sze, as specified in parameters
C Veify AES any 0-block Sze, as specified in parameters

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of AES key Szes, in bytes.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 291

12.19.6 AES-MAC

AES-MAC, denoted by CKM_AES MAC, is a specid case of the genera-length AES-
MAC mechanism (see Section 0). AES-MAC adways produces and verifies MACs that are
haf the block Szein length.

It does not have a parameter.

Condgraints on key types and the length of data are summarized in the following table:

Table 96, AES-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sgn AES any Y block sze (8 bytes)
C Veify AES any Y block sze (8 bytes)

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of AES key sizes, in bytes.

12.20 General block cipher mechanism parameters

CK_MAC_GENERAL _PARAMS; CK_MAC_GENERAL_PARAMS PTR

CK_MAC_GENERAL_PARAM Sprovides the parameters to the genera-length MACing
mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128 (CASTS5), IDEA,
CDMF and AES ciphers. It aso provides the parameters to the generd-length HMACing
mechanisms (i.e. MD2, MD5, SHA-1, RIPEMD-128 and RIPEMD-160) and the two SSL
3.0 MACing mechanisms (i.e. MD5 and SHA-1). It holds the length of the MAC that these

mechanisms will produce. It is defined asfollows:
typedef CK_ULONG CK_MAC GENERAL _PARAMS;

CK_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_MAC_GENERAL _PARAMS

12.21 General block cipher mechanisms

For brevity's sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CAST3,
CAST128 (CASTS), IDEA, and CDMF block ciphers will be described together here. Each
of these ciphers has the following mechanisms, which will be described in atemplatized form:

Copyright © 1994-2001 RSA Security Inc.

292 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.21.1 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME> KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specificdly, the flags
indicating which functions the key supports) may be specified in the template for the key, or else
are assigned default initiad vaues.

When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in
FIPS PUB 46-3. Smilaly, when a triple-DES key is generated, each of the DES keys
comprigng it hasits parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible
for “wesk” or “semi-week” keys to be generated. Similarly, when triple-DES keys are
generated, it is token dependent whether or rot it is possble for any of the component DES
keysto be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the secret
key must specify aCKA_VALUE_LEN attribute.

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation mechanisms
for these ciphes the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of key sizes, in bytes. For
the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

12.21.2 General block cipher ECB

Cipher <NAME> has an eectronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME> ECB. It is a mechaniam for sngle- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dttribute of the key that is wrapped, padded on the
trailing end with null bytes S0 that the resulting length is a multiple of <NAME>'s blocksize. The

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 293

output data is the same length as the padded input data. It does not wrap the key type, key
length or any other information about the key; the gpplication must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as
the CKA_VALUE attribute of the new key; other attributes required by the key type must be
gpecified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Table 97, General Block Cipher ECB: Key And Data Length

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multipleof same asinput length no find part
blocksze
C Decrypt <NAME> | multiplecof same asinput length no find part
blocksize
C WrapKey <NAME> any input length rounded up to
multiple of blocksize
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dtructure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have varigble key szes, and so for these ciphers the
ulMinKeySze and ulMaxKeySze fidds of the CK_MECHANISM _INFO gructure specify
the supported range of key szes, in bytes. For the DES, DES3 (triple-DES), IDEA, and
CDMF ciphers, thesefields are not used.

12.21.3 General block cipher CBC

Cipher <NAME> has a cipher-block chaning mode, “<NAME>-CBC”, denoted
CKM_<NAME>_CBC. It is a mechanism for sngle- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initidization vector for cipher block chaining mode. The initidization
vector has the same length as <NAME>’s blocksize.

Condgtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

294 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 98, General Block Cipher CBC: Key And Data L ength

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multipleof same asinput length no find part
blocksze
C Decrypt <NAME> | multiplecof same asinput length no fina part
blocksize
C WrapKey <NAME> any input length rounded up to
multiple of blocksize
C UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key dzes, and so for these ciphers the
ulMinKeySze and ulMaxKeySze fidds of the CK_MECHANISM _INFO gructure specify
the supported range of key szes, in bytes. For the DES, DES3 (triple-DES), IDEA, and
CDMF ciphers, these fields are not used.

12.21.4 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC
with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It isamechaniam for sngle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping with
<NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initidization vector for cipher block chaning mode. The initidization
vector has the same length as <NAME>'s blocksize.

The PKCS padding in this mechanism dlows the length of the plaintext vaue to be recovered
from the ciphertext vaue. Therefore, when unwrapping keys with this mechanism, no vaue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Helman, X942 Diffie-Hdlman, EC (aso related to ECDSA) and DSA private
keys (see Section Error! Reference source not found. for details). The entriesin Table 99
for data length congtraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Congtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 295

Table 99, General Block Cipher CBC with PKCS Padding: Key And Data L ength

Function Key type I nput Output length
length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C Decrypt <NAME> | multipleof | between 1 and blocksize bytes
blocksze shorter than input length
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C UnwrapKey | <NAME> | multipleof | between 1 and blocksize bytes
blocksze shorter than input length

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have vaiable key dszes, and so for these ciphers, the
ulMinKeySze and ulMaxKeyS ze fidds of the CK_MECHANISM _INFO dructure specify
the supported range of key sizes, in bytes. For the DES, DESS (triple-DES), IDEA, and
CDMF ciphers, these fields are not used.

12.21.5 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “Generd-length <NAME>-MAC”,
denoted CKM_<NAME> MAC_GENERAL. It isa mechaniam for angle- and multiple-
part sgnatures and verification.

It has a parameter, a CK_MAC_GENERAL_PARAMS which specifies the sze of the
output.

The output bytes from this mechanism are taken from the sart of the find cipher block
produced in the MACing process.

Congraints on key types and the length of input and output data are summarized in the following
table:

Copyright © 1994-2001 RSA Security Inc.

296 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 100, General-length General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signaturelength

C Sgn <NAME> any 0-blocksize, depending on
parameters

C Veify <NAME> any 0-blocksize, depending on
parameters

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key Szes, and so for these ciphers, the
ulMinKeySze and ulMaxKeySze fidds of the CK_MECHANISM _INFO structure specify
the supported range of key szes, in bytes. For the DES, DES3 (triple-DES), IDEA, and
CDMF ciphers, these fields are not used.

12.21.6 General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC’, denoted
CKM_<NAME> MAC. This mechanism is a <spedd case of the
CKM_<NAME> MAC GENERAL mechanism described in Section 0. It adways
produces an output of Size haf aslarge as <NAME>'s blocksize.

This mechanism has no parameters.

Condraints on key types and the length of data are summarized in the following table:

Table 101, General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sgn <NAME> any éblocksize/20
C Veify <NAME> any éblocksize/20

For this mechanism, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key sizes, and so for these ciphers the
ulMinKeySze and ulMaxKeyS ze fidds of the CK_MECHANISM _INFO dgructure specify
the supported range of key szes, in bytes. For the DES, DES3 (triple-DES), IDEA, and
CDMF ciphers, these fields are not used.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 297

12.22 Doubleand Triple-length DES mechanisms

12.22.1 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2 KEY_GEN, isa
key generation mechanism for double-length DES keys. The DES keys making up a double-
length DES key both have their parity bits set properly, as specified in FIPS PUB 46-3.

It does not have a parameter.

The mechaniam contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(specificdly, the flags indicating which functions the key supports) may be specified n the
template for the key, or dse are assgned default initia values.

Double-length DES keys can be used with dl the same mechaniams as triple-DES keys.
CKM_DES3 ECB, CKM_DES3 CBC, CKM_DES3 CBC_PAD,
CKM_DES3 MAC_GENERAL, and CKM_DES3 MAC (these mechanisms are
described in templatized form in Section 12.21). Triple-DES encryption with a double-length
DES key is equivdent to encryption with a triple-length DES key with K1=K3 as specified in
FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keys to be “weak” or “semi-weak” keys.
12.22.2 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt, decrypt,
encrypt. Decryptions are carried out with the opposite three steps: decrypt, encrypt, decrypt.
The mathematica representations of the encrypt and decrypt operations are as follows:.

DES3-E({K1,K2,K3}, P)=E(K3,D(K2,E(K1,P)))

DES3-D({K1,K2K3},C)=D(K1, E(K2,D(KS3,P)))

12.22.3 Triple-length DESin CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are performed
using outer CBC as defined in X9.52. X9.52 describes this mode as TCBC. The mathematicd
representations of the CBC encrypt and decrypt operations are as follows:

DES3-CBC-E({K1,K2,K3}, P) = E(K3,D(K2, E(K1,P+1)))

Copyright © 1994-2001 RSA Security Inc.

298 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

DES3-CBC-D({K1,K2,K3}, C)=D(K1, E(K2,D(K3,P))) +1

Thevdue | is either an 8 byte initidization vector or the previous block of cipher text that is
added to the current input block. The addition operation is used is addition modulo-2 (XOR).

12.23 SKIPJACK mechanism parameters

CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMSis a gructure that provides the parameters
tothe CKM_SKIPJACK PRIVATE_WRAP mechanian. It isdefined asfollows:

typedef struct CK _SKI PJACK PRI VATE WRAP_PARAMS ({
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandGLen;
CK_ULONG ul QLen;
CK_ULONG ul Randomien;
CK_BYTE_PTR pRandonhA;
CK_BYTE_PTR pPri nep;
CK_BYTE_PTR pBaseG,
CK_BYTE_PTR pSubpri meQ

} CK _SKI PJACK PRI VATE WRAP_PARAMS;

Thefidds of the sructure have the following meanings.
ulPasswordLen length of the password

pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDataLen other party’s key exchange public key sze
pPublicData pointer to other party’s key exchange public key vaue
ulPandGLen length of prime and base vadues
ulQLen length of subprime vaue
ulRandomLen szeof random Ra, in bytes

pRandomA pointer to Radata

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 299

pPrimeP pointer to Prime, p, vdue
pBaseG pointer to Base, g, vaue
pSubprimeQ pointer to Subprime, g, vaue

CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR is a pointr to a
CK_PRIVATE_WRAP_PARAMS

CK_SKIPJACK_RELAYX_PARAMS,
CK_SKIPJACK_RELAYX_PARAMS PTR

CK_SKIPJACK_RELAYX PARAMS is a dructure that provides the parameters to the
CKM_SKIPJACK_RELAY X mechaniam. It isdefined asfollows:

typedef struct CK_SKI PJACK RELAYX PARAMS ({
CK_ULONG ul O dW appedXLen;
CK_BYTE_PTR pQ dW appedX;
CK_ULONG ul O dPasswor dLen;
CK_BYTE_PTR pQ dPasswor d;
CK_ULONG ul O dPubl i cDat aLen;
CK_BYTE_PTR pQ dPubl i cDat a;
CK_ULONG ul O drRandomnien;
CK_BYTE_PTR pQO dRandomA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandomnien;
CK_BYTE_PTR pNewRandomA;

} CK_SKI PJACK RELAYX PARAMS;

Thefidds of the gructure have the following meanings:
ulOldWrappedXLen length of old wrapped key in bytes
pOIldWrappedX pointer to old wrapper key
ulOldPasswordLen length of the old password

pOldPassword pointer to the buffer which contains the old user-supplied
password

ulOldPublicDatalen old key exchange public key size

pOldPublicData pointer to old key exchange public key vaue

Copyright © 1994-2001 RSA Security Inc.

