RSA

LABORATORIES

PKCS#11v2.11 Draft 2: Cryptographic Token Interface

Standard
RSA Laboratories
February 2001
Table of Contents

L Lo UL 1]
2 SCOPE .ttt bbbt h et e A sEeeEe Rt R e e ReeRe et e eE e EeeReebeeReeRe et e e enbeseeabenaeaaean 2 |
B. REFERENCES ...ttt 3|
Fl DEFINITIONS. ..ottt et b e e b et e st e e e s b e s b e s aeeb e e et e me e e e se e beseeebesaeenbeseesbesae e 6 |
r: SYMBOLSAND ABBREVIATIONS ..ottt 9 |
p GENERAL OVERVIEW ...ttt sttt sttt et sae b sne e e e e s et e 12 |

b.1 DESIGN GOALS.....ccuviuiitiitiariitiatieiee et se st sr sttt se b sas bt sa et aa e e e besrear e eb e ere e e e e resrnarenre e 12

b.2 (GENERAL MODEL .t1tttttittettestesssssesstssesssssssssesessesssasessssssssssnessesstasesnesrssssesnssnsanessesnssssssesnnesssses 13

63 LOGICAL VIEW OF A TOKEN ...t teeeeeeeteeeeeteeueeneeseeseeseeseeesesaeenseseessessessesseeneenseseessessesesseeneesseseens 11

b.4 U U 16

b.5 APPLICATIONS AND THEIR USE OF CRYPTOKIveiviiiriieriiiieiieeesresresresresee e snesnesresresreseenennens 16

DL APPIICAIIONS QNG P OCESSES.....vvieeveeeetieeteeeitieeeteeeteeesteeesteeesseeesieeesseeessteessessnseesssesesseeenseees 1/
. APPITCATONS ANA TNFEAGS ...ttt ea e e e e e esneeee 17

b.6 SESSIONSv.vvveetortereetsssersstessessetessessesessessssessessnsessessesessessnsessessnsessessnsessessnsesssssssesssansesssansesans 18

P.6.1 Read-0nly SESSION STALES........ccuiiuiiieieieeiee ettt saeerea 19

P.6.2 REA/WIITE SESSION SLALES.......coeiiereirieite ettt sbe e et et saeebeeneenean 20

b.6.3 Permitted ODjeCt aCCESSES DY SESSIONS.......ccueerueereieeerieesteesreeeesseasseessessesseesseessesssesseesseessens 21

0.4 SESSION EVENES.......eeiieiieitiieiie ettt ettt e ettt ettt e st e et eenne e e abe e ane e e reeeaneeeareeeaneeeareeennneean 22

.6.5 Session handles and ODJECt NANAIES............ccviiiieiiiiii e 22

P.6.6 CapabIlItIES OF SESSIONS.ccueeeeieriirierie et eesie sttt e et et b sbe e e esesresbesaeeresneenean 23

b.6.7/ EXAMPIE OF USE OF SESSIONS.......ceeeeeeeieeieeieeeteet ettt sneesreeneeas 23
ﬁ CONDARY AUTHENTICATION (DEPRECATED) ...ve.vevteteeueeeeseeseessessessesaeeneessessessessessesseeseeneesees 26 |

b.7.1 Using keys protected by secondary authentication..............ccccveveieieriesesc e 27

b.7.2 Generating private keys protected by secondary authentication............c.cccvecveceevesnnnnen. 27
7. anging the secondary authentication PIN ValUe ... 28

7.4 Secondary authentication PIN collection mechanisms............ccccovviiriininiciecencecenens 28

5.8 FUNCTION OVERVIEW ...ooviiriiieiieieestere st sr e sresre s e s snesresnesne s e e e snssnesnesnesnesseesnennnas 28
|7. SECURITY CONSIDERATIONSooiiieiieieieee sttt s snesnenne e 32 |
p. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVESFOR C OR C++...cooeeveeee. 33 |

Copyright [0 1994-1999-2000 RSA Security Inc. License to copy this document is granted provided that it |
isidentified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in al material mentioning
or referencing this document.

003-903053- 210- 000- 000

PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

8.1 STRUCTURE PACKING.uvtteeittieeeetteteeeiateeesittessaateeesasseasaassessaassasesassesesassesssassssessssssessnssesesanes 33

8.2 POINTER-RELATED MAGCROS.........ceeeeittiieeetteeeietteeeeateeeeaasseeesasseeaeasseeeaansesasassseesansseeeeassesesanseees 34

0 CK PTR...oooooooooooooooooeo oo oeee oo soee oo oeenonns 34

M N E NG 34

0 CK_DECLARE_FUNCTION........ooovooveeomoeesreeosreessessseeeseessreesereesseeseseeseeeseeeesneeeneesneeseeesnees 34

¢ CK DECLARE_FUNCTION POINTER.....o.ooooooooooocooooooooeooocoooeooooeeoooesoeeosoeeoseeooeesorenonns 34

CK_CALLBACK _FUNCTION ..o sore oo sone e soeme e snesnne e onens 35

0 NULL PR ooee oo ooesone oo 35

p.a SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODEcccceeiteieiitiieeeiieeeeeisreeesssseeesssseeesannes 35

BL WINBZ 35

B0 WWIIID oo, 36

3.3 GENENMCUNIX o 37
B, GENERAL DATA TYPESooooooooooeoeeeeereee 38 |

B.1 GENERAL INFORMATION0ovoctctcteece sttt sttt sns st ensenssnssnsensenseneas 38

CK_VERSON; CK_VERTON PTR..oooooovooooooooooosoooeoooeomeeoomoeo oo smee oo messons oo 38

0 CK INFO; CK_INFO PTRu.ovoovooocooooooooooocoooooooesoeesoeeesoeeseeesoemeseeesneseeeseeeseeesneesensnenes 39

0 CK NOTIFICATION oo ooesose oo omeesomssssmmsoeessmsmssmemsomsssoemsosesonsmssmessnssnne e 39

EZ SLOT AND TOKEN TYPES ...eiiiittieeeitteeeeetteeeiiteeeeaauteeesasseassassessaassesasasssssssasseessassssessssseesanssesesanes 40
¢ CK SLOT ID; CK_SLOT ID _PTR oorooooeececveeeeeeieerererersssssnsininesnsnsnsssssssssennsssnsnsnsssssssnsnees 40 |

¢ CK_SLOT _INFO; CK_SLOT INFO PTR ..o 40

¢ CK TOKEN INFO; CK_TOKEN INFO PTR ..o, 42

p.3 SESSION TYPES ..oovvuevesessirisenssessssesssssssensssnsssssssessssessssesserasessssessssnssssssssnssssnssssessesssessssees 48

¢ CK SSION HANDLE, CK_SESSION HANDLE PTR...oooooooioooooooiooooinns 43

0 CK UUSER TYPEooovooovceooeoooeooeesoeeseeeseesseessseessseeseeesseesseeesseeeseeesseesseeeseeeseeeseesesseeeseeees 49

ST N 1= 49

o CK SESSON INFO; CK SESSION INFO PTR cooooveooveoooeooresoeeseeesneeesnenesneeseenseeeeeenseeees 49
D4 T OBIECT TYPES 1-oooooooveeeeeoeersooooossoooeeeeeeeeeeeeeeesseesseeeseeeeereeeeeeeeeeeeseeeeesseseeeeeeeeeeeeeeeeeseeeeeeerrrrere 50 |
¢ CK OBJECT HANDLE, CK_ OBJECT HANDLE PTR.......ooooooooosooosomrosmersmmeeremeeesieeeess 50 |

¢ CK OBJECT CLASS, CK_OBJECT CLASS PTR......cooruireeireeerermreereessresereenseessnssseennees 51

0 CK HW FEATURE TYPE ..ooooooooooeooocooocoeeeoeeeoeoeoeveseeeeseeeeeeeeeeeeseeeseeeseeseneeseeenneseeeneens 51

8 CKLKEY TYPE oo ooeesoeeseeeeresoeeseeeseenseeeeseeeeseeessnensnenseneeseeeeseeeneeeneensoneeseees 52

0 CK CERTIFICATE TYPE oovooovoooooooooooooooooooooooeeo oo oo oeeeeoeeeemeeseeeesmeeoseeeoneeseeenenns 52
6 CK ATTRIBUTE TYPE ..o ooossoooseeesoesosososnesoseiosseosnnsonnnns 53 |

¢ CK ATTRIBUTE; CK ATTRIBUTE PTR......ocoooooooooooscosseeossesseeeseeeseeeesoeeeseeeeseeeeseeeseeens 54

P YN =T 55

p.5 DATA TYPES FOR MECHANISMS....uuuuuuerurersrursrsssssrsss 55
¢ CK_MECHANISV_TYPE, CK_MECHANISM _TYPE _PTR.....coooooooooooooooesooossoessoeosoeooens 55 |

¢ CK MECHANISVI; CK MECHANISM PTRuoovooovoooocooocoooeooeeseeneeeeseeenseeeneeeseeeeseeeeseeenseeees 59

¢ CK_MECHANISM_INFO; CK_MECHANISM_INFO PTR....ovvooveeoovemrreerresmreerereereeersrerenns 60

p.6 SN T N R A =TT T — 62

T 2 62

0 CK NOTIEY oo, 64

8 CKLC XKoo ooeo oo oees oo oeeseoeesoeesooee oo seeneeeessoeesoeeseensoeesoeeooens 64

¢ CK FUNCTION_LIST; CK_FUNCTION LIST PTR, CK_FUNCTION_LIST PIR PIR....65

E LOCKING-RELATED TYPES.eeeiiittteeeatteeeeaitteeeiatteeeaaitesesasssesesassesesassssssaassesesassssesssssesesassssesansenes 67
6 CK_CREATEMUTEX oo, 67 |

0 CK DESTROYMUTEX.......cooooooooooocooooeoseerseeeeeeneeeenseeeseeeeneeeeseeenseeenseeeneeenseeenseeereeeeneeeeecensecens 67

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEXco.ovveereeereeeeeseeesreeesneseresseeesneeseneesenes 67

¢ CK_C_INITIALIZE_ARGS, CK_C _INITIALIZE_ARGS PTR..ovcoovoorvcosrreosresmreeseeeesreesseesenns 69
fio. LS Y= T = =SSO 71 |
fl0.1 CREATING, MODIFYING, AND COPYING OBJECTS......o.cvuuerrririrsenssesssessssessssessssssssssesssssssssssenss 72 |

| Copyright © 1994-1999-2000 RSA Security Inc.

10.1.1 Creating ODJECEScueiieieee e 73
10.1.2 MOITYING ODJECES ... 74
[0.1.3 COPYING ODJECES ...ovrorererseeseseserenerereressnseeeneeseeeseseseessseseseeeeseseseesesseeseseeeesesesereseseeeees 74
10.2 COMMON ATTRIBUTEScutiittistteteeteeteseesueesseasseasseaastasseasseassasssasseessesasesasesnsesnsesneesseassesnsenns 75 |
10.3 HARDWARE FEATURE OBJECTS ... ccuteitteiueesteesttaseeeteueeaseasseessesssesasessssnsesseesseessesnsessssnesssessses 75
10.3.1 (@3 eT8 O] S L= C 76
10.3.2 MONOLONIC COUNLES OMJECESeerueerueerieesieesteesteesteeresresreesieesieesreeseeesseeseenseensesseesseesaeas 7/
10.4 STORAGE OBUJECTS ..ttt eeeeeteasteeteesteetaseasseasseasseasseasstesseenseeseasseasseesseessesssesnsesnsesneesseasseensesns il
T0.5 DATA OBIECTS e eeoveewecssaessinsnsesinsnsensesnsensesenssnsesensensnseesesseseesessnseesesseseesensesensessnsensesseseesensens 78]
10.6 CERTIFICATE OBJECTSutteutieteaateateesteessessasuessueesseasseanstanseansesssesssessesssesssesasesnsesnsesnsessesssesnsenns 80
0.6.1 X.509 public key CErtITICate ODJECES.c.vveeerieiieeeeii ettt esteesteeesteeeeteeesteeeveeenieeereeas 8l
Al 1DULE CEITITICAIE ODJECTSvee ettt 82 |
10.7 KEY (&L= = E T 84
10.8 PUBLIC KEY OBJECTSctttesteeteetesueesueesueasueesseanseanseanssassssseessesssesasesnsesnsssssesseensesnsessesssssessses 86
%2.1 RSA PUDBITC KBY ODJECESvvi ettt et este et eeiteestaeesneeesteeesneeenseeesseeensees 8/
DUDTTC KEY ODJECTS. ... iuiieierevereeisososesesesesessseseneesseseeseesssesssserenessseseesesssesesssssssesssseseseseeseens 88
10.8.3 ECDSA public Key ODJECES.......cc.oiiiiiiiicc e 89
10.8.4 Diffie-Hellman public key ODJECS..........ccoouiiiiiiiiiceeceee e 91
10.8.5 X9.42 Diffie-Hellman public Key ODJECIS..........coooiiiiiiieeeeeeeee e 92 |
10.8.6 KEA PUDIIC KEY ODJECES.......eeeueeeeeiieesteeste ettt sttt see e e e s saeesneene s eneesneesneennean 93
fl0.9 PRIVATE KEY OBJECTS....vevettetesteseetesseseesesseseesessesessessesessesseseesessessesessesessesseseesessessssessesessesses 9493
091 REA PIIVAIE KEY ODJECTS. ... v evviieverecereeeecnsesesiesnseesesnseeessnseeesseseesesnseesesnseeseseseenen 9796 |
10.9.2 DSA Private KeY ODJECES......cueiueiueeeeeeeiesieseeste ettt et b e e e e 9998
10.9.3 EIpPtic curve private KeY ODJECESeeveeeeeeeieeeeeeeeeeeeee et 10099
1094 Diffie-HelTman privale€ K&y ODJECTS.c.ccoveveeeereeirereeiesisssieinsnsieinessininsesenininsens 102107 |
10.9.5 X9.42 Diffie-Hellman private key ODJECtSccoovviririeeieiecise e 103102
10.9.6 NN) G S e 105103
ﬁrSECRET KEY OBJIECTS voovoosiosoesiosoeoisssisiioi oo ossosanso oo aisannsson oo 106105 |
10.10.1 Generic secret KeY ODJECES......c.ccouiriiiiiiiiiiieiet et 108106
10.10.2 RC2 SECret KeY ODJECES.ot 108107
10.10.3 RCA SECret KEY ODJECES.....cui ettt s 109107
10.10.4 RCDE seCret Ky ODJECLS.........ooeieeeeee ettt 110168
10.10.5 AESSECret Ky ODJECHS.oeeieeeeeeeeeeee e 110369
1006 DESSECTEI KEY ODJECIS ...iiioiisieerecsseessinsisensinsnsnesnsnsnsinsensessesensessnsensnssnrensessnseesens TTTZ00 |
10.10.7 DESZ SECTELKEY ODJECIS ..o ooooosoooooooomsonssoooonsoesoessonsonesonssoesonsoesneinn 112110 |
10.10.8 DES3 SECIEt KEY ODJECIS ...uvviievieiitiece ettt et e siee et eeseeeenreeens 113311
10. SECTEL KEY ODJECTSccoroverererssssenenenererenesenenssnensnnnnsnsessesssseseeeeeensnsees TI3EE2 |
10. 10 10 CAST3 SeCret KEY ODJECESooviieiieiieieiceceeece e 114112
10.10.11 CAST128 (CASTD) SECTEL KBY ODJECES. ..o oo oo oo onesonn oo 115113 |
10.10.12 TDEA SECIEl KEY ODJECIS. .. ecvvieieieetiieeeee ettt et ee e e st ee e e sneeenneas 115314
10. SECTELKEY ODJECTSoverrerererererssssssenenenessnesensnsssesenneeennnsnsessseseeeeens TI6EH |
10. 10 14 SKIPJACK secret KEY ODJECES.....ceeeeiieeeeeiece e 1171315
10.10.15 BATON SECret KEY ODJECESc.eiieieiieieieteeieeeeeee ettt s eaea 118116
10.10.16 JUNIPER SECret KEY ODJECLS.......c.eoieiiereieterieriietieeeie ettt e sne 119117
1p.11 KEY PARAMETER OBJECTS..uuttitiiiiiiittteeiiesiiesissrsesiesssesissssesessssssssssssessssssssssssssssesssesssssssses 121119
10.11.1 DSA public Key parameter ODJECEScoveerrieiiieriie e 122320
10,112 Diffie-HelTman public Key parameter ODJECTS.oviiioeiereeeeesnseeeseensnsensessnseeens 123127 |
1. FUNGCTIONS.....c ettt ettt sttt st st s se st e st st e seebenbeseebesbeneeneneeneas 124122 |
1m1 FUNCTION RETURN VALUESviueetitinietieeenietesteeeieseaeenestaseeneseassenessessenessessenessesseneesessens 125123
M.1.1 Universal Cryptoki function return ValUES............ccevevereveneieeeeeeeeesesesieseeneens 125123
1M.1.2 Cryptoki function return values for functions that use a session handle................ 126124
11.1.3 Cryptoki function return values for tunctions that use a tokencccccveevvenee... 127325
.14 return value for application-suppli
1.1.5 Soecial return values for mutex-handling functions............ccccceverievevecceccese e 128126

Copyright © 1994-1999-2000 RSA Security Inc. |

PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.1.6 All other Cryptoki function return ValUEs.............cocoovieiiiiiieieierece e 128126
m.1.7 More on relative priorities of Cryptokl EMTOrSccvcveceeceeeciecieecieceeseeieennns 135133
118 EXTOr COUE ™ QOTCNASTvoveeovorerererssssrensseeeesseeseeseeseeesesesseeseeeseeneneesesesesesesesee 136434 |
.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER 136134
1.3 DISCLAIMER CONCERNING SAMPLE CODEuuutieiieeiiiiiiteriiessesiisssseessessssssssssssesssesssssssees 1737@
1.4 GENERAL-PURPOSE FUNCTIONSciiiiiieitttiriiessiessssbsseiesssesssssssssesssssssssssseessssssssssssessssssnsns 137435
L I R 2= X 137135
D S T oo 130137
¢ O =4 1 T 140138
'3 (O €1 (W T Voo | I 141139
1|1.5 SLOT AND TOKEN MANAGEMENT FUNCTIONS......uutiriieeiieiiisirriiesesesssrssieesssssssssssssessssssnsns 141139
#] C GETOIISt. oo 141239
'3 O €7 65 [0 {1y {0 T 1431441
¢ LR = 0] 1 (o T 144442
'3 C_WaitlEorSI OTEVENL oo 145143
¢ C_GEtMEChANISINILISE......c.eeeeieiiesieeteeee e s e te e e e s e see st eseeseeneesaentesnesreeneeneenenns 146144
'3 C GEtMEChANISMINTOccueeiiiciicie ettt e ae s e sreesreesreeneenneans 148146
¢ (O e AT 148146
¢ C INIPIN. ..ttt ettt st st et e e be st e e besbeebeeaeeneensestentesaeatesaens 150148
¢ LT =11 151149
1|1.6 SESSION MANAGEMENT FUNCTIONS.....ccuveiteeireeireereeseeeseesseessessessessassseesseesseessesssssessseenns 153151
¢’ C Opené%si (o T T 153151
| € ClOSESESSION...uiviteeeeeeeeeetestestestesseeseeseetessestesseaseeseeneentesaessessessesseensensessensessessesseensenes 154152
¢’ C ClIOSEAIISESSIONSe.veiceieetieteeteeteete s e steesreesteeteeteeaeesseesteesteessesnsesneesneesaeesseenseensenns 155153
2 O 1= 5= S T2 1 o 156154
| C GEOPEratiONTALE.c.eeeeieeiteiie ettt sttt se et e be bt eae e eaean 157155
#| C SAOPErAtIONSIALE ... eveveeeeeeieseesiesteereeeeeeseeseestesreereseeseeseessessesseeseesensessensessessesseeneenes 158156
'3 (O LT 161159
¢ LS 0o o L 162160
1|1._7 OBJECT MANAGEMENT FUNCTIONS.....0ccuveiteeireeireereenreeseeeseenseesessesssesseesseesseensesnsessessseenes 163161
¢ (OO = = ST A 163161
L I I e o)1 @ o o T 165163
I I B L= 110)/ @ o[= o SRS 167165
D I O L= () 1= o3 £ 1T 168166
'3 C_GELALITDULEVAIUE ...ttt sttt ettt et e tesaeesaeesneesreenneenne e 169167
¢ C_SAAMUIIDULEVAIUE ..ottt seesaestesnesreeneeneeneens 171469
¢ C FINAODJECISINNE oo, 172170
¢ (O S TaTe (O] o = e C- 173174
'3 C _FINAODJECISFINGccviiiieieiiie ettt sb e e st b b sne e eeens 174172
1|1.8 ENCRYPTION FUNCTIONSuvviiiiiiiiiitttiettesesesssrestresssessssssssssssessasssssssssssssassssssssesssessssresees 175373
3 (O = ToT oL 175373
¢’ O = 0ol oL ST T OO PP OPPTOPPTPPT 176174
S IR = e oL T oY 0= TS 177375
$l C ENCIYPIFINGD ... 178176
.9 DECRYPTION FUNCTIONS --oororooooeeeeeeemsmeasesrseerreeeeeeeeeceeeeseeeeeaserssseeseeereeeeeceeeeeeemeeesrsorrees 180178 |
O] C DEOTYPUNT oo 180178 |
¢’ (O D<o 0, o SO STUPUSUROPOP 181179
2 I O B L= Y, (8] oo (= 182180
¢ C_-DecryptIEi [T T — 182180
1|1.10 MESSAGE DIGESTING FUNCTIONSuuutiiiieiiiesistreeiiessiesissssseeessesssssssssessssssssssssssssesssesssssesees 184182
Y IS ST T oo 184182
¢ (O B Lo =S PSP PPPPN 185183
L I O 1= (0 o F= (= 186184

| Copyright © 1994-1999-2000 RSA Security Inc.

¢ (O L= 1= PP PRRSR 187485
'3 O B Lo TS T = USSR 187185
1|1.1_L SIGNING AND MACING FUNCTIONS......ccttriiiieeiiesiireriiesssessssbssssesssesssssssseesssssssssssssessssssnnns 189187
¢ (OS2 189187
¢ C 0N 100188
¢ C SIGNUPUALE.cuvereiieieieeeeieeeeestestestesreeeeae e stesresneeseeseeseseessesseaseeseesensesaessesseenennenns 191189
'3 cS gnlEinaI ... 191189
¢ (OIS R e = A L1 192490
'3 LGRS T[] T= w0 = OSSO 193191
1|1.12 FUNCTIONS FOR VERIFYING SIGNATURES AND MAGCS.......cciiiiiiiiiiiiiiiiecc it sesiaveeens 194192
¢ (O =YL 194192
¢ (O (= 11RO ST PP PRSPPI 195193
¢ (O Y1 e = L L= 196194
'3 C VENTYFINGL ...t 196194
¢ C_Verifyﬁecover IE et ere e e e nnenrenrenrens 198196
'3 C VENITYRECOVES ...ttt ettt et 198196
1|1.1 DUAL-FUNCTION CRY PTOGRAPHIC FUNCTIONS ...ciiiiiiiitireriieseesssssssieesesesssssssssssesssesssseses 200198
¢ C _DIQESIENCIYPLUPUALE. ... cveeeeeeeereeieieestesieeseeeeseestestestesseeseeseeneessessessesseeseensensessessessenns 200198
¢’ C_-Decrypt-Dig&stU (LS =Y —— 203201
¢ C SIGNENCIYPLUPAALEeeeeieeeeeeeeeesteeteeeeeeeseeeteseeeseeeeneeseessesseeseeneessensessessesseeneeseens 206204
¢ C DecryptVerifylUPUateccoouiiiiiiiiiieiee et 209207
1|1.14 KEY MANAGEMENT FUNCTIONS.......uuutiiiieiiiiiiuuririiessieiisreseeeseessassssserssesssassssssssesssessssresees 212210
¢ (O = 1= = 20— 212210
¢’ C GENEIALEKEYPAITieeeieeeeeeeee ettt ettt ettt e sr e nn e e eneaereenes 214212
¢ LG =T o = P 216214
¢’ C UNWEAPKEY ...ttt ettt a et et e b et e s b e saeesaeesaeesseanseenneans 218216
¢ (O = LY .2 220218
1|1._15 RANDOM NUMBER GENERATION FUNCTIONS.......cuceiueeereereerreereeereenseessessessesseesseesseesseenes 222220
L O =s [TaTe (o [1 222220
¢ O = 1= =10 2= o (0] o 222220
1|1.16 PARALLEL FUNCTION MANAGEMENT FUNCTIONSccoieveereeereeereenreesessesssesseesseesseesseennes 223221
¢ C_GetlEunctionSatus ... 223221
¢ (OOt a1 A T 224222
1|1.17 CALLBACK FUNCTIONS ...vveveeeteeteereeresseesseesseessesssessesseesseessesssessessessssesseessesnsesssssessseenes 224222
m.17.1 UreNder CAlTDACKS.........cccei it s 224222
WTI7.2 Vendor-0efNed CAlTDACKS...........oooooorooorsorosorsomoorsoeooesosrsomsssesoessoesoeones oo ooeen 225223 |
MECHANISMS ...ttt ettt st ae e ste et s s ae s s beeebesbeeabeesbesbeesbeesbeesteensesneas 225223 |
1|2.1 R Y = N Y I —— 230228
W11 PRCSHFL RSAKEY PAIT GENETATIONceeevererseersensneeesnsnsessnseseeseseseeseseseesessens 230228
12 X9.31 RSA KEY PAIN GENEIALIONc.veveeneeeeiestiste e eteeeeeesee st ste e sreseeeeseesbeseeseesnes 231229
P.1.3 | O N s T 231229
P T4 PKCSHIRSA OAEP mechaniSm ParamelerS..........c.cccceeeeeveeerereeieenssinensneininsnns 233231 |
¢| CK_RSA PKCS MGF_TYPE; CK_RSA PKCS MGF_TYPE_PTR........ccccccocrurrrrernncn. 233231
¢ CK_RSA PKCS OAEP_SOURCE _TYPE; CK_RSA PKCS OAEP_SOURCE TYPE PTR
p33231]
¢| CK RSA PKCS OAEP_PARAMS CK_RSA PKCS OAEP_PARAMS PTR................ 234232
1P 15 O =i @ - = = 234232
12.1.6 ISO/TEC 9796 RSA.......c.veccviiieciectie e sttt et eteeveeteeeteesteeeteessesreeneesseesseesseenbennrens 235233
P71 i T s N 236234 |
1p.1.8 NS N S T, 238236
1p.1.9 PKCS#1 RA signature with MD2, MD5, 0r SHA-L.......cccccivvveereeeereenieseeseneens 239237
1p.1.10 ANS X9.31 RSA signature WIth SHA-L......c.oeoeeeeeeeeesee et 239237

Copyright © 1994-1999-2000 RSA Security Inc. |

| vi

PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

AR.2 DSA MECHANISMS ...ooovveoceeiecieeeesesssecss ettt eess ettt ssensseas 240238
2.1 DSAKEY PAIT GENETALIONeveeeeveieeeeeireieteeeeessreeeeesseeseseseressssserssesssessssseresssssesssans 240238
102, KEY PAraMETEr GENETATIONccocoeeerererererersrersrsseeeeeseseseseeeseeeeseeeeeens 241239 |
1P.2.3 DSAWINOUE NASNING ... 241239
1p.2.4 DSAWITN SHA ...t s b b e 242240
1p.25 FORTEZZA HIMESLAMcvevvivereeeeeteeisessesessetesesessesessssesessssesesssesessssesessssssessssesesens 242240
1P. ABOUT ELLIPTIC CURVEuttitiiii i e ittttiie e e e sibast e s e s s sibassee s s s s sssbabasasssssesssbsnssesssessnsrennns 243241
1.4 124 ELLIPTIC CURVE MECHANISMS......ccviviieetesererisreeseeeeseessesssesesssssssssessesessssssesesssesseens 245243
waT T2 A TEITIPHC CUTVEKEY PAIT GENETAIIONv.veeecerreerseeseecnsineeninsineensnsensesinreesensens 245243
P42 12.4.2 ECDSA WItNOUE NASNING ..o oovoooooooooomooosom oo oo snessnesonessnsonoonionns 245243 |
12.4.3 1243 ECDSAWITN SHAL........cooviieiceiieeeeeceeeee ettt 246244
1P 4. MECNANISN PATAMEIEIS...........coeeeeerererererererersnnnennensnsssessssseeeeeeeesesesesenes 247245
1P45 ﬁliptic curve Diffie-Hellman key derivation............ccceeeeerenenic i 249247
1046 Elliptic curve Diffie-Hellman with cofactor key derivation 250248 |
p.4.7 Elliptic curve Menezes-Qu-Vanstone key derivation...........c.cceevcveeceesereescennsinnns 251249
1@_DIFFIE-HELLMAN NN TR 254252]
P51 PKCS#3 Diffie Hellman key pair generation...........ccocceeeeeeeienevenieneseeceeeeeeans 254252
5.2 PKCS#3 Diffie-Hellman key parameter generation..............ccoocveeveveicncncceciennns 254252
1p.5.3 PKCS#3 Diffie-Hellman key derivationcoeeeeeeieneiinie s 255253
1|2. X9.42 DIFFIE-HELLMAN MECHANISM PARAMETERSeviiiiiiiiiitiriieseessssissseeesesssssssssensseseas 256254
¢| CK_X9 42 DH1 DERIVE_PARAMS, CK_X9 42 DH1 DERIVE_PARAMS PTR..... 256254
w7 XO.42 DIFFIE-HELLMAN MECHANISMS oo 258256
.71 X9.42 Ditfie-Hellman Key pair generation............ccovcveeeceenveenieeseeeseeesieeeneee e 258296
P72 X9.4ZDiffiec-HETMaN KEY GEITVAIION.cccvereeeereireeersinseinsinssesnssnsseiessnsneseseses 259257 |
1».7.3 X9.42 Diffie-Hellman hybrid key derivationc.cceeevereniesesieseseseseeeeneeens 260258
1p.7.4 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation.............c..ccccveeevnn.... 261259
Jﬁ_K'EA NN E S = 262260 |
¢| CK_KEA DERIVE_PARAMS CK_KEA DERIVE _PARAMS PTR..........cccorurirrerenne. 262260
1&? Y= N I 262260
0.9.1 KEAKEY PAIT GENENAITONccceeveererereieerseinesseinesseseesssesnssssnessssesnsssenesesseesens 262260 |
1p.9.2 KEA KEY AEIVALION.........eiitiieiitiiiieeieeeeee sttt sb et se b e e sae e 263261
.10 GENERIC SECRET KEY MECHANISMS.....cciiiiiiiiiririieieeiiiiserereeesssisssseessesssesssssessiesssasssssesees 265263
lIz_Iﬁ.l GENEITC SECTEl KEY QBNETATION.............coooorerererererseemenmerseseeeseseeseseseseeeeseseresesesees 265263 |
1P.11 WRAPPING/UNWRAPPING PRIVATE KEYS.....ttieiiettiieieeriesiseiesssssessssssssssssssssssssesssessssesssens 265263
123 Y=Y (U R = (O —— 269267
1P2.13 RC2 MECHANISM PARAMETERS.......uututiiieiiiiiissriresessiissssseeesssssessssssssesssssssssssssesssesssssssses 269264
¢ CK_RC2 PARAMS, CK_RC2 PARAMS PTR........ccoveiiieietecieeetecteeete e seeveere e 269267
¢| CK RC2 CBC PARAMS CK RC2 CBC PARAMS PTR.......coomisiinerinn 270268
¢ CK_RC2_MAC_GENERAL_PARAMS, CK_RC2 MAC GENERAL_PARAMS PTR.... 270268
1|2_.%§ R N 271269
T4T RCZKEY GENETAIIONccooseeooeeecoeseeioereceeoenesieenesenenssenennnninensnninenseninennennennenee 271269 |
N S o o= T, 271269
22 T = 0% o =T R 272270
12144 RC2-CBCwith PKCSpadding.........cccoveeiieeeiieiere et e st srenenens 2(324
P I45 General-Tength RC2-MAC.........co ettt st st se e sree et srenenens 204272
12.14.6 2 72 209243
1P. 15 RCA MECHANISVIS -ooeooroooooooooeooeeeeeeeesmmmeeesososeoeeeeeeeeeeeeeeemmmeeeeeereroeeeeeeeeeeeeeeeeeereeeerrrrrreee 275273 |
IPI5.1 RCAKEY GENEration ... 25272 |
CARI5.2 RCA... e 2(6244
T U O T 276274 |
1I2.17 RC5 MECHANISM PARAMETERS.cciiueeueererresteseeetessessessessessesssssesssssessessssssssssssesssssessenns 216274
¢| CK RC5 PARAMS CK RC5 PARAMS PTR........cccocviueietecieeeteeteeeeteeteeeeteeteeeeaeevena 276274
¢ CK_RC5 CBC PARAMS; CK_RC5 CBC PARAMS PTR.......ccecuvivieierriresieresresveeenns 277275
¢| CK RC5 MAC GENERAL_PARAMS, CK_RC5 MAC GENERAL_PARAMS PTR....277275

| Copyright © 1994-1999-2000 RSA Security Inc.

vii

1218 RCB MECHANISMS. .coeooveeoveeeceeeeeseessecss et sseesseess ettt sssesssensseas 278276
%m&aﬂon .. 278276
1p.18. o ol = T 278276 |
1p.18.3 [O ol = T O — 279214
19.18.4 RC5-CBC With PKCS Paddingc..ceeeueriiriiiiieiieieiesiesiesie e 280278
12.18.5 General-1ength RCE-MAC.........ooiiiiiiiieceeeeee ettt 281279
19.18.6 RO Y A O 281249