300 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulOldRandomLen Sze of old random Rain bytes
pOldRandomA pointer to old Radata
ulNewPasswordLen length of the new password

pNewPassword pointer to the buffer which contains the new user-supplied
password

ulNewPublicDatal en new key exchange public key size
pNewPublicData pointer to new key exchange public key vaue
ulNewRandomLen sze of new random Rain bytes
pNewRandomA pointer to new Ra data
CK_SKIPJACK_RELAYX_PARAMS PTR is a pointer to a
CK_SKIPJACK_RELAYX_PARAMS

12.24 SKIPJACK mechanisms

12.24.1 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, isa
key generation mechanism for SKIPJACK. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.

The mechaniam contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.24.2 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK _ECB®64, is a mechanian for angle- and
multiple-part encryption and decryption with SKIPJACK in 64-hit electronic codebook mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 301

Table 102, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.24.3 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK _CBC®64, is a mechanism for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block chaining mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, Specify a particular 1V when decrypting.

Condtraints on key types and the length of data are summarized in the following table:

Table 103, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.24.4 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK _OFB64, is a mechanism for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

302 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 104, SKIPJACK-OFB64: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.24.5 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK _CFB64, is a mechaniam for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, Specify a particular 1V when decrypting.

Condgtraints on key types and the length of data are summarized in the following table:

Table 105, SKIPJACK-CFB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.24.6 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechaniam for sngle- and
multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 303

Table 106, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | no find part
C Decrypt SKIPJACK multipleof 4 | sameasinput length | no find part

12.24.7 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK _CFB16, is a mechaniam for sngle- and
multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, Specify a particular 1V when decrypting.

Congtraints on key types and the length of data are summarized in the following table:

Table 107, SKIPJACK-CFB16: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | no find part
C Decrypt SKIPJACK multipleof 4 | sameasinput length | no find part

12.24.8 SKIPJACK-CFB8

SKIPJACK-CFBS, denoted CKM_SKIPJACK_CFBS, is a mechaniam for angle- and
multiple-part encryption and decryption with SKIPJACK in 8hit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgtraints on key types and the length of data are summarized in the following table:

Copyright © 1994-2001 RSA Security Inc.

304 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 108, SKIPJACK-CFBS8: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | no find part
C Decrypt SKIPJACK multipleof 4 | sameasinput length | no find part

12.249 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap
and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

12.24.10 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wragp and unwrap a private key. It can
wrap KEA and DSA private keys.

It has aparameter, aCK_SKIPJACK_PRIVATE_WRAP_PARAM S structure.

12.24.11 SKIPJACK-RELAYX

The SKIPJACK-RELAY X mechanism, denoted CKM_SKIPJACK_RELAY X, isused with
the C_WrapK ey function to “change the wragpping” on a private key which was wrapped with
the SKIPJACK-PRIVATE-WRAP mechanism (see Section 12.24.10).

It has a parameter, aCK_SKIPJACK _RELAYX_ PARAM Sdiructure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs from
other key-wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of
the arguments to C_WrapKey; however, for the SKIPJACK_RELAY X mechanism, the
[dways invaid] vaue 0 should be passed as the key handle for C_WrapK ey, and the dready-
wrapped key should be passed in as part of the CK_SKIPJACK_RELAYX PARAMS
structure.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 305

12.25 BATON mechanisms

12.25.1 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is caled a Message
Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.25.2 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechaniam for sngle- and
multiple-part encryption and decryption with BATON in 128-hit electronic codebook mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of dataare summarized in the following table:

Table 109, BATON-ECB128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 sameasinput length | nofind part
C_Decrypt BATON multiple of 16 sameasinput length | nofind part

12.25.3 BATON-ECB9

BATON-ECB96, denoted CKM_BATON_ECB96, is amechanian for angle- and multiple-
part encryption and decryption with BATON in 96-hit €l ectronic codebook mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular 1V when decrypting.

Condgtraints on key types and the length of data are summarized in the following table:

Table 110, BATON-ECB96: Data and Length

Copyright © 1994-2001 RSA Security Inc.

306

PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 12 same asinput length no find part
C_Decrypt BATON multiple of 12 same asinput length no find part

12.25.4 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanisn for sngle- and
multiple-part encryption and decryption with BATON in 128-bit cipher-block chaining mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the gpplication cannot specify a
particular IV when encrypting. It can, of course, Specify a particular 1V when decrypting.

Condgtraints on key types and the length of data are summarized in the following table:

Table111, BATON-CBC128: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length | no find part
C Decrypt BATON multipleof 16 | sameasinput length | no find part

12.25.5 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechaniam for sngle- and
multiple- part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table112, BATON-COUNTER: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length | nofind part
C_Decrypt BATON multipleof 16 | sameasinput length | nofind part

12.25.6 BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanian for sngle- and

multiple-part encryption and decryption with BATON in shuffle mode.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 307

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table113, BATON-SHUFFLE: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length | no find part
C Decrypt BATON multipleof 16 | sameasinput length | no find part

12.25.7 BATON WRAP

The BATON wrap and unwrgp mechanism, denoted CKM_BATON_WRAP, isafunction
used to wrap and unwrap a secret key (MEK). It can wrap and unwrap SKIPJACK,
BATON, and JUNIPER keys.

It has no parameters.
When used to unwrgp a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributesto it.

12.26 JUNIPER mechanisms

12.26.1 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, isakey
generation mechanism for JUNIPER. The output of this mechaniam is cdled a Message
Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA VALUE
atributes to the new key.

12.26.2 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for sngle- and
multiple- part encryption and decryption with JUNIPER in 128-bit electronic codebook mode.

Copyright © 1994-2001 RSA Security Inc.

308 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular 1V when decrypting.

Condraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memory.

Table 114, JUNIPER-ECB128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C Decrypt JUNIPER multipleof 16 | sameasinput length | nofind part

12.26.3 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechaniam for sngle- and
multiple-part encryption and decryption with JUNIPER in 128-hit cipher-block chaining mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some value generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memory.

Table 115, JUNIPER-CBC128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C_Decrypt JUNIPER multipleof 16 | sameasinputlength | nofind part

12.26.4 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanian for sngle-
and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, thislV is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS

Congraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in

memory.

Table 116, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C_Decrypt JUNIPER multipleof 16 | sameasinputlength | nofind part

12.26.5 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanian for sngle-
and multiple- part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is st
to some value generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, Specify a particular 1V when decrypting.

Condraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memoary.

Table117, JUNIPER-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinputlength | nofind part
C Decrypt JUNIPER multipleof 16 | sameasinputlength | nofind part

12.26.6 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used 1o wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.

When used to unwrgp a key, this mechanisn contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributesto it.

Copyright © 1994-2001 RSA Security Inc.

310 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.27 MD2 mechanisms

12.27.1 MD2

The MD2 mechanism, denoted CKM _M D2, is a mechanism for message digesting, following
the MD2 message-digest dgorithm defined in RFC 1319.

It does not have a parameter.

Condraints on the length of data are summarized in the following table:

Table 118, MD2: Data L ength

Function | Datalength | Digest length
C Digest any 16

12.27.2 General-length MD2-HMAC

The genera-length MD2-HMAC mechanism, denoted CKM_MD2 HMAC_GENERAL, is
a mechanism for signatures and verification. It uses the HMAC condruction, based on the
MD2 hash function. The keysit uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 0-16 (the output size of MD2 is 16
bytes). Signatures (MACs) produced by this mechanism will be taken from the gart of the full
16-byte HMAC outpui.

Table 119, General-length MD2-HMAC: Key And Data L ength

Function Key type Data length Signaturelength
C Sgn generic secret any 0-16, depending on parameters
C Veify generic secret any 0-16, depending on parameters

12.27.3 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2 HMAC, is a specia case of the
genera-length MD2-HMAC mechanism in Section 12.27.2.

It has no parameter, and aways produces an output of length 16.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 311

12.27.4 MD2 key derivation

MD2 key derivation, denoted CKM_MD2 KEY_DERIVATION, is a mechanism which
provides the capability of deriving a secret key by digesting the value of another secret key with
MD2.

The value of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes the output size of
MD?2).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
wel-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If aDES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be
Set properly.

If the requested type of key requires more than 16 bytes, such as DESS, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE attribute set to
the samevadue asits CKA_SENSITIVE atribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute set to the opposite vdue from its
CKA_EXTRACTABLE dattribute.

Copyright © 1994-2001 RSA Security Inc.

312 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.28 MD5 mechanisms

12.28.1 MD5

The MD5 mechanism, denoted CKM _M D5, is a mechanism for message digesting, following
the M D5 message-digest dgorithm defined in RFC 1321.

It does not have a parameter.

Condraints on the length of input and output data are summarized in the following table. For
dangle-part digesting, the data and the digest may begin at the same location in memory.

Table 120, MD5: Data L ength

Function | Datalength | Digest length
C Digest any 16

12.28.2 General-length MD5-HMAC

The generd-length MD5-HMAC mechanism, denoted CKM_MD5 HMAC _GENERAL,is
a mechaniam for sgnatures and verification. It uses the HMAC congtruction, based on the
MD?5 hash function. The keysit uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 016 (the output size of MD5 is 16
bytes). Signatures (MACs) produced by this mechanism will be taken from the start of the full
16-byte HMAC output.

Table 121, General-length MD5-HMAC: Key And Data L ength

Function Key type Data length Signaturelength
C Sgn generic secret any 0-16, depending on parameters
C Veify generic secret any 0-16, depending on parameters

12.28.3 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5 HMAC, is a specia case of the
genera-length MD5-HMAC mechanism in Section 12.28.2.

It has no parameter, and aways produces an output of length 16.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 313

12.28.4 MD5 key derivation

MD?5 key derivation, denoted CKM_MD5 KEY_DERIVATION, is a mechanism which
provides the capability of deriving a secret key by digesting the vaue of another secret key with
MD5.

The vaue of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD5).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key typeis, then that key type must have a
wel-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and alength are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If aDES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be
Set properly.

If the requested type of key requires more than 16 bytes, such as DESS, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE atributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswdl. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevadue asits CKA_SENSITIVE atribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute set to the opposite vdue from its
CKA_EXTRACTABLE dattribute.

Copyright © 1994-2001 RSA Security Inc.

314 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.29 SHA-1 mechanisms

12.29.1 SHA-1

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-1.

It does not have a parameter.

Condraints on the length of input and output data are summarized in the following table. For
angle-part digesting, the data and the digest may begin at the same location in memory.

Table 122, SHA-1: Data Length

Function | Input length | Digest length
C _Digest any 20

12.29.2 General-length SHA-1-HMAC

The generd-length SHA-1-HMAC mechanism, denoted
CKM_SHA 1 HMAC_GENERAL, is a mechanian for Sgnatures and verification. It uses
the HMAC congtruction, based on the SHA-1 hash function. The keys it uses are generic
secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 0-20 (the output size of SHA-1is 20
bytes). Signatures (MACs) produced by this mechanism will be taken from the start of the full
20-byte HMAC output.

Table 123, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signaturelength
C Sgn generic secret any 0-20, depending on parameters
C Veify generic secret any 0-20, depending on parameters

12.29.3 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAC, is a specid case of the
genera-length SHA-1-HMAC mechaniam in Section 12.29.2.

It has no parameter, and aways produces an output of length 20.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 315

12.29.4 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, isamechanism which
provides the capability of deriving a secret key by digesting the value of another secret key with
SHA-1.

The vaue of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 20 bytes (the output size of SHA-
1).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
wel-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If aDES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key will be
Set properly.

If the requested type of key requires more than 20 bytes, such as DESS, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevdueasits CKA_SENSITIVE dtribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE dattribute.

Copyright © 1994-2001 RSA Security Inc.

316 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.30 FASTHASH mechanisms

12.30.1 FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message
digedting, following the U. S. government’ s dgorithm.

It does not have a parameter.
Congtraints on the length of input and output data are summarized in the following table:

Table 124, FASTHASH: Data Length

Function | Input length | Digest length
C Digest any 40

12.31 Password-based encryption/authentication mechanism parameters

CK_PBE_PARAMS,; CK_PBE_PARAMS PTR

CK_PBE_PARAM Sisadructure which provides dl of the necessary information required by
the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE
generation mechanisms) and the CKM_PBA _SHA1 WITH_SHA1 HMAC mechaniam. Itis
defined as follows:

t ypedef struct CK _PBE_PARAMS {
CK_BYTE_PTR pl ni t Vect or;
CK_UTF8CHAR_PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pSal t;

CK_ULONG ul Sal t Len;
CK _ULONG ul Iteration;
} CK_PBE_PARAMS;

Thefidds of the Sructure have the following meanings

pl nitVector pointer to the location that receives the 8-byteinitidization
vector (1V), if an IV isrequired,

pPassword pointsto the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 317

pSalt points to the sdt to be used in the PBE key generation;
ulSaltLen length in bytes of the sdt information;
ullteration number of iterations required for the generation.

CK_PBE_PARAMS PTR isapointer toaCK_PBE_PARAMS

12.32 PKCS#5 and PKCS #5-style passwor d-based encryption mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption. The method used to generate keys and 1Vs is specified in PKCS #5.

12.32.1 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2 DES CBC, isamechaniam used for
generating a DES secret key and an IV from a password and a sdt vaue by usng the MD2
digest agorithm and an iteration count. This functiondity is defined in PKCS#5 as PBKDFL.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the applicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

12.32.2 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, isamechanism used for
generating a DES secret key and an |V from a password and a sdt vaue by usng the MD5
digest dgorithm and an iteration count. This functiondity is defined in PK CS#5 as PBKDFL.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the gpplicationsupplied buffer
which will receive the 8-byte IV generated by the mechanism.

12.32.3 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, isamechanism used
for generating a CAST secret key and an IV from a password and a sdt vaue by using the
MDS5 digest dgorithm and an iteration count. This functiondity is analogous to that defined in
PKCS#5 PBKDFL1 for MD5 and DES.

Copyright © 1994-2001 RSA Security Inc.

318 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the gpplicationsupplied buffer
which will recaive the 8-byte IV generated by the mechaniam.

The length of the CAST key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaultsto 8 bytes.

12.32.4 M D5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism
used for generating a CAST3 secret key and an 1V from a password and a sdt value by using
the MD5 digest dgorithm and an iteration count. This functiondlity is andogous to that defined in
PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAM S dructure. The parameter specifies the input
information for the key generation process and the location of the gpplicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaultsto 8 bytes.

12.32.5 MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_MD5 CAST128 CBCor CKM_PBE_MD5 CAST5 CBC, isamechanisam
used for generating a CAST128 (CAST5) secret key and an IV from a password and a sat
vaue by usng the MD5 digest dgorithm and an iteration count. This functiondity is anadogous to
that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the applicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.32.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_SHA1 CAST128 CBC or CKM_PBE_SHA1 CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an 1V from a password
and a At vdue by usng the SHA-1 digest dgorithm and an iteration count. This functiondity is
analogous to that defined in PKCS#5 PBKDFL for MD5 and DES.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 319

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the gpplicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.32.7 PKCS#5 PBKDF2 key generation mechanism parameters

CK_PKCS5 PBKD2 PSEUDO RANDOM_FUNCTION_TYPE;
CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate the
Pseudo-Random Function (PRF) used to generate key bits usng PKCS #5 PBKDF2. It is
defined as follows:

t ypedef CK_ULONG
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTI ON_TYPE;

The following PRFs are defined in PKCS #5 v2.0. The following table lists the defined
functions.

Table 125, PK CS#5 PBK DF2 Key Generation: Pseudo-random functions

Sour ce ldentifier Value Parameter Type

CKP_PKCS5 PBKD2 HMAC SHA1 | 0x00000001 | No Parameter. pPrfData must
be NULL and ulPrfDatalLen
must be zero.

CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to a
CK_PKCS5 PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

CK_PKCS5 PBKDF2 SALT SOURCE TYPE;
CK_PKCS5 PBKDF2 SALT _SOURCE_TYPE_PTR

CK_PKCS5 PBKDF2 SALT_SOURCE_TYPE is usad to indicate the source of the st
vaue when deriving akey usng PKCS #5 PBKDF2. It is defined as follows:

typedef CK_ULONG CK_PKCS5 PBKDF2_ SALT SOURCE_TYPE;

Copyright © 1994-2001 RSA Security Inc.

320 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following sdt vaue sources are defined in PKCS #5 v2.0. The following table ligts the
defined sources adong with the corresponding data type for the pSaltSourceData fidd in the
CK_PKCS5 PBKD2 PARAM sructure defined below.

Table 126, PK CS#5 PBKDF2 K ey Generation: Salt sources

Sour ce | dentifier Value Data Type
CKZ_SALT SPECIFIED | 0x00000001 | Array of CK_BY TE containing the vaue of the
st vdue

CK_PKCS5 PBKDF2 SALT SOURCE TYPE_ PTR is a ponter to a
CK_PKCS5 PBKDF2 SALT SOURCE_TYPE.

CK_PKCS5 PBKD2 PARAMS; CK_PKCS5 PBKD2 PARAMS PTR

CK_PKCS5 PBKD2 PARAMS is a dructure that provides the parameters to the
CKM_PKCS5 _PBK D2 mechaniam. The structureis defined as follows:
typedef struct CK PKCS5_ PBKD2 PARAMS ({
CK_PKCS5_PBKDF2_ SALT_SOURCE_TYPE sal t Sour ce;
CK VO D_PTR pSal t Sour ceDat a;
CK_ULONG ul Sal t Sour ceDat aLen;
CK_ULONG iterations;
CK_PKCS5_PBKD2_PSEUDO _RANDOM FUNCTI ON_TYPE prf;
CK VO D_PTR pPrf Dat a;
CK_ULONG ul Prf Dat aLen; CK_UTF8CHAR_PTR pPasswor d;
CK_ULONG_PTR ul Passwor dLen;
} CK_PKCS5_PBKD2_ PARANS;

The fields of the Sructure have the following meanings:
saltSource source of the sdt value
pSaltSourceData data used astheinput for the salt source
ulSaltSourceDatalen length of the sdt source input

iterations number of iterations to perform when generating each
block of random data

prf pseudo-random function to used to generate the key
pPrfData dataused astheinput for PRF in addition to the sdt vaue

ulPrfDataLen length of the input data for the PRF

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 321

pPassword points to the password to be used in the PBE key
generation

ulPasswordLen length in bytes of the password information

CK_PKCS5 PBKD2 PARAMS PTR isapointer toaCK_PKCS5 PBKD2 PARAMS

12.32.8 PKCS#5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5 PBK D2, is a mechanism used
for generating a secret key from a password and a sdt vaue. This functiondity is defined in
PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5 PBKD2 PARAMS dructure. The parameter specifies
the sdt vaue source, pseudo-random function, and iteration count used to generate the new

key.

Since this mechanism can be used to generate any type of secret key, new key templates must
contain the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type has a
fixed length the CKA_VALUE_LEN attribute may be omitted.

12.33 PKCS#12 passwor d-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption or authentication. The method used to generate keys and 1Vs is based on a method
that was specified inthe origina draft of PKCS#12.

We specify here a generd method for producing various types of pseudo-random bits from a
password, p; astring of sdt bits, s; and an iteration count, c. The“type’ of pseudo-random bits
to be produced isidentified by an identification byte, 1D, the meaning of which will be discussed
later.

Let H be a hash function built around a compression function f: Z,"”" Z,'® Z," (that is, H has
a chaining variable and output of length u bits, and the message input to the compression
function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and
v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password
and st gtrings and the number n of pseudo-random bits required. In addition, u and v are of
COurse Nonzero.

1. Condruct agtring, D (the “diversfier”), by concatenating v/8 copies of ID.

Copyright © 1994-2001 RSA Security Inc.