1|2_.%9 AES MECHANISMS......ccviiuiitiieieieeeseietessesesssessessssssesesessssssssssessesssssessssssssesssessssssssesssssesses 282280

D I0.T AESKEY QENETAIION ...ve.eoeeeeecrecveeensinseenssnneneessenensessesnsessnsensessnsensessnsnsessesnsessesen 282230 |
IPT0.2 AESECB..oosooosoomosoooooe oo ooesoeone oo oneosessme oo onesneonesenesonn oo 282280 |
12.19.3 Y =S O =T T 283281
10104 AESCBC with PRCS [E O[T TP 284282 |
12.19.5 General-length AESMAC .o, 285283
IPT10.6 AESMAC oo ons e oneonssnsens e e 286284 |
.20 GENERAL BLOCK CIPHER MECHANISM PARAMETERSuuvviiiiiiiiiiurreeiieessesissrereiesssesssssenees 286284

K MAC G L P K M
21 GENERAL BLOCK CIPHER MECHANISMSveveveiereteeeeeeeeeeeeeeesesereresesssesnsensesessessesnseresseens 286284
lE[?L_l_General block cipher key generation ... 287285 |
1p.21.2 General block CIPhEr ECBccvieeieieieee v e esees e s eeeeneeneenaeseeseenes 287285
1p.21.3 General block CIPhEr CBCccvcveieeeeeericse st ctesteeeee s e s eneeeesreseennes 288286
12.21.4 General block cipher CBC with PKCSpadding.........cccceeeveverereeresersesesseeseeens 289287
1215 General-length general block cipher MAC ..o 290288
12.21.6 General DIOCK CIPNEr MAC.........ooviiiieiiieceest e 290288

11272 DOUBLE AND TRIPLE-LENGTH DES MECHANISMS...veeoveoseossessiessissssssssssssssssssssssssnssees 291280 |
12.22.1 Double-length DESKEY gENEratioN.........cccvveereereereeriesesieseeeeseeseesseseessesseeseesesnees 291289
1p.22.2 Triple-length DES Order OF OPeratlONS...........eeveeeeeieeeeereeereeeieeeeseeesieeneeeneeeeeneens 291289
B T e TG ok e ———————— ———

1|2 23 SKIPJACK MECHANISM PARAMETERS.ceoeirieteitreresseeseessessessesssssessessessssssessesssssesssssesses 292290
¢ CK SKIPJACK PRIVATE WRAP PARAMS
CK KIPJACK PRIVATE WRAP PARAMS PTR ...t e e 292290
¢ CK__SKI PJACK RELAYX PARAMS, CK SKIPJACK RELAYX PARAMS PTR......... 293291

12,24 SKIPJACK MECHANISMS.oooeoreeeeeseeeeessseesseesesessenssseesssens e sensesees s sesssseessseeeens 294292
12241 SKIPJACK KEY gENEratiONevecveeeeeeeerieseeieseestesieeseeseeseenteseessessessesseeseensessessessensens 294292
1p.24.2 S S A YO T =01 =17 295293
1p.24.3 SKIPJACK-CBCBA ...t eeeee e eeee e seteeeeeeteaeseaaeaessaeeeenrenenannes 295293
0288 KIPIACK-OFBOA...ooo 205203 |
1p.24.5 S I X @ = =TV S — 296294
1p.24.6 S N O O = =1y 296294
1p.24.7 S LA O @ =5 I 297295
19.24.8 SKIPIACK-CEBB ...ttt sbabr e e e e s s e snabaeeeeeeeenans 297295
12.24.9 SKIPJACK-WRAP ... vttt e e e errar.—.———.—.———.—.———.—.———.—.—.—.—.—.. 2982896
IP7AT0 KIPJACK-PRIVATE-WRAP oo oooeoeeeeeeeeeiesineinsssesneseeseniesenesensnesnnnennees 298296 |
AP 2ATT SKIPJACKRELAYX cvooovooooooovoooeooeooeooeomeoeesoeeoneoneoeesoeeseesoeesseesnesoeeoeesoeeooeeon 298296 |

1E. 5 BATON MECHANISMSocuveeveeieteetieteeteeteeeeeeeessesssesesseeseessssessesssesesssssessessssssesssasessessenses 299207

.25. NTKEY GENETATTION.ocveeerereoerereesressieerenssinenssnensesinenessnsnsenneresnensenenees 2009207 |
1p.25.2 Sy O N =t S5 22 S — 299297
10.25.3 BATON-ECBOIB ...oovoorrerrererereereeeeeseeeeeseeeeeseeeeesseeeeeeeeeseeeeeeeeseeeseeseeesseeseeeseees 299297 |

S =T N L) O =Tk X 300298 |
1p.25.5 BATON COUNTER oo, 300298
1p.25.6 Sy O RS TV T = — 301299
1p.25.7 Sy O N AT 272 = — 301299

1|2.26 JUNTPER MECHANISMSeeveeeeeeieteseseriseeseeeseseessesssssessessesssessessesssssessssssssssssessesssssessessens 301299
1p.26.1 JUNIPERKEY gENEratioNcceviiiieiiiiiieciee ettt 301299
N T AN |\ | o e 52 < 302300 |

Copyright © 1994-1999-2000 RSA Security Inc.

viii PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

1P.26.3 JUNIPER-CBCL28.........cc oottt et s s saabaa e s s aabanae e e 302300
10.26.4 JUNIPER-COUNTER ...ttt seiate e e s seivrae e e e 303301
10265 JUNIPERSHUFFLE .. 303301 |
1P.26.6 NS TN = R 7 T 304302
12.27 MD2 MECHANISMS. c...orvvooresieresemsisessassssssssnssssessssnsssenssnes 304302
1p.27.1 Y1 304302
19.27.2 General-1ength MD2-HMAC.........oo ettt 304302
12.27.3 MD2Z-HMAC ...t 305303
10278 VIDZKEY TEITVAIIONceoecseeerecssiasseensinseeensinsensnsnsensnsnsensenensensnsensensnsensesseseesessens 305303 |
P28 VD5 MECHANISMISeooooooreooooooeeeeeeeemmmeaseseseseeeeeeeeeeeeeeeeeeemeeeeeerssseeseeereeeeeceeeeeeeeeeesrrorreee 306304 |
.28.1 [IS 306304
1P.78. eneral-lengin MDD S-HMAC . ooooeceeeceeeeeeececeiresenenersnenensnensesesennenenneens 306304 |
1p.28.3 YT L = LY N O —— 307305
AP 284 MDDB KEY QENVAION ..o ooooooooooosooooms s oo onsonesoesonssonsoneoesnes e e 307305 |
1E. D SHA L MECHANISMSutvtiiiieiiiiiutrieiiessiesissreettesssasisrssseesssesssssssseessessssssssessessssssssesesesss 308306
.29. 1Y AT T 308306 |
1p.29.2 General-length SHA-T-HMACoooiiiiiieee e 308306
1.29.3 SR S e Y - A — 309307
1p.29.4 S R N e SRz L Lo T T 309307
1|2. 0 FASTHASH MECHANISMS.eeevietieveseeseeseeseeessssesssssssseessesssesssessssssesssessssssssssssssesssesns 310368
12.30.1 FASTHASH ... 310308
.31 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISM PARAMETERS 310308
¢] CK PBE PARAMS CK PBE PARAMS PTR......oo 310308
132 PK CS#5 AND PKCS #5-STYLE PASSWORD-BASED ENCRYPTION MECHANISMS 311309
1p.32.1 MD2-PBE fOr DES-CBC.......oeiiitiiiitie ettt stesssvessatesssvesssbesssvessssessvessnresans 311309
1p.32.2 MD5-PBE TOr DES CBC........cccoiiviiiiecitiiccttieeeeeteeeceeaeee e eeeeeseieseeevaesesveeesssseeeeens 312310
10323 MDB-PBETOr CAST-CBC oo 312310 |
1p.32.4 MDB5-PBE fOr CAST3-CBC........tiiiiiictii et csree et sree e st sbes s sraeessee s saressnne s 312310
1p.32.5 MD5-PBE for CAST128-CBC (CAST5-CBC)ccviuereeeeereerieseesreseeeeseessessessenseens 312310
1p.32.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)...cuveveveeeieeieeeeeeeee e s aneeens 313311
; key generation mechanism parameters...........c.o.oooooeveneennnns 313317 |
¢ CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;
| CK PKCS PBKD2 PSEUDO RANDOM FUNCTION TYPE PTR......cccoieiieiiisesicecenn, 313311 |
¢ CK PKCS5 PBKDF2 SALT SOURCE_TYPE;
CK PKCS PBKDF2 SALT SOURCE TYPE PTR.....oooocitiiiieeee e 314312
¢| CK_PKCS PBKD2 PARAMS CK_PKCS5 PBKD2 PARAMS PTR...oovvrirererrieen, 314312
.32.8 PKCS#5 PBKD2 K&y gENEratioNcccoceeieiiiiieiceiiie e st seaaeassveee e 315313
1]5.3% PRCS #12 PASSWORD-BASED ENCRY PTIONJAUTHENTICATION MECHANISMS oo, 315313 |
10331 SHA-1-PBE fOr 128-DIt RCA ... 317315
19.33.2 S R N B oo o (o T (O oY A (O N — 317315
1P.33.3 SHA-1-PBE for 3-key triple-DES CBC.........cccociiiiiieeieeeee et 317315
12.33.4 SHA-1-PBE Tor 2-key triple-DES CBC........ocooieeeeeeeeneeeeee e 318316
12.33.5 SHA-1-PBE tor 128-DIt RC2-CBCcooviiiiiiiiiiiiiiieivieeveveeeeeeeseeeerssesssssessrsssrssesene. 318316
17336 SHA-I-PBETOr A0-DIT RCZ-CBU ...ooooooocoooe s soensiessensiessensinseninsinsnsnsinsnsnsnsnnns 310347 |
1337 SHA-L-PBATOr SHA-L-HMAC ..o oooonooesonsoes e e 310317 |
34 SET MECHANISM PARAMETERS......ccctttiieeiiiiiitresiiesessiisssssseesessisssssesssesssesssssssssesssesssssssees 319314
1|236 LYNKS MECHANISMS ... veeeeeeeeereeeeeeeresseesesssesssesseeesssenesessessesssesesesseseesssesesesseseessseressssenes 321319
36.1 LYNKSKEY WIADDING wvoorererrseresersseresereeeseeseeereeeeeeerseerseeseeeseeeseeereeeeeeeeerseeeeeseeese 321310 |
3 N R S 322320 |
¢ CK SS.3 RANDOM DATA ..oooooooooooeoocooooooeoeeoooooeoeeeoeoeeoeeeeeeeeeeeeeeeeeresseneeem e 322320

| Copyright © 1994-1999-2000 RSA Security Inc.

¢ CK SS.3 MASTER KEY DERIVE PARAMS,
CK SSL.3 MASTER KEY DERIVE PARAMS PTR ..ottt 322320
¢ CK _S3.3 KEY MAT OUT; CK_SS.3 KEY MAT OUT PTR....ccccoeiiicieciecieceereens 323321
¢ CK S9.3 KEY MAT PARAMS, CK_SS.3 KEY MAT PARAMS PTR.......cccovvurenene 323321
1238 SSL MECHANISMSoooovveoieseisseeseeisess st 324322
1%.38.1 Pre_master KeY geNneralioN........ocoviiuiriiiiieieeet et 324322
1p.38. MaSter KEY derVAIION...........occoeveeeeeereeeereceerereceirerseereneseinensenrenseinensennennenennens 325323 |
1p.38.3 Key and MAC AENIVALION.........ccoieeereeeereeriesiestesteseeseessessessessessesseeseesesssessessessenns 326324
1p.38.4 MD5 MACING 1IN S 3,010 veeveeeeeeeeeeseesiesresreseeseeseessessessesseseessessessessesssssesseessessens 327325
12.385 SHA-IMACING IN ST 3.0 ...cuciiiiiiieciieiiciecie et ctee v eaveevee st e cteesreenesnneens 328326
1|§.3§ PARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS. .o onn) 328326 |
¢ CK _KEY DERIVATION_STRING DATA; CK_KEY DERIVATION_STRING DATA PTR
328326
¢ CK_EXTRACT _PARAMS, CK_EXTRACT _PARAMS PTR.......ccccveeeeererresesesesaeeens 329327
40 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS.......c.ccoveerieireeireereinresreesreesseennes 329327
.1 Concatenation of abase key and anotner K&Y...............ccccocooeeiveeeiereisireneininennnn 329327 |
1p.40.2 Concatenation of abasekey and datacccceevvevevevievvseeecese e 330328
1p.40.3 Concatenation of data and abasekeycccccvvvvvceecevcisisecescc e 332330
12.40.4 XORINg of a key and data..........cceveereenieeierienee e see sttt eee e 333331
1p.40.5 Extraction of one key from another Key.........ccooevriiiencn e 334332
ETRFPEMCHAMSMS .. 335333
R =1) |V | R < PR 335333 |
1P412 General-length RIPE-MD 128-AMAC ... 336334 |
1p.41.3 RIPE-MD 128-HMACccoociiiieiieitieeticcteeieeteeeteecteecteeeteseaeseeereesveenveenresssesseens 336334
JﬂZ_RFPE?IVI'ITIGWECHAMSMS .. 336334 |
1p.42.1 RIPE-MD 160........c0cccttiteitieiteeiteeireeieeereeseesseesteesbessesssesseesseesseesssensesssessesssesssesssens 336334
1P42.2 _ General-1ength RIPE-MD 160-HMAGC.......ccooreorreerreeeerereeereeeeeereeeseeseeeseeeseeeeeeeee 337335 |
PR | VB s L om——————— e
1p. CRYPTOKI TIPSAND REMINDERS. ...ttt 337335 |
18.1 OPERATIONS, SESSIONS, AND THREADStttiiiiiiiiiiteriiesssesisiesesesssesssssssisesssssssssssseessssssnnns 337335
18.2 MULTIPLE APPLICATION ACCESS BEHAVIORvvviiiiiiiiiiririiesiessisissiessesssssssssssssesssessssssns 338336
18.3 OBJECTS, ATTRIBUTES, AND TEMPLATES ..1tttiiiiiiiittiriieseiesissssiiesesssisssssseesssssssssssssessssssnns 339334
1B8.4 SIGNING WITH RECOVERY ...veccvieitieveissesseesseesseesssessesssssssssesssesssesssessesssessseessssssssssssssssesnns 339334
Al TOKEN PROFILES......c oottt ettt sttt et st saaesbeesbe e beetesanesaeesaeesbeenbeentesanesseens 341339 |
B| COMPARISON OF CRYPTOKI AND OTHER APIS ...t 343341 |
Cl INTELLECTUAL PROPERTY CONSIDERATIONS........coot ettt 347345 |
D. METHOD FOR EXPOSING MULTIPLE-PINSON A TOKEN THROUGH CRYPTOKI
348346
Dl1 VIRTUAL SLOTSAND TOKENS.......ccittitiiteieteeeteesteeiteeitesseesseesseesseessesasssssssssessesssesssesssesenss 348346
D|2 (O =N =S Y S =T TH 5 348346

List of Figures

FIGURE 1, GENERAL CRYPTOKI MODELuuuiiiieiiiiieiiiiiiiisiii s ssees e e s e siee s s s 13
FIGURE 2, OBJECT HIERARCHY ...viiittiiitiieittiestetesieaesteasssseaesseeassseessseeesseessseeesseessseess 15
FIGURE 3, READ-ONLY SESSION STATES....uuetiittiiiiiiesteiessesesseesssseesssseesssssesssseeessseessnsees 19
FIGURE 4, READ/WRITE SESSION STATES ...vivietiieieitieteeeesteessesseesseesseseesseessesseessesssesseess 20
FIGURE 5, OBJECT ATTRIBUTE HIERARCHY L.tiiiuiiiiiiiisiiisssisesssiieessieesssseeesneessneeesneessnneess 71

Copyright © 1994-1999-2000 RSA Security Inc. |

| X PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FIGURE 6, HARDWARE FEATURE OBJECT ATTRIBUTE HIERARCHY .oovviiiiiiiiiiiiiiieeceesainns 76
FIGURE 7, CERTIFICATE OBJECT ATTRIBUTE HIERARCHY ..iiiiiiiiiiiiiiiiiiiiciiciiiieeeeissesessnians 80
FIGURE 8, KEY ATTRIBUTE DETAIL ..vvvuvvvetetieeeieieteteeeeeeetet ettt teteeeneeeteteeenenererenenenans 84
HGURE 9, KEY PARAMETER ATTRIBUTE DETAIL v.evvevvveveveteeveeteeeeeeveeeveeeeeenevennnas 121119

List of Tables

S T e T 9
[A B LE 2, PREFIXES Lutttiiiiiiiiiisttteeittssstssssssseertsssstsasssss s e e eeessstaasss s s s esssssesssssbsbneteassesaasnsrbnneeas 9
[TABLE 3, CHARACTER SETuuutiiiiiiiiiiiiiittiteiiieeesssasisssseseesssssssassssssreeesssssssssssssssessssssssnssnes 11
TABLE 4, READ-ONLY SESSION STATES....uuuttiiiiiiiiiiiiurreeeiiseiiiisssssereiessssiimssssssseeessssssssssnes 19
TABLE 5, READ/WRITE SESSION STATES.....uuciiiiiutiiiiiiueiieiiisuersesiisseresessssresssssseeessssssesessses 20
[TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTSBY DIFFERENT TYPES OF SESSIONS....... 21
[TABLE 7, SESSION EVENTS....ctttiiiiiiii it ittt it e e e st ba et e e s e s s e sesabbta e e e e s s s s s ssnabbaeeeasassessaasaes 22
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS.......cccoviiiiiiiiiiiiciiiiieiiee e seeivieeeee e e e e e ssannns 28
TABLE 9, SLOT INFORMATION FLAGSccutuiiiiiiiiiiiiiiiiieiiiiieeiisesiseereieesssssssssseeeeessessssnsnes 41
TABLE 10, TOKEN INFORMATION FLAGSuuviiiiiiiiiiiiiiiieiiiiiecieeeciitieeeeesssssssnbseeeessssssssnnnnes 44
TABLE 11, SESSION INFORMATION FLAGS ...uuuiiiiiiiiiiiiiiiiiiiieeeeeeiiiteeeieeessssssbveeeessasssssnnnes 50
TABLE 12, MECHANISM INFORMATION FLAGSciiiiiiiiiiiiiiiiiieiiiie e s s e beee e s s e e sesssnnes 61
TABLE 13, C INITIALIZE PARAMETER FLAGS.....iiiiiiiitiieiiiiiiiiiiiiiiieiiessssssssibseeeeissesessnnnnes 69
TABLE 14, COMMON OBJIECT ATTRIBUTES....cciiiiiiiiiiittrireiieeesiiieisssereiesssssssssssssseeessssssssssnes 75
TABLE 15, HARDWARE FEATURE COMMON ATTRIBUTES.........ccooiutiiiiieeiiiiiinnrreeeeeesessssnnnnes 76
TABLE 16, CLOCK OBJECT ATTRIBUTES....uuuuiiiiiiiiiiiiiuuiieeiiieesiiieisseereiessssssssssssseeeesssssanssnes 76
TABLE 17, MONOTONIC COUNTER ATTRIBUTES.......uvtveiiiiiiiiiiiiissrereieeessiisssssseeeeeesessssnssnes 77
TABLE 18, COMMON STORAGE OBJECT ATTRIBUTESueeiiiiiiiiiiiiiiieiiieiiiiissssseereiesesessssnes 77
TABLE 19, DATA OBJIECT ATTRIBUTES. ... uuuutiiiiiiiiiiiiuurreeiiisisiisssssssereieesseiamssssssressassesassses 78
TABLE 20, COMMON CERTIFICATE OBJECT ATTRIBUTES. .iiiiiiiiiiiiriiiiiiiiiiiiisssseeriissssssassnnes 80
TABLE 21, X.509 CERTIFICATE OBJECT ATTRIBUTES.....ccciiiiiiiiiiirrririieeeeisiiisrveeeeeesessssnsnes 81
TABLE 22, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES.....cccccoiiiiiirieiiiieeeeiiinnnns 83
TABLE 23, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLESuvvvviiiiiiiiiiiiiveiiiieeeeesinnnes 84
TABLE 24, COMMON KEY ATTRIBUTES. .. uuuuttiiiiiiiiiiiistseeiiissiiiiissssseeiessssiisssssssseesssssssssssnes 85
TABLE 25, COMMON PUBLIC KEY ATTRIBUTEScccitttiiiiieiiiiiiiireeeiesesssssesvvaeeeessesssssnnnes 86
TABLE 26, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC

e 87
TABLE 27, RSA PUBLIC KEY OBJECT ATTRIBUTES......uuviiiiiiiiiiiiiriiriieeessiisinsrseeeeessessssssnnes 88
TABLE 28, DSA PUBLIC KEY OBJECT ATTRIBUTES ...uuvvtiiiiiiiiiiiiiteeeeiieessiissssreeeeeessssssssnnes 88
TABLE 29, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTES.....uuuviiiiiiiiiiiirreeeiieeesiiinnnnes 89
TABLE 31, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ..tvviiiiiiiiiiiiiiiineeeiesesesannnes 91
TABLE 32, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTESccvvveiieeeeeiiinnnns 92
TABLE 33, KEA PUBLIC KEY OBJECT ATTRIBUTESuvvviiiiiiiiiiiirrririieeeessisisrseeeeeesssssssisnes 93

| TABLE 34, COMMON PRIVATE KEY ATTRIBUTEScoiiiiiiiiiiiis i 9594

TABLE 35, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PRIVATE

Y Sttt ettt et eee et eereeeeeeeeeeeeeeeeeneeeaneeeeeeenenteeseeeaeenteeeaneneeeeeeeeeeeeeeaeens 0796
TABLE 36, RSA PRIVATE KEY OBJECT ATTRIBUTES.....cciiiiiiiiiiiieiiiiiiiiiiissrreerieessesassnnes 9796
TABLE 37, DSA PRIVATE KEY OBJECT ATTRIBUTES ttttiiiiiiiiiiiiiieiiiieisiisissnseeeiessessassnnes 90998

| Copyright © 1994-1999-2000 RSA Security Inc.

Xi

[TABLE 38, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTESo.ooeeveeeevseveveerevennnes 10099
TaBLE 40, DiFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES ...cvivieieceiiisesecececacns 102101
TlaBLE 41, X9.42 DiFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTESvvveeenenn.. 104102
TIABLE 42, KEA PRIVATE KEY OBJECT ATTRIBUTES ...cciiiiiiiiiiivrieieieeeeeseeinsvveeeeeeaeens 105103
TIABLE 43, COMMON SECRET KEY ATTRIBUTES......c.uuvttiiiiiiiiiiiiniieriieeesssisnsrseeeeeessenas 107405
TIABLE 44, GENERIC SECRET KEY OBJECT ATTRIBUTES........coooitttiiiiieeeiiienirreeeeeeaeean 108106
TIABLE 45, RC2 SECRET KEY OBJECT ATTRIBUTES ..vvvvviiiiiiiiiiiiveeeeiieessiisssrreeeeeeseeaas 109107
TIABLE 46, RC4 SECRET KEY OBJIECT ...uuuvuiiiiiiiiiiiiiuiiieeriiiesiisssssseeeiessssissssssesresesenns 109107
TIABLE 47, RC4 SECRET KEY OBUJECT ...uuuttuiiiiiiiiiiiiiusiseeeiieiiiiassssseeeiessseiasssssseeeisaaeaas 110108
TIABLE 48, AES SECRET KEY OBJECT ATTRIBUTES ...vvvviiiiiiiiiiivvieeeieeeeeseensvveeeeeeeeens 111109
TIABLE 49, DES SECRET KEY OBJIECTuuuviiiiiiiiiiiiiiiiieeiiieesiiiisssrereieasssssssssseereeessanas 111109
TIABLE 50, DES2 SECRET KEY OBJECT ATTRIBUTES ..uvviiiiiiiiiiiiiiiiiiieeeeseeniiveeeeeeaaeans 112310
TIABLE 51, DES3 SECRET KEY OBJECT ATTRIBUTES ..uvviiiiiiiiiiiiiieiiiieeeiiisssiveeeeeeseens 113343443
TIABLE 52, CAST SECRET KEY OBJECT ATTRIBUTES....ciiiiiiiiiiiiiiieiiiiiiiiisssiseeeeieseess 1133142
TIABLE 53, CAST3 SECRET KEY OBJECT ATTRIBUTES......cciiiiiiiiiiiiiiiiiiiinnireereieseens 114312
TIABLE 54, CAST 128 (CAST5) SECRET KEY OBJECT ATTRIBUTES....ciiveiiiiiirieeiinnes 115113
TIABLE 55, IDEA SECRET KEY OBJIECT ...uvvviiiiiiiiiiiiiiieiiiie e e seeeivreeeieeesssssnssseeeessssenas 115314
TIABLE 56, CDMF SECRET KEY OBUJIECT ..uvvuiiiiiiiiiiiiiiiiiiieeeiiiiissreeeieaessssssssseereesssanas 116315
TIABLE 57, SKIPJACK SECRET KEY OBJECTccoieiutiiiiiiiiiiiiiiisieeeieeessssssssseeeeeesseaas 1173415
TIABLE 58, BATON SECRET KEY OBUJIECT .uuuiiiiiiiiiiiiiiiiiiiiiiiiiiisssseeeiiessiiisssssseeeessaaans 118116
TIABLE 59, JUNIPER SECRET KEY OBJECTcccoiiiittieiiiii ettt eeevvaeeea e 119418
TiaBLE 60, COMMON FOOTNOTES FOR KEY PARAMETER ATTRIBUTE TABLES............... 121119
TIABLE 61, COMMON KEY PARAMETER ATTRIBUTES. . ueeiiiiiiiiiiiiiieeiiiiiiiiisssiseeeeieiiens 121119
TiaBLE 62, DSA PUBLIC KEY PARAMETER OBJECT ATTRIBUTES . .ccciiiciiiiiiiiviiieeeaann, 122120
TlaBLE 63, DIFFIE-HELLMAN PuBLIC KEY PARAMETER OBJECT ATTRIBUTES............ 123121
TIABLE 60, MECHANISMS VS, FUNCTIONS....cciiiiiiiiiiiiiieeiiiiiiiiiiissreeeiesessssssssseeeeeessenas 226224
TIABLE 61, PKCS#1 RSA: KEY AND DATA LENGTH tuueiiiiiiiiiiiiiiieiiiiiiisiiiiieeeeaeneeaes 232230
TlaBLE 62, PKCS #1 RSA: MESSAGE GENERATION FUNCTIONScocccoviiciviviieeeeeen, 233231
TlaBLE 63, PKCS #1 RSA OAEP: ENCODING PARAMETER SOURCES........ccvvveeenenn.. 233231
TiaBLE 64, PKCS #1 RSA OAEP: KEY AND DATA LENGTHuvvviiiiiiiiiiiiiiivieeeeen, 235233
TIABLE 65, ISO/IEC 9796 RSA: KEY AND DATA LENGTH ...uuvvciiciiiiiieiiiiecccivieeens 236234
TIABLE 66, X.509 (RAW) RSA: KEY AND DATA LENGTH......uvviiiiviiiiieiiiieceeiieeeenns 237235
TIABLE 67, ANSI X9.31 RSA: KEY AND DATA LENGTH ..ooiiiiiiiiiiiiiicc i 238236
TABLE 68, PKCS#1 RSA SIGNATURESWITH MD2, MD5, or SHA-1: KEy AND DATA

1 NS 239237
TlaBLE 69, ANSI X9.31 RSA SIGNATURESWITH SHA-1: KEY AND DATA LENGTH . 240238
TIABLE 70, DSA: KEY AND DATA LENGTH wuvviiiiiiiiiiiiiiiiiicccceeeiitieeieeesssssssbveeeeaeaeeas 241239
TIABLE 71, DSA WITH SHA-1: KEY AND DATA LENGTH....coovieitiiiiiieeieieeiireeeeeeeeann 242240
TiABLE 72, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH ..vvvviiiiiiiiiiiiiiieeiennnn, 242240
TIABLE 73, EC: KEY DERIVATION FUNCTIONScoiuiiiiiiiiiiciiiiiiieeeieeeessessrseeeeseseens 247245
TIABLE 76, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS.....ciiiiiiiiieiiiiiiinns 256254
TiaBLE 77, KEA PARAMETER VALUES AND OPERATIONSccovuvieriiieeiiiiennrreeeeeeeeennn 264262
TIABLE 78, RC2-ECB: KEY AND DATA LENGTH....ccouvvtiiiiiiiiiiiiiiiiiiiecceseeiiveeeeeeae e 272270
TIABLE 79, RC2-CBC: KEY AND DATA LENGTH .cuvviiiiiiiiiiiiiiiieiiiieeessssssiveeeeseseens 2732741
TiaBLE 80, RC2-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH.....uvvveeeeennnn. 274272

Copyright © 1994-1999-2000 RSA Security Inc.

Xii PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TiaBLE 81, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTHcccouvvvvrernnnnn. 274272
TIABLE 82, RC2-MAC: KEY AND DATA LENGTH ..uutiiiiiiiiiiiiiiiiiieiiinsscsesssineeeeassseass 275243
TIABLE 83, RC4: KEY AND DATA LENGTH.uuuviiiiiiiiiiiiieiiiee et ee e ssvveaeee e e 276274
TIABLE 84, RC5-ECB: KEY AND DATA LENGTH.....ccvvviiiiiiiiiiiiiieieiie e seeivieeeee e 279277
TIABLE 85, RC5-CBC: KEY AND DATA LENGTH ..uuvviiiiiiiiiiieciiieeiieeeesseeirveeeeeea e 280278
TlaBLE 86, RC5-CBC WiTH PKCS PADDING: KEY AND DATA LENGTH.......uuceu....... 281279
TlaBLE 87, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTHccouvvverernnnnn. 281279
TIABLE 88, RC5-MAC: KEY AND DATA LENGTH ...uuvvviiiiiiiiiiiiiiiiiiiiecccseiiieeeeaeneeans 282280
TIABLE 89, AES-ECB: KEY AND DATA LENGTH ..ccutieiiiiiiiiiiiiiiiieiiiissisisssiseeeeiasaess 283281
TIABLE 90, AES-CBC: KEY AND DATA LENGTHuvvviiiiiiiiiiiiiiieiiiie e seeiiveeeee e 284282
TiaBLE 91, AES-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH.................... 285283
TlaBLE 92, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTHcccovvvvvrenennnnn. 285283
TIABLE 93, AES-MAC: KEY AND DATA LENGTH .uvviiiiiiiiiiiiiiiiieiiieeeeesssssiveeeeseseens 286284
TiaBLE 94, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH......cccovvveeenennnn. 288286
TiaBLE 95, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH ...ococvvvvvveenennnn. 288286
TIABLE 96, GENERAL BLOCK CIPHER CBC wiTH PKCS PADDING: KEY AND DATA LENGTH289287
TBLE 97, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH290288|
TlaBLE 98, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTHuuveeeenennn. 291289
TIABLE 99, SKIPJACK-ECB64: DATA AND LENGTH..ucciiiiiiiiiiiiiiiiiiieciiseeiiiveeeeeeaeeann 295293
TIABLE 100, SKIPJACK-CBC64: DATA AND LENGTH.uuiiiiiiiiiiiiiiiiiiiec s sssiirveeeeaeaeeans 295293
TlaBLE 101, SKIPJACK-OFB64: DATA AND LENGTH ucciiiiiiiiciiieeeiee e 296294
TiaBLE 102, SKIPJACK-CFB64: DATA AND LENGTH veeviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeieseeans 296294
TIABLE 103, SKIPJACK-CFB32: DATA AND LENGTH teeiiiiiiiiiiiiiiiiiiiiiiiiisssiieeeeiessees 297295
TiaBLE 104, SKIPJACK-CFB16: DATA AND LENGTH w.ccvviiiiiiiiiiiiiiieceeieeiveeeeeeee 297295
TIABLE 105, SKIPJACK-CFB8: DATA AND LENGTH u.vvvviiiiiiiiiiiiiiiiieceesseiiiveeeeeeaeeans 298296
TIABLE 106, BATON-ECB128: DATA AND LENGTH.uuuuvuiiiiiiiiiiiiiiiiiiieeiiiieisiveeeeeeaeeans 299297
TIABLE 107, BATON-ECB96: DATA AND LENGTH ..uuttuiiiiiiiiiiiiiiieeiiiiesiiisssineeeeiasaess 300208
TiaBLE 108, BATON-CBC128: DATA AND LENGTH .uvveiviiiiiiiiiiiiieiie e seeiveeeee e 300298
TiaBLE 109, BATON-COUNTER: DATA AND LENGTH.......ccooovuviiiiiiei i, 301299
TIABLE 110, BATON-SHUFFLE: DATA AND LENGTH w.coccoiiiiiiiiiiiieec e eeeiiveeeeeeee 301299
TiaBLE 111, JUNIPER-ECB128. DATA AND LENGTH .ccovceiiiiciiiiiiiiiecc et 302300
TiaBLE 112, JUNIPER-CBC128: DATA AND LENGTH wevviviiiiiiiiiiiiiiieeiisseiiiveeeeeeaeeans 303364
TiaBLE 113, JUNIPER-COUNTER: DATA AND LENGTH ..ocoooiiviiiiiiiiiiiieiiieeeeceeean 303361
TiaBLE 114, JUNIPER-SHUFFLE: DATA AND LENGTH ..iiiiiiiiiiiiiiicic i 303361
TIABLE 115, MD2: DATA LENGTH......ccoieiuiiiiiiii i iicciiteeeie e e e seivteeeeee e s s s ssasbvaeeeesasenas 304302
TlaBLE 116, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTHccc......... 305303
TIABLE 117, MD5: DATA LENGTH....uuuuuuuuuuututerererererererereresesesesssssesssessssssssssssssssssssseses 306304
TlaBLE 118, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTHucceeuen..... 307305
TIABLE 119, SHA-1: DATA LENGTH ..iiiiiiutuiiiiiiiiiiiiiiiiieeiiiesiiissssssseeeiesssssssssssseeeeeessenas 308306
TlaBLE 120, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH 309306%
TIABLE 121, FASTHASH: DATA LENGTH.uuttiiiiiiiiiiisiiieiiiiiiiiiisssseeriiisssiisssiseeeeisiieas 310308
TlaBLE 122, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS .. 314312
TiaBLE 123, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCES.......cccvvveeerennnn. 314312
TiaBLE 124, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH vcocccovviiiiiiiieienn. 327325
TiaBLE 125, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTHcooocvvvviieienn, 328326

Copyright © 1994-1999-2000 RSA Security Inc.

| INTRODUCTION

Xiii
TIABLE 126, RIPE-MD 128: DATA LENGTHciiiiiiiieteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaanaeenenees 335333
TlaBLE 127, GENERAL-LENGTH RIPE-MD 128-HMAC:.....coooteeeeiiiieeeeeeeaeeea 336334
TIABLE 128, RIPE-MD 160: DATA LENGTH ...uiiiieiieetieeeeeeeeeeeeeeeeeeaseeseeeeesesnasaessseeees 337335
TABLE 129, GENERAL-LENGTH RIPE-MD 160-HMAGC: ... 337335

Copyright © 1994-1999-2000 RSA Security Inc.