322 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. Concaenate copies of the sat together to create a string S of length v»é&s/vu bits (the find
copy of the sat may be truncated to create S). Notethat if the st isthe empty string, then
isS

3. Concatenate copies of the password together to create a string P of length vép/vu bits (the
find copy of the password may be truncated to create P). Notethat if the password is the
empty gring, then 0 isP.

4. Set =P to be the concatenation of Sand P.
5 Setj=én/ut

6. Fori=1,2, ...,], dothefollowing:

a Set A=H(D||1), the c" hash of DJ|l. That is, compute the hash of DI|I; compute the
hash of that hash; etc.; continue in this fashion until a total of ¢ hashes have been
computed, each on the result of the previous hash.

b) Concatenate copies of A to create astring B of length v bits (thefina copy of A may
be truncated to creste B).

¢ Tredting | as a concatenation o, Iy, ..., Iy Of v-bit blocks, where k=és/vit+épivy,
modify | by setting 1;=(I;+B+1) mod 2’ for each j. To perform this addition, treat
each v-bit block as a binary number represented most-sgnificant bit firg.

7. Concatenate Ay, A,, ..., Aj together to form a pseudo-random bit string, A.

8. Usethefirg n bitsof A asthe output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate a key and IV (if needed) from a password, sdt, and an iteration count, the above
dgorithm isused. To generate a key, the identifier byte ID is set to the vaue 1; to generate an
IV, theidentifier byte ID is set to the value 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, sdt, and an iteration count, the above dgorithm isused. The
identifier byte ID is set to the vaue 3.

12.33.1 SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1 RC4 128, is a mechanism used
for generating a 128-bit RC4 secret key from a password and a sdt vaue by using the SHA-1

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 323

digest dgorithm and an iteration count. The method used to generate the key is described
above on page 321.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process. The parameter dso has a field to hold the location
of an gpplication-supplied buffer which will recaive an IV; for this mechanism, the contents of
thisfield areignored, snce RC4 does not requirean IV.

The key produced by this mechanism will typicdly be used for performing password-based
encryption.

12.33.2 SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4 40, isamechanism used for
generating a 40-bit RC4 secret key from a password and a sdt vadue by usng the SHA-1
digest dgorithm and an iteration count. The method used to generate the key is described
above on page 321.

It has a parameter, a CK_PBE_PARAMS gructure. The parameter specifies the input
information for the key generation process. The parameter dso has a field to hold the location
of an gpplicationsupplied buffer which will receive an IV; for this mechanism, the contents of
thisfield are ignored, snce RC4 does not requirean I V.

The key produced by this mechanism will typicaly be used for performing password-based
encryption.

12.33.3 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3key triple-DES-CBC, denoted CKM_PBE_SHA1_DES3 EDE_CBC,
is a mechanism used for generating a 3-key triple-DES secret key and IV from a password and
a dt vdue by usng the SHA-1 digest dgorithm and an iteration count. The method used to
generate the key and 1V is described above on page 321. Each byte of the key produced will
have its low-order bit adjusted, if necessary, so that a vaid 3-key triple-DES key with proper
parity bitsis obtained.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the applicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typicaly be used for performing password-
based encryption.

Copyright © 1994-2001 RSA Security Inc.

324 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.33.4 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2key triple-DES-CBC, denoted CKM_PBE_SHA1 DES2 EDE_CBC,
is a mechanism used for generating a 2-key triple-DES secret key and IV from a password and
a sdt vaue by using the SHA-1 digest dgorithm and an iteration count. The method used to
generate the key and 1V is described above on page 321. Each byte of the key produced will
have its low-order bit adjusted, if necessary, so that a valid 2-key triple-DES key with proper
parity bitsis obtained.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the applicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The key and 1V produced by this mechanism will typicaly be used for performing password-
based encryption.

12.33.5 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-hit RC2-CBC, denoted CKM_PBE_SHA1 RC2 128 CBC, is a
mechanism used for generaing a 128-hit RC2 secret key and IV from a password and a salt
vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to generate
the key and 1V is described above on page 321.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the applicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective
number of bits in the RC2 search space should be set to 128. This ensures compatibility with
the ASN.1 Object Identifier ppbeW t hSHA1ANd128Bi t RC2- CBC.

The key and IV produced by this mechanism will typicaly be used for performing password-
based encryption.
12.33.6 SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 40 CBC, is a
mechanism used for generating a 40-bit RC2 secret key and 1V from a password and a sdt
vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to generate
the key and 1V is described above on page 321.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 325

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process and the location of the gpplicationsupplied buffer
which will recaive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective
number of bitsin the RC2 search space should be set to 40. This ensures compatibility with the
ASN.1 Object Identifier pbeW t hSHA1ANd40Bi t RC2- CBC.

The key and IV produced by this mechanism will typicaly be used for performing password-
based encryption.

12.33.7 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC, isa
mechanism used for generating a 160-bit generic secret key from a password and a sdt value
by usng the SHA-1 digest dgorithm and an iteration count. The method used to generate the
key is described above on page 321.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input

information for the key generation process. The parameter aso has afield to hold the location of
an gpplicationsupplied buffer which will receive an 1V; for this mechanism, the contents of this
field are ignored, since authentication with SHA-1-HMAC does not requirean V.

The key generated by this mechanism will typicaly be used for computing a SHA-1 HMAC to
perform password-based authentication (not password-based encryption). At the time of this
writing, thisis primarily done to ensure the integrity of a PKCS#12 PDU.

12.34 SET mechanism parameters

CK_KEY_WRAP _SET_OAEP PARAMS;
CK_KEY_WRAP_SET OAEP PARAMS PTR

CK_KEY_WRAP_SET_OAEP_PARAM S Sisadructure that provides the parameters to the
CKM_KEY_WRAP_SET_OAEP mechaniam. It isdefined as follows:

typedef struct CK _KEY_WRAP_SET_ OAEP_PARAMS ({
CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ul XLen;

} CK_KEY_WRAP_SET_OAEP_PARAMS;

The fields of the structure have the following meanings:

Copyright © 1994-2001 RSA Security Inc.

326 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

bBC block contents byte

pX concatenation of hash of plaintext data (if present) and
extradata (if present)

ulXLen lengthin bytes of concatenation of hash of plaintext data (if
present) and extradata (if present). Oif neither is present

CK_KEY WRAP SET OAEP PARAMSPTR is a ponter to a
CK_KEY_WRAP_SET_OAEP PARAMS

12.35 SET mechanisms

12.35.1 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is
a mechanism for wrapping and unwragpping a DES key with an RSA key. The hash of some
plaintext data and/or some extra data may optiondly be wrapped together with the DES key.
This mechanism is defined in the SET protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMSdiructure. This structure
holds the “Block Contents’ byte of the data and the concatenation of the hash of plaintext data
(if present) and the extra data to be wrapped (if present). If neither the hash nor the extra data
is present, thisisindicated by the ulXLen fidd having the vaue O.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext data (if
present) and the extra data (if present) is returned following the convention described in Section
11.2 on producing output. Note thet if the inputs to C_UnwrapKey are such that the extra
data IS not returned (eg., the buffer upplied in the
CK_KEY_WRAP_SET_OAEP_PARAMS dructure is NULL_PTR), then the unwrapped
key object will not be created, either.

Be aware that when this mechaniam is used to unwrap a key, the bBC and pX fidds of the
parameter supplied to the mechanism may be modified.

If an gpplication uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be
preferable for it Smply to dlocate a 128-byte buffer for the concatenation of the hash of
plaintext data and the extra data (this concatenation is never larger than 128 bytes), rather than
cdling C UnwrapKey twice Each cdl of C _UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be performed,
and this computationa overhead can be avoided by this means.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 327

12.36 LYNKS mechaniams

12.36.1 LYNKSkey wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, isamechaniam for
wrapping and unwrapping secret keys with DES keys. It can wrap any 8-byte secret key, and
it produces a 10-byte wrapped key, containing a cryptographic checksum.

It does not have a parameter.

To wrap a 8byte secret key K with a DES key W, this mechanism performs the following
steps:

1. Initidizetwo 16-hit integers, sum, and sum, to 0.

2. Loop through the bytes of K from first to last.
3. Set sum= sumy+the key byte (treat the key byte as a number in the range 0-255).
4. Set sumy= sunp+ sum,.

5. Encrypt K with Win ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sumy, representing sum, most-significant bit fird.
The result isan 8-byte block, T.

7. Encrypt T with Win ECB mode, obtaining an encrypted checksum, C.
8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrgpping a key with this mechanism, if the cryptographic checksum does not check
out properly, an error is returned. In addition, if a DES key or CDMF key is unwrapped with
this mechanism, the parity bits on the wrapped key must be set gppropriatey. |If they are not
set properly, an error isreturned.

12.37 SSL mechanism parameters

CK_SSL3 RANDOM_DATA

CK_SSL.3 RANDOM_DATA is a dructure which provides information about the random
data of a client and a sarver in an SSL context. This sructure is used by both the
CKM_SSL3 MASTER_KEY_DERIVE and the
CKM _SSL3 KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

Copyright © 1994-2001 RSA Security Inc.

328 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

typedef struct CK _SSL3 RANDOM DATA {
CK_BYTE_PTR pCl i ent Random
CK_ULONG ul Cl'i ent RandonlLen;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server RandonLen;

} CK_SSL3_ RANDOM DATA;

Thefields of the sructure have the following meanings.
pClientRandom pointer to the client’s random deta
ulClientRandomLen length in bytes of the dlient’s random data
pServerRandom pointer to the server’ srandom data
ulServerRandomLen length in bytes of the server’ srandom data
CK_SSL3 MASTER_KEY_DERIVE_PARAMS;
CK_SSL3 MASTER _KEY_ DERIVE_PARAMS PTR

CK_SSL.3 MASTER_KEY_DERIVE_PARAMS is a dructure that provides the
parameters to the CKM_SSL3 MASTER_KEY_ DERIVE mechaniam. It is defined as
follows

typedef struct CK_SSL3_MASTER KEY DERI VE_PARAMS {
CK_SSL3_RANDOM DATA Random nf o;

CK_VERSI ON_PTR pVer si on;
} CK _SSL3_MASTER KEY_DERI VE_PARANE;

Thefidds of the sructure have the following meanings
Randoml nfo dient’s and sarver’ s random data information.

pVersion pointer toaCK_VERSION sructure which receivesthe
SSL protocol version information

CK_SSL3 MASTER_KEY_DERIVE_PARAMS PTR is a ponter to a
CK_SSL3 MASTER _KEY_DERIVE_PARAMS
CK_SSL3 KEY_MAT_OUT; CK_SSL3 KEY_MAT_OUT_PTR

CK_SSL3 KEY_MAT_OUT is a dructure that contains the resulting key handles and
initidizetion vectors after peforming a C DeiveKey function with the
CKM_SSL3 KEY_AND MAC DERIVE mechanigm. It isdefined asfollows:

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 329

typedef struct CK SSL3 KEY_MAT_ OUT {
CK_OBJECT_HANDLE hCl i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hdCl i ent Key;
CK_OBJECT_HANDLE hServer Key;
CK_BYTE_PTR pl VCl i ent;
CK_BYTE_PTR pl VSer ver;

} CK_SSL3_KEY_MAT_OUT,;

Thefieds of the sructure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServer MacSecret key handle for the resulting Server MAC Secret key
hClientkey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to alocation which receives the initidization vector
(V) created for the client (if any)

plVServer pointer to alocation which receves the initidization vector
(1V) crested for the server (if any)

CK_SSL3 KEY_MAT_OUT_PTR isapointer toaCK_SSL3 KEY_MAT_OUT.

CK_SSL3 KEY_MAT_PARAMS; CK_SSL3 KEY_MAT_PARAMS PTR

CK_SSL3 KEY_MAT_PARAMS is a dructure that provides the parameters to the
CKM _SSL3 KEY_AND_MAC_DERIVE mechanism. Itisdefined asfollows

typedef struct CK SSL3 KEY_MAT_PARAMS {
CK_ULONG ul MacSi zel nBits;
CK_ULONG ul KeySi zel nBits;
CK_ULONG ul I VSi zel nBi t s;
CK_BBOOL bl sExport;
CK_SSL3_RANDOM DATA Random nf o;
CK_SSL3_KEY_MAT_OUT_PTR pRet ur nedKeyMat eri al ;
} CK _SSL3_KEY_MAT_ PARAMS;

Thefidds of the sructure have the following meanings

ulMacSzelnBits thelength (in bits) of the MACing keys agreed upon during
the protocol handshake phase

Copyright © 1994-2001 RSA Security Inc.

330 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulKeySzelnBits thelength (in bits) of the secret keys agreed upon during
the protocol handshake phase

ullVSzelnBits thelength (in bits) of the IV agreed upon during the
protocol handshake phase. If no 1V isrequired, the length
shouldbesetto O

bl sExport a Boolean vaue which indicates whether the keys have to
be derived for an export version of the protocol

Randoml nfo client's and server’ s random data informeation.

pReturnedKeyMaterial pointstoaCK_SSL.3 KEY _MAT_OUT gructures
which receives the handles for the keys generated and the
IVs

CK_SSL3 KEY_MAT_PARAMS PTR is a pointer to a
CK_SSL3 KEY_MAT_PARAMS

12.38 SSL mechanisms

12.38.1 Pre master key generation

Pre_magter key generation in SSL 3.0, denoted CKM_SSL.3 PRE_MASTER_KEY_GEN,
is a mechanism which generaes a 48-byte generic secret key. It is used to produce the
"pre_master” key used in SSL version 3.0 for RSA-like cipher suites.

It has one parameter, a CK_VERSION sructure, which provides the client's SSL verson
number.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key (as well asthe CKA_VALUE_LEN dtribute, if it is not supplied in
the template). Other attributes may be specified in the template, or else are assigned default
vaues.

The template sent along with this mechanism during a C_Gener ateK ey cal may indicate that
the object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and
the CKA_VALUE_LEN dtribute has vaue 48. However, since these facts are dl implicit in
the mechanism, there is no need to specify any of them.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 331

12.38.2 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL.3 MASTER_KEY_DERIVE, isa
mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret
key. It is used to produce the "master_secret” key used in the SSL protocol from the
"pre_master” key. This mechanism returns the vaue of the client verson, which is built into the
"pre_master” key aswdl as ahandle to the derived "master_secret” key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS gructure, which
dlows for the passng of random data to the token as well as the returning of the protocol
verson number which is part of the pre-master key. This structure is defined in Section 12.37.

The mechanisn contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN dtribute, if it is not supplied in
the template). Other atributes may be specified in the template; otherwisethey are assgned
default vaues,

The template sent dong with this mechaniam during a C_DeriveK ey cadl may indicate that the
object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has vaue 48. However, since these facts are dl implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSTIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE atribute set to
the samevaue asits CKA_SENSITIVE attribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE atribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL.3 MASTER_KEY_DERIVE_PARAMS dructure¢s pVersion fidd will be

Copyright © 1994-2001 RSA Security Inc.

332 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

modified by the C_DeriveKey cdl. In paticular, when the cal returns, this structure will hold
the SSL version associated with the supplied pre_master key.

Note that this mechanism is only usegble for cipher suites that use a 48-byte “pre_master”
secret with an embedded version number. This includes the RSA cipher suites, but excludes the
Diffie-Helman cipher suites.

12.38.3 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hedlman in SSL 3.0, denoted
CKM_SSL.3 MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-byte
generic secret key from another arbitrary length generic secret key. It is used to produce the
"master_secret” key used in the SSL protocol from the "pre_master” key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
dlows for the passing of random data to the token. This Structure is defined in Section 12.37.
The pVersion fidd of the structure must be set to NULL_PTR since the verson number is not
embedded in the "pre_master” key asit isfor RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well asthe CKA_VALUE_LEN dtribute, if it is not supplied in
the template). Other attributes may be specified in the template, or ese are assgned default
vaues.

The template sent dong with this mechanism during a C_DeriveK ey cal may indicate that the
object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and the
CKA VALUE_LEN attribute has vdue 48. However, since these facts are dl implicit in the
mechanism, there is no need to pecify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE attribute set to
the samevaueasits CKA_SENSITIVE dtribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER _EXTRACTABLE attribute set to TRUE, then the derived key has its

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 333

CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Note that this mechanism is only usesble for cipher suites that do not use a fixed length 48-byte
“pre_master” secret with an embedded verson number. This includes the Diffie-Hellman cipher
auites, but excludes the RSA cipher suites.

12.38.4 Key and MAC derivation

Key, MAC and v derivation in SSL 3.0, denoted
CKM_SSL.3 KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying materid used by a "CipherSuite’ from the "master_secret” key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well asthe IVs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS dructure, which alows for the
passing of random data as well as the characteridtic of the cryptographic materid for the given
CipherSuite and a pointer to a structure which receives the handles and 1Vs which were
generated. This structure is defined in Section 12.37.

This mechanism contributes to the creation of four distinct keys on the token and returns two
Vs (if IVs are requested by the caller) back to the caller. The keys are dl given an object class
of CKO_SECRET_KEY.

The two MACing keys ("client_ write MAC secret” and "server_write MAC_secret”) are
adways given atype of CKK_GENERIC_SECRET. They are flagged as vdid for signing,
verification, and derivation operations.

The other two keys (“client_write key" and "server write key") are typed according to
information found in the template sent dong with this mechaniam during a C_DeriveKey
function cal. By default, they are flagged as vdid for encryption, decryption, and derivation
operations.

IVs will be generated and returned if the ullVSzelnBits fidd of the
CK_SSL_KEY_MAT_PARAMS fidd has a nonzero vaue. If they are generated, their
length in bits will agree with the vaue in the ull VS zel nBitsfied.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base
key. The template provided to C_DeriveKey may not specify vadues for any of these
atributes which differ from those held by the base key.

Copyright © 1994-2001 RSA Security Inc.

334 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Note that the CK_SSL.3 KEY_MAT_OUT dructure pointed to by the
CK_SSL.3 KEY_MAT_PARAM S gructure' s pReturnedKeyMaterial field will be modified
by the C _DeriveKey cdl. In paticular, the four key handle fidds in the
CK_SSL3 KEY_MAT_OUT dructure will be modified to hold handles to the newly-created
keys, in addition, the buffers pointed to by the CK_SSL3 KEY_MAT_OUT dructure€'s
plVClient and plVServer fidds will have IVs returned in them (if 1Vs are requested by the
cdler). Therefore, these two fields must point to buffers with sufficient space to hold any 1Vs
that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveK ey returns a sngle key handle
a a reult of a successtul completion. However, snce the
CKM_SSL.3 KEY_AND_MAC_DERIVE mechaniam returns dl of its key handles in the
CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL.3 KEY_MAT_PARAMS dructure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acdl to C_DeriveK ey with this mechaniam fails, then none of the four keys will be crested
on the token.

12.38.5 MD5MACingin SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL.3 MD5 MAC, is a mechaniam for angle-
and multiple-part signatures (data authentication) and verification usng MD5, based on the SSL
3.0 protocal. Thistechniqueis very smilar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL _PARAM S which specifies the length in bytes
of the Sgnatures produced by this mechanism.

Condgraints on key types and the length of input and output data are summarized in the following
table:

Table 127, MD5MACingin SSL 3.0: Key And Data Length

Function Key type Data Signature length
length
C Sgn generic secret any 4-8, depending on
parameters
C Veify generic secret any 4-8, depending on
parameters

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 335

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of generic secret key Szes,
in bits.

12.38.6 SHA-1MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL.3 SHA1 MAC, isamechanism for angle-
and multiple-part sgnatures (deta authentication) and verification usng SHA-1, based on the
SSL 3.0 protocol. Thistechniqueis very smilar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAM S which specifies the length in bytes
of the Sgnatures produced by this mechanism.

Congtraints on key types and the length of input and output data are summarized in the following
table:

Table 128, SHA-1 MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signature length
length

C Sgn generic secret any 4-8, depending on parameters

C Veify generic secret any 4-8, depending on parameters

For this mechanian, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of generic secret key Szes,
in bits.

12.39 TL S mechaniams

12.39.1 Pre master key generation

Pre_master key generation in TLS 1.0, denoted CKM_TLS PRE_MASTER _KEY_GEN,
is a mechanism which generates a 48-byte generic secret key. It is used to produce the
"pre_master” key used in TLS version 1.0 for RSA-like cipher suites.

It has ore parameter, a CK_VERSION dgructure, which provides the client’s TLS verson
number.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA VALUE
atributes to the new key (as well asthe CKA_VALUE_LEN dtribute, if it is not supplied in

Copyright © 1994-2001 RSA Security Inc.