1339, INTRODUCTION 1 |

1. Introduction

As cryptography begins to see wide application and acceptance, one thing is increasingly
clear: if it is going to be as effective as the underlying technology allows it to be, there
must be interoperable standards. Even though vendors may agree on the basic
cryptographic techniques, compatibility between implementations is by no means
guaranteed. Interoperability requires strict adherence to agreed-upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives
of industry, academia and government, a family of standards called Public-Key
Cryptography Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing
public-key and related technology. It is RSA Laboratories intention to improve and
refine the standards in conjunction with computer system developers, with the goal of
producing standards that most if not al developers adopt.

Therole of RSA Laboratories in the standards-making processis four-fold:
1 Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.
4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority on
each document, though input from reviewers is clearly influential. However, RSA
Laboratories goal is to accelerate the development of formal standards, not to compete
with such work. Thus, when a PKCS document is accepted as a base document for a
formal standard, RSA Laboratories relinquishes its “ownership” of the document, giving
way to the open standards development process. RSA Laboratories may continue to
develop related documents, of course, under the terms described above.

PKCS documents and information are available online a
http://ww.rsasecurity.com rsal abs/ PKCS[. There is an eectronic
mailing list, “crypt oki ”, a rsasecurity. com specificaly for discussion and
development of PKCS #11. To subscribe to this list, send e-mail to
maj or donmo@r sasecurity. comwith the line “subscri be cryptoki” in the
message body. To unsubscribe, send e-mail to maj or dono@r sasecurity.com
with theline“unsubscri be crypt oki ” inthe message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

Copyright © 1994-1999-2000 RSA Security Inc. |

http://www.rsasecurity.com/rsalabs/PKCS

| 2 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS Editor
RSA Laboratories
20 Crosby Drive

Bedford, MA 01730 USA
pkcs-edi tor @sasecurity.com
Nttp:// ww. rsasecurity. comrsal abs/ PKCS]

It would be difficult to enumerate all the people and organizations who helped to produce
PKCS #11. RSA Laboratories is grateful to each and every one of them. Specia thanks
go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA for the many hours
they spent writing up parts of this document.

For Version 1.0, PKCS #11's document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt Kaliski of
RSA Laboratories. For Version 2.01, Ray Sidney served as document editor and project
coordinator. Matthew Wood of Intel was document editor and project coordinator for
Version 2.10.

2. Scope

This standard specifies an application programming interface (API), caled “ Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki, pronounced “crypto-key” and short for “ cryptographic token interface,” follows
a simple object-based approach, addressing the goals of technology independence (any
kind of device) and resource sharing (multiple applications accessing multiple devices),
presenting to applications a common, logical view of the device called a “ cryptographic
token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from the PKCS Web
page. This document and up-to-date errata for Cryptoki will also be available from the
same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of deviceor torunin a
different environment; thus, the application is portable. How Cryptoki provides this
isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

| Copyright © 1994-1999-2000 RSA Security Inc.

mailto:pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/pubs/PKCS

3139, REFERENCES 3 |

A number of cryptographic mechanisms (algorithms) are supported in this version. In
addition, new mechanisms can be added later without changing the general interface. Itis
possible that additional mechanisms will be published from time to time in separate
documents; it is also possible for token vendors to define their own mechanisms
(although, for the sake of interoperability, registration through the PKCS process is
preferable).

Cryptoki Version 2.1 is intended for cryptographic devices associated with a single user,
so some features that might be included in a general-purpose interface are omitted. For
example, Cryptoki Version 2.1 does not have a means of distinguishing multiple users.
The focus is on a single user’s keys and perhaps a small number of certificates related to
them. Moreover, the emphasis is on cryptography. While the device may perform useful
non-cryptographic functions, such functions are left to other interfaces.

3. References

ANSI C ANSI/ISO. ANS/ISO 9899: American National Sandard for
Programming Languages— C. 1990.

ANSI X9.9 ANSI. American National Sandard X9.9: Financial Institution
Message Authentication Code. 1982.

ANS| X9.17 ANSI. American National Sandard X9.17: Financial Institution Key
Management (Wholesale). 1985.

ANS| X9.31 Accredited Standards Committee X9. Digital Sgnatures Using
Reversible Public Key Cryptoqraphy for the FlnanC|aI Serwces
Industry(rDSA) K ey phy Rey,

Algorithm. September O, 199&%%%%@4,—1993.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. Working draft, October 11, 2000.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Sgnature
Algorithm (ECDSA). 1999.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 4 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography. Working draft, November 8,
2000.

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPSPUB 46-3 National Ingtitute of Standards and Technology (formerly Nationa
Bureau of Standards). FIPS PUB 46-3: Data Encryption Standard.
October 25, 1999.

FIPSPUB 74 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPSPUB 74: Guidelines for Implementing and
Using the NBS Data Encryption Sandard. April 1, 1981.

FIPS PUB 81 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPS PUB 81: DES Modes of Operation.
December 1980.

FIPSPUB 113 Nationa Institute of Standards and Technology (formerly Nationa
Bureau of Standards). FIPSPUB 113: Computer Data Authentication.
May 30, 1985.

FIPSPUB 180-1 Nationa Institute of Standards and Technology. FIPS PUB 180-1.
Secure Hash Sandard. April 17, 1995.

FIPSPUB 186 Nationa Institute of Standards and Technology. FIPS PUB 186:
Digital Sgnature Standard. May 19, 1994.

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November 1995.

GCS-API X/Open Company Ltd. Generic Cryptographic Service APl (GCS
API), Base - Draft 2. February 14, 1995.

SO 7816-1 ISO. International Standard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1. Physical
Characteristics. 1987.

ISO 7816-4 ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchange. Committee draft,
1993.

ISO/IEC 9796 ISO/IEC. International Standard 9796: Digital Sgnature Scheme
Giving Message Recovery. July 1991.

| Copyright © 1994-1999-2000 RSA Security Inc.

3139. REFERENCES 5 |

PCMCIA Personal Computer Memory Card International Association. PC Card
Sandard. Release 2.1, July 1993.

PKCS#1 RSA Laboratories. RSA Encryption Standard. Version 2.0, October 1,
1998.

PKCS#3 RSA Laboratories. Diffie-Hellman Key-Agreement Sandard. Version
1.4, November 1993.

PKCS#5 RSA Laboratories. Password-Based Encryption Sandard. Version
2.0, March 25, 1999.

PKCS#7 RSA Laboratories. Cryptographic Message Syntax Standard. Version
1.5, November 1993.

PKCS #8 RSA Laboratories. Private-Key Information Syntax Sandard. Version
1.2, November 1993.

PKCS#12 RSA Laboratories. Personal Information Exchange Syntax Standard.
Version 1.0, June 24, 1999.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic

Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic
Mail: Part I11: Algorithms, Modes, and Identifiers. TISand IAB IRTF
PSRG, IETF PEM WG, February 1993.

RFC 1508 J. Linn. RFC 1508: Generic Security Services Application
Programming Interface. Geer Zolot Associates, September 1993.

RFC 1509 J. Wray. RFC 1509: Generic Security Services API: C-bindings.
Digital Equipment Corporation, September 1993.

RFC 2279 F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 6 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

SEC1 Standards for Efficient Cryptography Group (SECG). Sandards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

X.500 ITU-T (formerly CCITT). Recommendation X.500: The Directory—
Overview of Concepts and Services. 1988.

X.509 ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Authentication Framework. 1993. (Proposed extensions to X.509 are
given in ISO/IEC 9594-8 PDAM 1: Information Technology—Open
Systems I nterconnection—The Directory: Authentication Framework—
Amendment 1: Certificate Extensions. 1994.)

X.680 ITU-T (formerly CCITT). Recommendation X.680: Information
Technology-- Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. July 1994.

X.690 ITU-T (formerly CCITT). Recommendation X.690: Information
Technology—ASN.1 Encoding Rules. Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 1994.

4. Definitions
For the purposes of this standard, the following definitions apply:

API Application programming interface.

Application Any computer program that calls the Cryptoki
interface.

ASN.1 Abstract Syntax Notation One, as defined in X.680.
Attribute A characteristic of an object.
BATON MISSI’s BATON block cipher.
BER Basic Encoding Rules, as defined in X.690.

CAST Entrust Technologies' proprietary symmetric block
cipher.

CAST3 Entrust Technologies' proprietary symmetric block
cipher.

| Copyright © 1994-1999-2000 RSA Security Inc.

4139. DEFINITIONS

CASTS5

CAST128

CBC

CDMF

Certificate

Cryptographic Device

Cryptoki

Cryptoki library

7|

Another name for Entrust Technologies' symmetric
block cipher CAST128. CAST128 isthe preferred
name.

Entrust Technologies' symmetric block cipher.

Cipher-Block Chaining mode, as defined in FIPS PUB
81l

Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

A signed message binding a subject hame and a public
key, or a subject name and a set of attributes.

A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in
this standard.

DER Distinguished Encoding Rules, as defined in X.690.

DES DataEncryption Standard, as defined in FIPS PUB 46-
23.

DSA Digital Signature Algorithm, as defined in FIPS PUB
186.

EC Elliptic Curve

ECB Electronic Codebook mode, as defined in FIPS PUB

81.
ECDH Elliptic Curve Diffie-Hellman.
ECDSA Elliptic Curve DSA, asin ANSI X9.62.
ECMQV Elliptic Curve Menezes-Qu-Vanstone

Copyright © 1994-1999-2000 RSA Security Inc. |

PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

MISSI’s FASTHA SH message-digesting a gorithm.

Ascom Systec’s symmetric block cipher.

A smart card manufactured by SPY RUS.

Message Authentication Code, as defined in ANSI

RSA Data Security, Inc.'s MD2 message-digest

RSA Data Security, Inc.'s MD5 message-digest

A process for implementing a cryptographic operation.

Optimal Asymmetric Encryption Padding for RSA.

Anitem that is stored on atoken. May be data, a

RSA Data Security’s RC2 symmetric block cipher.

RSA Data Security’s proprietary RC4 symmetric

RSA Data Security’s RC5 symmetric block cipher.

The means by which information is exchanged with a

A logical connection between an application and a

FASTHASH
IDEA
JUNIPER MISSI’s JUNIPER block cipher.
KEA MISSI’ s Key Exchange Algorithm.
LYNKS
MAC
X9.9.
MD2
algorithm, as defined in RFC 1319.
MD5
algorithm, as defined in RFC 1321.
M echanism
MOV Menezes-Qu-Vanstone
OAEP
Object
certificate, or akey.
PIN Personal Identification Number.
RSA The RSA public-key cryptosystem.
RC2
RC4
stream cipher.
RC5
Reader
device.
Session
token.
SET

The Secure Electronic Transaction protocol.

| Copyright © 1994-1999-2000 RSA Security Inc.

5139. SYMBOLS AND ABBREVIATIONS 9 |

SHA-1 The (revised) Secure Hash Algorithm, as defined in
FIPS PUB 180-1.

Slot A logical reader that potentially contains a token.
SKIPJACK MISSI’s SKIPJACK block cipher.
SSL The Secure Sockets Layer 3.0 protocol.

Subject Name The X.500 distinguished name of the entity to which a
key is assigned.

SO A Security Officer user.

Token The logical view of acryptographic device defined by
Cryptoki.

User The person using an application that interfaces to
Cryptoki.

UTF-8 Universal Character Set (UCS) transformation format
(UTF) that represents SO 10646 and UNICODE
strings with a variable number of octets.

5. Symbolsand abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description
C Function

CK_ Datatype or general constant

Copyright © 1994-1999-2000 RSA Security Inc. |

| 10 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Prefix | Description

CKA_ | Attribute

CKC_ | Certificate type

CKD Key derivation function
CKF_ | Bitflag

CKG_ | Mask generation function
CKH_ | Hardware feature type
CKK_ | Key type

CKM_ | Mechanism type

CKN_ [Notification

CKO_ | Object class

CKP_ | Pseudo-random function
CKS_ | Session state

CKR_ | Returnvalue

CKU_ | User type

CKZ_ | Sat/Encoding parameter source

h ahandle

ul aCK_ULONG

p apointer

pb apointer toaCK_BYTE
ph apointer to a handle

pul apointer toaCK_ULONG

Cryptoki isbased on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
t ypedef unsi gned char CK BYTE;

/* an unsigned 8-bit character */
t ypedef CK BYTE CK CHAR,

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK UTF8CHAR

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOCL;

/* an unsigned value, at least 32 bits long */
t ypedef unsigned |ong int CK_ULONG

/* a signed value, the sane size as a CK ULONG */
typedef long int CK _LONG

| Copyright © 1994-1999-2000 RSA Security Inc.

5139. SYMBOLSAND ABBREVIATIONS 11 |

/* at least 32 bits; each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki aso uses pointers to some of these data types, as well as to the type voi d,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR_PTR /[* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG _PTR [* Pointer to a CK_ULONG */
CK v D _PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID _PTR, which is implementation-
dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded
by “Ox”, in which case they are hexadecimal values.

The CK_CHAR datatype holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

Numbers 0123456789

Graphic characters |1 “#%& * ()* +,-./:;<=>2[\]1*_{|} ~
Blank character Cf

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in
RFC2279. UTF-8 alows internationalization while maintaining backward compatibility
with the Local String definition of PKCS #11 version 2.01.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 12 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

In Cryptoki, a flag is a Boolean flag that can be TRUE or FALSE. A zero value means
the flag is FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these
macros, if needed:

#i f ndef FALSE
#defi ne FALSE O
#endi f

#i f ndef TRUE

#def i ne TRUE (! FALSE)

#endi f
Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the
private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications are
developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6. General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA
cards, and smart diskettes. There are adready standards (de facto or official) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, 1SO 7816, or the PCM CIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the
devicee To do so is ll a long-term goal, and would certainly contribute to
interoperability. The primary goal of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a*“ cryptographic token” (or ssmply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one
device at agiven time.

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW 13 |

It is not the goa of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with the
functions that Cryptoki provides. Cryptoki isintended to complement, not compete with,
such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 1508 and RFC 1509) and “ Generic Cryptographic Service
API” (GCS-API) from X/Open.

6.2 General model

Cryptoki's general model isillustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with
one or more cryptographic devices, on which some or all of the operations are actualy
performed. A user may or may not be associated with an application.

Application 1

v

Application k

Other Security Lavers

v

v

Other Security Lavers

CryptoKki

v

_l

CryptoKki

l_l

Device Contention/Synchronization

l_l

Slot 1

_l

1L

Slotn

Token 1
(Device 1)

1L

Token n
(Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots’. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the dot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of dots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a

Copyright © 1994-1999-2000 RSA Security Inc. |

| 14 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

system has some number of dots, and applications can connect to tokens in any or all of
those dots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logically like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or even
know which ones are involved); Cryptoki hides these details. Indeed, the underlying
“device’” may be implemented entirely in software (for instance, as a process running on a
server)—no specia hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; aternatively, Cryptoki can be a so-caled “shared” library (or dynamic link
library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if alibrary is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’'s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not al libraries will support all the mechanisms (algorithms) defined in this
interface (since not all tokens are expected to support all the mechanisms), and libraries
will likely support only a subset of al the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will be
developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles’ will emerge.

6.3 Logical view of atoken

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object stores a certificate. A
key object stores a cryptographic key. The key may be a public key, a private key, or a

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW 15 |

secret key; each of these types of keys has subtypes for use in specific mechanisms. This
view isillustrated in the following figure:

Object

—_— v,

Data Key Certificate

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects’ are
visible to all applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions’ (connections between an application and the
token) are closed and the token is removed from its slot. “Session objects’ are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects’; however, to view “private objects’, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See[Table 6Table 6Table§ on page1723 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can aso
perform cryptographic functions with objects. A token may have an interna random
number generator.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of “objects,”
or be able to perform every kind of cryptographic function. Many devices will ssimply
have fixed storage places for keys of afixed algorithm, and be able to do a limited set of
operations. Cryptoki's role is to trandlate this into the logical view, mapping attributes to
fixed storage elements and so on. Not al Cryptoki libraries and tokens need to support
every object type. It is expected that standard “profiles’ will be developed, specifying
sets of algorithms to be supported.

“Attributes’ are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also

Copyright © 1994-1999-2000 RSA Security Inc. |

| 16 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

attributes that are specific to a particular type of object, such as a modulus or exponent for
RSA keys.

6.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer
(SO). The other typeisthe normal user. Only the normal user is allowed accessto private
objects on the token, and that access is granted only after the normal user has been
authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private
objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that

| they are variable-length strings of characters from the set in [Table 3Table 3Tabled Any
tranglation to the device's requirements is left to the Cryptoki library. The following
issues are beyond the scope of Cryptoki:

* Any padding of PINs.
* How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an application (e.g., PINs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such aPIN to be supplied and used, and little more.

6.5 Applicationsand their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki function C_lInitialize (see Section from one of its threads; after thiscall is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki function C_Finalize (see Section and ceases to
be a Cryptoki application.

| Copyright © 1994-1999-2000 RSA Security Inc.

63139. GENERAL OVERVIEW 17 |

6.5.1 Applicationsand processes

In general, on most platforms, the previous paragraph means that an application consists
of asingle process.

Consider a UNIX process P which becomes a Cryptoki application by calling
C_Initialize, and then uses the f or k() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write operation,
if the operating system follows the copy-on-write paradigm), they are not part of the same
application. Therefore, if C needs to use Cryptoki, it needs to perform its own
C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki isundefined if C triesto use it without itsown C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED;
however, because of the way f or k() works, insisting on this return value might have a
bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potential “shortcuts’ which might (or might not!) be available because of this.

In the scenario specified above, C should actualy call C_Initialize whether or not it
needs to use Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize
immediately thereafter. This (having the child immediately call C_Initialize and then
cal C Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of thef or k() cal; however, it isnot required by Cryptoki.

6.5.2 Applicationsand threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki
enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki
library with a call to C_lInitialize, it can specify one of four possible multi-threading
behaviorsfor the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify that it will be accessing the library concurrently from

multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 18 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 39 and 4™ types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling
mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If acall is made by athread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

See SectionP.7]for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.6 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token's objects and functions. A session provides a logical connection
between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenticated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if asingle application has multiple sessions open with a token, and it uses one of
them to create a session object, then that session object is visible through any of that

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW 19 |

application’s sessions. However, as soon as the session that was used to create the object
is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
alimited number of sessions—or only alimited number of read/write sessions-- however.

An open session can be in one of several states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are

described in Section 6.6.1]and Section

6.6.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initialy opened, it is in ether the “R/O Public Session” state (if the
application has no previously open sessions that are logged in) or the “R/O User
Functions’ state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

Close Session/
Device Removed

R/O Public

Open Session Session

Login User

Close Session/
Device Removed

R/O User
Functions

Open Session

Figure 3, Read-Only Session States
The following table describes the session states:

Table 4, Read-Only Session States

Copyright © 1994-1999-2000 RSA Security Inc. |

| 20 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

State Description

R/O Public Session | The application has opened aread-only session. The application
has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions | The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.6.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.
When the session is opened, it is in either the “R/W Public Session” state (if the
application has no previously open sessions that are logged in), the “R/W User
Functions’ state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions’ state (if the application already has an open
session that the SO islogged into).

R/W SO
Functions

Close Session/

Open Session Device Removed

Open Session Close Session/

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session >
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States
The following table describes the session states:

Table 5, Read/Write Session States

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW

21 |

State

Description

R/W Public Session

The application has opened a read/write session. The application
has read/write access to all public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal user’s
PIN.

R/W User The normal user has been authenticated to the token. The

Functions application has read/write accessto all objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no
access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a“R/O User
Functions” session cannot create or delete atoken object.

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in
6Table 6 is limited to sessions belonging to the application which owns that

object (i.e., which created that object).

Copyright © 1994-1999-2000 RSA Security Inc. |

| 22 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

6.6.4 Session events

Session events cause the session state to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.

Device Removed | the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, al sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token that is not present. Redlistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token’s absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki Version 2.1, all sessions that an application has with a token must have the
same login/logout status (i.e., for a given application and token, one of the following
holds: all sessions are public sessions; all sessions are SO sessions; or all sessions are
user sessions). When an application’s session logs into a token, all of that application’s
sessions with that token become logged in, and when an application’s session logs out of
atoken, all of that application’s sessions with that token become logged out. Similarly,
for example, if an application already has a R/O user session open with atoken, and then
opens a R/W session with that token, the R/W session is automatically logged in.

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/'W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.6.5 Session handlesand object handles

A session handle is a Cryptoki-assigned value that identifies a session. It isin many ways
akin to afile handle, and is specified to functions to indicate which session the function
should act on. All threads of an application have equal accessto all session handles. That
is, anything that can be accomplished with a given file handle by one thread can also be
accomplished with that file handle by any other thread of the same application.

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW 23 |

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among all threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers convenience, Cryptoki defines the following symbolic value:

#define CK_| NVALI D_HANDLE 0
6.6.6 Capabilitiesof sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, asingle
session can perform only one operation at atime; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section11.13

A consequence of the fact that a single session can, in general, perform only one
operation at a time is that an application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application al need to
use Cryptoki to access a particular token, it might be appropriate for each thread to have
its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded accessto it. Even if it issafeto
access the library from multiple threads simultaneoudly, it is still not necessarily safe to
use a particular session from multiple threads simultaneously.

6.6.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 24 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “ pushing the envelope’.

For our example, we suppose that two applications, A and B, are using a Cryptoki library
to access a single token T. Each application has two threads running: A has threads A1
and A2, and B has threads B1 and B2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. Aland B1 eachinitialize the Cryptoki library by calling C_Initialize (the specifics of
Cryptoki functions will be explained in Section [L1). Note that exactly one call to
C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this
isthe first session to be opened for A, it isa public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s existing
sessions are public sessions, session 4 is also a public session.

4. Al attempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. Al receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION_READ_ONLY_EXISTS).

5. A2 logs the normal user into session 7. Thisturns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that because A1 and A2 belong to
the same application, they have equal access to all sessions, and therefore, A2 is able
to perform this action.

6. A2 opens aR/W session and receives the session handle 9. Since al of A’s existing
Sessions are user sessions, session 9 is also a user session.

7. Alclosessession 9.

8. Bl attemptsto log out session 4. The attempt fails, because A and B have no access
rights to each other's sessions or objects. B1 receives an error message which
indicates that there IS no such Session handle
(CKR_SESSION_HANDLE_INVALID).

9. B2 attempts to close session 4. The attempt fails in precisely the same way as B1's

atempt to log out sesson 4 faled (i.e, B2 receives a
CKR_SESSION_HANDLE_INVALID error code).

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW 25 |

10. B1 opens a R/W session and receives the session handle 7. Note that, asfar asB is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s
session 7 are completely different sessions.

11. Bllogsthe SO into [B’s] session 7. Thisturns B’'s session 7 into a R/W SO session,
and has no effect on either of A’s sessions.

12. B2 attempts to open a R/O session. The attempt fails, since B already has an SO
session open, and R/O SO sessions do not exist. B1 recelves an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION_READ_WRITE_SO_EXISTS).

13. Al uses [A’s] session 7 to create a session object O1 of some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

14. B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the
object handle 7. As with session handles, different applications have no access rights
to each other’s object handles, and so B’s object handle 7 is entirely different from
A’s object handle 7. Of course, since B1 is an SO session, it cannot create private
objects, and so O2 must be a public object (if B1 attempted to create a private object,
the attempt would fall with error code CKR_USER _NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

15. B2 uses [B’s] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifies O2.

16. Al uses[A’s] session 4 to perform an object search operation to get a handle for O2.
The search returns object handle 1. Note that A’s object handle 1 and B’s object
handle 7 now point to the same object.

17. Al attempts to use [A’s] session 4 to modify the object associated with [A’s] object
handle 1. The attempt fails, because A’s session 4 is a R/O session, and is therefore
incapable of modifying O2, which is a token object. Al receives an error message
indicating that the session isa R/O session (CKR_SESSION_READ_ONLY).

18. Al uses [A’s] session 7 to modify the object associated with [A’s] object handle 1.
Thistime, since A’s session 7 is a R/W session, the attempt succeeds in modifying
02.

19. B1 uses[B’g] session 7 to perform an object search operation to find O1. Since Ol is
a session object belonging to A, however, the search does not succeed.

20. A2 uses [A’S] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifies O1.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 26

21.

22.

23.
24.

25.

26.

217.

28.

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1.
This destroys O2.

B1 attempts to perform some operation with the object associated with [B’s] object
handle 7. The attempt fails, since there is no longer any such object. B1 recelves an
error message indicating that its object handle is invaid
(CKR_OBJECT_HANDLE _INVALID).

Al logsout [A’s] session 4. Thisturns A’s session 4 into a R/O public session, and
turns A’s session 7 into a R/W public session.

Al closes[A’s] session 7. This destroys the session object O1, which was created by
A’ssession 7.

A2 attempt to use [A’S] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no longer any
such object. It returnsa CKR_OBJECT _HANDLE INVALID.

A2 executesacall to C_CloseAllSessions. Thiscloses[A’s] session 4. At this point,
if A were to open a new session, the session would not be logged in (i.e., it would be
apublic session).

B2 closes[B’g] session 7. At this point, if B were to open a new session, the session
would not be logged in.

A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary authentication (Deprecated)

Note: The information in this section, .7l related to secondary

authentication in Cryptoki has been deprecated in PKCS #11 v2.11
and higher. It is included here for reasons of backward compatibility.
New Cryptoki implementations and Cryptoki aware applications should
not implement these features. It will not be present in the next major
revision of the specification. An alternative _approach is presented in
Aggendixl[[

Cryptoki allows an application to specify that a private key should be protected by a
secondary authentication mechanism. This mechanism is in addition to the standard login
mechanism described in section for sessions. The mechanism is mostly transparent to
the application because the Cryptoki implementation does aimost all of the work.

The intent of secondary authentication is to provide a means for a cryptographic token to
produce digital signatures for non-repudiation with reasonable certainty that only the
authorized user could have produced that signature. This capability is becoming
increasingly important as digital signature laws are introduced worldwide.

| Copyright © 1994-1999-2000 RSA Security Inc.

63139. GENERAL OVERVIEW 27 |

The secondary authentication is based on the following principles:

1. The owner of the private key must be authenticated to the token before secondary
authentication can proceed (i.e. C_Login must have been called successfully).

2. If aprivate key is protected by a secondary authentication PIN, then the token must
require that the PIN be presented before each use of the key for any purpose.

3. All secondary authentication operations are done using a mechanism that is
transparent to the Cryptoki client.

The secondary authentication mechanism adds a couple of subtle pointsto the way that an
application presents an object to a user and generates new private keys with the additional
protections. The following sections detail the minor additions to applications that are
required to take full advantage of secondary authentication.

6.7.1 Using keys protected by secondary authentication

Using a private key protected by secondary authentication uses the same process, and call
sequence, as using a private key that is only protected by the login PIN. In fact,
applications written for Cryptoki Version 2.01 will use secondary authentication without
modification.

When a cryptographic operation, such as a digital signature, is started using a key
protected by secondary authentication, a combination of the Cryptoki implementation and
the token will gather the required PIN value. If the PIN is correct, then the operation is
alowed to complete. Otherwise, the function will return an appropriate error code. The
application is not required to gather PIN information from the user and send it through
Cryptoki to the token. It is completely transparent.

The application can detect when Cryptoki and the token will gather a PIN for secondary
authentication by querying the key for the CKA_SECONDARY_AUTH attribute (see
section [10.9). If the attribute value is TRUE, then the application can present a prompt to
the user. Since Cryptoki Version 2.01 applications will not be aware of the
CKA_SECONDARY_AUTH attribute, the PIN gathering mechanism should make an
indication to the user that an authentication is required.

6.7.2 Generating private keys protected by secondary authentication

To generate a private key protected by secondary authentication, the application supplies
the CKA_SECONDARY_AUTH attribute with value TRUE in the private key template.
If the attribute does not exist in the template or has the value FALSE, then the private key
is generated with the normal login protection. See sections [10.9] and [11.14] for more
information about private key templates and key generation functions respectively.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 28 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If the new private key is protected by secondary authentication, a combination of the
Cryptoki implementation and the device will transparently gather the initial PIN value.

6.7.3 Changing the secondary authentication PIN value

The application causes the device to change the secondary authentication PIN on a private
key using the C_SetAttributeValue function. The template to the function should
contain the CKA_SECONDARY_AUTH attribute. The value of
CKA_SECONDARY_AUTH in the template does not matter.

When the Cryptoki implementation finds this attribute in a C_SetAttributeValue
template, it causes the device to gather the appropriate values. If C_SetAttributeValueis
successful, the PIN has been changed to the new value. See sections [10.9 and for
more information about private key objects and C_SetAttributeValue respectively.

6.7.4 Secondary authentication PIN collection mechanisms

Cryptoki does not specify a mechanism for secondary authentication PIN collection. The
only requirement is that the operation of the collection mechanism is transparent to the
client.

Ideally, secondary authentication PINs will be gathered using a protected path device, but
that can not always be the case. A Cryptoki implementation may utilize platform specific
servicesto gather PIN values, including GUI dialog boxes. While thisis different than the
typical avoidance of non-portable implementation requirements in the design of Cryptoki,
it alows secondary authentication to be utilized by version 2.01 aware applications
without changes. If an application requires PIN values to be collected from a protected
path, it should insure that the CKF_PROTECTED_AUTHENTICATION_PATH flag
isset inthe CK_TOKEN_INFO structure.

6.8 Function overview

The Cryptoki APl consists of a number of functions, spanning slot and token
management and object management, as well as cryptographic functions. These
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

Category Function Description
Generd C Initidize initializes Cryptoki
purpose C Finalize clean up miscellaneous Cryptoki-associated
functions resources
C_GetlInfo obtains general information about Cryptoki

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW

Category Function Description
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot and token | C_GetSlotList obtains alist of dotsin the system
management C_GetSlotinfo obtains information about a particular slot
functions C_GetTokenlnfo obtains information about a particular
token
C_WaitForSlotEvent walits for aglot event (token insertion,
removal, etc.) to occur
C_GetMechanismList obtains alist of mechanisms supported by a
token
C_GetMechanisminfo | obtains information about a particular
mechanism
C _InitToken initializes atoken
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifiesthe PIN of the current user
Session C_OpenSession opens a connection between an application
management and a particular token or setsup an
functions application callback for token insertion
C CloseSession closes a session
C CloseAllSessions closes all sessionswith atoken
C _GetSessioninfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state
of asession
C_SetOperationState sets the cryptographic operations state of a
session
C Login logsinto atoken
C_Logout logs out from a token
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeVaue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsinit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data

Copyright © 1994-1999-2000 RSA Security Inc. |

| 30 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
C_EncryptUpdate continues a multiple-part encryption
operation
C_EncryptFina finishes a multiple-part encryption
operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption
operation
C_DecryptFind finishes a multiple-part decryption
operation
Message C _Digestlnit initializes a message-digesting operation
digesting C Digest digests single-part data
functions C_DigestUpdate continues a multiple-part digesting
operation
C DigestKey digests akey
C DigestFinal finishes a multiple-part digesting operation

| Copyright © 1994-1999-2000 RSA Security Inc.

6139. GENERAL OVERVIEW

Category Function Description
Signing C_Signinit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature
operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover signs single-part data, where the data can
be recovered from the signature
Functions for C_Verifylnit initializes a verification operation
verifying
signatures C Verify verifies a signature on single-part data
and MACs C VeifyUpdate continues a multiple-part verification
operation
C VerifyFina finishes a multiple-part verification
operation
C_VerifyRecoverlnit initializes a verification operation where
the datais recovered from the signature
C_VerifyRecover verifies a signature on single-part data,
where the data is recovered from the
signature
Dual-purpose | C_DigestEncryptUpdate | continues simultaneous multiple-part
cryptographic digesting and encryption operations
functions C_DecryptDigestUpdate | continues simultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate | continues simultaneous multiple-part
signature and encryption operations
C_DecryptVerifyUpdate | continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C WrapKey wraps (encrypts) akey
C_UnwrapKey unwraps (decrypts) a key
C DeriveKey derives a key from a base key

Copyright © 1994-1999-2000 RSA Security Inc. |

| 32 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description

Random C_SeedRandom mixes in additional seed material to the

number random number generator

generation

functions C_GenerateRandom generates random data

Parallel C_GetFunctionStatus legacy function which always returns

function CKR_FUNCTION_NOT_PARALLEL

management

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

Callback application-supplied function to process

function notifications from Cryptoki

7. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Accessto private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may aso be
needed.

2. Additional protection can be given to private keys and secret keys by marking them as
“sengitive” or “unextractable’. Sensitive keys cannot be revealed in plaintext off the
token, and unextractable keys cannot be revealed off the token even when encrypted
(though they can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other
than Cryptoki (e.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’s PIN. The particular mechanism for protecting
private objectsis left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especially since
the PIN may be passed through the operating system. This can make it easy for a rogue

| Copyright © 1994-1999-2000 RSA Security Inc.

8139. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

application on the operating system to obtain the PIN; it is also possible that other devices
monitoring communication lines to the cryptographic device can obtain the PIN. Rogue
applications and devices may also change the commands sent to the cryptographic device
to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play arole here; for instance, atoken may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for a
variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a built-
in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8. Platform- and compiler-dependent directivesfor C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Win32 and Winl6 platforms, Cryptoki structures should be packed with 1-byte
aignment. In aUNIX environment, it may or may not be necessary (or even possible) to
ater the byte-alignment of structures.

Copyright © 1994-1999-2000 RSA Security Inc. |

33

| 34 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

8.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

¢+ CK_PTR

CK_PTRisthe “indirection string” a given platform and compiler uses to make a pointer
to an object. Itisused inthe following fashion:

t ypedef CK BYTE CK PTR CK_BYTE PTR;
¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API functionin a
Cryptoki library. r et ur nType isthe return type of the function, and nane isits name.
It isused in the following fashion:

CK_DEFI NE_FUNCTI ON(CK_RV, C_ Initialize)(
CK_ VA D _PTR pReserved

)
{
}
¢ CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType isthe return type of the function, and nane isits name.
It isused in the following fashion:

CK_DECLARE_FUNCTION(CK_RV, C Initialize)(
CK_ VA D _PTR pReserved
)

¢ CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki library. r et ur nType isthe return
type of the function, and nane is its name. It can be used in either of the following
fashions to define a function pointer variable, myC I ni ti al i ze, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
snippets actually assignsavaluetonyC I nitiali ze):

| Copyright © 1994-1999-2000 RSA Security Inc.

8139. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ | 35

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK_ VA D _PTR pReserved
)

or:

t ypedef CK_DECLARE_FUNCTI ON_PQO NTER(CK_RV,
nyC InitializeType) (
CK VO D _PTR pReserved

)
nyC InitializeType nmyC lInitialize;

¢ CK_CALLBACK_FUNCTION

CK_CALLBACK _FUNCTI ON(r et ur nType, nane), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
IS a pointer to an application callback function that can be used by a Cryptoki AP
function in a Cryptoki library. ret urnType is the return type of the function, and
nane isits name. It can be used in either of the following fashions to define a function
pointer variable, nyCal | back, which can point to an application callback which takes
arguments ar gs and returns a CK_RV (note that neither of the following code snippets
actually assignsavaueto myCal | back):

CK_CALLBACK _FUNCTI ON(CK_RV, nycCal | back) (args);
or:
t ypedef CK_CALLBACK FUNCTI ON(CK_RV,

nmyCal | backType) (ar gs) ;
nyCal | backType nyCal | back;

¢ NULL _PTR
NULL_PTR s the value of a NULL pointer. In any ANSI C environment—and in many
others as well—NULL_PTR should be defined simply as 0.

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dIl might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)

#define CK_PTR *

Copyright © 1994-1999-2000 RSA Security Inc. |

| 36 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ decl spec(dll export) nane

#def i ne CK_DECLARE_FUNCTI ON(r et urnType, nane) \
returnType _ decl spec(dllinport) name

#defi ne CK_DECLARE FUNCTI ON_PO NTER(returnType, nane) \
returnType _ decl spec(dllinport) (* nane)

#def i ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Winl16 Cryptoki .dll might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)
#define CK PTR far *

#def i ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType __ _export _far _pascal nane

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType __export _far _pascal nane

#def i ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType __export _far _pascal (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType far _pascal (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

| Copyright © 1994-1999-2000 RSA Security Inc.

8139. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ |

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK_PTR *

#def i ne CK_DEFI NE_FUNCTI ON(r et urnType, nane) \
returnType nane

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType nane

#def i ne CK _DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

Copyright © 1994-1999-2000 RSA Security Inc. |

37

| 38 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9. General datatypes

The general Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section

A C or C++ source file in a Cryptoki application or library can define al these types (the
types described here and the types that are specificaly used for particular mechanism
parameters) by including the top-level Cryptoki includefile, pkcs11. h. pkcs1l. h,in
turn, includes the other Cryptoki include files, pkcs11t . h and pkcs11f. h. A source
filecan asoinclude just pkcs11t . h (instead of pkcs11. h); this defines most (but not
all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directivesindicated in Section

91 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a dtructure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. Itisdefined asfollows:

t ypedef struct CK VERSI ON {
CK_BYTE nmgj or;

CK_BYTE mi nor;
} CK_VERSI ON;

The fields of the structure have the following meanings:

major major version number (the integer portion of the
version)

minor minor version number (the hundredths portion of the
version)

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10.
Minor revisions of the Cryptoki standard are always upwardly compatible within the
same magjor version number.

CK_VERSION_PTR isapointer toaCK_VERSION.

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 39 |

¢ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It isdefined asfollows:

typedef struct CK_I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS fl ags;
CK_UTF8CHAR | i braryDescri ption[32];
CK_VERSI ON | i braryVersi on;

} CK_ I NFO

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility
with future revisions of this interface

manufacturer|D ID of the Cryptoki library manufacturer. Must be
padded with the blank character (* *). Should not be
null-terminated.

flags bit flagsreserved for future versions. Must be zero for
thisversion

libraryDescription character-string description of the library. Must be
padded with the blank character (* *). Should not be
null-terminated.

libraryVersion Cryptoki library version number

For libraries written to this document, the value of cryptokiVersion should be 2.1; the
value of libraryVersion is the version number of the library software itself.

CK_INFO_PTR isapointer to aCK_INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It isdefined asfollows:

t ypedef CK_ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:

#def i ne CKN_SURRENDER 0

The notifications have the following meanings.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 40 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function

(see Section [11.17.1).

9.2 Sot and token types

Cryptoki represents slot and token information with the following types:

¢ CK_SLOT_ID; CK_SLOT_ID _PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a dot. It is defined as
follows:

typedef CK ULONG CK _SLOT I D

A list of CK_SLOT IDs is returned by C GetSlotList. A priori, any vaue of
CK_SLOT_ID can be a valid dot identifier—in particular, a system may have a sot
identified by the value O. It need not have such a slot, however.

CK_SLOT_ID_PTR isapointer toaCK_SLOT_ID.

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT _INFO providesinformation about aslot. It isdefined asfollows:

typedef struct CK _SLOT_I NFO {
CK_UTF8CHAR sl ot Descri ption[64] ;
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;

} CK_SLOT_I NFO

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (* *). Should not be
null-terminated.

manufacturer|D ID of the slot manufacturer. Must be padded with the
blank character (* ‘). Should not be null-terminated.

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 41 |

flags bitsflagsthat provide capabilities of thedlot. The
flags are defined below

hardwareVersion version number of the slot’ s hardware
firmwareVersion version number of the slot’ s firmware

The following table defines the flags field:

Table 9, Slot Information Flags

Bit Flag Mask Meaning
CKF_TOKEN_PRESENT 0x00000001 | TRUE if atokenis present in the slot
(e.g., adeviceisin the reader)

CKF_REMOVABLE DEVICE | 0x00000002 | TRUE if the reader supports
removable devices

CKF HW_SLOT 0x00000004 | TRUE if the dot isahardware dlot, as
opposed to a software slot
implementing a“ soft token”

For a given dot, the value of the CKF_REMOVABLE_DEVICE flag never changes.
In addition, if this flag is not set for a given dot, then the CKF_TOKEN_PRESENT
flag for that slot isalways set. That is, if aslot does not support aremovable device, then
that slot always hasatokeninit.

CK_SLOT_INFO_PTR isapointer toaCK_SLOT_INFO.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 42 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢+ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO providesinformation about atoken. It isdefined asfollows:

typedef struct CK_TOKEN_I NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturerl D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunber|[16];
CK_FLAGS fl ags;
CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;
CK _CHAR ut cTi ne[16] ;

} CK_TOKEN_ I NFO

The fields of the structure have the following meanings:

label application-defined label, assigned during token
initialization. Must be padded with the blank character
(* *). Should not be null-terminated.

manufacturer|D ID of the device manufacturer. Must be padded with
the blank character (* *). Should not be null-
terminated.

model model of the device. Must be padded with the blank
character (*). Should not be null-terminated.

serial Number character-string serial number of the device. Must be
padded with the blank character (* *). Should not be
null-terminated.

flags bit flagsindicating capabilities and status of the device
as defined below

ulMaxSessionCount ~ maximum number of sessions that can be opened with

the token at one time by a single application (see note
below)

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES

ul SessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

43 |

number of sessions that this application currently has
open with the token (see note below)

maximum number of read/write sessions that can be
opened with the token at one time by asingle
application (see note below)

number of read/write sessions that this application
currently has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin
which public objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for public objects (see note below)

the total amount of memory on the token in bytesin
which private objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for private objects (see note below)

version number of hardware
version number of firmware

current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters). The value of
thisfield only makes sense for tokens equipped with a
clock, asindicated in the token information flags (see
[Table 10Fable 10T able-10)

Copyright © 1994-1999-2000 RSA Security Inc. |

| 44 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 10, Token Information Flags

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

TRUE if the token
has its own
random number
generator

CKF_WRITE_PROTECTED

0x00000002

TRUE if the token
iswrite-protected
(see below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are
some
cryptographic
functionsthat a
user must be
logged in to
perform

CKF_USER_PIN_INITIALIZED

0x00000008

TRUE if the
normal user’s PIN
has been initialized

CKF_RESTORE_KEY _NOT_NEEDED

0x00000020

TRUEif a
successful save of
asession’'s
cryptographic
operations state
always contains all
keys needed to
restore the state of
the session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has
a"“protected
authentication
path”, whereby a
user can log into
the token without
passing a PIN
through the
Cryptoki library

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES

45 |

Bit Flag

Mask

Meaning

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

TRUE if asingle
session with the
token can perform
dual cryptographic

operations (see
Section|11.13)

CKF_TOKEN_INITIALIZED

0x00000400

TRUE if the token
has been initialized
using

C _InitializeToken
or an equivalent
mechanism outside
the scope of this
standard. Calling

C InitializeToken
when thisflagis
set will cause the
token to be
reinitialized.

CKF_SECONDARY_AUTHENTICATION

0x00000800

TRUE if the token
supports secondary
authentication for
private key
objects.
(Deprecated; new
implementations
must never set this
flag to TRUE

CKF_USER_PIN_COUNT_LOW

0x00010000

TRUE if an
incorrect user
login PIN has been
entered at least
once since the last
successful
authentication.

CKF_USER_PIN_FINAL_TRY

0x00020000

TRUE if supplying
an incorrect user
PIN will it to
become locked.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 46 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag

Mask

Meaning

CKF_USER_PIN_LOCKED

0x00040000

TRUE if the user
PIN has been
locked. User login
to the token is not
possible.

CKF_USER _PIN_TO BE_CHANGED

0x00080000

TRUE if the user
PIN valueisthe
default value set
by token
initialization or
manufacturing, or
the PIN has been

expired by the
card.

CKF_SO_PIN_COUNT_LOW

0x00100000

TRUE if an
incorrect SO login
PIN has been
entered at least
once since the last
successful
authentication.

CKF_SO_PIN_FINAL_TRY

0x00200000

TRUE if supplying
an incorrect SO
PIN will it to
become locked.

CKF_SO_PIN_LOCKED

0x00400000

TRUE if the user
SO PIN has been
locked. User login
to the token is not
possible.

CKF_SO _PIN._TO BE _CHANGED

0x00800000

TRUE if the SO
PIN valueisthe
default value set
by token
initialization or
manufacturing, or
the PIN has been

expired by the
card.

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 47 |

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these
actions can include any of the following, among others:

» Creating/modifying/del eting any object on the token.

» Creating/modifying/del eting a token object on the token.
* Changing the SO'sPIN.

* Changing the normal user’s PIN.

The token may change the value of the CKF WRITE _PROTECTED flag depending on
the session state to implement its object management policy. For instance, the token may
set the CKF WRITE PROTECTED flag to TRUE unless the session state is R/W SO
or R/W User to implement a policy that does not alow any objects, public or private, to
be created, modified, or deleted unless the user is has successfully called C Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may aways
be set to FALSE if the token does not support the functionality or will not reveal the
information because of its security policy.

The CKF_USER _PIN_ TO BE_CHANGED and |
CKF_SO_PIN_TO_BE_CHANGED flags may aways be set to FALSE if the token
does not support the functionality. If a PIN is set to the default value, or has expired, the
appropriate CKF USER PIN TO BE CHANGED or
CKF SO PIN TO BE CHANGED flagis set to TRUE. When either of these flags are
TRUE, logaing in with the corresponding PIN will succeed, but only the C SetPIN
function can be caled. Caling any other function that required the user to be logged in
will cause CKR_PIN_EXPIRED to be returned until C SetPIN is called successfully.

Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ul Total PublicMemory, ulFreePublicMemory, ulTotal PrivateMemory,
and ulFreePrivateMemory can have the special value
CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is
unable or unwilling to provide that information. In addition, the fields
ulMaxSessionCount and ulMaxRwSessionCount can have the specia vaue
CK_EFFECTIVELY _INFINITE, which means that there is no practical limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

These values are defined as

#defi ne CK_UNAVAI LABLE_| NFORVATI ON (~0uw)
#define CK_EFFECTI VELY_I NFI NI TE 0

Copyright © 1994-1999-2000 RSA Security Inc. |

| 48 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It is important to check these fields for these specia values. This is particularly true for
CK_EFFECTIVELY _INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’'t open any sessions with the token, which is far from being the case.

The upshot of al this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something along the lines of the following:

CK_TOKEN_I NFO i nf 0;

if ((CK_LONG i nfo.ul MaxSessi onCount
== CK_UNAVAI LABLE_| NFORMATI ON) {
/* Token refuses to give value of ul MaxSessi onCount */

} él se if (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_I NFI NI TE) {
/* Application can open as many sessions as it wants */

} else {
/* ul MaxSessi onCount really does contain what it should
*/

}

CK_TOKEN_INFO_PTR isapointer toaCK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

t ypedef CK_ULONG CK_SESSI ON HANDLE;

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 49 |

Valid session handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbolic value:

#define CK_I NVALI D_HANDLE 0

CK_SESSION_HANDLE_PTR isapointer toaCK_SESSION_HANDLE.

¢ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section It is
defined as follows:

t ypedef CK ULONG CK _USER TYPE;
For this version of Cryptoki, the following types of users are defined:

#define CKU SO 0
#define CKU USER 1

¢+ CK_STATE

CK_STATE holds the session state, as described in Sections|6.6.1]and|[6.6.2 It is defined
asfollows:

t ypedef CK _ULONG CK _STATE;

For this version of Cryptoki, the following session states are defined:

#define CKS_RO PUBLI C_SESSI ON 0
#define CKS_RO USER FUNCTI ONS 1
#define CKS_RW PUBLI C_SESSI ON 2
#defi ne CKS_RW USER_FUNCTI ONS 3
#define CKS_RW SO FUNCTIONS 4

¢ CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO providesinformation about a session. It is defined asfollows:

typedef struct CK_SESSI ON I NFO {
CK_SLOT_I D sl ot D
CK_STATE st at e;
CK_FLAGS fl ags;
CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFO,

The fields of the structure have the following meanings:

dotiD ID of the dlot that interfaces with the token

Copyright © 1994-1999-2000 RSA Security Inc. |

| 50 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

State the state of the session

flags hit flagsthat define the type of session; the flags are
defined below

ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

The following table defines the flags field:

Table 111111, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE
if the session is read-only

CKF_SERIAL_SESSION | 0x00000004 | Thisflag is provided for backward
compatibility, and should always be set to
TRUE

CK_SESSION_INFO_PTR isapointer toaCK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

¢ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

t ypedef CK_ULONG CK_OBJECT HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an
object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object aslong as
the session continues to exist, the object continues to exist, and the object continues to be
accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbolic value:

#define CK_I NVALI D_HANDLE 0

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 51 |

CK_OBJECT _HANDLE_PTR isapointer toaCK_OBJECT _HANDLE.

¢ CK_OBJECT_CLASS; CK_OBJECT_CLASS PTR

CK_OBJECT_CLASS is a vaue that identifies the classes (or types) of objects that
Cryptoki recognizes. It isdefined asfollows:

t ypedef CK_ULONG CK_OBJECT CLASS;

For this version of Cryptoki, the following classes of objects are defined:

#def i ne CKO_DATA 0x00000000
#def i ne CKO_CERTI FI CATE 0x00000001
#def i ne CKO_PUBLI C_KEY 0x00000002
#defi ne CKO_PRI VATE_KEY 0x00000003
#def i ne CKO_SECRET_KEY 0x00000004
#defi ne CKO_HW FEATURE 0x00000005

#define CKO KG PARAMETERS 0x00000006
#define CKO VENDOR DEFI NED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS PTRisapointer toaCK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a vaue that identifies a hardware feature type of a
device. It isdefined as follows:

t ypedef CK ULONG CK_HW FEATURE_TYPE;

For this version of Cryptoki, the following hardware feature types are defined:

#define CKH_MONOTONI C_COUNTER 0x00000001
#def i ne CKH_CLOCK 0x00000002
#defi ne CKH_VENDOR DEFI NED 0x80000000

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for

token vendors. For interoperability, vendors should register their feature types through
the PKCS process.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 52 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢+ CK_KEY_TYPE

CK_KEY_TYPE isavauethat identifies akey type. It is defined as follows:
t ypedef CK ULONG CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:

#defi ne CKK_RSA 0x00000000
#def i ne CKK_DSA 0x00000001
#defi ne CKK_DH 0x00000002
#def i ne CKK_ECDSA 0x00000003
#defi ne CKK EC 0x00000003 /* Synonym */
#define CKK X9 42 DH 0x00000004
#defi ne CKK_KEA 0x00000005
#def i ne CKK_GENERI C_SECRET 0x00000010
#defi ne CKK_RC2 0x00000011
#def i ne CKK_R4 0x00000012
#defi ne CKK_DES 0x00000013
#def i ne CKK_DES2 0x00000014
#def i ne CKK_DES3 0x00000015
#def i ne CKK_CAST 0x00000016
#def i ne CKK_CAST3 0x00000017
#def i ne CKK_CAST5 0x00000018
#defi ne CKK_CAST128 0x00000018
#def i ne CKK_RC5 0x00000019
#defi ne CKK_| DEA 0Ox0000001A
#def i ne CKK_SKI PJACK 0x0000001B
#defi ne CKK_BATON 0x0000001C
#def i ne CKK_JUNI PER 0x0000001D
#defi ne CKK_CDWF 0x0000001E
#defi ne CKK AES 0x0000001F

#define CKK_VENDOR DEFI NED 0x80000000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

¢ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is avalue that identifies a certificate type. It is defined as
follows:

t ypedef CK_ULONG CK_CERTI FI CATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES

#def i ne CKC_X_ 509
#define CKC_X 509 ATTR CERT 0x00000001
#def i ne CKC_VENDOR DEFINED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types through

the PKCS process.

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as

follows:

0x00000000

t ypedef CK ULONG CK_ATTRI BUTE_TYPE;

For this version of Cryptoki, the following attribute types are defined:

#def i ne CKA_CLASS 0x00000000
#def i ne CKA_TOKEN 0x00000001
#defi ne CKA_ PRI VATE 0x00000002
#def i ne CKA_LABEL 0x00000003
#defi ne CKA_APPLI CATI ON 0x00000010
#def i ne CKA VALUE 0x00000011
#define CKA OBJECT_ID 0x00000012
#def i ne CKA_CERTI FI CATE_TYPE 0x00000080
#defi ne CKA | SSUER 0x00000081
#def i ne CKA_SERI AL_NUVBER 0x00000082
#defi ne CKA_AC | SSUER 0x00000083
#def i ne CKA_OMNNER 0x00000084
#defi ne CKA _ATTR TYPES 0x00000085
#defi ne CKA TRUSTED 0x00000086
#defi ne CKA_KEY_TYPE 0x00000100
#def i ne CKA_SUBJECT 0x00000101
#define CKA_ ID 0x00000102
#def i ne CKA_SENSI Tl VE 0x00000103
#defi ne CKA_ENCRYPT 0x00000104
#def i ne CKA_DECRYPT 0x00000105
#defi ne CKA WRAP 0x00000106
#def i ne CKA_UNWRAP 0x00000107
#def i ne CKA_SI GN 0x00000108
#def i ne CKA_SI GN_RECOVER 0x00000109
#defi ne CKA VERI FY 0Ox0000010A
#def i ne CKA_VERI FY_RECOVER 0x0000010B
#defi ne CKA DERI VE 0x0000010C
#def i ne CKA_START_DATE 0x00000110
#defi ne CKA_END DATE 0x00000111
#def i ne CKA_MODULUS 0x00000120
#def i ne CKA_MODULUS_BI TS 0x00000121
#def i ne CKA_PUBLI C_EXPONENT 0x00000122

Copyright © 1994-1999-2000 RSA Security Inc. |

| 54 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#define CKA PRI VATE_EXPONENT 0x00000123

#define CKA PRI MVE 1 0x00000124
#defi ne CKA PRI VE 2 0x00000125
#defi ne CKA EXPONENT 1 0x00000126
#def i ne CKA EXPONENT_ 2 0x00000127
#defi ne CKA COEFFI Cl ENT 0x00000128
#def i ne CKA PRI VE 0x00000130
#defi ne CKA_SUBPRI VE 0x00000131
#def i ne CKA BASE 0x00000132
#define CKA PRIME BI TS 0x00000133
#defi ne CKA VALUE BITS 0x00000160
#defi ne CKA VALUE LEN 0x00000161
#def i ne CKA EXTRACTABLE 0x00000162
#defi ne CKA LOCAL 0x00000163

#defi ne CKA_NEVER _EXTRACTABLE 0x00000164
#defi ne CKA_ALWAYS_SENSI TI VE = 0x00000165

#defi ne CKA_MODI FI ABLE 0x00000170
#defi ne CKA ECDSA PARANS 0x00000180
| #defi ne CKA EC PARANMS 0x00000180 /* Synonym */
#defi ne CKA EC PO NT 0x00000181
#def i ne CKA SECONDARY_AUTH 0x00000200
#defi ne CKA AUTH PI N FLAGS 0x00000201
#define CKA HW FEATURE TYPE 0x00000300
#define CKA RESET ON INIT 0x00000301
#def i ne CKA HAS RESET 0x00000302
#defi ne CKA VENDOR DEFI NED 0x80000000

Section defines the attributes for each object class. Attribute types
CKA_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their attribute types through the PKCS
process.

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is astructure that includes the type, value, and length of an attribute.
It is defined as follows:

t ypedef struct CK _ATTRI BUTE {
CK_ATTRI BUTE_TYPE type;
CK_VA D _PTR pVal ue;

CK_ULONG ul Val uelLen;
} CK_ATTRI BUTE;

The fields of the structure have the following meanings:
type theattribute type

pValue pointer to the value of the attribute

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 55 |

ulValueLen lengthin bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValueisirrelevant. An
array of CK_ATTRIBUTEs s called a“template” and is used for creating, manipulating
and searching for objects. The order of the attributes in a template never matters, even if
the template contains vendor-specific attributes. Note that pValue is a “void”’ pointer,
facilitating the passing of arbitrary values. Both the application and Cryptoki library must
ensure that the pointer can be safely cast to the expected type (i.e., without word-
alignment errors).

CK_ATTRIBUTE_PTR isapointer toaCK_ATTRIBUTE.

¢+ CK_DATE

CK_DATE isastructure that defines adate. It is defined as follows:
t ypedef struct CK _DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;
CK_CHAR day|[2] ;
} CK_DATE;
The fields of the structure have the following meanings:
year theyear (“1900” - “9999")
month the month (“01” - “12")

day theday (“01” - “31")

The fields hold numeric characters from the character set in [Table 3Table 3Table 3 not |
theliteral byte values.

9.5 Datatypesfor mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

¢+ CK_MECHANISM TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is avaue that identifies a mechanism type. It is defined as
follows:

t ypedef CK ULONG CK_MECHANI SM TYPE;

For Cryptoki Version 2.1, the following mechanism types are defined:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 56

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKM_RSA PKCS_KEY_PAI R_GEN 0x00000000
#defi ne CKM_RSA PKCS 0x00000001
#defi ne CKM_RSA 9796 0x00000002
#defi ne CKM_RSA X 509 0x00000003
#defi ne CKM_MD2_RSA PKCS 0x00000004
#defi ne CKM MD5_RSA PKCS 0x00000005
#defi ne CKM_SHAL1_RSA PKCS 0x00000006
#defi ne CKM_RI PEMD128 RSA PKCS 0x00000007
#defi ne CKM_RI PEMD160_RSA PKCS 0x00000008
#defi ne CKM _RSA PKCS QAEP 0x00000009
#define CKM RSA X9 31 0x0000000A
#define CKM SHA1 RSA X9 31 0x0000000B
#define CKM RSA X9 31 KEY PAI R GEN 0x0000000C
#defi ne CKM DSA KEY_ PAI R _GEN 0x00000010
#defi ne CKM _DSA 0x00000011
#defi ne CKM DSA SHAL 0x00000012
#defi ne CKM DH PKCS_KEY_PAI R_GEN 0x00000020
#defi ne CKM DH PKCS_DERI VE 0x00000021
#define CKM X9 42 DH KEY PAI R GEN 0x00000030
#define CKM X9 42 DH DERI VE 0x00000031
#define CKM X9 42 DH HYBRI D DERI VE 0x00000032
#define CKM X9 42 MW DERI VE 0x00000033
#defi ne CKM_RC2_KEY_CEN 0x00000100
#defi ne CKM RC2_ECB 0x00000101
#defi ne CKM_RC2_CBC 0x00000102
#defi ne CKM RC2_NMAC 0x00000103
#defi ne CKM_RC2_NMAC GENERAL 0x00000104
#defi ne CKM RC2_CBC _PAD 0x00000105
#defi ne CKM RC4_KEY_ CEN 0x00000110
#defi ne CKM RC4 0x00000111
#defi ne CKM DES_KEY_CEN 0x00000120
#defi ne CKM DES ECB 0x00000121
#defi ne CKM_DES_CBC 0x00000122
#defi ne CKM DES_MAC 0x00000123
#def i ne CKM DES MAC GENERAL 0x00000124
#defi ne CKM DES_CBC PAD 0x00000125
#defi ne CKM DES2_KEY_GEN 0x00000130
#defi ne CKM DES3_KEY_GEN 0x00000131
#defi ne CKM _DES3_ECB 0x00000132
#defi ne CKM DES3_CBC 0x00000133
#defi ne CKM _DES3_MAC 0x00000134
#defi ne CKM DES3_ MAC GENERAL 0x00000135
#defi ne CKM DES3_CBC _PAD 0x00000136
#defi ne CKM CDVF_KEY_GEN 0x00000140
#def i ne CKM CDMF_ECB 0x00000141
#defi ne CKM _CDVF_CBC 0x00000142
#defi ne CKM_CDVF_MAC 0x00000143
#defi ne CKM CDMF_NMAC GENERAL 0x00000144
#defi ne CKM_CDMF_CBC_PAD 0x00000145
#defi ne CKM MD2 0x00000200

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM_MVD2_HVAC
CKM_MD2_HVAC GENERAL
CKM_ND5

CKM_MD5_HVAC
CKM_MVD5_HVAC_GENERAL
CKM_SHA_1

CKM_SHA 1_HVAC
CKM_SHA_1_HVAC_GENERAL
CKM_RI PEMD128

CKM_RI PEMD128_HVAC

CKM_RI PEMD128_HVAC GENERAL

CKM_RI PEMD160
CKM_RI PEMD160_HVAC

CKM_RI PEMD160_HVAC_GENERAL

CKM_CAST_KEY_GEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY_GEN
CKM _CAST128_KEY_GEN
CKM_CAST5_ECB

CKM _CAST128_ECB
CKM_CAST5_CBC
CKM_CAST128_CBC
CKM_CAST5_NAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128_MAC_GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128_CBC_PAD
CKM_RC5_KEY_GEN
CKM_RC5_ECB
CKM_RC5_CBC
CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD
CKM_| DEA_KEY_GEN
CKM_| DEA_ECB

CKM_| DEA_CBC

CKM_| DEA_MAC

CKM_| DEA_MAC_GENERAL
CKM_| DEA_CBC_PAD

0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000230
0x00000231
0x00000232
0x00000240
0x00000241
0x00000242
0x00000300
0x00000301
0x00000302
0x00000303
0x00000304
0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000320
0x00000321
0x00000321
0x00000322
0x00000322
0x00000323
0x00000323
0x00000324
0x00000324
0x00000325
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345

Copyright © 1994-1999-2000 RSA Security Inc. |

| 58

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM GENERI C_SECRET_KEY_GEN
CKM_CONCATENATE_BASE_AND KEY

CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR BASE_AND DATA
CKM_EXTRACT_KEY_FROM KEY
CKM _SSL3_PRE_MASTER KEY GEN
CKM_SSL3_MASTER KEY_DERI VE
CKM_SSL3_KEY_AND MAC DERI VE
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL MAC
CKM_MVD5_KEY_DERI VATI ON
CKM_NVD2_KEY _DERI VATI ON
CKM_SHAL KEY_DERI VATI ON
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHAL CAST5_CBC
CKM_PBE_SHA1_CAST128_CBC
CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_ 128 CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PKCS5_ PBKD2

CKM_PBA SHA1 W TH_SHA1_ HVAC
CKM_KEY_WRAP_LYNKS
CKM_KEY_WRAP_SET_QAEP
CKM_SKI PJACK_KEY_GEN
CKM_SKI PJACK_ECB64

CKM_SKI PJACK_CBC64

CKM_SKI PJACK_OFB64

CKM_SKI PJACK_CFB64

CKM_SKI PJACK_CFB32

CKM_SKI PJACK_CFB16

CKM_SKI PJACK_CFBS8

CKM_SKI PJACK_W\RAP

CKM_SKI PJACK_PRI VATE_\\RAP
CKM_SKI PJACK_RELAYX
CKM_KEA KEY_PAI R_GEN
CKM_KEA_KEY_DERI VE
CKM_FORTEZZA_TI MESTAMP
CKM_BATON KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128

| Copyright © 1994-1999-2000 RSA Security Inc.

0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000380
0x00000381
0x00000390
0x00000391
0x00000392
0x000003A0
0x000003A1
0x000003A2
0x000003A3
0x000003A4
0x000003A4
0x000003A5
0x000003A5
0x000003A6
0x000003A7
0x000003A8
0x000003A9
0x000003AA
0x000003AB
0x000003B0
0x000003C0
0x00000400
0x00000401
0x00001000
0x00001001
0x00001002
0x00001003
0x00001004
0x00001005
0x00001006
0x00001007
0x00001008
0x00001009
0x0000100a
0x00001010
0x00001011
0x00001020
0x00001030
0x00001031
0x00001032
0x00001033

9139. GENERAL DATA TYPES
#defi ne CKM_BATON_COUNTER 0x00001034
#defi ne CKM BATON SHUFFLE 0x00001035
#def i ne CKM BATON WRAP 0x00001036
#defi ne CKM ECDSA KEY_ PAI R _GEN 0x00001040
#defi ne CKM EC KEY PAI R GEN 0x00001040
/* Synonym */
#def i ne CKM _ECDSA 0x00001041
#defi ne CKM ECDSA SHA1l 0x00001042
#def i ne CKM ECDH1 DERI VE 0x00001043
#def i ne CKM ECDH1 COFACTOR DERI VE 0x00001044
#def i ne CKM ECMQV DERI VE 0x00001045
#defi ne CKM_JUNI PER _KEY_ GEN 0x00001060
#defi ne CKM JUNI PER ECB128 0x00001061
#defi ne CKM_JUNI PER CBC128 0x00001062
#def i ne CKM JUNI PER COUNTER 0x00001063
#defi ne CKM_JUNI PER _SHUFFLE 0x00001064
#defi ne CKM_JUNI PER_WRAP 0x00001065
#defi ne CKM_FASTHASH 0x00001070
#defi ne CKM AES KEY CGEN 0x00001080
#def i ne CKM AES ECB 0x00001081
#def i ne CKM AES CBC 0x00001082
#def i ne CKM AES MAC 0x00001083
#defi ne CKM AES MAC GENERAL 0x00001084
#def i ne CKM AES CBC PAD 0x00001085
#def i ne CKM DSA PARAMETER CGEN 0x00002000
#def i ne CKM DH PKCS PARAMETER GEN 0x00002001
#def i ne CKM _VENDOR_DEFI NED 0x80000000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
For interoperability, vendors should register their mechanism types
through the PKCS process.

token vendors.