336 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

the template). Other attributes may be specified in the template, or else are assigned default
vaues.

The template sent along with this mechanism during a C_Gener ateK ey cal may indicate that
the object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and
the CKA_VALUE_LEN datribute has vaue 48. However, since these facts are dl implicit in
the mechanism, there is no need to specify any of them.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

12.39.2 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS MASTER_KEY_DERIVE, isa
mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret
key. It is used to produce the "master_secret” key used in the TLS protocol from the
"pre_master” key. This mechanism returns the vaue of the client verson, which is built into the
"pre_master” key aswdl as ahandle to the derived "master_secret” key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAM S gructure, which
dlows for the passng of random data to the token as well as the returning of the protocol
verson number which is part of the pre-master key. This structure is defined in Section 12.37.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN dtribute, if it is not supplied in
the template). Other attributes may be specified in the template, or dse are assgned default
values.

The template sent dong with this mechanism during a C_DeriveK ey cal may indicate that the
object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has vaue 48. However, since these facts are dl implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSTIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE atribute set to
the samevaue asits CKA_SENSITIVE attribute.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 337

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the deived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE atribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute set to the opposite vadue from its
CKA_EXTRACTABLE dttribute.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Note that the CK_VERSION Sructure pointed to by the
CK_SSL3 MASTER _KEY_DERIVE PARAMS sructures pVersion fidd will be
modified by the C_DeriveKey cdl. In particular, when the cal returns, this structure will hold
the SSL. verson associated with the supplied pre_master key.

Note that this mechanism is only usegble for cipher suites that use a 48-byte “pre_ master”
secret with an embedded verson number. This includes the RSA cipher suites, but excludes the
Diffie-Hellman cipher suites.

12.39.3 Master key derivation for Diffie-Hellman

Master key derivation for DiffieeHdlman in TLS 10, denoted
CKM_TLS MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-byte
generic secret key from another arbitrary length generic secret key. It is used to produce the
"master_secret” key used in the TLS protocol from the "pre_master” key.

It has a parameter, a CK_SSL.3 MASTER_KEY_DERIVE_PARAMS dructure, which
dlows for the passing of random data to the token. This structure is defined in Section 12.37.
The pVersion fidd of the structure must be set to NULL_PTR since the verson number is not
embedded in the "pre_master” key asit isfor RSA-like cipher suites.

The mechanian contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well asthe CKA_VALUE_LEN dtribute, if it is not supplied in
the template). Other attributes may be specified in the template, or dse are assgned default
values.

The template sent dong with this mechanism during a C_DeriveK ey cdl may indicate that the
object classis CKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has vaue 48. However, since these facts are dl implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-2001 RSA Security Inc.

338 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either TRUE or FALSE. [If omitted, these attributes
each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE dtribute set to FALSE, then the
derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE atribute set to
the samevdue asits CKA_SENSITIVE dtribute.

Smilaly, if the base key has its CKA_NEVER_EXTRACTABLE dtribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute st to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechaniam, the uMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Note that this mechaniam is only useable for cipher suitesthat do not use afixed length 48-byte
“pre_master” secret with an embedded verson number. This includes the Diffie-Hellman cipher
auites, but excludes the RSA cipher suites.

12.39.4 Key and MAC derivation

Key, MAC and A% derivation in TLS 1.0, denoted
CKM_TLS KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate
cryptographic keying materid used by a "CipherSuite’ from the "master_secret” key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well asthe IVs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS dructure, which alows for the
passing of random data as well as the characteridtic of the cryptographic materid for the given
CipherSuite and a pointer to a structure which receives the handles and IVs which were
generated. This structure is defined in Section 12.37.

This mechanism contributes to the creation of four distinct keys on the token and returns two
Vs (if IVs are requested by the caller) back to the cdler. The keysare dl given an object class
of CKO_SECRET_KEY.

The two MACing keys ("client_ write MAC secret” and "server_write MAC_secret”) are

adways given atype of CKK_GENERIC_SECRET. They are flagged as vdid for sgning,
verification, and derivation operations.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 339

The other two keys ("client_write key" and "server_write key") are typed according to
information found in the template sent dong with this mechanism during a C_DeriveKey
function cal. By default, they are flagged as vdid for encryption, decryption, and derivation
operations.

IVs will be generated and returned if the ullVSzelnBits fidd of the
CK_SSL_KEY_MAT_PARAMS fidd has a nonzero vaue. If they are generated, their
length in bitswill agree with the value in the ull VS zel nBitsfield.

All four keys inherit the vaues of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base
key. The template provided to C_DeriveKey may not specify vadues for any of these
atributes which differ from those held by the base key.

Note that the CK_SSL.3 KEY_MAT _OUT dructure pointed to by the
CK_SSL.3 KEY_MAT_PARAM S gructure' s pReturnedkKeyMaterial field will be modified
by the C_DeriveKey cdl. In paticular, the four key handle fidds in the
CK_SSL3 KEY_MAT_OUT dructure will be modified to hold handles to the newly-created
keys, in addition, the buffers pointed to by the CK_SSL3 KEY_MAT_OUT dructure's
plVClient and plVServer fidds will have IVs returned in them (if IVs are requested by the
cdler). Therefore, these two fields must point to buffers with sufficient space to hold any 1Vs
that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechaniams, C_DeriveK ey returns a angle key handle
as a reut of a successtul completion. However, dnce the
CKM_SSL.3 KEY_AND_MAC _DERIVE mechanian returns dl of its key handles in the
CK_SSL3 KEY_MAT_OUT sructure pointed to by the
CK_SSL. 3 KEY_MAT_PARAMS dructure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acdl to C_DeriveK ey with this mechaniam fails, then none of the four keys will be crested

on the token.

12.40 Parametersfor miscellaneous smple key derivation mechanisms
CK_KEY_DERIVATION_STRING_DATA,;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA is a dructure that holds a pointer to a byte
dring and the byte dgring's length. It provides the paameters for the
CKM_CONCATENATE_BASE_AND _DATA,

Copyright © 1994-2001 RSA Security Inc.

340 PKCS#11 v2.11 DRAFT 3: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
CKM_CONCATENATE_DATA_AND_BASE, and CKM_XOR_BASE_AND_DATA
mechanisms. It is defined asfollows:
t ypedef struct CK _KEY_DERI VATI ON_STRI NG DATA {
CK_BYTE_PTR pDat a;

CK_ULONG ul Len;
} CK_KEY_DERI VATI ON_STRI NG_DATA;

Thefidds of the Structure have the following meanings
pData pointer to the byte string
ulLen length of the byte siring

CK_KEY_DERIVATION_STRING DATA PTR is a ponter to a
CK_KEY_DERIVATION_STRING_DATA.

CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanian. It specifies which bit of the base key
should be used as the firgt bit of the derived key. It is defined asfollows:

typedef CK_ULONG CK_EXTRACT PARAMNS:

CK_EXTRACT_PARAMS PTR isapointer toaCK_EXTRACT _PARAMS

12.41 Miscdlaneous smple key derivation mechanisms

12.41.1 Concatenation of a base key and another key

This mechaniam, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret
key from the concatenation of two existing secret keys. The two keys are specified by handles;
the vaues of the keys specified are concatenated together in a buffer.

This mechanism tekes a parameter, a CK_OBJECT_HANDLE. This handle produces the
key vadue information which is gppended to the end of the base key’s vaue information (the
base key isthe key whose handle is supplied as an argument to C_DeriveK ey).

For example, if the value of the base key is 0x01234567, and thevaue of the other key is
O0x89ABCDEF, then the vadue of the derived key will be taken from a buffer containing the
string0x0123456789ABCDEF.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 341

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the sum of the lengths of
the vaues of the two origind keys.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
wel-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be competible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the two
origina keys vaues, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If either of the two origind keys has its CKA_SENSITIVE attribute set to TRUE, so does
the derived key. If not, then the derived key’'s CKA_SENSITIVE atribute is set either
from the supplied template or from a default vaue.

Smilarly, if @ther of the two origind keys hasits CKA_EXTRACTABLE attribute st to
FALSE, s0 does the derived key. If not, then the derived key’'sCKA_EXTRACTABLE
atribute is set either from the supplied template or from a default vaue.

The derived key's CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
both of the origind keys havether CKA_ALWAYS SENSITIVE atributes set to TRUE.

Smilarly, the derived key's CKA_NEVER_EXTRACTABLE atribute is set to TRUE if
and only if both of the origind keys have thear CKA_ NEVER_EXTRACTABLE
attributes set to TRUE.

12.41.2 Concatenation of a base key and data

This mechaniam, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret
key by concatenating data onto the end of a specified secret key.

Copyright © 1994-2001 RSA Security Inc.

342 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanisn tekes a parameter, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the length and vaue of the data which will be appended to the base
key to derive another key.

For example, if the vadue of the base key is 0x01234567, and the vaue of the data is
0x89ABCDEF, then the vdue of the derived key will be taken from a buffer containing the
gring0x0123456789ABCDEF.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the sum of the lengths of
the vaue of the origina key and the data.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
wel-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the origind
key’ s vaue and the data, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default vaue.

Similaly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key's CKA_EXTRACTABLE dttribute is set
ether from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE dtribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE attribute set to TRUE.

Smilaly, the derived key's CKA_NEVER_EXTRACTABLE atribute is s&t to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 343

12.41.3 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_ BASE, derives a secret
key by prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the length and value of the data which will be prepended to the base
key to derive another key.

For example, if the value of the base key is 0x01234567, and the vaue of the data is
0x89ABCDEF, then the vaue of the derived key will be taken from a buffer containing the
sring 0x89ABCDEF01234567.

If no length or key type is provided in the template, then the key produced by this
mechanismwill be a generic secret key. Its length will be equa to the sum of the lengths of
the data and the vaue of the origind key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
wdl-defined length. If it does, then the key produced by this mechanism will be of the type
gpecified in the template. If it does't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the data
and the origind key’svaue, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied
template or from a default vaue.

Smilaly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key’'s CKA _EXTRACTABLE attribute is set
ether from the supplied template or from a default vaue.

Copyright © 1994-2001 RSA Security Inc.

344 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The derived key’s CKA_ALWAYS SENSITIVE dtribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE attribute set to TRUE.

Smilaly, the derived key's CKA_NEVER_EXTRACTABLE atribute is s&t to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE atribute st to TRUE.

12.41.4 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, isamechaniam which
provides the capability of deriving a secret key by performing a bit XORing of a key pointed to
by a base key handle and some data.