CK_MECHANISM_TYPE_PTR isapointer toaCK_MECHANISM_TYPE.

¢ CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any
parametersit requires. It isdefined asfollows:

t ypedef

struct CK_MECHANI SM {

CK_MECHANI SM TYPE nechani sm
CK VA D _PTR pParaneter;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

The fields of the structure have the following meanings:

mechanism

the type of mechanism

Copyright © 1994-1999-2000 RSA Security Inc. |

| 60 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTRisapointer toaCK_MECHANISM.

¢+ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

typedef struct CK_MECHANI SM I NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM | NFQ,

The fields of the structure have the following meanings:

ulMinKeySze the minimum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

ulMaxKeySze the maximum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

flags it flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySze and ulMaxKeySze fields have meaningless
values.

The following table defines the flags field:

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES

Table 12, M echanism Infor mation Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 | TRUE if the mechanismis
performed by the device; FALSE if
the mechanism is performed in
software

CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used
with C_Encryptlnit

CKF _DECRYPT 0x00000200 | TRUE if the mechanism can be used
with C_Decryptlnit

CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used
with C_Digestlnit

CKF_SIGN 0x00000800 | TRUE if the mechanism can be used
with C_Signlnit

CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used
with C_SignRecover I nit

CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used
with C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used
with C_VerifyRecover|nit

CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used
with C_GenerateK ey

CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used
with C_GenerateK eyPair

CKF_WRAP 0x00020000 | TRUE if the mechanism can be used
with C_WrapKey

CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used
with C_UnwrapKey

CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used
with C_DeriveK ey

CKF EC F P 0x00100000 | TRUE if the mechanism can be used
with EC domain parameters over Fy

CKF EC F 2™M 0x00200000 | TRUE if the mechanism can be used
with EC domain parameters over
Fom

CKF_EC ECPARAMETERS 0x00400000 | TRUE if the mechanism can be used
with EC domain parameters of the
choice ecPar ameters

CKF_EC NAMEDCURVE 0x00800000 | TRUE if the mechanism can be used

with EC domain parameters of the
choice namedCurve

Copyright © 1994-1999-2000 RSA Security Inc. |

| 62

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag

Mask Meaning

CKF_EC UNCOMPRESS

0x01000000 | TRUE if the mechanism can be used

with dliptic curve point

uncompressed

CKEF_EC COMPRESS

0x02000000 | TRUE if the mechanism can be used

with dliptic curve point compressed

CKF_EXTENSION

0x80000000 | TRUE if there is an extension to the
flags, FALSE if no extensions.
Must be FALSE for this version.

CK_MECHANISM_INFO_PTR isapointer toaCK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

¢ CK RV

CK_RV is avalue that identifies the return value of a Cryptoki function. It is defined as

follows;

typedef CK _ULONG CK RV,

For this version of Cryptoki, the following return values are defined:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKR _OK
CKR_CANCEL

CKR_HOST_MEMORY

CKR _SLOT_I D | NVALI D
CKR_GENERAL_ERRCR

CKR_FUNCTI ON_FAI LED
CKR_ARGUVENTS BAD
CKR_NO_EVENT
CKR_NEED TO CREATE THREADS
CKR_CANT_LOCK

CKR_ATTRI BUTE_READ ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_| NVALI D
CKR_ATTRI BUTE_VALUE_| NVALI D
CKR_DATA | NVALI D

CKR_DATA_LEN RANGE

CKR_DEVI CE_ERRCR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED DATA | NVALI D

| Copyright © 1994-1999-2000 RSA Security Inc.

0x00000000
0x00000001
0x00000002
0x00000003
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x00000010
0x00000011
0x00000012
0x00000013
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000040

63 |

9139. GENERAL DATA TYPES
#def i ne CKR_ENCRYPTED DATA LEN RANGE 0x00000041
#def i ne CKR_FUNCTI ON_CANCELED 0x00000050
#def i ne CKR_FUNCTI ON_NOT_PARALLEL 0x00000051
#def i ne CKR_FUNCTI ON_NOT _SUPPORTED 0x00000054
#defi ne CKR_KEY_HANDLE | NVALI D 0x00000060
#def i ne CKR _KEY_SI ZE RANGE 0x00000062
#def i ne CKR_KEY_TYPE_| NCONSI STENT 0x00000063
#def i ne CKR_KEY_NOT NEEDED 0x00000064
#def i ne CKR_KEY_CHANGED 0x00000065
#def i ne CKR_KEY_NEEDED 0x00000066
#def i ne CKR_KEY_| NDI GESTI BLE 0x00000067
#defi ne CKR_KEY_FUNCTI ON_NOT_PERM TTED 0x00000068
#def i ne CKR_KEY_NOT_ WRAPPABLE 0x00000069
#defi ne CKR_KEY_UNEXTRACTABLE 0x0000006A
#defi ne CKR KEY PARANS | NVALI D 0x0000006B
#def i ne CKR_MECHANI SM | NVALI D 0x00000070
#def i ne CKR_MECHANI SM_PARAM | NVALI D 0x00000071
#def i ne CKR_OBJECT HANDLE | NVALI D 0x00000082
#def i ne CKR_OPERATI ON_ACTI VE 0x00000090
#def i ne CKR_OPERATI ON_NOT | NI TI ALI ZED 0x00000091
#def i ne CKR_PI N_|I NCORRECT 0x000000A0
#def i ne CKR_PI N _| NVALI D 0x000000A1
#defi ne CKR_PI N LEN RANGE 0x000000A2
#def i ne CKR_PI N _EXPI RED 0x000000A3
#defi ne CKR_PI N_LOCKED 0x000000A4
#def i ne CKR_SESSI ON_CLOSED 0x000000BO
#def i ne CKR_SESSI ON_COUNT 0x000000B1
#def i ne CKR_SESSI ON HANDLE | NVALI D 0x000000B3
#def i ne CKR_SESSI ON_PARALLEL NOT_SUPPORTED 0x000000B4
#def i ne CKR_SESSI ON_READ ONLY 0x000000B5
#def i ne CKR_SESSI ON_EXI STS 0x000000B6
#def i ne CKR_SESSI ON_READ ONLY_EXI STS 0x000000B7
#def i ne CKR_SESSI ON_READ WRI TE_SO EXI STS 0x000000B8
#def i ne CKR_SI GNATURE | NVALI D 0x000000CO0
#def i ne CKR_SI GNATURE _LEN RANGE 0x000000C1L
#def i ne CKR_TEMPLATE | NCOVPLETE 0x000000D0
#def i ne CKR_TEMPLATE | NCONSI STENT 0x000000D1
#def i ne CKR_TOKEN NOT _PRESENT Ox000000EO
#defi ne CKR_TOKEN_NOT_RECOGNI ZED 0Ox000000E1
#def i ne CKR_TOKEN WRI TE_PROTECTED 0Ox000000E2
#def i ne CKR_UNWRAPPI NG_KEY_ HANDLE | NVALI D 0x000000FO0
#def i ne CKR_UNWRAPPI NG KEY_SI ZE RANGE 0Ox000000F1
#def i ne CKR_UNWRAPPI NG KEY_TYPE | NCONSI STENT 0x000000F2
#def i ne CKR _USER ALREADY LOGGED I N 0x00000100
#defi ne CKR_USER NOT_LOGGED I N 0x00000101
#defi ne CKR_USER PI' N NOT | NI Tl ALI ZED 0x00000102
#def i ne CKR_USER TYPE | NVALI D 0x00000103
#def i ne CKR_USER ANOTHER ALREADY LOGGED | N 0x00000104
#defi ne CKR_USER TOO MANY_ TYPES 0x00000105
#def i ne CKR_WRAPPED KEY | NVALI D 0x00000110

Copyright © 1994-1999-2000 RSA Security Inc. |

| 64 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKR_WRAPPED KEY_LEN_ RANGE 0x00000112
#def i ne CKR_WRAPPI NG_KEY_HANDLE_| NVALI D 0x00000113
#defi ne CKR_WRAPPI NG _KEY_SI ZE_RANGE 0x00000114
#def i ne CKR_WRAPPI NG_KEY_TYPE_| NCONSI STENT 0x00000115
#defi ne CKR_RANDOM SEED NOT_SUPPORTED 0x00000120
#def i ne CKR_RANDOM NO_RNG 0x00000121
#defi ne CKR_BUFFER TOO SMALL 0x00000150
#def i ne CKR_SAVED STATE | NVALI D 0x00000160
#defi ne CKR_I NFORMATI ON_SENSI Tl VE 0x00000170
#def i ne CKR_STATE_UNSAVEABLE 0x00000180
#defi ne CKR_CRYPTOKI _NOT_I NI TI ALI ZED 0x00000190
#def i ne CKR_CRYPTOKI _ALREADY_I NI TI ALI ZED 0x00000191
#defi ne CKR_MJTEX_BAD 0x000001A0
#def i ne CKR_MUTEX_NOT_LOCKED 0x000001A1
#defi ne CKR_VENDCOR _DEFI NED 0x80000000

Section defines the meaning of each CK_RV vaue. Return vaues
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return vaues through the PKCS
process.

¢ CK_NOTIFY

CK_NOTIFY s the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VA D_PTR pApplication

)

The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback
event The type of notification callback

pApplication An application-defined value. Thisisthe same value
aswas passed to C_OpenSession to open the session
performing the callback

¢ CK_C XXX
Cryptoki aso defines an entire family of other function pointer types. For each function

C_XXX in the Cryptoki API (there are 68 such functions in Cryptoki Version 2.1; see
Section for detailed information about each of them), Cryptoki defines a type

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 65 |

CK_C_XXX, which is a pointer to a function with the same arguments and return value
as C_XXX has. An appropriately-set variable of type CK_C XXX may be used by an
application to call the Cryptoki function C_XXX.

¢ CK_FUNCTION_LIST; CK_FUNCTION_LIST PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It isdefined asfollows:

typedef struct CK_FUNCTI ON_LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;
CK C Finalize C Finalize;
. GetInfo C Getlnfo;
t Functi onLi st C _Get Functi onlLi st ;
tSlotList C_ Get Sl ot Li st ;
tSlotlnfo C GetSlotlnfo;
t Tokenl nfo C_Get Tokenl nf o;
t Mechani snLi st C_Get Mechani snii st ;
t Mechani smi nfo C_Get Mechani sl nf o;
i t Token C_InitToken;
itPIN CInitPIN,
tPIN C SetPI N,
enSessi on C _(penSessi on;
oseSessi on C _C oseSessi on;
oseAl | Sessions C_Cl oseAl | Sessi ons;
t Sessi onl nfo C_Get Sessi onl nf o;
t OQperationState C _Get OperationSt at e;
tOperatl onSt at e C _Set Operati onSt at e;
gin C_Login;
gout C _Logout;
eat ebj ect C Createject;
pyObj ect C_CopyQbj ect :
stroyQbj ect C Dest robej ect;
t Qbj ect Si ze C _Get bj ect Si ze;
tAttributeVal ue C GetAttri buteVal ue;
> SetAttributeVal ue C Set AttributeVal ue;
i ndQbj ectslnit C FindObjectslnit;
i ndObj ects C_Fi ndObj ect s;
i ndObj ect sFi nal C Fi ndij ect sFi nal ;
ncrypt Init C Encryptlnit;
. Encrypt C_Encrypt;
. Encrypt Updat e C_Encr ypt Updat e;
ncrypt Fi nal C_Encrypt Fi nal ;
cryptlnit C Decryptlnit;
crypt C Decrypt,;
crypt Updat e C Decrypt Updat e;

RRAARIZIFARKXIZL

@@QQQSS%@QQQQ%EEQQQQ&?Q

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
I'I'II'I'II'I'IITI'I'I'I'I'I'I(D

20209220000920200092000090
QQQ

Copyright © 1994-1999-2000 RSA Security Inc. |

| 66 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

crypt Final C _DecryptFinal;

i gestlnit C Digestlnit;

i gest C_Digest;

i gest Updat e C_Di gest Updat e;

i gest Key C _Di gest Key;

i gest Fi nal C_Di gest Final;

ignlnit C Signlnit;

ign C_Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

i gnRecoverlnit C_Si gnRecoverI nit;

i gnRecover C_ Si gnRecover;

erifylnit C Verifylnit;

erify C Verify;

eri fyUpdate C VerifyUpdate;
erifyFinal C VerifyFinal;

eri fyRecoverinit C Veri fyRecoverI nit;
erifyRecover C VerifyRecover;

gest Encrypt Updat e C_Di gest Encrypt Updat e;
crypt Di gest Updat e C Decrypt Di gest Updat e;
i gnEncr ypt Updat e C_Si gnEncr ypt Updat e;
crypt Veri fyUpdate C Decrypt Veri fyUpdat e;
ner at eKey C_Gener at eKey;

ner at eKeyPai r C_Cener at eKeyPai r;
apKey C W apKey;

wr apKey C_Unwr apKey;

ri vekKey C Deri veKey;

edRandom C_SeedRandom

ner at eRandom C_Gener at eRandom

t FunctionStatus C_Get Functi onSt at us;
ncel Function C_Cancel Functi on;

i t For Sl ot Event C_Wai t For Sl ot Event;
CTI ON_LI ST;

wfolviviofv

<LKLKLKKOLLLLOL WY

02000092220000000022202000000
<

'l'IIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

c
pd

58@@%99599Q@89

222200

}

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is aso owned by the library) may be obtained by the
C_GetFunctionList function (see Section . The value that this pointer points to can
be used by an application to quickly find out where the executable code for each function
in the Cryptoki API is located. Every function in the Cryptoki APl must have an entry
point defined in the Cryptoki library's CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library’'s CK_FUNCTION_LIST structure should point to a function
stub which simply returns CKR_FUNCTION_NOT_SUPPORTED.

An application may or may not be able to modify a Cryptoki library’s static
CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
0.

CK_FUNCTION_LIST_PTRisapointer toaCK_FUNCTION_LIST.

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 67 |

CK_FUNCTION_LIST_PTR_PTR isapointer toaCK_FUNCTION_LIST_PTR.

9.7 Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneously. Applications which will not do this need
not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX isthe type of apointer to an application-supplied function which
creates a new mutex object and returns a pointer to it. It is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D PTR_PTR ppMit ex

);

CallingaCK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values: CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_DESTROYMJUTEX) (
CK_VO D _PTR pMit ex
)

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functionsis as follows:

 If a CK_LOCKMUTEX function is called on a mutex which is not locked, the
calling thread obtains alock on that mutex and returns.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 68 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

« If aCK_LOCKMUTEX function is caled on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

 IfaCK_LOCKMUTEX function is called on amutex which is locked by the calling
thread, the behavior of the function call is undefined.

 If aCK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

» If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains alock on that mutex, and its CK_L OCKMUTEX call returns.

» If more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains a lock on the mutex, and its CK_L OCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

 IfaCK_UNLOCKMUTEX function is caled on a mutex which is not locked, then
the function call returnsthe error code CKR_MUTEX_NOT_LOCKED.

 If aCK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_LOCKMUTEX) (
CK_VO D _PTR pMit ex
)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be
locked. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D _PTR pMit ex
)

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

| Copyright © 1994-1999-2000 RSA Security Inc.

9139. GENERAL DATA TYPES 69 |

¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is
defined as follows:

typedef struct CK C I N TIALI ZE_ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oyMit ex;
CK_LOCKMUTEX LockMut ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS fl ags;
CK VO D PTR pReserved,;

} CK C INTIALI ZE ARGS;

The fields of the structure have the following meanings:
CreateMutex pointer to afunction to use for creating mutex objects

DestroyMutex pointer to afunction to use for destroying mutex
objects

LockMutex pointer to afunction to use for locking mutex objects

UnlockMutex pointer to afunction to use for unlocking mutex
objects

flags bit flags specifying options for C_Initialize; the flags
are defined below

pReserved reserved for future use. Should be NULL_PTR for this
version of Cryptoki

The following table defines the flags field:

Table 131313, C_Initialize Parameter Flags

Copyright © 1994-1999-2000 RSA Security Inc. |

| 70 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag Mask Meaning

CKF_LIBRARY_CANT_CREATE_OS THREADS | 0x00000001 | TRUE if
application
threads which
are executing
calsto the
library may not
use native
operating system
callsto spawn
new threads,
FALSE if they

may

CKF_OS LOCKING_OK 0x00000002 | TRUE if the
library can use
the native
operation system
threading model
for locking;
FALSE
otherwise

CK_C_INITIALIZE_ARGS PTRisapointer toaCK_C_INITIALIZE_ARGS.

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 71 |

10. Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS datatype. An object consists of a set of attributes, each of which
has a given value. Each attribute that an object possesses has precisely one value. The
following figure illustrates the high-level hierarchy of the Cryptoki objects and some of
the attributes they support:

Object
Class
Storage HW Feature
Token Feature Type
Private
Label
Modifiable
Key
bata Key Parameter
Application
Object Identifier
Value Certificate

Figure5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateK ey) also create key objectsto hold their results.

Objects are aways “well-formed” in Cryptoki—that is, an object always contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for sometime. In Cryptoki, objects are always initialized.

Tables throughout most of Section [LO| define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attribute values may also take the following types:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 72 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Byte array an arbitrary string (array) of CK_BYTESs

Big integer astring of CK_BY TESs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.0., theinteger 32768 is represented as the 2-byte
string 0x80 0x00)

Local string an unpadded string of CK_CHARS (see
with no null-termination

RFC2279 string an unpadded string of CK_UTF8CHARSs with no null-
termination

A token can hold several identical objects, i.e,, it is permissible for two or more objects to
have exactly the same values for al their attributes.

With the exception of RSA private key objects (see Section[10.9.1), each type of object in
the Cryptoki specification possesses a completely well-defined set of Cryptoki attributes.
For example, an X.509 public key certificate object (see Section has precisely the
following Cryptoki attributess CKA_CLASS, CKA_TOKEN, CKA_PRIVATE,
CKA_MODIFIABLE, CKA _LABEL, CKA _CERTIFICATE_TYPE,
CKA_SUBJECT, CKA_ID, CKA_ISSUER, CKA_SERIAL_NUMBER,
CKA_VALUE. Some of these attributes possess default values, and need not be
specified when creating an object; some of these default values may even be the empty
string (*”). Nonetheless, the object possesses these attributes. A given object hasasingle
value for each attribute it possesses, even if the attribute is a vendor-specific attribute
whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section . In any
case, all the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 73 |

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section [L1.7),
C _GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveK ey (see Section
11.14). In addition, copying an existing object (with the function C_CopyObject) aso
creates a new object, but we consider this type of object creation separately in Section

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attributeis
valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID. The
valid values for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR_TEMPLATE _INCONSISTENT. A set of attribute values is inconsistent if not
al of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be
using a template which specifies two different values for the same attribute. Another
example would be trying to create an RC4 secret key object (see Section [10.10.3) with
a CKA_MODULUS attribute (which is appropriate for various types of public keys
(see Section or private keys (see Section [10.9), but not for RC4 keys). A final
example would be a template for creating an RSA public key with an exponent of 17
on a token which requires al RSA public keys to have exponent 65537. Note that

Copyright © 1994-1999-2000 RSA Security Inc. |

| 74 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

this final example of an inconsistent template is token-dependent—on a different
token (one which permits the value of 17 for an RSA public key exponent), such a
template would not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make
their libraries behave as though the attribute had only appeared once in the template;
application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section
[l1.7). The template supplied to C_SetAttributeValue can contain new values for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may actually not
be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiable insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key object’'s CKA_SENSITIVE attribute can be changed
from FALSE to TRUE, but not the other way around.

All the scenarios in Section [10.1.1+—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section[11.7). In
the process of copying an object, C_CopyObject aso modifies the attributes of the
newly-created copy according to an application-supplied template.

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 75 |

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being modifiable,
plus the three gpecia attributes CKA_TOKEN, CKA_PRIVATE, and
CKA_MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyObject operation insofar as the Cryptoki specification is concer ned.
A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.
For example, a secret key object’'s CKA_SENSITIVE attribute can be changed from
FALSE to TRUE during the course of a C_CopyObject operation, but not the other way
around.

All the scenarios in Section and the error codes they return—apply to copying
objects with C_CopyObject, except for the possibility of atemplate being incomplete.

10.2 Common attributes

The following table defines the attributes common to all objects:

Table 14, Common Object Attributes

Attribute Data Type Meaning
CKA_CLASS! CK_OBJECT_CLASS | Object class (type)
Must be specified when object is created

Cryptoki Version 2.1 supports the following values for CKA_CLASS (i.e., the following
classes (types) of objects): CKO_HW_FEATURE, CKO_DATA,
CKO_CERTIFICATE, CKO_PUBLIC KEY, CKO_PRIVATE_KEY, and
CKO_SECRET_KEY.

10.3 Hardware Feature Objects

Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They
provide an easily expandable method for introducing new value-based features to the
cryptoki interface. The following figure illustrates the hierarchy of hardware feature
objects and some of the attributes they support:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 76 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

HW Feature

Feature Type

— T

Monotonic Clock
Counter

Value

Reset by Init
Has Been Reset
Value

Figure 6, Hardwar e Feature Object Attribute Hierarchy

When searching for objects using C_FindObjectsinit and C_FindObjects, hardware
feature objects are not returned unless the CKA_CL ASS attribute in the template has the
vaue CKO_HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 15, Har dwar e Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE TYPE | CK_HW_FEATURE | Hardware feature (type)

Cryptoki Version 2.1 supports the following values for CKA_FEATURE_TYPE:
CKH_MONOTONIC_COUNTER, and CKH_CLOCK.

10.3.1 Clock Objects

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source asthe utcTimefield inthe CK_TOKEN_INFO structure.

Table 16, Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE | CK_CHAR[16] | Current time as a character-string of length 16,
represented in the format YY'Y'Y MM DDhhmmssxx
(4 charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘O’ characters).

The CKA_VALUE attribute may be set using the C_SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The device

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS

77 |

may require the SO to be the user logged in to modify the time vaue.
C_SetAttributeValue will return the error CKR_USER_NOT_LOGGED _IN to indicate
that a different user type isrequired to set the value.

10.3.2 Monotonic Counter Objects

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.

Table 17, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET ON_INIT* | CK_BBOOL | The value of the counter will reset to a
previously returned valueif the token is
initialized using C_InitializeT oken.

CKA_HAS RESET" CK_BBOOL | The value of the counter has been reset at
least once at some point in time.

CKA_VALUE! Byte Array The current version of the monotonic
counter. The valueisreturned in big endian
order.

'Read Only

The CKA_VALUE attribute may not be set by the client.

10.4 Storage Objects

Table 18, Common Storage Object Attributes

Copyright © 1994-1999-2000 RSA Security Inc. |

| 78 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL TRUE if object is atoken object;
FALSE if object is a session object
(default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object;

FALSE if object isa public object.
Default value is token-specific, and
may depend on the values of other
attributes of the object.

CKA_MODIFIABLE | CK_BBOOL TRUE if object can be modified
(default TRUE)

CKA_LABEL RFC2279 string Description of the object (default
empty)

Only the CKA_LABEL attribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the
user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be del eted.

The CKA_LABEL attribute isintended to assist usersin browsing.

10.5 Dataobjects

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes listed in [[able 14Table 14Table 14 and [Table 18Table 18T able 18]

Table 19, Data Object Attributes

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 79 |
Attribute Datatype | Meaning
CKA_APPLICATION | RFC2279 | Description of the application that manages the
string object (default empty)
CKA_OBJECT_ID Byte Array | DER-encoding of the object identifier indicating
the data object type (default empty)
CKA_VALUE Bytearray | Value of the object (default empty)

Both of these attributes may be modified after the object is created.

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The CKA_OBJECT _ID attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass
CK _UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
= “Sanpl e data”;

CK_BYTE dat a[]

CK BBOOL true

= TRUE;
CK_ATTRI BUTE tenpl ate[]

CKA CLASS, &cl ass,

CKA_TOKEN, &true,
| abel ,

CKO DATA:

= {

si zeof (cl ass) },
si zeof (true)},
si zeof (| abel) - 1},

CKA_APPLI CATI ON, application, sizeof(application)-1},

CKA_VALUE, data,

{
E OKA_LABEL,
{
{

}

si zeof (dat a) }

Copyright © 1994-1999-2000 RSA Security Inc. |

| 80

10.6 Certificate objects

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following figureillustrates details of certificate objects:

Certificate

Certificate Type

X.509 Public X.509 Attribute
Key Certificate Certificate
Subject Owner
ID Issuer
Issuer Serial Number

Serial Number
Value

Attribute Types
Value

Figure7, Certificate Object Attribute Hierarchy

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes listed in [T able 14T able 14T able 14|
and [Table 18Table 18Fable 18|

Table 20, Common Certificate Object Attributes

Attribute Data type Meaning

CKA_CERTIFICATE_TYPE" | CK_CERTIFICATE_TYPE | Type of
certificate

CKA_TRUSTED CK_BBOOL The certificate

can be trusted for
the application
that it was
created.

"Must be specified when the object is created.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created.

The CKA TRUSTED attribute cannot be set to TRUE by an application. It must be set
by atoken initialization application. Trusted certificates cannot be modified.

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 81 |

10.6.1 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X 509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes listed in [Table 14Fable14Fable14| [Table 18Fable |
(8T able-19 and [T able 20Fable 20T able20

Table 21, X.509 Certificate Object Attributes

Attribute Datatype | Meaning

CKA_SUBJECT! Byte array | DER-encoding of the certificate
subject name

CKA_ID Byte array | Key identifier for public/private key
pair (default empty)

CKA_ISSUER Byte array | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER | Bytearray | DER-encoding of the certificate seria
number (default empty)

CKA_VALUE" Byte array | BER-encoding of the certificate

"Must be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA_ID value without introducing any
ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does
not enforce this association, or even the uniqueness of the key identifier for a given
subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions
to X.509 certificates, the key identifier may be carried in the certificate. It isintended that
the CKA_ID vaue be identical to the key identifier in such a certificate extension,
although thiswill not be enforced by Cryptoki.

The following is a sample template for creating a certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 82

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_CERTI FI CATE_TYPE cert Type = CKC X 509;
CK_UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA _CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}
b

10.6.2 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X 509 ATTR_CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes listed in|T able 14T able 14Table 14|

[Table 18Table 18Table 18 and [Table 20T able 20T able 20)

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 83 |

Table 22, X.509 Attribute Certificate Object Attributes

Attribute Data Type [Meaning

CKA_OWNER! Byte Array [DER-encoding of the attribute certificate's
subject field. Thisisdistinct from the
CKA_SUBJECT attribute contained in
CKC_X_509 certificates because the ASN.1
syntax and encoding are different.

CKA_AC ISSUER Byte Array [DER-encoding of the attribute certificate's
issuer field. Thisisdistinct from the
CKA_ISSUER attribute contained in
CKC_X_509 certificates because the ASN.1
syntax and encoding are different. (default

empty)

CKA_SERIAL_NUMBER | Byte Array [DER-encoding of the certificate serial number.
(default empty)

CKA_ATTR_TYPES Byte Array BER-encoding of a sequence of object identifier

val ues corresponding to the attribute types
contained in the certificate. When present, this
field offers an opportunity for applications to
search for a particular attribute certificate
without fetching and parsing the certificate
itself. (default empty)

CKA_VALUE" Byte Array |BER-encoding of the certificate.
"Must be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA _ATTR_TYPES
attributes may be modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;

CK_CERTI FI CATE_TYPE cert Type = CKC_X 509_ATTR _CERT,;
CK _UTF8CHAR | abel [] = "An attribute certificate object”;
CK_BYTE owner[] ={...};

CK_BYTE certificate[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{CKA OMNER, owner, sizeof (owner)},

{CKA VALUE, certificate, sizeof(certificate)}

}

Copyright © 1994-1999-2000 RSA Security Inc. |

| 84 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.7 Key objects

The following figureillustrates details of key objects:

Key
Key Type
ID
Start Date
End Date
Derive
Local
Public Key Private Kevy Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
| Unwrap Wrap
Extractable Unwrap
Always Sensitive Extractable
Never Extractable Always Sensitive
Never Extractable

Figure 8, Key Attribute Detail

Key objects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to al the tables describing
attributes of keys:

Table 23, Common footnotes for key attribute tables
! Must be specified when object is created with C_CreateObiject.

2 Must not be specified when object is created with C_CreateObject.

® Must be specified when object is generated with C_GenerateKey or

C_GenerateKeyPair.

4 Must not be specified when object is generated with C GenerateKey or

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 85 |

C_GenerateKeyPair.
> Must be specified when object is unwrapped with C_UnwrapK ey.
® Must not be specified when object is unwrapped with C_Unwrap.

" Cannot be revedled if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. As mentioned previously,
however, it is possible that a particular token may not permit modification of the
attribute, or may not permit modification of the attribute during the course of a
C_CopyObject call.

° Default value is token-specific, and may depend on the values of other attributes.

10 Cannot be set to TRUE by an application. It must be set by a token initialization
application. If TRUE, the key cannot be modified.

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes listed in Table 14Table 14Fable-14 and
Table 18Table18Table18:

Table 24, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE™> | CK_KEY_TYPE | Typeof key

CKA_ID® Byte array Key identifier for key (default empty)

CKA_START DATE® | CK_DATE Start date for the key (default empty)

CKA_END DATE® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL TRUE if key supports key derivation
(i.e., if other keys can be derived from
this one (default FALSE)

CKA_LOCAL?*® CK_BBOOL TRUE only if key was either

» generated locadly (i.e., on the token)
withaC_GenerateKey or
C_GenerateKeyPair call

» created withaC_CopyObject cal
as acopy of akey which had its
CKA_LOCAL attribute set to
TRUE

Copyright © 1994-1999-2000 RSA Security Inc. |

| 86 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_ID field is intended to distinguish among multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the
key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of a key according to the dates; doing thisis up to the application.

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive
other keys from the key.

The CKA_LOCAL attribute has the value TRUE if and only if the value of the key was
originally generated on the token by aC_GenerateKey or C_GenerateK eyPair call.
10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. Thisversion of
Cryptoki recognizes the following types of public keys: RSA, DSA, EC (also related to
ECDSA) lefleHeIIman X9 42 lefleHeIIman and KEAIhls—veren—ef—Gprtem

The f0||OWI ng table deflnes the attrlbutes common to aII publlc keys, in addltlon to the

common attributes listed in [Table 14Fable 14TFable-14] [Table 18T able18Fable 18| and
[Table 24Fable 24T able 24|

Table 25, Common Public Key Attributes

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 87 |

Attribute Datatype Meaning

CKA_SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryption’

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification
where the signature is an appendix to
the data’

CKA_VERIFY_RECOVER® | CK_BBOOL | TRUE if key supports verification
where the data is recovered from the

signature’
CKA_WRAP® CK_BBOOL | TRUE if key supports wrapping (i.e.,
can be used to wrap other keys)°
CKA_TRUSTED™ CK_BBOOL | Thekey can be trusted for the

application that it was created.