This mechenism takes a parameter, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the data with which to XOR the origind key’ s vaue.

For example, if the vaue of the base key is 0x01234567, and the vaue of the data is
0x89ABCDEF, then the vadue of the derived key will be taken from a buffer containing the
sring0x88888888.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the minimum of the
lengths of the data and the vaue of the origind key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the soecified length.

If no length is provided in the template, but a key type is, then that key type must have a
wedl-defined length. I it does, then the key produced by this mechanism will be of the type
gpecified in thetemplate. 1f it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DESS, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of the
data and the origind key’svalue, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied
template or from a default vaue.

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 345

Smilaly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key’'s CKA _EXTRACTABLE attribute is set
ether from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE dtribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE atribute set to TRUE.

Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE atribute is set to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

12.41.5 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is
a mechanism which provides the capahility of creating one secret key from the bits of another
secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of
the origind key should be used asthe firgt bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the
4-byte value Ox329F84A9. We will derive a 2byte secret key from this key, starting at bit
position 21 (i.e, the value of the parameter to the CKM_EXTRACT _KEY_FROM_KEY
mechanism is 21).

1. We write the key’s vaue in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labdlled as b0, b1, ..., b31.

2. Wethen extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit b21.
We obtain the binary string 1001 0101 0010 0110.

3. Thevaue of the new key is thus 0x9526.

Note that when congtructing the vaue of the derived key, it is permissible to wrap around the
end of the binary string representing the origina key’ s vaue.

If the original key used in this processis senditive, then the derived key must also be sensitive for
the derivation to succeed.

If no length or key typeis provided in the template, then an error will be returned.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

Copyright © 1994-2001 RSA Security Inc.

346 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If no length is provided in the template, but a key type is, then that key type must have a
wedl-defined length. If it does, then the key produced by this mechanism will be of the type
gpecified in thetemplate. 1f it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DESS, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than the origind key has, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’'s CKA_SENSITIVE attribute is set either from the supplied
template or from a default vaue.

Similaly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set
ether from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE dtribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE attribute set to TRUE.

Smilarly, the derived key's CKA_NEVER_EXTRACTABLE atribute is s&t to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

12.42 RIPE-MD 128 mechanisms

12.42.1 RIPE-MD 128

The RIPEEMD 128 mechanism, denoted CKM _RIPEM D128, is a mechanism for message
digedting, following the RIPE-MD 128 message-digest dgorithm.

It does not have a parameter.

Condraints on the length of data are summarized in the following table:

Table 129, RIPE-MD 128: Data L ength

Copyright © 1994-2001 RSA Security Inc.

12. MECHANISMS 347

[Function |Data length| Digest length
C_Digest any 16

12.42.2 General-length RIPE-M D 128-HMAC

The generd-length RIPEEMD 128-HMAC mechanism, denoted
CKM_RIPEMD128 HMAC_GENERAL, isamechaniam for signatures and verification. It
uses the HMAC congtruction, based on the RIPE-MD 128 hash function. The keysit uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 0-16 (the output Size of RIPEEMD 128 is
16 bytes). Signatures (MACs) produced by this mechanism will be taken from the sart of the
full 16-byte HMAC outpui.

Table 130, General-length RIPE-MD 128-HMAC:

Data
length
C _Sgn | generic secret ay |0-16, depending on parameters
C_Veify | generic secret ay |0-16, depending on parameters

Function | Key type Signaturelength

12.42.3 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEM D128 HMAC, is a specid
case of the genera-length RIPEEMD 128-HMAC mechanism in Section 12.42.2.

It has no parameter, and aways produces an output of length 16.

12.43 RIPE-MD 160 mechanisms

12.43.1 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM _RIPEM D160, is a mechanism for message
digedting, following the RIPE-MD 160 message-digest dgorithm defined in 1ISO-10118.

It does not have a parameter.

Condgtraints on the length of data are summarized in the following table:

Table 131, RIPE-MD 160: Data L ength

Copyright © 1994-2001 RSA Security Inc.

348 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

[Function |Data length| Digest length
C Digest| ay 20

12.43.2 General-length RIPE-M D 160-HMAC

The generd-length RIPEEMD 160-HMAC mechanism, denoted
CKM_RIPEMD160 HMAC_GENERAL, isamechaniam for signatures and verification. It
uses the HMAC congtruction, based on the RIPE-MD 160 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 0-20 (the output sSize of RIPE-MD 160 is
20 bytes). Signatures (MACs) produced by this mechanism will be taken from the art of the
full 20-byte HMAC outpui.

Table 132, General-length RIPE-MD 160-HMAC:

Data
length

C Sgn |genericsecret| any | 0-20, depending on parameters
C Veify |genericsecret| any | 0-20, depending on parameters

Function | Key type Signaturelength

12.43.3 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_ HMAC, is a specid
case of the genera-length RIPEEMD 160-HMAC mechanism in Section 12.43.2.

It has no parameter, and aways produces an output of length 20.

13. Cryptoki tipsand reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how Cryptoki
works.

13.1 Operations, sessions, and threads

In Cryptoki, there are severa different types of operations which can be “active’ in a sesson.
An active operation is essentidly one which takes more than one Cryptoki function cal to
perform. The types of active operations are object searching; encryption; decryption; message-
digesting; sgnature with gppendix; sgnature with recovery; verification with appendix; and
verification with recovery.

Copyright © 1994-2001 RSA Security Inc.

13. CRYPTOKI TIPSAND REMINDERS 349

A given sesson can have 0, 1, or 2 operations active & atime. It can only have 2 operations
active smultaneoudly if the token supports this, moreover, those two operations must be one of
the four following pairs of operations: digesting and encryption; decryption and digesting; Signing
and encryption; decryption and verification.

If an gpplication attempts to initialize an operation (make it active) in a sesson, bu this cannot
be accomplished because of some other active operation(s), the application receives the error
vaue CKR_OPERATION_ACTIVE. Thiserror vaue can aso be received if asession has an
active operation and the gpplication attempts to use that sesson to perform any of various
operations which do not become “active’, but which require cryptographic processing, such as
using the token’ s random number generator, or generating/wrapping/unwrapping/deriving akey.

Different threads of an gpplication should never share sessions, unlessthey are extremey careful
not to make function cdls a the same time. This is true even if the Cryptoki library was
initidized with locking enabled for thread- sofety.

13.2 Multiple Application Access Behavior

When multiple goplications, or multiple threads within an gpplication, are accessing a set of
common objects the issue of object protection becomes important. This is especidly the case
when application A activates an operation usng object O, and gpplication B attemptsto delete
O before gpplication A has finished the operation. Unfortunately, variaion in device capabilities
makes an absolute behavior specification impractical. Generd guidelines are presented here for
object protection behavior.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread tha is usng the object in an active
operation until that operation is complete. For instance, application A has begun a signature
operation with private key P and application B attempts to deete P while the signature is in
progress. In this case, one of two things should happen. The object is deleted from the device
but the operation is adlow to complete because the operation uses a temporary copy of the
object, or the delete operation blocks until the sgnature operation has completed. If neither of
these actions can be supported by an implementation, then the error code
CKR_OBJECT_HANDLE_INVALID may be returned to application A to indicate that the
key being used to perform its active operation has been deleted.

Whenever possble, changing the value of an object attribute should impact the behavior of
active operations in other agpplications or threads. If this can not be supported by an
implementation, then the gppropriate error code indicating the reason for the faillure should be
returned to the application with the active operation.

Copyright © 1994-2001 RSA Security Inc.

350 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

13.3 Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) aways possesses
all possible attributes specified by Cryptoki for an object of itstype. This means, for example,
tha a Diffie-Helman private key object always possesses a CKA_VALUE_BITS attribute,
even if that attribute wasn't specified when the key was generated (in such a case, the
proper vaue for the attribute is computed during the key generation process).

In generd, a Cryptoki function which requires a template for an object needs the template to
specify—either explicitly or implicitly—any attributes that are not specified elsewhere. If a
template specifies a paticular atribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a paticular value of the attribute from among
those specified and use that vaue. In any event, object attributes are dways single-vaued.

13.4 Signing with recovery

Sgning with recovery is a generd dterndive to ordinary digitd dgnatures (“sgning with
gopendix”) which is supported by certain mechanisms. Recdl that for ordinary digita
sgnatures, a Sgnature of a message is computed as some function of the message and the
sgner’s private key; this Sgnature can then be used (together with the message and the signer’s
public key) as input to the verification process, which yieds a ample “sgnature vaid/sgnature
invaid” decison.

Signing with recovery adso creates a Sgnature from a message and the signer’s private key.
However, to verify this Sgnature, no message is required as input. Only the signature and the
ggner’s public key are input to the verification process, and the verification process outputs
ather “dgnaureinvaid’ or—if the dgnaure is vaid—the origind message.

Condder a smple example with the CKM _RSA_X 509 mechanism. Here, a message is a
byte string which we will consider to be a number modulo n (the Sgner’ s RSA modulus). When
this mechanism is used for ordinary digitd sgnatures (9gnatures with gppendix), a sgnature is
computed by raising the message to the signer’s private exponent modulo n. To veify this
ggnature, a verifier raises the sgnature to the sgner’s public exponent modulo n, and accepts
the sgnature as vdid if and only if the result maiches the origind message.

If CKM_RSA X 509 is used to create signatures with recovery, the sgnatures are produced
in exactly the same fashion. For this particular mechanism, any number modulo n is a vaid
ggnature. To recover the message from a Sgnature, the sgnature is raised to the signer’s public
exponent modulo n.

Copyright © 1994-2001 RSA Security Inc.

A. TOKEN PROFILES 351

A. Token profiles

This gppendix describes “profiles” i.e., sets of mechanisms, which a token should support for
various common types of application. It is expected that these sets would be standardized as
parts of the various applications, for ingance within a list of requirements on the module that
provides cryptographic services to the gpplication (which may be a Cryptoki token in some
cases). Thus, these profiles are intended for reference only at this point, and are not part of this
standard.