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key aso be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Table 26, Mapping of X.509 key usage flagsto cryptoki attributesfor public keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor
public key certificates public keys.

dataEnci pherment CKA_ENCRYPT
digitalSignature, keyCertSign, cRLSign CKA_VERIFY
digital Signature, keyCertSign, cRLSign CKA_VERIFY_RECOVER

keyAgreement CKA_DERIVE
keyEncipherment CKA_WRAP
nonRepudiation CKA_VERIFY
nonRepudiation CKA_VERIFY _RECOVER

10.8.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in

addition to the common attributes listed in [Table 14Table 14Table 14| [Table 18Table |
[.8Table 18, [Table 24T able 24Table 24, and _

Copyright © 1994-1999-2000 RSA Security Inc. |

| 88

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 27, RSA Public Key Object Attributes

Attribute Datatype Meaning

CKA_MODULUS"*® Biginteger | Modulusn

CKA_MODULUS BITS**® CK_ULONG | Length in bits of modulus n

CKA_PUBLIC_EXPONENT™®® | Biginteger | Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS
#1 for more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR | abel [] = “An RSA public key object”;
CK_BYTE nmodul us[] = {...};

CK_BYTE exponent[] = {. I

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate[] = {

H

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{CKA WRAP, &true, sizeof(true)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA _MODULUS, nodul us, sizeof (nodul us)},

{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

10.8.2 9:6.2—DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold
DSA public keys. The following table defines the DSA public key object attributes, in
addition to the common attributes listed in [Table 14T able 14T able14| [Table 18Table |

[.8Table 18, [Table 24T able 24Table 24) and [Table 25T able 25T able 25|

Table 28, DSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME™® Biginteger | Primep (512 to 1024 bits, in steps of 64 hits)
CKA_SUBPRIME™® | Biginteger | Subprime q (160 bits)

CKA_BASE"3° Biginteger | Baseg

CKA_VALUE"® Biginteger | Public valuey

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 89 |

The CKA_PRIME, CKA_SUBPRIME and CKA BASE attribute values are
collectively the “DSA parameters’. See FIPS PUB 186 for more information on DSA

keys.
The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType CKK_DSA;
CK_UTF8CHAR | abel [] “A DSA public key object”;
CK_ BYTE prinme[] ={...};
CK_BYTE subprine[] = {...};
CK_BYTE base[] ={...};
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA PRI VE, prine, sizeof(prine)},
{ CKA SUBPRI MVE, subprinme, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

}s
10.8.3 ECDSA public key objects

= CKO PUBLI C_KEY:

EC (aso related to ECDSA) public key objects (object class CKO PUBLIC KEY, key
type CKK_EC or CKK_ECDSA) hold EC public keys. See Section [12.3] for more
information about EC. The following table defines the EC public key object attributes, in
addition to the common attributes listed in [Table 14Fable-14 [Table 18Fable-18 [Table |
P4Table24 and[Table 25Fable 25|

Table 29, Elliptic Curve Public Key Object Attributes

Attribute Datatype | Meaning

CKA EC PARAMS!® Bytearray | DER-encoding of an ANSI X9.62

(CKA ECDSA PARAMYS) Par anet er s value

CKA_EC POINT*® Byte array | DER-encoding of ANSI X9.62
ECPoi nt vaueQ

The CKA EC PARAMS or CKA ECDSA PARAMS attribute value is known as the

“EC domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter

representation methods with the following syntax:

Paraneters ::=

CHOI CE {

Copyright © 1994-1999-2000 RSA Security Inc. |

| 90 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ecParaneters ECPar anet er s,
nanedCur ve CURVES. & d({CurveNanes}),
inplicitlyCA NULL

13

This allows detailed specification of all required values using choice ecParameters, the
use of anamedCurve as an object identifier substitute for a particular set of eliptic curve
domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly
defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Thefollowing is a sample template for creating an EC (ECDSA) public key object:

CK OBJECT CLASS cl ass = CKO PUBLI C KEY,

CK_KEY TYPE keyType CKK EC;

CK_UTF8CHAR | abel [] “An EC public key object”;
CK BYTE ecParans[] = {...
CK BYTE ecPoint[] = {...}
CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof(label)-1},
CKA EC PARAMS, ecParans, sizeof(ecParans)},
CKA EC PO NT, ecPoint, sizeof(ecPoint)}

Nt

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS a1 |

10.8.4 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_DH) hold Diffie-Hellman public keys. The following table defines the RSA
Diffie-Hellman public key object attributes, in addition to the common attributes listed in
[Table 14Fable 14T able-14| [Table 18T able 18T able 18| [Table 24T able 24Fable24} and

Table 25T able 25T able 25

Table 313130, DiffieeHellman Public Key Object Attributes

Attribute Datatype | Meaning
CKA_PRIME® Biginteger | Primep
CKA_BASE™3° Biginteger | Baseg
CKA_VALUE"® Biginteger | Public valuey

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman parameters’. Depending on the token, there may be limits on the length of the
key components. See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR | abel [] “A D ffie-Hellmn public key
obj ect”;

CK BYTE prinme[] ={...};

CK_BYTE base[] = {...};

CK_BYTE value[] ={...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate[] = {

Copyright © 1994-1999-2000 RSA Security Inc. |

| 92 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA _TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{CKA PRI VE, prine, sizeof(prine)},

{CKA BASE, base, sizeof(base)},
{CKA_VALUE, val ue, sizeof(value)}

Hs

10.8.5 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO PUBLIC KEY, key type
CKK X9 42 DH) hold X9.42 Diffie-Hellman public keys. The following table defines

the X9.42 Diffie-Hellman public key object attributes, in addition to the common

attributes listed in [Table 14Table 14] [Table 18Table 18, [Table 24Table 24, and [Table |
p5Table 25|
Table 32, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Datatype | Meaning

CKA PRIME®® Biginteger | Primep (= 1024 bits, in steps of 256 bits)

CKA BASE®® Biginteger | Baseg

CKA SUBPRIME*®® | Biginteger | Subprime q (= 160 bits)

CKA VALUE"® Biginteger | Public valuey

The CKA PRIME, CKA BASE and CKA SUBPRIME attribute values are
collectively the “X9.42 Diffie-Hellman domain parameters’. See the ANSI X9.42 draft
for more information on X9.42 Diffie-Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key
object:

CK_ OBJECT CLASS cl ass = CKO PUBLI C KEY;

CK_KEY_TYPE keyType = CKK X9 42 DH;

CK_UTF8CHAR | abel [] = “A X9.42 Diffie-Hellman public key
obj ect”;

CK_ BYTE prine[] ={...};

CK BYTE base[] ={...};

CK_BYTE subprine[] = {...};

CK BYTE value[] = {...};
CK BBOOL true = TRUE;
CK ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{

CKA LABEL, | abel, sizeof(label)-1},
CKA PRI VE, prine, sizeof(prine)},

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 93 |

{ CKA BASE, base, sizeof(base)},

{ CKA SUBPRI ME, subprine, sizeof (subprine)},
{CKA VALUE, val ue, sizeof(val ue)}

1

10.8.510.8.6_KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in
addition to the common attributes listed in [Table 14Table 14T able-14| [Table 18Table |
i-8Fable18, [Table 24Fable 24Fable 24, and [Table 25T able 25T able-25|

Table 333331, KEA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME™® | Biginteger | Subprime q (160 bits)

CKA_BASE-3° Biginteger | Baseg (512 to 1024 bits, in steps of 64 hits)
CKA_VALUE"® Biginteger | Public valuey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are
collectively the “KEA parameters’.

The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR | abel [] = “A KEA public key object”;
CK_BYTE prinme[] ={...};
CK_BYTE subprine[] ={...};
CK_BYTE base[] = {...};
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-1999-2000 RSA Security Inc. |

94 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.9 Privatekey objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This version
of Cryptoki recognizes the following types of private key: RSA, DSA, EC (aso related to
ECDSA) D|ff|eHeIIman X942 lefleHeIIman and KEAIhls—veren—ef—Gprtem

foIIowmg table deflnes the attrlbutes common to aII prlvate keys, in addltlon to the

common attributes listed in [Table 14Table 14Table-14] [Table 18Table 18T able-18 and
[Table 24Fable 24T able 24]

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 95 |

Table 343432, Common Private Key Attributes

Attribute Datatype Meaning

CKA_SUBJECT® Byte array DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE® (see below) CK_BBOOL | TRUE if key is sensitive’

CKA_SECONDARY_AUTH CK_BBOOL | TRUE isthekey requiresa

secondary authentication to
take place beforeits use it
alowed. (default FALSE)
(Deprecated; applications must
always set to FALSE or omit
from templates)

CKA_AUTH_PIN_FLAGS**® CK_FLAGS | Mask indicating the current
state of the secondary
authentication PIN. If
CKA_SECONDARY_AUTH
isFALSE, then this attribute is
zero. (Deprecated)
CKA_DECRYPT® CK_BBOOL | TRUE if key supports
decryption®

CKA_SIGN® CK_BBOOL | TRUE if key supports
signatures where the signature
is an appendix to the data’
CKA_SIGN_RECOVER® CK_BBOOL | TRUE if key supports
signatures where the data can
be recovered from the
signature’

CKA_UNWRAP® CK_BBOOL | TRUE if key supports
unwrapping (i.e., can be used
to unwrap other keys)®

CKA_EXTRACTABLE® (seebelow) | CK_BBOOL | TRUE if key is extractable’
CKA_ALWAYS SENSITIVE**® CK_BBOOL | TRUE if key has always had
the CKA_SENSITIVE
attribute set to TRUE
CKA_NEVER_EXTRACTABLE**® | CK_BBOOL | TRUE if key has never had the

CKA _EXTRACTABLE
attribute set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to
the value TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE
attribute may be changed, but only to the value FALSE. Attempts to make other changes

Copyright © 1994-1999-2000 RSA Security Inc. |

| 96 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

to the vaues of these attributes should return the eror code
CKR_ATTRIBUTE _READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is FALSE, then certain attributes of the private key cannot be revealed in plaintext outside
the token. Which attributes these are is specified for each type of private key in the
attribute table in the section describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, thisis not enforced by Cryptoki, and it is not required that the certificate
and public key also be stored on the token.

If the CKA_SECONDARY_AUTH attribute is TRUE, then the Cryptoki
implementation will associate the new private key object with a PIN that is gathered using
amechanism that is transparent to the Cryptoki client. The new PIN must be presented to
the token each time the key is used for a cryptographic operation. See section for the
complete usage model. If CKA_SECONDARY_AUTH is TRUE, then
CKA_EXTRACTABLE must be FALSE and CKA_PRIVATE must be TRUE.
Attempts to copy private keys with CKA_SECONDARY_AUTH set to TRUE in a
manner that would violate the above conditions must fail. An application can determine
whether the setting the CKA_SECONDARY _AUTH attribute to TRUE is supported by
checking to see if the CKF_SECONDARY_AUTHENTICATION flag is set in the
CK_TOKEN_INFO flags.

The CKA_AUTH_PIN_FLAGS attribute indicates the current state of the secondary
authentication PIN. Thisvalueisonly valid if the CKA_SECONDARY _AUTH attribute
is TRUE. The valid flags for this attribute are CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, CKF_USER PIN LOCKED, and

| CKF_USER_PIN_TO_BE_CHANGED defined in [[able 10Table 10Fable 10| for the
CK_TOKEN_INFO flags field. CKF_USER_PIN_COUNT_LOW and
CKF_USER_PIN_FINAL_TRY may aways be set to FALSE if the token does not
support the functionality or will not reveal the information because of its security policy.
The CKF_USER_PIN_TO_BE_CHANGED flag may aways be FALSE if the token
does not support the functionality.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 97 |

Table 353533, Mapping of X.509 key usage flags to cryptoki attributes for private ‘
keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributesfor
public key certificates private keys.

dataEnci pherment CKA_DECRYPT

digital Signature, keyCertSign, cRLSign CKA_SIGN

digitalSignature, keyCertSign, cRLSign CKA_SIGN_RECOVER

keyAgreement CKA_DERIVE
keyEncipherment CKA_UNWRAP
nonRepudiation CKA_SIGN
nonRepudiation CKA_SIGN_RECOVER

10.9.1 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA)
hold RSA private keys. The following table defines the RSA private key object
attributes, in addition to the common attributes listed in [T able 14Fable-14Fable 14| [Table |
[L8Table 18Fable 18| [Table 24Fable 24Fable 24| and [T able 34T able 34T able 32F able 32

Table 363634, RSA Private Key Object Attributes

Attribute Datatype | Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_PUBLIC_EXPONENT*® Biginteger | Public exponent e
CKA_PRIVATE_EXPONENT**®’ | Biginteger | Private exponent d

CKA_PRIME_1*®' Biginteger | Primep

CKA_PRIME_2*®' Biginteger | Primeq
CKA_EXPONENT_1*%/ Biginteger | Private exponent d modulo p-1
CKA_EXPONENT _2*°/ Biginteger | Private exponent d modulo g-1
CKA_COEFFICIENT*®/ Biginteger | CRT coefficient g mod p

Depending on the token, there may be limits on the length of the key components. See
PKCS #1 for more information on RSA keys.

Tokens vary in what they actualy store for RSA private keys. Some tokens store all of
the above attributes, which can assist in performing rapid RSA computations. Other
tokens might store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT
values.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a
token generates an RSA private key, it stores whichever of the fields in Table 36Table |

Copyright © 1994-1999-2000 RSA Security Inc. |

| 98 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

| B6Table34]it keeps track of. Later, if an application asks for the values of the key's
various attributes, Cryptoki supplies values only for attributes whose values it can obtain
(i.e, if Cryptoki is asked for the value of an attribute it cannot obtain, the request fails).
Note that a Cryptoki implementation may or may not be able and/or willing to supply
various attributes of RSA private keys which are not actually stored on the token. E.g., if
a particular token stores values only for the CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is certainly able to
report values for al the attributes above (since they can al be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do this

| extra computation. The only attributes from [Table 36Table_36Table 34Table-34| for
which a Cryptoki implementation is required to be able to return vaues are
CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from
B6T-able-36Fable 34T able-34|are supplied to the object creation call than are supported by
the token, the extra attributes are likely to be thrown away. If an attempt is made to
create an RSA private key object on a token with insufficient attributes for that particular
token, then the object creation call faills and returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS BITS
attribute specified. This is because RSA private keys are only generated as part of an
RSA key pair, and the CKA_MODULUS BITS attribute for the pair is specified in the
template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;
CK_KEY_TYPE keyType CKK_RSA;
CK_UTF8CHAR | abel [] “An RSA private key object”;
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK_BYTE nmodul us[] = {...};
CK_BYTE publ i cExponent []
CK_BYTE pri vat eExponent [
CK_BYTE primel[] ={...};
CK BYTE prime2[] ={...};
CK_BYTE exponent 1]]
CK_BYTE exponent 2[]
CK_BYTE coefficient][]
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

CKA CLASS, &cl ass, sizeof(class)},

CKA KEY_TYPE, &keyType, sizeof (keyType)},

CKA TOKEN, &true, sizeof(true)},

~ —

CKA SUBJECT, subject, sizeof(subject)},
CKA ID, id, sizeof(id)},

{
E
{CKA LABEL, | abel, sizeof(l|abel)-1},
{
{
{

CKA SENSI TI VE, & rue, sizeof(true)},

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 99 |

{ CKA DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},

{CKA _MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, publicExponent,

si zeof (publ i cExponent)},

{ CKA_PRI VATE_EXPONENT, privateExponent,

si zeof (pri vat eExponent)},

{CKA PRIME 1, prinel, sizeof(prinel)},

{CKA PRI VE_2, prine2, sizeof(prinme2)},

{ CKA_EXPONENT_1, exponentl, sizeof(exponentl)},

{ CKA_EXPONENT_2, exponent2, sizeof (exponent?2)},

{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

H

10.9.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA)
hold DSA private keys. The following table defines the DSA private key object
attributes, in addition to the common attributes listed in [[able 14Fable- [Table |

[L8Table 18Table 18| [Table 24Table 24Table 24} and [Table 34Table 34Table 32

Table 373735, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME™*® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME™*® | Biginteger | Subprime g (160 bits)

CKA_BASE™*° Biginteger | Baseg

CKA_VALUE"*®’ Biginteger | Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA BASE attribute values are
collectively the “DSA parameters’. See FIPS PUB 186 for more information on DSA

keys.

Note that when generating a DSA private key, the DSA parameters are not specified in
the key’ stemplate. Thisisbecause DSA private keys are only generated as part of a DSA
key pair, and the DSA parameters for the pair are specified in the template for the DSA

public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType =
CK_UTF8CHAR | abel [] =
CK_BYTE subj ect[] ={...};
CK_BYTE id[] {1 3},
CK_BYTE pri ma[] = {.

CKK DSA;
“A DSA private key object”;

S

Copyright © 1994-1999-2000 RSA Security Inc. |

| 100 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE subprine[] ={...};

CK_BYTE base[] ={...};

CK_BYTE value[] ={...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

CKA CLASS, &cl ass, sizeof(class)},

CKA KEY_TYPE, &keyType, sizeof (keyType)},
CKA TOKEN, &true, sizeof(true)},

CKA LABEL, | abel, sizeof (I abel)-1},

CKA SUBJECT, subject, sizeof(subject)},
CKA ID, id, sizeof(id)},

CKA SENSI Tl VE, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},

{CKA PRI VE, prine, sizeof(prine)},

{ CKA SUBPRI MVE, subprinme, sizeof (subprine)},
{CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

}

10.9.3 Elliptic curve private key objects

e lanlan te e e Vet

EC (aso related to ECDSA) private key objects (object class CKO PRIVATE KEY,
key type CKK_EC or CKK_ECDSA) hold EC private keys. See Section[12.3]for more
information about EC. The following table defines the EC private key object attributes,
in addition to the common attributes listed in [Table 14Fable14 [Table 18Fable 18| [Table |
R4Fable24, and[Table 34Fable34|

Table 38, Elliptic Curve Private Key Object Attributes

Attribute Datatype | Meaning

CKA EC PARAMSH® Bytearray | DER-encoding of an ANSI X9.62
(CKA ECDSA PARAMYS) Par anet er s value
CKA_VALUE*5/ Biginteger | ANSI X9.62 private value d

The CKA EC PARAMS or CKA ECDSA PARAMS attribute value is known as the
“EC domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paranmeters ::= CHO CE {
ecParaneters ECPar anet er s,
nanmedCur ve CURVES. & d({CurveNanes}),

implicitlyCA NULL

13

This allows detailed specification of all reguired values using choice ecPar ameter s, the
use of anamedCurve as an object identifier substitute for a particular set of eliptic curve
domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly

Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS

defined elsewhere.

The use of a namedCurve is recommended over the choice

101 |

ecParameters. The choiceimplicitlyCA must not be used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not specified

in the key's template. This is because EC private keys are only generated as part of an

EC key pair, and the EC domain parameters for the pair are specified in the template for

the EC public key.

Thefollowing is a sample template for creating an EC (ECDSA) private key object:

CK OBJECT CLASS cl ass

= CKO_PRI VATE_KEY,

CK KEY TYPE keyType = CKK EC,

CK UTF8CHAR | abel [] = “An EC private key object”;
CK BYTE subject|[] ={...};

CK BYTE id[] = {123};

CK BYTE ecParans[] = {...};

CK BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate[] = {

CKA CLASS, &cl ass,

si zeof (cl ass) },

CKA KEY TYPE, &keyType,

si zeof (keyType) },

CKA TOKEN, &true,

si zeof (true)},

CKA LABEL, |abel,

si zeof (| abel) - 1},

subj ect

si zeof (subj ect) },

CKA D, id,

sizeof (id)},

CKA_SENSI TI VE, &true,

si zeof (true)},

CKA DERI VE, &irue,

si zeof (true)},

CKA EC PARAMS, ecPar ans,

si zeof (ecPar ans) },

{
{
E
{ CKA_SUBJECT,
{
{
{
{
{

CKA VALUE, val ue,

si zeof (val ue) }

Copyright © 1994-1999-2000 RSA Security Inc. |

| 102 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.9.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-

Hellman private key object attributes, in addition to the common attributes listed in

Table

Table

14Table-14Table14] [Table 18Table 18Table 18 [Table 24Table 24Table 24 and
34T able 34Fable 32

Table 404037, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME**® Biginteger | Primep

CKA_BASE™*° Biginteger | Baseg

CKA_VALUE"*®’ Biginteger | Private valuex

CKA_VALUE BITS*® | CK_ULONG | Length in bits of private value x

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 103 |

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman parameters’. Depending on the token, there may be limits on the length of the
key components. See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters
are not specified in the key's template. This is because Diffie-Hellman private keys are
only generated as part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters
for the pair are specified in the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:
CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR | abel [] = “A Diffie-Hell man private key
obj ect”;

CK BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE prime[] ={...};

CK_BYTE base[] = {...};

CKBYTEvaIue[] ={...};

CK_BBOOL true TRUE;

CK_ATTRI BUTE terrpl ate[] ={

CKA CLASS, &cl ass, sizeof(class)},

CKA KEY_TYPE, &keyType, sizeof (keyType)},
CKA TOKEN, &true, sizeof(true)},

CKA LABEL, | abel, sizeof (I abel)-1},

CKA SUBJECT, subject, sizeof(subject)},
CKA ID, id, sizeof(id)},

{CKA _SENSI Tl VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},

{CKA PRI VE, prine, sizeof(prinme)},

{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

H

10.9.5 X9.42 Diffie-Hellman private key objects

e e ta Y o

X9.42 Diffie-Hellman private key objects (object class CKO PRIVATE KEY, key type
CKK X9 42 DH) hold X9.42 Diffie-Hellman private keys. The following table defines

the X9.42 DiffieeHellman private ka object attributes, in addition to the common
attributes listed in [Table 14Table 14] Table 18Table 18 [Table 24Table 24, and [Table |

B4Table 34}

Copyright © 1994-1999-2000 RSA Security Inc. |

| 104 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table41, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type M eaning
CKA PRIME*® Biginteger | Prime p (= 1024 bits, in steps of 256 bits)
CKA BASE*® Biginteger | Baseqg

CKA SUBPRIME**® | Biginteger | Subprime g (= 160 bits)
CKA VALUEM®’ Biginteger | Private value x

The CKA PRIME, CKA BASE and CKA SUBPRIME _attribute values are
collectively the “X9.42 Diffie-Hellman domain parameters’. Depending on the token,
there may be limits on the length of the key components. See the ANSI X9.42 draft for
more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman
domain parameters are not specified in the key’s template. This is because X9.42 Diffie-
Hellman private keys are only generated as part of a X9.42 Diffie-Hellman key pair, and
the X9.42 Diffie-Hellman domain parameters for the pair are specified in the template for
the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key
object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType = CKK X9 42 DH;

CK _UTF8CHAR | abel [] “A X9.42 Diffie-Hellman private key
obj ect”;

CK _BYTE subject]] {...};

CK BYTE id[] = {123};

={...};

)

CK BYTE prine[]
CK_BYTE base[] = {..

CK BYTE subprine[] ={...};

CK BYTE value[] = {...};

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{
{
{
{
{
{

3

CKA SENSI TI VE, &true, sizeof(true)},

CKA DERIVE, &true, sizeof(true)},

CKA PRI VE, prine, sizeof(prine)},

CKA BASE, base, sizeof(base)},

CKA SUBPRI ME, subprine, sizeof(subprine)},
CKA VALUE, val ue, sizeof(value)}

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 105 |

1
10.9.510.9.6_KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA)
hold KEA private keys. The following table defines the KEA private key object
attributes, in addition to the common attributes listed in [[able 14Fable- [Table |
[L8Table 18T able 18| [Table 24Table 24Table 24} and [T able 34T able 34Table 32

Table 424238, KEA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME™*® Biginteger | Primep (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME™*® | Biginteger | Subprime q (160 bits)

CKA_BASE™*° Biginteger | Baseg (512 to 1024 bits, in steps of
64 bits)

CKA_VALUE"*®’ Biginteger | Private vauex

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA parameters’.

Note that when generating a KEA private key, the KEA parameters are not specified in
the key’'s template. This is because KEA private keys are only generated as part of a
KEA key pair, and the KEA parameters for the pair are specified in the template for the
KEA public key.

The following is a sample template for creating a KEA private key object:
CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;

CK_KEY_TYPE keyType = CKK KEA,;

CK_UTF8CHAR | abel [] = “A KEA private key object”;
CK_BYTE subject[] ={...};

CK_ BYTE id[] = {12 3},

CK_ BYTE prinme[] ={...};

CK_BYTE subpri me[] = {. I

CK_BYTE base[] ={...};
CK_BYTE val ue[] = { I
CK_BBOCL true TRUE
CK_ATTRI BUTE terrpl ate[] ={
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_KEY_TYPE, &keyType, si zeof (keyType) },
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},

Copyright © 1994-1999-2000 RSA Security Inc. |

| 106 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

{CKA SENSI TI VE, &true, sizeof(true)},

{CKA DERI VE, &true, sizeof(true)},

{CKA PRI VE, prinme, sizeof(prine)},

{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

b
10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of
Cryptoki recognizes the following types of secret key: generic, RC2, RC4, RC5, DES,
DES2, DES3, CAST, CAST3, CAST128 (adso known as CAST5), IDEA, CDMF,
SKIPJACK, BATON, and—-JUNIPER, and AES. The following table defines the
attributes common to all secret keys, in addition to the common attributes listed in[Table |
[L4Table 14T able 14| [Table 18Table 18Table 18|and [Table 24T able 24T able 24

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 107 |

Table 434339, Common Secret Key Attributes

Attribute Datatype Meaning

CKA_SENSITIVE® (see below) CK_BBOOL | TRUE if object is sensitive
(default FALSE)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports
encryption®

CKA_DECRYPT® CK_BBOOL | TRUE if key supports
decryption®

CKA_SIGN® CK_BBOOL | TRUE if key supports

signatures (i.e., authentication
codes) where the signatureisan
appendix to the data’

CKA_VERIFY® CK_BBOOL | TRUE if key supports
verification (i.e., of
authentication codes) where the
signature is an appendix to the
data’

CKA_WRAP® CK_BBOOL | TRUE if key supports wrapping
(i.e., can be used to wrap other
keys)®

CKA_UNWRAP® CK_BBOOL | TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)®
CKA_EXTRACTABLE® (seebelow) | CK_BBOOL | TRUE if key is extractable’

CKA_ALWAYS SENSITIVE**® CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set
to TRUE

CKA_NEVER_EXTRACTABLE**® | CK_BBOOL | TRUE if key has never had the

CKA_EXTRACTABLE
attribute set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to
the value TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE
attribute may be changed, but only to the value FALSE. Attempts to make other changes
to the wvaues of these attributes should return the error code
CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is FALSE, then certain attributes of the secret key cannot be revealed in plaintext outside
the token. Which attributes these are is specified for each type of secret key in the
attribute table in the section describing that type of key.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 108 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

10.10.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be derived
from them. The following table defines the generic secret key object attributes, in

addition to the common attributes listed in [Table 14Fable 14Table 14| [[able 18Table |
8 Fable-18, [Table 24Fable 24T able24], and [T able 43Fable-43Fable-39

Table 444440, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (arbitrary
length)

CKA_VALUE_LEN**® | CK_ULONG | Lengthin bytes of key
value

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERI C_SECRET;
CK_UTF8CHAR | abel [] “A generic secret key object”;
CK_BYTE value[] ={...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{CKA DERI VE, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

H
10.10.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in addition to
the common attributes listed in !Eable 14T able 14T able 14) [Table 18Table 18Table 18
[Table 24T able 24T able 24} and [Table 43Table 43Fable-39

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 109 |
Table 454541, RC2 Secret Key Object Attributes
Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value (1to 128
bytes)

CKA_VALUE_LEN**® | CK_ULONG | Lengthin bytes of key

vaue

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT _CLASS class =
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[]
{CKA CLASS, &cl ass, si

CKO SECRET_KEY;

CKK_RC2;
“An RC2 secret key object”;

= {

zeof (cl ass) },

{CKA KEY _TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, siz
{CKA LABEL, | abel, siz
{ CKA_ENCRYPT, &true, s
{CKA VALUE, val ue, siz

H
10.10.3 RC4 secret key objects

eof (true)},
eof (I abel) -1},
i zeof (true)},
eof (val ue) }

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in addition to

the common attributes listed in [Table 14Table 14Fable 14} [[able 1 ,
[Table 24T able 24T able24] and Elable 43Table 43Fable 39
Table 464642, RC4 Secret Key Object
Attribute Data type Meaning
CKA_VALUE"*®’ Byte array Key value (1 to 256
bytes)

CKA_VALUE_LEN®**® | CK_ULONG | Lengthin bytes of key

value

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT _CLASS cl ass =
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []
CK_BYTE value[] ={...};

CKO SECRET_KEY;

CKK_RC4;
“An RCA secret key object”;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 110 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
10.10.4 RCS5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold
RC5 keys. The following table defines the RC5 secret key object attributes, in addition to
the common attributes listed in [Table 14Fable 14T able-14] [Table 18Table 18Table-18,
[Table 24T able 24T able-24} and [T able 43Table 43Table 39

Table 474743, RC4 Secr et K ey Object

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (0 to 255
bytes)

CKA_VALUE_LEN“*° | CK_ULONG | Lengthin bytes of key
value

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType CKK_RCS5;

CK_UTF8CHAR | abel [] “An RC5 secret key object”;
CK_BYTE value[] ={...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenmpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}s
10.10.5 AES secret key objects

AES secret key objects (object class CKO SECRET KEY, key type CKK AES) hold
AES keys. The following table defines the AES secret key object attributes, in addition
to the common attributes listed in [Table 14Table 14| [Table 18Table 18 [Table 24Table |
24, and [Table 43Table 43]

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS

Table 48, AES Secret Key Object Attributes

Attribute Datatype M eaning

CKA VALUE®S/ Byte array Key value (16 to 32
bytes)

CKA VALUE LEN**® | CK_ULONG | Length in bytes of key
value

Thefollowing is a sample template for creating an AES secret key object:

CK OBJECT CLASS cl ass = CKO SECRET KEY;
CK_KEY_TYPE keyType CKK_AES;
CK _UTF8CHAR | abel [] “An AES secret key object”;
CKBYTEvaIue[] ={...};
CK BBOOL true TRUE;
CK _ATTRI BUTE terrpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Ilabel)-1},
{ CKA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(val ue)}

1

10.10.510.10.6 _DES secret key objects

111 |

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold

s nglelength DESkeys. The foI lowi ng table defines the DES secret key Obj ect attributes,

Table 494944, DES Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 8 bytes
long)

DES keys must always have their parity bits properly set as described in FIPS PUB 46-2.

Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_DES;
CK_UTF8CHAR | abel [] “A DES secret key object”;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 112 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE value[8] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}

10.10.610.10.7 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2)
hold double-length DES keys. The following table defines the DES2 secret key object
attributes, in addition to the common attributes listed in [Table 14Fable- [Table |
[L8Table-18Fable18| [Table 24Fable 24Fable 24} and [T able 43T able 43Fable39

Table 505045, DES2 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (aways 16 bytes
long)

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-2
(i.e., each of the DES keys comprising a DES2 key must have its parity bits properly set).
Attempting to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType = CKK _DES2;

CK _UTF8CHAR | abel [] = “A DES2 secret key object”;
CK_BYTE value[16] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(Iabel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 113 |

10.10.710.10.8 DES3 secret key objects

DESS3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3)
hold triple-length DES keys. The following table defines the DES3 secret key object
attributes, in addition to the common attributes listed in [Table 1 [Table |
(18T able 18T able 18 [Table 24T able 24T able24| and [T able 43Fable43Fable-39

Table 515146, DES3 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (aways 24 bytes
long)

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-2
(i.e., each of the DES keys comprising a DES3 key must have its parity bits properly set).
Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DESS;
CK_UTF8CHAR | abel [] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

H
10.10.810.10.9 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST)
hold CAST keys. The following table defines the CAST secret key object attributes, in
addition to the common attributes listed in [Table 14Table 14T able-14| [Table 18Table |
[L8Table 18, [Table 24T able 24T able 24} and [T able 43Table 43T able 39|

Table 525247, CAST Secret Key Object Attributes

Copyright © 1994-1999-2000 RSA Security Inc. |

| 114 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN**® | CK_ULONG | Lengthin bytes of key
vaue

The following is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_CAST,

CK_UTF8CHAR | abel [] “A CAST secret key object”;
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

H
10.10.910.10.10 CAST 3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST 3 secret key object attributes, in
addition to the common attributes listed in [Table 14Table 14T able 14| [Table 18Table |
[E8Table 18, Table 24T able 24Table24] and [Table 43Table 43Fable39]

Table 535348, CAST 3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (1 to 8 bytes)

CKA_VALUE_LEN®**® | CK_ULONG | Lengthin bytes of key
vaue

The following is a sample template for creating a CAST 3 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST3;
CK_UTF8CHAR | abel [] = “A CAST3 secret key object”;
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 115 |

{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

H
10.10.1010.10.11 CAST 128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class
CKO_SECRET_KEY, key type CKK_CAST128 or CKK_CAST5) hold CAST128
keys. The following table defines the CAST128 secret key object attributes, in addition

to the common attributes listed in [Table 14TFable 14T able 14} [Table 18Fable 18T able 18
[Table 24T able 24T able 24} and [T able 43Fable 43T able-39|

Table 545449, CAST 128 (CAST5) Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®’ Byte array Key value (1to 16
bytes)

CKA_VALUE_LEN“*° | CK_ULONG | Lengthin bytes of key
value

The following is a sample template for creating a CAST128 (CASTS) secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,

CK_KEY_TYPE keyType = CKK_CAST128;

CK_UTF8CHAR | abel [] “A CAST128 secret key object”;
CK_BYTE value[] ={...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

3
10.10.1110.10.12 IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA)
hold IDEA keys. The following table defines the IDEA secret key object attributes, in
addition to the common attributes listed in [Table 14Table 14T able-14| [Table 18Table |
[L8Table 18, [Table 24T able 24T able 24} and [Table 43Table 43Table 39|

Table 555550, IDEA Secret Key Object

Copyright © 1994-1999-2000 RSA Security Inc. |

| 116 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (aways 16 bytes
long)

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_| DEA;
CK_UTF8CHAR | abel [] = “An | DEA secret key object”;
CK_BYTE val ue[16] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

H
10.10.1210.10.13 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold single-length CDMF keys. The following table defines the CDMF secret key object
attributes, in addition to the common attributes listed in [Table 14Fable 14Fable 14| [Table |
[L8Table 18T able 18| [Table 24T able 24Fable 24 and [Table 43Table 43Table 39]

Table 565651, CDMF Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (adways 8 bytes
long)

CDMF keys must always have their parity bits properly set in exactly the same fashion
described for DES keys in FIPS PUB 46-2. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMVF,;

CK_UTF8CHAR | abel [] = “A CDMF secret key object”;
CK_BYTE value[8] ={...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS

{CKA CLASS, &cl ass,
{CKA KEY_TYPE, &key
{CKA TOKEN, &true,
{CKA LABEL, | abel,
{ CKA_ENCRYPT, &true
{CKA VALUE, val ue,

Hs

117 |

si zeof (cl ass) },
Type, sizeof (keyType)},
si zeof (true)},
si zeof (I abel) - 1},
, Sizeof(true)},
si zeof (val ue) }

10.16.1310.10.14 SKIPJACK secret key objects

SKIPJACK secret key objects

(object class CKO_SECRET_KEY, key type

CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines
the SKIPJACK secret key object attributes, in addition to the common attributes listed in

Table 14Table-14Table-14| [Table 18Table 18Table 18| [Table 24T able 24Table 24} and

Table 43Fable 43T able-39)
Table 575752, SKIPJACK Secret K ey Object
Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (aways 12 bytes
long)

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a SKIPJACK key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a SKIPJACK key with a specified value. Nonetheless, we provide templates for

doing so.

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType =
CK_UTF8CHAR | abel [] =

CK_BYTE val ue[12] = {..

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate
{CKA CLASS, &cl ass,
{CKA KEY_TYPE, &key
{CKA TOKEN, &true,
{CKA LABEL, | abel,
{ CKA_ENCRYPT, &true
{CKA VALUE, val ue,

b

= CKO SECRET KEY:
CKK_SKI PJACK;
“A SKI PJACK MEK secret key object”;

-
[1 ={

si zeof (cl ass) },
Type, sizeof (keyType)},
si zeof (true)},
si zeof (| abel) - 1},
, Sizeof(true)},
si zeof (val ue) }

The following is a sample template for creating a SKIPJACK TEK secret key object:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 118 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType = CKK_SKI PJACK;
CK _UTF8CHAR | abel [] = “A SKI PJACK TEK secret key object”;
CK_BYTE value[12] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

}s
10.10.1410.10.15 BATON secret key objects

BATON secret key objects (object class CKO _SECRET_KEY, key type
CKK_BATON) hold single-length BATON keys. The following table defines the

BATON secret key object attributes, in addition to the common attributes listed in[Table

14T able-14Table 14} [Table 18Table 18Table 18 [Table 24Table 24Table 24 and [Table

13T able 43T able-39]

Table 585853, BATON Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE™®" | Bytearray | Key value (aways 40 bytes
long)

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to
create or unwrap aBATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create aBATON key with a specified value. Nonetheless, we provide templates for doing
S0.

The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON
CK_UTF8CHAR | abel [] = “A BATON MEK secret key object”;
CK_BYTE val ue[40] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 119 |

{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
The following is a sample template for creatinga BATON TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON
CK_UTF8CHAR | abel [] = “A BATON TEK secret key object”;
CK_BYTE val ue[40] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
10.16.1510.10.16 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type
CKK_JUNIPER) hold single-length JUNIPER keys. The following table defines the

JUNIPER secret key object attributes, in addition to the common attributes listed in[Table

4T able—14Table—14| [Table 18TFable18Fable 18, [Table 24Table 24Fable—24] [Table

13T able 43T able-39)

Table 595954, JUNIPER Secret Key Object

Attribute Datatype | Meaning
CKA VALUE"®" | Bytearray | Key value (always 40 bytes
long)

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a JUNIPER key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType = CKK_JUN PER;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 120 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK _UTF8CHAR | abel [] = “A JUNI PER MEK secret key object”;
CK_BYTE val ue[40] ={...};
CK_BBOCOL true TRUE;
CK_ATTRI BUTE terrpl ate[] ={
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA VALUE, val ue, sizeof(value)}

b
The following is a sample template for creating a JUNIPER TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType CKK_JUNI PER;
CK_UTF8CHAR | abel [] “A JUNI PER TEK secret key object”;
CK_BYTE value[40] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA WRAP, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 121 |

10.11 Key parameter objects

Thefollowing figureillustrates details of key parameter objects:

Key Parameters

Key Type
Local
DSA Params DH Params
Prime Prime
Sub-Prime Base
Base Prime Bits
Prime Bits

Figure 9, Key Parameter Attribute Detail

Key parameter objects (object class CKO KG PARAMETERS) hold public key
generation parameters. This version of Cryptoki recognizes the following types of key

parameters: DSA and Diffie-Hellman. The following table defines the attributes common
to all public keys, in addition to the common attributes listed in |i able 142Fabte4:4| and

[Table 18Fable 18]
Table 60, Common footnotes for key parameter attribute tables

YMust be specified when object is created with C CreateObj ect.

2 Must not be specified when object is created with C Cr eateObj ect.

5 Must be specified when object is generated with C GenerateKey or
C GenerateK eyPair.

4 Must not be specified when object is generated with C GenerateKey or
C GenerateK eyPair.

The following table defines the attributes common to key attribute objects in addition to
the common attributes listed in [Table 14Fable-14]and [Table 18Fable-18|

Table 61, Common K ey Parameter Attributes

Copyright © 1994-1999-2000 RSA Security Inc. |

| 122 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data Type M eaning

CKA KEY TYPE! CK KEY TYPE | Type of key the parameters can be used
to generate.

CKA LOCAL>* CK BBOOL TRUE only if key parameters were
either

» generated localy (i.e., on the token)
withaC GenerateKey

» created with aC CopyObject cal
as acopy of key parameters which
had its CKA L OCAL attribute set
to TRUE

The CKA LOCAL attribute has the value TRUE if and only if the value of the key was
originaly generated on the token by aC GenerateK ey call.

10.11.1 DSA public key parameter objects

DSA public key parameter objects (object class CKO KG PARAMETERS, key type
CKK DSA) hold DSA public key parameters. The following table defines the DSA

ublic key parameter object attributes, in addition to the common attributes listed in
Table 14Table 14| [Table 18Table 18, and [Table 61T able 61

Table 62, DSA Public Key Parameter Object Attributes

Attribute Data type M eaning

CKA PRIME* Biginteger | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIME™* | Biginteger | Subprime g (160 hits)

CKA_ BASE** Biginteger | Baseg

CKA_PRIME_BITS*® | CK_ULONG | Length of the prime value.

The CKA PRIME, CKA SUBPRIME and CKA BASE attribute values are
collectively the “DSA parameters’. See FIPS PUB 186 for more information on DSA
key parameters.

Thefollowing is a sample template for creating a DSA public key parameter object:

CK_OBJECT CLASS cl ass = CKO KG PARAVETERS;
CK_KEY_TYPE keyType = CKK DSA;

CK UTFBCHAR | abel [] = “A DSA key paraneter object”;
CK_ BYTE prine[] ={...};

CK BYTE subprine[] = {...};

CK_BYTE base[] ={...};

| Copyright © 1994-1999-2000 RSA Security Inc.

10439. OBJECTS 123 |

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA SUBPRI ME, subprine, sizeof(subprine)},
{ CKA BASE, base, sizeof(base)},

1

10.11.2 DiffieeHellman public key parameter objects

Diffie-Hellman public key parameter objects (object class CKO KG PARAMETERS,
key type CKK DH) hold Diffie-Hellman public key parameters. The following table

defines the Diffie-Hellman public k arameter object attributes, in addition to the
common attributes listed inli able 1%{“ able flm, and|i able 61Iabk-}6i|

Table 63, Diffie-Hallman Public K ey Parameter Object Attributes

Attribute Datatype M eaning

CKA PRIME™ Biginteger | Primep

CKA BASE™* Biginteger | Baseg

CKA_PRIME BITS™® | CK_ULONG | Length of the prime value.

The CKA PRIME and CKA BASE attribute values are collectively the “Diffie-
Hellman parameters’. Depending on the token, there may be limits on the length of the
key components. See PKCS #3 for more information on Diffie-Hellman key parameters.

Thefollowing is a sample template for creating a Diffie-Hellman key parameter object:

CK_OBJECT_CLASS cl ass = CKO KG PARANETERS;

CK_KEY_TYPE keyType = CKK DH;

CK _UTF8CHAR | abel [] “A D ffie-Hellman key paraneters
object”;

CK BYTE prine[] ={...};

CK_BYTE base[] = {...

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{

{

{

CKA LABEL, | abel, sizeof(label)-1},
CKA PRI VE, prine, sizeof(prine)t},
CKA BASE, base, sizeof(base)},

}

Copyright © 1994-1999-2000 RSA Security Inc. |

| 124 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11. Functions

Cryptoki's functions are organized into the following categories:

genera-purpose functions (4 functions)

slot and token management functions (9 functions)
session management functions (8 functions)

object management functions (9 functions)
encryption functions (4 functions)

decryption functions (4 functions)

message digesting functions (5 functions)

signing and MACing functions (6 functions)
functions for verifying signatures and MACs (6 functions)
dual-purpose cryptographic functions (4 functions)
key management functions (5 functions)

random number generation functions (2 functions)

parallel function management functions (2 functions)

In addition to these 68 functions in the Cryptoki Version 2.1 API proper, Cryptoki can
use application-supplied callback functions to notify an application of certain events, and
can aso use application-supplied functions to handle mutex objects for safe multi-
threaded library access.

Execution of a Cryptoki function call isin general an all-or-nothing affair, i.e., afunction
call accomplishes either its entire goal, or nothing at all.

If a Cryptoki function executes successfully, it returns the value CKR_OK.

If a Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token isin the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the
failure of the function.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 125 |

* In unusual (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL_ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partially achieved.

There are a smal number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individualy with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki APl. However, even
an unsupported function must have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function's entry in the library's
CK_FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to
this stub function (see Section[9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section we enumerate the various possible return values for Cryptoki functions;
most of the remainder of Section [L1]details the behavior of Cryptoki functions, including
what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions' return
values. We have attempted to specify the behavior of Cryptoki functions as completely as
was feasible; nevertheless, there are presumably some gaps. For example, it is possible
that a particular error code which might apply to a particular Cryptoki function is
unfortunately not actually listed in the description of that function as a possible error
code. It isconceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precisely what kind of error), and
behave accordingly.

See Section [11.1.8|for some specific details on how a developer might attempt to make an
application that accommodates a range of behaviors from Cryptoki libraries.

1111 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 126 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

» CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token isin an inconsistent state.

» CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

» CKR_FUNCTION_FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that can
be obtained by calling C_GetSessionlnfo will hold useful information about what
happened in its ulDeviceError field. In any event, although the function call failed,
the dituation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the
error actualy was, it is possible that an attempt to make the exact same function call
again would succeed.

* CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a
“universal” return value; in particular, the legacy functions C_GetFunctionStatus
and C_CancelFunction (see Section[11.16) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, eg., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

11.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_Initialize, C_Finalize, C_Getlnfo, C_GetFunctionList,
C _GetSlotList, C_GetSlotlnfo, C_GetTokenlnfo, C_WaitFor SlotEvent,
C_GetMechanismList, C_GetMechanisminfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following values:

* CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

» CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

e CKR_SESSION CLOSED: The session was closed during the execution of the
function. Note that, as stated in Section the behavior of Cryptoki is undefined if
multiple threads of an application attempt to access a common Cryptoki session

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 127 |

simultaneously. Therefore, there is actually no guarantee that a function invocation
could ever return the value CKR_SESSION_CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, eg., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucia (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.3 Cryptoki function return valuesfor functionsthat use atoken

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_Getinfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotlnfo, or C_WaitFor SlotEvent) can return any of the following values:

» CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform
the requested function.

» CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot.
This error code can be returned by more than just the functions mentioned above; in
particular, it ispossible for C_GetSlotlnfo to return CKR_DEVICE_ERROR.

» CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time
that the function was invoked.

» CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, eg., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function. It
is:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 128 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section [11.17). If the callback
returns the value CKR_CANCEL, then the function aborts and returns
CKR_FUNCTION_CANCELED.

11.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application developers who are not
using their own threading model. They are:

« CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such afunction will successfully detect bad mutex objects and return this value.

e CKR_MUTEX_NOT_LOCKED: Thiserror code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was
not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of afunction, then the function may return any applicable error code.

» CKR_ARGUMENTS BAD: Thisis arather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

* CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section [10.1]for more information.

» CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive or
unextractable.

» CKR_ATTRIBUTE_TYPE_ INVALID: An invalid attribute type was specified in a
template. See Section for more information.

e CKR_ATTRIBUTE VALUE INVALID: An invdid value was specified for a
particular attribute in atemplate. See Section[10.1] for more information.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 129 |

e CKR_BUFFER TOO SMALL: The output of the function is too large to fit in the
supplied buffer.

» CKR_CANT_LOCK: This value can only be returned by C_Initialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

* CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has already been initidized (by a
previous call to C_lInitialize which did not have a matching C_Finalize call).

* CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function
other than C_Initialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a cal to
C_Initialize.

e CKR_DATA INVALID: The plaintext input data to a cryptographic operation is
invalid. At present, this error only applies to the CKM_RSA_X_509 mechanism; it
is returned when plaintext is supplied that has the same number of bytes as the RSA
modulus and is numerically at least as large as the modulus. This return value has
lower priority than CKR_DATA_LEN_RANGE.

» CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the
plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA_INVALID.

* CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED_DATA_LEN_RANGE.

* CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

e CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR_CANCEL (see CKR_CANCEL).

e CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in

parallel in the specified session. Thisis alegacy error code which is only returned by
the legacy functions C_GetFunctionStatus and C_CancelFunction.

Copyright © 1994-1999-2000 RSA Security Inc. |

130 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki APl should have a
“stub” in the library; this stub should simply return the vaue
CKR_FUNCTION_NOT_SUPPORTED.

* CKR_INFORMATION_SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

» CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
origina saved session.

» CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key's attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). Thisreturn
value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

* CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
We reiterate here that O is never avalid key handle.

e CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestK ey.
It indicates that the value of the specified key cannot be digested for some reason
(perhaps the key isn’t a secret key, or perhaps the token ssimply can’'t digest this kind
of key).

» CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It
indicates that the session state cannot be restored because C_SetOperationState
needs to be supplied with one or more keys that were being used in the original saved
session.

* CKR_KEY_NOT_NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

» CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does
not have its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the
token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_KEY_UNEXTRACTABLE.

Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 131 |

« CKR KEY PARAMS INVALID: Invaid or unsupported domain parameters were
supplied to the function. Which representation methods of domain parameters are
supported by a given mechanism can vary from token to token.

» CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actualy do it because the supplied key‘s size is outside the range of key sizes that it
can handle.

* CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key
to use with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

* CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’'t be
wrapped because its CKA_UNEXTRACTABLE attribute is set to TRUE. Compare
with CKR_KEY_NOT_WRAPPABLE.

* CKR_MECHANISM_INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

« CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

* CKR_NEED TO CREATE THREADS. This vaue can only be returned by
C_Initialize. Itisreturned when two conditions hold:

1. The application called C_lInitialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

2. The library cannot function properly without being able to spawn new threads
in the above fashion.

* CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is
returned when C_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

e CKR_OBJECT _HANDLE INVALID: The specified object handle is not valid. We
reiterate here that O is never avalid object handle.

» CKR_OPERATION_ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from

Copyright © 1994-1999-2000 RSA Security Inc. |

| 132 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

activating an encryption operation with C_Encryptlnit. Or, an active digesting
operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’'t support simultaneous dual
cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

* CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having called C_Encryptlnit first to activate an
encryption operation.

* CKR_PIN_EXPIRED: The specified PIN has expired, and eannet—be—used—to
adthenticate-the-user-to-the-tokenthe requested operation cannot be carried out unless
C SetPIN iscdled to change the PIN value. Whether or not the normal user’s PIN on
atoken ever expires varies from token to token.

e CKR_PIN_INCORRECT: The specified PIN isincorrect, i.e., does not match the PIN
stored on the token. More generaly-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

* CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

e CKR_PIN_LEN RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

e CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

» CKR_RANDOM_NO_RNG: This vaue can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random
number generator. This return vaue has higher priority than
CKR_RANDOM_SEED_NOT_SUPPORTED.

* CKR_RANDOM_SEED NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not
accept seeding from an application. This return value has lower priority than
CKR_RANDOM_NO_RNG.

* CKR_SAVED_STATE_INVALID: This vaue can only be returned by

C_SetOperationState. It indicates that the supplied saved cryptographic operations
stateisinvalid, and so it cannot be restored to the specified session.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 133 |

e CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too
many sessions aready open, or because the token has too many read/write sessions
aready open.

» CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It
indicates that a session with the token is already open, and so the token cannot be
initialized.

* CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support parallel sessions. Thisis alegacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel Sessions.
CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is caled in a
particular [deprecated] way.

e CKR_SESSION _READ_ONLY': The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_TOKEN_WRITE_PROTECTED.

* CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

+ CKR_SESSION_READ WRITE_SO EXISTS: A read/write SO session aready
exists, and so a read-only session cannot be opened.

» CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

* CKR_SIGNATURE_INVALID: The provided signature/MAC isinvalid. Thisreturn
value has lower priority than CKR_SIGNATURE_LEN_RANGE.

e CKR_SLOT_ID_INVALID: The specified dot ID is not valid.

» CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is ssmply unable to save
the current state). This return value has lower priority than
CKR_OPERATION_NOT _INITIALIZED.

» CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section for more
information.

» CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section [10.1]for more information.

Copyright © 1994-1999-2000 RSA Security Inc. |

134 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

» CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the dot.

» CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

* CKR_UNWRAPPING KEY_HANDLE INVALID: This value can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key is not valid.

« CKR_UNWRAPPING KEY_SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key’s size is outside the range of key sizes that it can handle.

* CKR_UNWRAPPING_KEY_TYPE INCONSISTENT: This value can only be
returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

* CKR_USER ALREADY_LOGGED_IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,
because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

+ CKR_USER ANOTHER ALREADY_LOGGED IN: This value can only be
returned by C_Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

* CKR_USER _NOT_LOGGED_IN: The desired action cannot be performed because
the appropriate user (or an appropriate user) is not logged in. One example is that a
session cannot be logged out unlessit islogged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A fina example is that cryptographic operations on certain
tokens cannot be performed unless the normal user islogged in.

e CKR_USER PIN_NOT_INITIALIZED: This value can only be returned by
C _Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

* CKR_USER TOO_MANY_TYPES: An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. Itis

Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 135 |

not required to, however. Only if the simultaneous distinct users cannot be supported
does C_L ogin have to return this value. Note that this error code generalizes to true
multi-user tokens.

« CKR_USER TYPE_INVALID: An invaid vaue was specified as a
CK_USER_TYPE. Vaidtypesare CKU_ SO and CKU_USER.

* CKR_WRAPPED_KEY_INVALID: This vaue can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If acal is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return
value has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

« CKR WRAPPED KEY_LEN RANGE: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR_WRAPPED_KEY_INVALID.

« CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another
key isnot valid.

» CKR_WRAPPING _KEY_SIZE RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied wrapping key’s size is outside the range of key sizes that it can
handle.

» CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 Moreon relative prioritiesof Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section (other than
CKR_OK) take precedence over error codes from Section which take precedence
over error codes from Section [11.1.3] which take precedence over error codes from
Section One minor implication of this is that functions that use a session handle
(i.e., most functions!) never return the error code CKR_TOKEN_NOT_PRESENT (they
return CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 136 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.1.8 Error code*gotchas’

Hereisashort list of afew particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections [11.1.2/ and [11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between
CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED KEY_LEN_RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section m it can be difficult for a Cryptoki library
developer to know which of CKR ATTRIBUTE VALUE INVALID,
CKR_TEMPLATE INCOMPLETE, or CKR_TEMPLATE INCONSISTENT to
return. When possible, it is recommended that application developers be generousin
their interpretations of these error codes.

11.2 Conventionsfor functionsreturning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to alocation which will hold the length of the output produced (say pulBufLen). There
are two ways for an application to call such afunction:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR_OK is returned by
the function.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 137 |

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR_OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER_TOO_SMALL isreturned. In either case, *pulBufLen
is set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should aways
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DESis 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a O-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return O
bytes of plaintext. If asingle additional byte of ciphertext is supplied by a subsequent call
to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of Section [L1] we enumerate the various functions defined in Cryptoki.
Most functions will be shown in use in at least one sample code snippet. For the sake of
brevity, sample code will frequently be somewhat incomplete. In particular, sample code
will generally ignore possible error returns from C library functions, and also will not
deal with Cryptoki error returnsin arealistic fashion.

11.4 General-purposefunctions

Cryptoki provides the following general-purpose functions:

¢ C _Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR plnitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR
or pointsto a CK_C_INITIALIZE_ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generally supply the value

Copyright © 1994-1999-2000 RSA Security Inc. |

| 138 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

NULL_PTR to C_lInitialize (the consequences of supplying this value will be explained
below).

If plnitArgs is non-NULL_PTR, C_Initialize should cast it to a
CK_C_INITIALIZE_ARGS PTR and then dereference the resulting pointer to obtain
the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL_PTR,; if it's not, then C_lInitialize should return with the
value CKR_ARGUMENTS BAD.

If the CKF_LIBRARY_CANT_CREATE_OS THREADS flag in the flagsfield is set,
that indicates that application threads which are executing calls to the Cryptoki library are
not permitted to use the native operation system calls to spawn off new threads. In other
words, the library’s code may not create its own threads. If the library is unable to
function properly under this restriction, C_Initialize should return with the value
CKR_NEED_TO_CREATE_THREADS.

A cdl to C_Initialize specifies one of four different ways to support multi-threaded
access via the value of the CKF_OS LOCKING_OK flag in the flags field and the
values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer
fields:

1. If the flag isn’t set, and the function pointer fields aren’'t supplied (i.e., they al have
the vadue NULL_PTR), that means that the application won't be accessing the
Cryptoki library from multiple threads simultaneously.

2. If theflagis set, and the function pointer fields aren’'t supplied (i.e., they al have the
value NULL_PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_CANT_LOCK.

3. Iftheflagisn't set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_Initialize should return with the value CKR_CANT _LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR vaues), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return
with the value CKR_CANT_LOCK.

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 139 |

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ARGUMENTS _BAD.

A cal to C_Initialize with pInitArgs set to NULL_PTR is treated like a cal to
C_Initialize with pInitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL_PTR, and hasthe flags field set to O.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typicaly, it might cause Cryptoki to initialize its internal memory buffers, or any other
resourcesit requires.

If severa applications are using Cryptoki, each one should call C_Initialize. Every call
to C_lInitialize should (eventually) be succeeded by a single call to C_Finalize. See
Section[6.5 for more details.

Return values: CKR_ARGUMENTS _BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI|_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_NEED_TO CREATE_THREADS, CKR_OK.

Example: see C_Getlnfo.

¢ C Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C Finali ze)(
CK_ VA D _PTR pReserved
);

C_Finalizeis called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions; for this version, it should be set to NULL_PTR (if
C_Finalize is called with a non-NULL_PTR value for pReserved, it should return the
value CKR_ARGUMENTS BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call to C_Finalize should be preceded by a single cal to C_Initialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section[6.5 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread

Copyright © 1994-1999-2000 RSA Security Inc. |

| 140 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

becomes unblocked and returns the value CKR_CRYPTOKI_NOT _INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS _BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example: see C_Getlnfo.

¢ C _GetlInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C GetInfo)(
CK_I NFO_PTR pl nfo

)E

C_Getlnfo returns general information about Cryptoki. plnfo points to the location that
receives the information.

Return values;: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example:

CK_ I NFO i nf o;
CK RV rv;
CK_C INTIALI ZE ARGS I nitArgs;

I nitArgs. CreateMitex = &WCreat eMut ex;

I nit Args. DestroyMiut ex = &WDest royMit ex;
I nitArgs. LockMutex = &WLockMut ex;

I ni t Args. Unl ockMut ex = &WUnl ockMut ex;
InitArgs.flags = CKF_OS _LOCKI NG CK;

I nitArgs. pReserved = NULL_PTR

rv = Clnitialize((CK VO D _PTR) &l nitArgs);
assert(rv == CKR_(X);

rv = C Getlnfo(& nfo);
assert(rv == CKR_X);

if(info.version.mgjor == 2) {
/* Do lots of interesting cryptographic things with the
t oken */

}
rv = C Finalize(NULL_PTR);

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 141 |

assert(rv == CKR_X);

¢ C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

)|

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’'s
CK_FUNCTION_LIST structure, which in turn contains function pointers for all the
Cryptoki API routines in the library. The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether
or not thisis the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_lInitialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneoudly.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:
CK_FUNCTI ON_LI ST_PTR pFuncti onlLi st ;
CK Clnitialize pClnitialize;
CK RV rv;
[* 1t’s OKto call C_GetFunctionList before calling
Clnitialize */
rv = C_Get Functi onLi st (&pFuncti onLi st);
assert(rv == CKR_(X);
pC Initialize = pFunctionList -> C Initialize;

[* Call the Clnitialize function in the library */
rv = (*pC_lnitialize)(NULL_PTR);

11.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

s C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot Li st)(
CK BBOOL t okenPresent,
CK_SLOT_|I D_PTR pSl ot Li st
CK_ULONG_PTR pul Count

);

Copyright © 1994-1999-2000 RSA Security Inc. |

| 142 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_GetSlotList is used to obtain a list of dlots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (TRUE), or all
slots (FALSE); pulCount pointsto the location that receives the number of slots.

There are two ways for an application to call C_GetSlotL ist:

1. If pSotListis NULL_PTR, then al that C_GetSlotList does is return (in * pul Count)
the number of dlots, without actually returning a list of slots. The contents of the
buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case,
and the call returns the value CKR_OK.

2. If pSotList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSotList. If that buffer is large
enough to hold the list of dots, then the list is returned in it, and CKR_OK is
returned. If not, then the call to C_GetSlotList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the
number of dots.

Because C_GetSlotList does not alocate any space of its own, an application will often
call C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of al dots with a token present, then the number of such dots can
(unfortunately) change between when the application asks for how many such slots there
are and when the application asks for the slots themselves). However, multiple cals to
C_GetSlotList are by no means required.

All dlots which C_GetSlotList reports must be able to be queried as valid dlots by
C_GetSlotInfo. Furthermore, the set of sots accessible through a Cryptoki library is
fixed at the time that C_lInitialize is called. If an application calls C_Initialize and
C_GetSlotList, and then the user hooks up a new hardware device, that device cannot
suddenly appear as a new dlot if C_GetSlotList is called again. To recognize the new
device, C_Initialize needs to be caled again (and to be able to call C_Initialize
successfully, C_Finalize needs to be called first). Even if C_lInitialize is successfully
called, it may or may not be the case that the new device will then be successfully
recognized. On some platforms, it may be necessary to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER _TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:
CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK _SLOT_|I D PTR pSl otList, pSlotWthTokenLi st;
CK RV rv;

[* CGet list of all slots */
rv = C Get SlotlList(FALSE, NULL_PTR, &ul Sl ot Count);

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 143 |

if (rv == CKR_.OK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_ID));
C Get Sl ot Li st (FALSE, pSlotlList, &ulSlotCount);
rv == CKR_OK) {
Now use that list of all slots */

rv
i f

|

/

}

free(pSl ot List);
}

/[* Get list of all slots ith a token present */
pSl ot Wt hTokenLi st = (CK_SLOT_I D PTR) mal |l oc(0);
ul Sl ot Wt hTokenCoun = 0;
while (1) {
rv = C Get SlotlList(
TRUE, pSlotWthTokenList, ul Sl otWthTokenCount);
if (rv != CKR_BUFFER _TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == CKR_.OK) {
/* Now use that list of all slots with a token present
*/

}
free(pSl ot Wt hTokenlLi st);

¢ C _GeSlotinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C CGet Sl ot I nfo)(
CK SLOT_I D slotlD,
CK_SLOT_|I NFO _PTR plnfo

)E

C_GetSlotlnfo obtains information about a particular slot in the system. slotID isthe ID
of the slot; plnfo points to the location that receives the slot information.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 144 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenlnfo.

¢ C _GetTokenlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Tokenl nf 0) (
CK_SLOT_ID slotlD,
CK_TOKEN_I NFO_PTR plnfo

)|

C_GetTokenlnfo obtains information about a particular token in the system. dotID is
the ID of the token’ s slot; plnfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example:

CK_ULONG ul Count ;
CK_SLOT_|I D PTR pSl ot Li st;
CK_SLOT_I NFO sl ot | nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_ RV ryv;

rv = C GetSlotList(FALSE, NULL_PTR, &ul Count):
if ((rv == CKR.K) && (ul Count > 0)) {
pSl ot List = (CK_SLOT_I D_PTR)
mal | oc(ul Count *si zeof (CK_SLOT_ID));
rv = C _Get SlotList(FALSE, pSlotList, &ul Count);
assert(rv == CKR_(X);

[* CGet slot information for first slot */
rv = C GetSlotInfo(pSlotList[0], &slotlnfo);
assert(rv == CKR_(XK);

/* Get token information for first slot */

rv = C_Get Tokenl nfo(pSlotList[0], &t okenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) ({

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 145 |

i‘ree(pSl ot List);

¢ C_WaitForSotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wi t For Sl ot Event) (
CK_FLAGS fl ags,
CK_SLOT_I D_PTR pSl ot
CK_ VA D _PTR pReserved

);

C_WaitFor SlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitFor SlotEvent call blocks (i.e., waits
for a dot event to occur); pSot points to a location which will receive the ID of the ot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BL OCK:

#def i ne CKF_DONT_BLOCK 1
Internally, each Cryptoki application has a flag for each dot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and some gdlot’s event flag is set, then that event flag is cleared, and the call
returns with the ID of that slot in the location pointed to by pSot. If more than one slot’s
event flag is set at the time of the call, one such dot is chosen by the library to have its
event flag cleared and to haveits dot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and no dlot’'s event flag is set, then the cal returns with the value
CKR_NO_EVENT. In this case, the contents of the location pointed to by pSot when
C_WaitFor SlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags
argument, then the call behaves as above, except that it will block. That is, if no dot’s
event flag is set at the time of the call, C_WaitFor SlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application has a C_WaitFor SlotEvent call
blocking when another thread of that application cals C_Finalize, the
C_WaitFor SlotEvent call returns with the value
CKR_CRYPTOKI_NOT _INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSotEvent is exceptional in that the

Copyright © 1994-1999-2000 RSA Security Inc. |

| 146 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous callsto C_WaitFor SlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_NO_EVENT, CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_ID slotlD
CK_SLOT_I NFO sl ot | nf o;

)* Bl ock and wait for a slot event */
rv = C WaitForSlotEvent(flags, &slotlD, NULL_PTR);
assert(rv == CKR_(X);

/* See what’s up with that slot */

rv = C GetSlotInfo(slotlD, &slotlnfo);
assert(rv == CKR_(X);

¢ C_GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani smLi st) (
CK_SLOT_I D sl ot D,
CK_MECHANI SM TYPE_PTR pMechani snii st ,
CK_ULONG_PTR pul Count

)|

C_GetMechanismList is used to obtain alist of mechanism types supported by a token.
SotID is the ID of the token's slot; pulCount points to the location that receives the
number of mechanisms.

There are two ways for an application to call C_GetM echanismL ist:

1. If pMechanismList is NULL_PTR, then all that C_GetM echanismList does s return
(in *pulCount) the number of mechanisms, without actualy returning a list of
mechanisms. The contents of *pulCount on entry to C_GetM echanismList has no
meaning in this case, and the call returns the value CKR_OK.

2. If pMechanismList isnot NULL_PTR, then * pulCount must contain the size (in terms
of CK_MECHANISM _TYPE eements) of the buffer pointed to by
pMechanismList. If that buffer is large enough to hold the list of mechanisms, then

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 147 |

the list is returned in it, and CKR_OK is returned. If not, then the cal to
C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value * pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI|_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example:

CK_SLOT_I D sl ot D

CK_ULONG ul Count ;

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK RV rv;

rv = C_Get Mechani sniList(slotl D, NULL_PTR, &ul Count);
if ((rv == CKR.K) && (ul Count > 0)) {
pMechani snLi st =
(CK_MECHANI SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani snii st (slotlD, pMechanisniList,
&ul Count) ;
if (rv == CKR_X) {

}
free(pMechani snii st);

Copyright © 1994-1999-2000 RSA Security Inc. |

| 148 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_GetMechanisminfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani smi nf o) (
CK_SLOT_ID slotlD,
CK_MECHANI SM TYPE t ype,
CK_MECHANI SM | NFO _PTR pl nf o

)

C_GetMechanisminfo obtains information about a particular mechanism possibly
supported by a token. sotID isthe ID of the token's dlot; type is the type of mechanism;
plnfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR_SLOT ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS BAD.

Example:

CK_SLOT_I D slotl D
CK_MECHANI SM | NFO i nf o;
CK RV rv;

)* Get information about the CKM MD2 nechanismfor this
t oken */

C _Get Mechani sm nfo(slotI D, CKM MD2, & nfo);

rv == CKR_(X)

if (info.flags & CKF_DI GEST) {

rv
if

—

}
}

¢ C_InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_I nit Token) (
CK_SLOT_ID slotlD,
CK_CHAR_PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR PTR pLabel
);
C_InitToken initializes a token. dotID is the ID of the token’'s slot; pPin points to the
SO’s initial PIN (which need not be null-terminated); ulPinLen is the length in bytes of

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 149 |

the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated).

If the token has not been initidlized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from caling
C_InitToken. If set, the token will be reinitialized, and the client must supply the
existing SO password in pPin.

When atoken isinitialized, all objects that can be destroyed are destroyed (i.e., al except
for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user’s PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session
with it; when acal to C_InitToken is made under such circumstances, the cal fails with
error CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is
called that some other application does have an open session with the token, but Cryptoki
cannot detect this, because it cannot detect anything about other applications using the
token. If thisisthe case, then the consequences of the C_I nitToken call are undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In
these situations, an initialization mechanism outside the scope of Cryptoki must be
employed. The definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,

Copyright © 1994-1999-2000 RSA Security Inc. |

| 150 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS BAD.

Example:
CK SLOT_ID slotlD

CK_CHAR PTR pin = “M/PIN’:
CK_UTFSCHAR | abel [32] :

CK RV rv;

menset (1 abel, * ', sizeof(label)):

mencpy(l abel, “My first token”, strlien(“M first
t oken”));

rv = CInitToken(slotlD, pin, strlen(pin), |abel);
if (rv == CKR_.OK) {

}
¢ C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C InitPIN)(
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_InitPIN initializes the norma user's PIN. hSession is the session’s handle; pPin
points to the normal user’s PIN; ulPinLen isthe length in bytes of the PIN.