The following table summarizes the mechanisms relevant to two common types of application:

Table A-1, Mechanisms and profiles

Application
Government Cellular Digital

M echanism Authentication-only Packet Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS KEY_PAIR_GEN 4
CKM_DH_PKCS_DERIVE v
CKM_RC4_KEY_GEN 4
CKM_RC4 v
CKM_SHA 1 v

A.1 Government authentication-only

The U.S. government has standardized on the Digitd Signature Algorithm as defined in FIPS
PUB 186-2 for sgnatures and the Secure Hash Algorithm as defined in FIPS PUB 180-1 for
message digesting. The rdevant mechanismsincude the following:

DSA key generation (512-1024 hits)
DSA (512-1024 hits)

SHA-1

A.2 Cdlular Digital Packet Data

Cdlular Digitd Packet Data (CDPD) is a set of protocols for wirdess communication. The
basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)

Diffie-Hellman key derivation (256-1024 bits)

Copyright © 1994-2001 RSA Security Inc.

352 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

RCA4 key generation (40-128 bits)
RC4 (40-128 bits)

(Theinitid CDPD security spedification limits the Sze of the Diffie-Hellman key to 256 bits, but
it has been recommended that the Size be increased to at least 512 hits.)

Copyright © 1994-2001 RSA Security Inc.

B. COMPARISON OF CRYPTOKI AND OTHERAPIS

B. Comparison of Cryptoki and other APIs

This gppendix compares Cryptoki with the following cryptographic APIs:

ANSI N13-94 - Guiddine X9.TG-12-199X, Usng Tessera in Financid Sysems An
Application Programming Interface, April 29, 1994

X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. It is at a leve
amilar to Cryptoki. The following table ligts the FORTEZZA CIPG functions, together with the

equivaent Cryptoki functions:

TableB-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C_Login

Cl_Close C_CloseSession

Cl_Decrypt C_Decryptinit, C_Decrypt, C_DecryptUpdate,
C_DecryptFina

Cl_DéeteCertificate C_DestroyObject

Cl_DeleteKey C_DestroyObject

Cl_Encrypt C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFind

Cl_ExtractX C_WrapKey

Cl_Generatel V C_GenerateRandom

Cl_GenerateMEK C_GenerateKey

Cl_GenerateRa C_GenerateRandom

Cl_GenerateRandom C_GenerateRandom

Cl_GenerateTEK C_GenerateKey

Cl_GenerateX C_GenerateKeyPair

Cl_GetCertificate C_FindObjects

Cl_Configuration C_GetTokenlinfo

Cl_GetHash C _Digestinit, C Digest, C_DigestUpdate, and

C_DigestFind

Copyright © 1994-2001 RSA Security Inc.

353

34 PKCS #11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
FORTEZZA CIPG Equivalent Cryptoki
Cl_GetlV No equivaent
Cl_GetPersondityList C_FindObjects
Cl_GetState C_GetSessoninfo
Cl_GetStatus C_GetTokeninfo
Cl_GetTime C_GetTokenInfo or

C_GetAttributeVaue(clock object) [preferred]
Cl_Hash C_Digestinit, C_Digest, C_DigestUpdate, and

C DigestFind
Cl_Initidize C Initidize
Cl_InitidizeHash C DigedtInit
Cl_IngdIX C_UnwrapKey
Cl_LoadCertificate C_CreateObject
Cl_LoadDSAParameters C_CreateObject
Cl_LoadinitVaues C_SeedRandom
Cl_LoadlV C_Encryptinit, C_Decryptinit
Cl_LoadK C_Sgninit
Cl_LoadPublicKeyParameters | C_CreateObject
Cl_LoadPIN C_SetPIN
Cl_LoadX C_CreateObject
Cl_Lock Implicit in sesson management
Cl_Open C_OpenSession
Cl_RdayX C_WrapKey
Cl_Reset C_CloseAllSessions
Cl_Restore Implicit in sesson management
Cl_Save Implicit in sesson management
Cl_Sdlect C_OpenSession
Cl_SetConfiguration No equivaent
Cl_SetKey C_Encryptinit, C_Decryptinit
Cl_SetMode C_Encryptinit, C_Decryptinit
Cl_SetPersondity C_CreateObject
Cl_SetTime No equivaent
Cl_Sign C_Signinit, C_Sign
Cl_Terminate C _CloseAllSessions
Cl_Timestamp C_Signinit, C_Sign
Cl_Unlock Implicit in sesson management

Copyright © 1994-2001 RSA Security Inc.

B. COMPARISON OF CRYPTOKI AND OTHERAPIS 355

FORTEZZA CIPG Equivalent Cryptoki
Cl_UnwrapKey C_UnwrapKey
Cl_VerifySignature C_Veifylnit, C Verify
Cl_VeifyTimestamp C_Veifylnit, C Verify
Cl_WrapKey C_WrapKey
Cl_Zeroize C_InitToken

B.2 GCS-API

This proposed standard defines an AP to high-leve security services such as authentication of
identities and data-origin, non-repudiation, and separation and protection. It is at a higher leve
than Cryptoki. The following table ligts the GCS-API functions with the Cryptoki functions
used to implement the functions. Note that full support of GCS-AP! isleft for future versons of
Cryptoki.

Table B-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation

retrieve CC

release CC

generate_hash C_Digedtinit, C_Digest

generate_random_number C_GenerateRandom

generate_checkvalue C_Signinit, C_Sign, C_SignUpdate, C_SignFinal

verify _checkvaue C _Veifylnit, C Veify, C VerifyUpdate,
C VeifyFind

data_encipher C_Encryptlnit, C_Encrypt, C_EncryptUpdate,
C_EncryptFina

data._decipher C_Decryptlnit, C_Decrypt, C_DecryptUpdeate,
C_DecryptFind

create CC

derive key C DeriveKey

generate key C_GenerateKey

store CC

delete CC

replicate CC

export_key C_WrapKey

import_key C_UnwrapKey

archive CC C_WrapKey

Copyright © 1994-2001 RSA Security Inc.

356 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

GCS-API Cryptoki implementation
restore CC C_UnwrapKey
set_key date

generate key pattern

verify key pattern

derive clear_key C DeriveKey
generate clear_key C_GenerateKey
load key parts

clear_key_encipher C_WrapKey
clear_key decipher C_UnwrapKey
change key context

load initid_key

generate initid_key

set_current_master_key

protect_under_new_master_key

protect_under_current_ master_key

initidise_random_number_generator C_SeedRandom

ingal_agorithm

de ingdl_dgorithm

disable agorithm

enable_agorithm

st defaults

Copyright © 1994-2001 RSA Security Inc.

C. INTELLECTUAL PROPERTY CONSIDERATIONS

C. Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired on
September 20, 2000. The RC5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent claims on the constructions described in
this document, athough specific underlying techniques may be covered.

RSA, RC2 and RC4 are regigtered trademarks of RSA Security Inc. RC5 is a trademark of
RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust Technologies.
0S2 and CDMF (Commercial Data Masking Fecility) are registered trademarks of
International Business Machines Corporation. LYNKS is a registered trademark of SPYRUS
Corporation. IDEA is a registered trademark of Ascom Systec. Windows, Windows 3.1,
Windows 95, Windows NT, and Developer Sudio are registered trademarks of Microsoft
Corporation. UNIX is aregistered trademark of UNIX System Laboratories. FORTEZZA isa
registered trademark of the Nationa Security Agency.

License to copy this document is granted provided that it is identified as “RSA Security Inc.
Public-Key Cryptography Standards (PKCS)” in dl materid mentioning or referencing this
document.

RSA Security Inc. makes no other representations regarding intellectua property clams by
other parties. Such determination is the responghility of the user.

Copyright © 1994-2001 RSA Security Inc.

357

358 PKCS#11 v2.11 DRAFT 3. CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

D. Method for Exposing Multiple-PINson a Token Through Cryptoki

The following is a description of how to expose multiple PINs on a single token through the
Cryptoki interface. 1t has been implemented in products from SmartTrust (formerly iD2
Technologies), and submitted to the PKCS workgroup for incluson in PKCS #11. The
description isinformative. An implementation does not have to implement the functiondity in this
gopendix to meet conformance requirements, but this is the preferred method for exposing
multiple PINsin PKCS#11 v2.x libraries.

D.1 Virtual Slotsand Tokens

Exposing multiple PINs requires the cregtion of a virtud dot and token pair for each PIN
supported by the Cryptoki library. To the library there is a Sngle dot and card, but to the
gpplication it appears that there are multiple dots and tokens. Since libraries are not alowed to
add dots dynamicdly, dl virtud dots must be dlocated from the beginning when C_Initidize is
cdled. When a card is inserted in a reader, the library determines how many PINSs are on the
cad and then insarts tha many virtud cards in the virtua dots. For ingtance, if the library
supports up to two PINs on a card, and a card with a single PIN is inserted, only one of the
two virtua dotswill gppear to have had acard inserted.

Virtud dots that represent the same physica device are tied together using the dotDescription
fiddinthe CK_SLOT_INFO gructure. All virtud dots for the same device must have the same
dotDescription vaue as the readl dot would have had. This alows applications that know about
the behavior to handle the virtuad dots and cards as a Sngle device with multiple PINs. As a
result the library must make sure that the dotDescription valueis unique far dl red dots.

PINs on a card are identified usng the tokenLabd fied in the CK_TOKEN_INFO structure.
The tokenLabd vaue is generated from a combination of the red value and the PIN label. The
format is "<token label> (<pin labe>)" (i.e. "Electronic ID (PIN1)"). As aresult, the user can
know which PIN to use even if the gpplication does not know about multiple PINS. This
requires that the application to show the tokenLabd vaue when it wants a PIN. Fortunatdly,
most gpplications do this. Using the above format, the combined token and PIN labd is limited
to 29 bytes (32 minus white space and parenthesis).

D.2 Object Visibility

Objects such as certificates, public keys, and private keys must only be vishble in the virtua dot
representing the PIN that protects use of the private key. This alows applications to continue
assuming that the private key is in the same dot as the corresponding certificate and/or public
key (private objects are not visble until logged in).

Copyright © 1994-2001 RSA Security Inc.

D. METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI

This approach has advantages and disadvantages. Since the library separates the view of the
objects based on the PIN that protects them, applications that only use the objects on the virtua
cards will function correctly. The problem gppears when an gpplication attempts to update the
objects. The library must insure that the certificate, public key, and private keys are dl updated
in the same virtua card. The application should not be required to use the virtua card for PIN2
to execute the private key, and update the corresponding certificate in the virtua card for PINL.
Thiswill not be a problem if the gpplication knows about this access behavior, but it will not be
ageneric PKCS #11 application. The disadvantage is not a problem when the cards are issued
and updated by the same company (which istrue in most cases).

Copyright © 1994-2001 RSA Security Inc.

359