C_InitPIN can only be called in the “R/W SO Functions’ state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT_LOGGED _IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag inits CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initiadize the norma user's PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL_PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 151 |

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitPIN can be used to initialize the normal user’s token
access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,

CKR_USER _NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_CHAR newPin[]= {“NewPI N'};
CK RV rv;

rv = C_InitPlIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_X) {

}
¢ C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C SetPI'N) (
CK_SESSI ON_ HANDLE hSessi on,
CK_CHAR_PTR pd dPi n,

CK_ULONG ul d dLen,
CK_CHAR_PTR pNewPi n,
CK_ULONG ul NewLen
);

PIN if the session is not logged in. hSession is the session’s handle; pOIdPin points to
the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new
PIN; ulNewLen isthe length in bytes of the new PIN.

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU USER ’

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions’
state, or “R/W User Functions’ state. An attempt to call it from a session in any other
state failswith error CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path’, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flaginits CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on atoken with such a protected authentication

Copyright © 1994-1999-2000 RSA Security Inc. |

| 152 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

path, the pOldPin and pNewPin parametersto C_SetPIN should be NULL_PTR. During
the execution of C_SetPIN, the current user will enter the old PIN and the new PIN
through the protected authentication path. It is not specified how the PINpad should be
used to enter two PINSs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR ol dPi n[] {“AdPIN};
CK_CHAR newPi n[] {“NewPI N' };
CK RV rv;

rv = C_Set Pl N
hSessi on, ol dPin, sizeof (ol dPin), newPin,
si zeof (newPi n)) ;
if (rv == CKR_.OK) {

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 153 |

11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select atoken.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the
token.

3. Cdl C_Login to log the user into the token. Since all sessions an application has
with atoken have a shared login state, C_L ogin only needs to be called for one of the
Sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessionsto close al the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is aso possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

¢ C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_OpenSessi on) (
CK_SLOT I D slotlD,
CK_FLAGS f I ags,
CK_VA D_PTR pAppl i cation,
CK_NOTI FY Notify,
CK_SESSI ON_HANDLE _PTR phSessi on

)

C_OpenSession opens a session between an application and a token in a particular slot.
dotID is the dot’s ID; flags indicates the type of session; pApplication is an application-
defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section ; phSession points to the location that
receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical
OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy
reasons, the CKF_SERIAL_SESSION bit must aways be set; if a cal to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_PARALLEL_NOT_SUPPORTED.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 154 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

There may be a limit on the number of concurrent sessions an application may have with
the token, which may depend on whether the session is “read-only” or “read/write’. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application calling C_OpenSession aready has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section[6.6.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as the Notify parameter. See Section for more information about
application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ WRITE_SO EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS BAD.

Example: see C_CloseSession.

¢ C CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseSessi on) (
CK_SESSI ON_HANDLE hSessi on

)

C_CloseSession closes a session between an application and a token. hSession is the
session’s handle.

When a session is closed, al session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections

.6.51.6.7for more details).

If this function is successful and it closes the last session between the application and the
token, the login state of the token for the application returns to public sessions. Any new
sessions to the token opened by the application will be either R/O Public or R/W Public
sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ gjected” from its reader (if this capability exists).

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 155 |

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION _CLOSED is an error return. It actually indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made to C_CloseSession to close this particular session, and that call finished executing
first. Such uses of sessions are abad idea, and Cryptoki makes little promise of what will
occur in general if an application indulgesin this sort of behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT_I D sl ot D

CK_BYTE application;
CK_NOTI FY MyNot i fy;
CK_SESSI ON_ HANDLE hSessi on;
CK_ RV ryv;

application = 17,
MyNoti fy = &Encrypti onSessi onCal | back;
rv = C_OpenSessi on(
slot1 D, CKF_RW SESSI ON, (CK_ VA D _PTR) &application,
MyNot i fy,
&hSessi on) ;
if (rv == CKR_X) {

C_CI oseSessi on(hSessi on) ;

}
¢ C CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _d oseAl | Sessi ons) (
CK SLOT_ID slotID

)|

C_CloseAllSessions closes al sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed
automatically.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 156 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After successful execution of this function, the login state of the token for the application
returns to public sessions. Any new sessions to the token opened by the application will
be either R/O Public or R/W Public sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ gjected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT.

Example:

CK SLOT_ID slotlD
CK RV rv;

-rv = C O oseAll Sessions(slotID);

¢ C _GetSessioninfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cet Sessi onl nf o) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_I NFO _PTR pl nfo

)

C_GetSessionl nfo obtains information about a session. hSession is the session’s handle;
plnfo points to the location that receives the session information.

Return values: CKR_CRY PTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:
CK_SESSI ON_ HANDLE hSessi on;

CK_SESSI ON_|I NFO i nf o;
CK RV rv;

-rv = C _Get Sessi onl nf o(hSessi on, & nfo);
if (rv == CKR_X) {

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 157 |

if (info.state == CKS_RW USER FUNCTI ONS) {

}

¢ C _GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C CGetQperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQOperationSt at e,
CK_ULONG _PTR pul Operati onSt at eLen

)|

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the session’s handle; pOperationSate points to
the location that receives the state; pulOperationStateLen points to the location that
receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention
described in Section on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from
token to token; however, this state is what is provided as input to C_SetOperationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the
session is using the CKM_SHA_1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts: the state of SHA-1's 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at alater time.

Consider next a session which is performing an encryption operation with DES (a block
cipher with ablock size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session
is using the CKM_DES _CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and

Copyright © 1994-1999-2000 RSA Security Inc. |

| 158 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES key
being used for encryption (see C_SetOperationState for more information on whether or
not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain al the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a session which does not
currently have some active saveable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some lega combination of two of these) should fail with the error
CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of
various reasons (certain necessary state information and/or key information can't leave
the token, for example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI|_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE,
CKR_ARGUMENTS BAD.

Example: see C_SetOperationState.

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C _Set Operati onSt at e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pQOper ati onSt at e,
CK_ULONG ul Qper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

)

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained with C_GetOperationState. hSession is the session’s handle;
pOperationSate points to the location holding the saved state; ulOperationSatelen holds
the length of the saved state; hEncryptionKey holds a handle to the key which will be

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 159 |

used for an ongoing encryption or decryption operation in the restored session (or O if no
encryption or decryption key is needed, either because no such operation is ongoing in the
stored session or because all the necessary key information is present in the saved state);
hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or O if no such key is
needed, either because no such operation is ongoing in the stored session or because al
the necessary key information is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it
is being restored to (the “destination session”). However, the source session and
destination sesson should have a common sesson state (eg.,
CKS_ RW_USER _FUNCTIONS), and should be with a common token. Thereis also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determineis not valid saved state (or is cryptographic operations state from a
session with a different session state, or is cryptographic operations state from a different
token), it failswith the error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the hEncryptionkKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If the key in
use for the operation is saved in the state, then it can be supplied in the hEncryptionKey
argument, but thisis not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the state, then it
must be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is
not, then C_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key
in use for the operation is saved in the state, then it can be supplied in the
hAuthenti cationKey argument, but thisis not required.

If anirrelevant key is supplied to C_SetOperationState cal (e.g., a nonzero key handle
is submitted in the hEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_KEY_NOT_NEEDED.

If akey issupplied as an argument to C_SetOperationState, and C_SetOper ationState
can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), then C_SetOperationState fails
with the error CKR_KEY_CHANGED.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 160 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

An application can look a the CKF_RESTORE_KEY_NOT_NEEDED flag in the
flags field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles to C_SetOperationState cals. If thisflag is TRUE, then a
call to C_SetOperationState never needs a key handle to be supplied to it. If thisflagis
FALSE, then at least some of the time, C_SetOperationState requires a key handle, and
so the application should probably always pass in any relevant key handles when
restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session
even if that sesson has active cryptographic or object search operations when
C_SetOperationStateis called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_CHANGED,
CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE dat alf] {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2?[] {0x02, 0x04, 0x08};

CK_BYTE dat a3[] {0x10, OxOF, OxOE, 0x0D, 0x0C};
CK _BYTE pDi gest|[20];

CK_ULONG ul Di gest Len;

CK_ RV ryv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMchanisn);
assert(rv == CKR_(X);

[* Start hashing */
rv = C DigestUpdate(hSession, datal, sizeof(datal));
assert(rv == CKR_(X);

/* Find out how big the state m ght be */

rv = C Get QperationState(hSession, NULL PTR,
&ul St at eLen) ;

assert(rv == CKR_X);

/* Allocate sone nenory and then get the state */

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 161 |

pState = (CK BYTE PTR) mal | oc(ul StatelLen);
rv = C GetOperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C _DigestUpdate(hSession, data2, sizeof(data2));
assert(rv == CKR_(XK);

/* Restore state. No key handl es needed */

rv = C_Set OperationState(hSession, pState, ul StatelLen, O,
0);

assert(rv == CKR_X);

/* Continue hashing fromwhere we saved state */
rv = C_Di gest Updat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_X);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDigest);
rv = C_DigestFinal (hSession, pDi gest, &ul D gestlLen);
if (rv == CKR_X) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}

¢ C Login

CK_DEFI NE_FUNCTI ON(CK_RV, C _Logi n) (
CK_SESSI ON_ HANDLE hSessi on,
CK_USER TYPE user Type,
CK_CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_Login logs auser into atoken. hSession is a session handle; user Type is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN.

Depending on the user type, if the call succeeds, each of the application’s sessions will
enter either the “R/W SO Functions’ state, the “R/W User Functions’ state, or the “R/O
User Functions’ state.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the sot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected

Copyright © 1994-1999-2000 RSA Security Inc. |

| 162 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

authentication path, the pPin parameter to C_Login should be NULL_PTR. When
C_Login returns, whatever authentication method supported by the token will have been
performed; a return vaue of CKR_OK means that the user was successfully
authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s
session, and then C_L ogin is successfully executed by that application, it may or may not
be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_L ogin has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section [6.6.7). An attempt to do this will result
in the error code CKR_SESSION_READ_ONLY_EXISTS.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,

| CKR_OK, CKR-PIN-EXPIRED, CKR_PIN_INCORRECT, CKR_PIN_LOCKED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY_EXISTS, CKR_USER_ALREADY_LOGGED _IN,
CKR_USER _ANOTHER _ALREADY_LOGGED IN,
CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TOO _MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_L ogout.

¢ C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_ HANDLE hSessi on
);

C_L ogout logs a user out from atoken. hSession isthe session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions
will enter either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, all private session objects from sessions belonging to the
application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s
session, and then C_L ogout is successfully executed by that application, it may or may
not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 163 |

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK CHAR userPIN] = {“M/PIN’};
CK RV rv;
rv = C Logi n(hSession, CKU USER, userPIN,

si zeof (userPIN));
if (rv == CKR OK) {

-rv == C_Logout (hSessi on);
if (rv == CKR_X) {

}
}

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions
provided specifically for managing key objects are described in Section|11.14}

¢ C CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C CreateObject)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phQbj ect
);

C_CreateObject creates anew object. hSession is the session’ s handle; pTemplate points
to the object’s template; ulCount is the number of attributes in the template; phObject
points to the location that receives the new object’s handle.

If acall to C_CreateObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 164 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to FALSE.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user islogged in.

| Return values; CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

| CKR_KEY_PARAMS INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN,CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_OBJECT_CLASS
dat aCl ass = CKO_DATA,
certifi cat eCl ass = CKO _CERTI FI CATE,
keyC ass = CKO _PUBLI C KEY;
CK_KEY _ TYPE keyType = CKK RSA,;

CK_CHAR application[] = {“ I\/y Application”};
CK_BYTE dat aVal ue[] = {

CK _BYTE subj ect[] {. }

CK_BYTE id[] = {...}

CK_BYTE certificateValue[] = {...};
CK_BYTE nmodul us[] = {...};

CK_BYTE exponent[] = {...};
CK BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &dataC ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof (dataVval ue)}

CK ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass,
si zeof (certificated ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 165 |

¢

{CKA VALUE, certificateVal ue, sizeof(certificateValue)}

CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, &true, sizeof(true)},
{CKA MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

};
CK RV rv;

)* Create a data object */
rv = C Createbj ect (hSessi on, &dataTenplate, 4, &hData);
if (rv == CKR_.OK) {

}

/* Create a certificate object */
rv = C _Creat ehj ect (

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_X) {

}

/* Create an RSA public key object */
rv = C Create(bj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_X) {

}
C_CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyQbj ect) (

)E

CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count ,
CK_OBJECT_HANDLE PTR phNew(bj ect

Copyright © 1994-1999-2000 RSA Security Inc. |

| 166 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to the template for the
new object; ulCount is the number of attributes in the template; phNewObject points to
the location that receives the handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key's CKA_EXTRACTABLE
attribute may be changed from TRUE to FALSE, but not the other way around. If this
change is made, the new key's CKA_NEVER_EXTRACTABLE attribute will have the
vaue FALSE. Similarly, the template may specify that the new key's
CKA_SENSITIVE attribute be TRUE; the new key will have the same value for its
CKA_ALWAYS SENSITIVE attribute as the original key). It may also specify new
values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

If acal to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user islogged in.

| Return values; CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

| CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED _IN;
CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyCd ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] = {...};
CK BYTE fal se = FALSE;
CK BYTE true = TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

| Copyright © 1994-1999-2000 RSA Security Inc.

11239. FUNCTIONS

{CKA TOKEN, &false, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, si zeof (keyVal ue)}

CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)}

};
CK RV rv;

/* Create a DES secret key session object */

rv = C _Create(bj ect (hSession, &keyTenplate, 5, &hKey);

if (rv == CKR_.OK) {
/* Create a copy which is a token object */
rv = C CopyObj ect (hSessi on, hKey, ©Tenpl at e,
&hNewKey) ;

}

¢ C _DestroyObject

167 |

CK_DEFI NE_FUNCTI ON(CK_RV, C DestroyObj ect) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hQObj ect

)|

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is

the object’ s handle.

Only session objects can be destroyed during a read-only session. Only public objects

can be destroyed unless the normal user islogged in.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 168 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C _GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Obj ect Si ze) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ULONG _PTR pul Si ze
);

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle;
hObject is the object’ s handle; pul S ze points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’ ssizeis. Intuitively, itis
some measure of how much token memory the object takes up. If an application deletes
(say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token's CK_TOKEN_INFO structure increases by
approximately S.

| Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID;
CKR-ARGUMENTS-BAD.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_OBJECT _CLASS dat aCl ass = CKO _DATA,
CK_CHAR application[] = {“My Application”};
CK_BYTE dat aval ue[] = I
CK_BYTE value[] = {...
CK BYTE true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &dataC ass, sizeof(datad ass)},

{CKA TOKEN, &true, sizeof(true)},

{ CKA_APPLI CATI ON, application, sizeof(application)},

{CKA VALUE, val ue, sizeof(value)}

h\r-‘r-"—ul

CK_ULONG ul Si ze;
CK RV rv;

-rv = C Create(bj ect (hSession, & enplate, 4, & bject);
if (rv == CKR_X) {
rv = C _Get Obj ectSi ze(hSessi on, hCbject, &ulSize);

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 169 |

if (rv !'= CKR | NFORMATI ON SENSI Tl VE) {

}
rv = C DestroyObj ect (hSessi on, hQbject);

}
¢ C_GetAttributevalue

CK_DEFI NE_FUNCTI ON(CK_RV, C CGetAttributeVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession
isthe session’s handle; hObject is the object’ s handle; pTemplate points to atemplate that
specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object
cannot be revealed because the object is sensitive or unextractable, then the
ulValuelLen field in that triple is modified to hold the value -1 (i.e., when it is cast to a
CK_LONG, it holds-1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValuelLen field in that triple is modified to hold
the value -1.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer
located at pValue, and the ulValuelLen field is modified to hold the exact length of the
attribute.

5. Otherwise, the ulVValuelLen field is modified to hold the value -1.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 170 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. |If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5
applies to any of the requested attributes, then the call should return the value
CKR_BUFFER_TOO _SMALL. As usua, if more than one of these error codes is
applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER TOO SMALL do not
denote true errors for C_GetAttributeValue. If acall to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every attribute in
the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributevalue.

| Return values; CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER _TOO SMALL,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenmpl ate[] = {
{CKA_MODULUS, NULL_PTR, 0},
{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

};
CK RV rv;

rv = C GetAttributeVval ue(hSession, hQhject, &t enplate,
2);
if (rv == CKR_.OK) {
pModul us = (CK _BYTE_PTR)
mal | oc(tenpl at e[O] . ul Val ueLen);
tenpl at e[0] . pVal ue = pModul us;
/* tenpl ate[0] . ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK BYTE_PTR)

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 171 |

mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenpl ate[1] . ul Val ueLen was set by
C GetAttributeval ue */

rv = C GetAttributeVal ue(hSession, hObject, & enplate,
2);
if (rv == CKR_X) {

}
free(pMdul us);
free(pExponent);

}
¢ C_SetAttributevValue

CK_DEFI NE_FUNCTI ON(CK_RV, C SetAttri buteVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession
isthe session’s handle; hObject is the object’ s handle; pTemplate points to atemplate that
specifies which attribute values are to be modified and their new values; ulCount is the
number of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified.
If the template specifies a value of an attribute which is incompatible with other existing
atributes of the object, the «cal fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section[9.7]for more details.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY, |
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ ATTRIBUTE_VALUE INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,

CKR_OBJECT HANDLE INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS BAD, CKR_USER NOT_LOGGED IN.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 172 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK _UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenpl ate[] = {

CKA LABEL, | abel, sizeof(label)-1

}s
CK RV rv;

.rv = C SetAttributeVal ue(hSessi on, hQbject, &t enplate,
1);
if (rv == CKR_X) {

}

¢ C_FindObjectdl nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_FindObjectslnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_FindObjectslnit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template that
specifies the attribute values to match; ulCount is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with al attributes in the
template. To find all objects, set ulCount to O.

After caling C_FindObjectsl nit, the application may call C_FindObjects one or more
times to obtain handles for objects matching the template, and then eventually call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at a given timein agiven session.

The object search operation will only find objects that the session can view. For example,
an object search in an “R/W Public Session” will not find any private objects (even if one
of the attributes in the search template specifies that the search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 173 |

Even though C_FindObjectsl nit can return the values
CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it
isnot required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_TYPE_INVALID, |
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID;
CKRARGUMENTSBAD.

Example: see C_FindObjectsFinal.

¢ C_FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phObj ect,

CK_ULONG ul MaxQbj ect Count ,
CK_ULONG _PTR pul Qbj ect Count

)|

C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. hSession is the session’s handle; phObject points to
the location that receives the list (array) of additional object handles; ulMaxObjectCount
is the maximum number of object handles to be returned; pul ObjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pul ObjectCount
points to receives the value O.

The search must have been initialized with C_FindObjectsl nit.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example: see C_FindObjectsFinal.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 174 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect sFi nal) (
CK_SESSI ON_ HANDLE hSessi on

)

C_FindObjectsFinal terminates a search for token and session objects. hSession is the
session’s handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect ;
CK_ULONG ul nj ect Count ;

CK_ RV ryv;

rv = C_FindQojectslnit(hSession, NULL _PTR, 0);
assert(rv == CKR_X);
while (1) {
rv = C FindObj ects(hSession, &bject, 1,
&ul Obj ect Count) ;
if (rv 1= CKR.OK || ul QbjectCount == 0)
br eak;

}

rv = C_FindQoj ect sFi nal (hSession);
assert(rv == CKR_X);

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 175 |

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; hKey is the handle of the encryption

key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt datain
a single part; or cal C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses acall to C_Encrypt or C_EncryptFinal to actually obtain the
final piece of ciphertext. To process additional data (in single or multiple parts), the
application must call C_Encryptlnit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, |
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT _LOGGED IN.

Example: see C_EncryptFinal.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 176 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

)

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to
the data; ulDatalLen is the length in bytes of the data; pEncryptedData points to the
location that receives the encrypted data; pul EncryptedDatalen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section on producing output.

The encryption operation must have been initiadized with C_Encryptinit. A cal to
C_Encrypt aways terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be called after
C_Encryptlnit without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, then C_Encrypt will fail with return code
CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pData and
pEncryptedData point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_INVALID,
CKR DATA_LEN_RANGE, CKR DEVICE ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_EncryptFinal for an example of similar functions.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 177 |

¢ C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the
length of the data part; pEncryptedPart points to the location that receives the encrypted
data part; pulEncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section on producing output.

The encryption operation must have been initialized with C_Encryptinit. This function
may be called any number of times in succession. A call to C_EncryptUpdate which
results in an error other than CKR_BUFFER TOO SMALL terminates the current
encryption operation.

The encryption operation must have been initiadized with C_Encryptinit. A cal to
C_Encrypt aways terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL, |
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_EncryptFinal.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 178 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt Fi nal) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG _PTR pul Last Encrypt edPart Len

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any; pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

C_EncryptFinal uses the convention described in Section [L1.2]on producing output.

The encryption operation must have been initiadized with C_Encryptinit. A cal to
C_EncryptFinal aways terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return
code CKR_DATA_LEN_RANGE.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example:

#defi ne PLAI NTEXT_BUF_SZ 200
#define Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv][8];
CK_MECHANI SM nmechani sm = {

CKM DES CBC PAD, iv, sizeof(iv)

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Encrypt edDat allen;

CK_ULONG ul Encrypt edDat a2Len;

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 179 |

CK_ULONG ul Encrypt edDat a3Len;
CK RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT BUF SZ-firstPi ecelen;
rv = C_Encryptlnit(hSession, &rechanism hKey);
if (rv == CKR_X) {
/[* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(
hSessi on,
&data[0], firstPiecelLen
&encrypt edDat a[0], &ul Encrypt edDat allLen);
if (rv 1= CKR.OK) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[firstPieceLen], secondPi ecelLen,
&encr ypt edDat af ul Encrypt edDat allLen],
&ul Encrypt edDat a2Len) ;
if (rv = CKR.OK) {

}

[* CGet last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encr ypt edDat alLen-
ul Encr ypt edDat a2Len;
rv = C_EncryptFinal (
hSessi on,

&encrypt edDat a[ul Encr ypt edDat alLen+ul Encrypt edDat
a2len],
&ul Encrypt edDat a3Len) ;
if (rv 1= CKR.OK) {

Copyright © 1994-1999-2000 RSA Security Inc. |

| 180 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
}

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanism; hKey is the handle of the decryption

key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key
supports decryption, must be TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt datain
a single part; or cal C_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active
until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the
final piece of plaintext. To process additional data (in single or multiple parts), the
application must call C_Decryptlnit again

| Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM _INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT_LOGGED IN;
CKR_ARGUMENTS BAD.

Example: see C_DecryptFinal.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 181 |

¢ C Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pbDat a,

CK_ULONG PTR pul Dat aLen
);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDatalen is the length of the
encrypted data; pData points to the location that receives the recovered data; pul Datalen
points to the location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A cal to
C_Decrypt always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

C_Decrypt can not be used to terminate a multi-part operation, and must be called after
C_DecryptlInit without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e, it is OK if pEncryptedData
and pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate
operations followed by C_DecryptFinal.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL, |
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_DecryptFinal for an example of similar functions.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 182 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen
);

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the session’s handle; pEncryptedPart points to the
encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart
points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section on producing outpuit.

The decryption operation must have been initialized with C_Decryptlnit. This function
may be called any number of times in succession. A call to C_DecryptUpdate which
results in an error other than CKR_BUFFER TOO SMALL terminates the current
decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and
pPart point to the same location.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS BAD,

Example: See C_DecryptFinal.

¢ C DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DecryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_ULONG PTR pul Last PartLen

)|

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s
handle; pLastPart points to the location that receives the last recovered data part, if any;
pulLastPartLen points to the location that holds the length of the last recovered data part.

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 183 |

C_DecryptFinal uses the convention described in Section [L1.2]on producing output.

The decryption operation must have been initialized with C_Decryptlinit. A call to
C_DecryptFinal aways terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED _DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER _TOO SMALL, |
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example:

#define Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPi eceLen, secondEncryptedPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv][8];
CK_MECHANI SM mechani sm = {
CKM_DES _CBC PAD, iv, sizeof(iv)

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len;
CK RV rv;

firstEncryptedPi eceLen = 90;
secondEncr ypt edPi eceLen = Cl PHERTEXT_BUF_SZ-
firstEncryptedPi ecelLen;
rv = C Decryptlnit(hSession, &rechani sm hKey);
if (rv == CKR_.OK) {
/* Decrypt first piece */
ul Dat alLen = sizeof (data);
rv = C _Decrypt Updat e(

Copyright © 1994-1999-2000 RSA Security Inc. |

| 184 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

hSessi on,
&encrypt edDat a[0], firstEncryptedPi ecelLen,
&dat a[0], &ul Datallen);

if (rv 1= CKR.K) {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (dat a) - ul Dat allLen;
rv = C _Decrypt Updat e(
hSessi on,
&encrypt edDat a[fi rst Encrypt edPi eceLen],
secondEncr ypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Data2lLen);
if (rv 1= CKR.OK) {

}

[* CGet last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat alLen- ul Dat a2Len;
rv = C_DecryptFinal (
hSessi on,
&dat a[ul Dat alLen+ul Dat a2Len], &ul Dat a3Len);
if (rv 1= CKR.X) {

}
}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

¢ C Digestlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm

)

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 185 |

After calling C_DigestInit, the application can either call C_Digest to digest data in a
single part; or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to
digest data in multiple parts. The message-digesting operation is active until the
application uses acall to C_Digest or C_DigestFinal to actually obtain the final piece of
ciphertext. To process additional data (in single or multiple parts), the application must
call C_Digestlnit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,

CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN;
CKR-ARGUMENTS BAD.

Example: see C_DigestFinal.

¢ C Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C Di gest) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG _PTR pul Di gest Len
);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to
the data; ulDatalLen is the length of the data; pDigest points to the location that receives
the message digest; pulDigestLen points to the location that holds the length of the

message digest.
C_Digest uses the convention described in Section on producing outpu.

The digest operation must have been initialized with C_Digestinit. A call to C_Digest
aways terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

C_Digest can not be used to terminate a multi-part operation, and must be called after
C_Digestlnit without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e, it is OK if pData and
pDigest point to the same location.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 186 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C _Digest is equivalent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example: see C_DigestFinal for an example of similar functions.

¢ C _DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_DigestUpdate continues a multiple-part message-digesting operation, processing
another data part. hSession is the session’s handle, pPart points to the data part;
ulPartLen isthe length of the data part.

The message-digesting operation must have been initialized with C_Digestlnit. Calls to
this function and C_DigestK ey may be interspersed any number of timesin any order. A
call to C_DigestUpdate which results in an error terminates the current digest operation.

| Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_DigestFinal.

| Copyright © 1994-1999-2000 RSA Security Inc.

11239. FUNCTIONS 187

¢ C DigestKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Key) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

)|

C_DigestKey continues a multiple-part message-digesting operation by digesting the
value of a secret key. hSession is the session’s handle; hKey is the handle of the secret
key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Callsto
this function and C_DigestUpdate may be interspersed any number of timesin any order.

If the value of the supplied key cannot be digested purely for some reason related to its
length, C_DigestK ey should return the error code CKR_KEY _SIZE RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE,
CKR_KEY_SIZE_RANGE, CKR_OK, CKR_OPERATION_NOT _INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C _DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _DigestFinal)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG _PTR pul Di gest Len

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. hSession is the session’s handle; pDigest points to the location that
receives the message digest; pulDigestLen points to the location that holds the length of
the message digest.

C_DigestFinal uses the convention described in Section on producing output.

The digest operation must have been initialized with C_Digestlnit. A cal to
C_DigestFinal aways terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

Copyright © 1994-1999-2000 RSA Security Inc.

| 188 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM nmechani sm = {
CKM MD5, NULL _PTR, O

CK_BYTE data[] = {...}:
CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;
CK RV rv;

-rv = C Digestlnit(hSession, &mrechanisn);
if (rv 1= CKR.K) {

}

rv = C_DigestUpdate(hSession, data, sizeof(data));
if (rv 1= CKR.OK) {

}

rv = C Digest Key(hSessi on, hKey);
if (rv 1= CKR.K) {

}

ul Di gest Len = si zeof (di gest);
rv = C _DigestFinal (hSession, digest, &ulD gestLen);

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 189 |

11.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

¢ C_Signinit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Signlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Signinit initializes a signature operation, where the signature is an appendix to the
data. hSession is the session’s handle; pMechanism points to the signature mechanism;
hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be TRUE.

After caling C_Signlnit, the application can either call C_Sign to sign in a single part;
or cal C_SignUpdate one or more times, followed by C_SignFinal, to sign data in
multiple parts. The signature operation is active until the application uses a call to
C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in
single or multiple parts), the application must call C_SignlInit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR _KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT_LOGGED IN;,
CKR_ARGUMENTS BAD.

Example: see C_SignFinal.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 190 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C _Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gn) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG _PTR pul Si gnat ureLen
);

C_Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDatalen is the length of the
data; pSignature points to the location that receives the signature; pul SgnaturelLen points
to the location that holds the length of the signature.

C_Sign uses the convention described in Section on producing output.

The signing operation must have been initialized with C_Signlnit. A call to C_Sign
aways terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

C_Sign can not be used to terminate a multi-part operation, and must be called after
C_Signlnit without intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_INVALID,
CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_SignFinal for an example of similar functions.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 191 |

¢ C_SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul PartLen

)

C_SignUpdate continues a multiple-part signature operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The signature operation must have been initialized with C_Signlnit. This function may
be called any number of times in succession. A call to C_SignUpdate which results in
an error terminates the current signature operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_SignFinal.

¢ C _SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnFi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG_PTR pul Si gnat ureLen

)|

C_SignFinal finishes a multiple-part signature operation, returning the signature.
hSession is the session’s handle; pSgnature points to the location that receives the
signature; pul SgnaturelLen points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section[L1.2 on producing outpui.

The signing operation must have been initidized with C_Signinit. A cal to
C_SignFinal aways terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL, |
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

Copyright © 1994-1999-2000 RSA Security Inc. |

| 192 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

CK BYTE data[] ={...};
CK_BYTE mac|[4] ;
CK_ULONG ul MacLen;

CK_ RV ryv;

.rv = C _Signlnit(hSession, &rechanism hKey);
if (rv == CKR_.OK) {
rv = C_SignUpdat e(hSessi on, data, sizeof(data));

Ll| MacLen = sizeof (mac);
rv = C_SignFinal (hSession, mac, &ul MacLen);

}

¢ C_SignRecover|nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_SignRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey
);
C_SignRecoverlnit initializes a signature operation, where the data can be recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure
that specifies the signature mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the
key supports signatures where the data can be recovered from the signature, must be
TRUE.

After calling C_SignRecover I nit, the application may call C_SignRecover to signin a
single part. The signature operation is active until the application uses a call to

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 193 |

C_SignRecover to actually obtain the signature. To process additional data in a single
part, the application must call C_SignRecoverInit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOK|_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN;
CKR-ARGUMENTS BAD.

Example: see C_SignRecover.

¢ C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG _PTR pul Si gnat ureLen

)

C_SignRecover signs data in a single operation, where the data can be recovered from
the signature. hSession is the session’s handle; pData points to the data; uLDatalen isthe
length of the data; pSgnature points to the location that receives the signature;
pulSgnaturelen points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section on producing output.

The signing operation must have been initialized with C_SignRecoverInit. A cal to
C_SignRecover adways terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL, |
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_INVALID,

CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 194 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O

1

CK BYTE data[] ={...};
CK_BYTE si gnat ure[128];
CK_ULONG ul Si gnat ur eLen;
CK_ RV ryv;

rv = C_SignRecoverlnit(hSession, &mechani sm hKey);
if (rv == CKR_.OK) {
ul Si gnat ureLen = si zeof (signature);
rv = C_Si gnRecover (
hSessi on, data, sizeof(data), signature,
&ul Si gnat ur eLen) ;
if (rv == CKR_X) {

}
}

11.12 Functionsfor verifying signaturesand MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations al so encompass message authentication codes):

¢ C Verifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Verifylnit initializes a verification operation, where the signature is an appendix to
the data. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be TRUE.

After calling C_Verifylnit, the application can either call C_Verify to verify a signature

on data in a single part; or cal C VerifyUpdate one or more times, followed by
C_VerifyFinal, to verify asignature on data in multiple parts. The verification operation

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 195 |

is active until the application cals C_Verify or C_VerifyFinal. To process additional
data (in single or multiple parts), the application must call C_Verifylnit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOK|_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN;
CKR-ARGUMENTS BAD.

Example: see C_VerifyFinal.

¢ C Veify

CK_DEFI NE_FUNCTI ON(CK_RV, C Verify)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. hSession is the session’s handle; pData points to the data;
ulDatalLen is the length of the data; pSignature points to the signature; ulSgnatureLen is
the length of the signature.

The verification operation must have been initiadized with C_Verifylnit. A cal to
C_Verify aways terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active signing operation is terminated.

C_Verify can not be used to terminate a multi-part operation, and must be called after
C_Verifylnit without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivaent to a sequence of C VerifyUpdate
operations followed by C_VerifyFinal.

Copyright © 1994-1999-2000 RSA Security Inc. |

196 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR ARGUMENTS BAD.

Example: see C_VerifyFinal for an example of similar functions.

¢ C VerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyUpdate) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The verification operation must have been initialized with C_Verifylnit. This function
may be called any number of times in succession. A call to C_VerifyUpdate which
resultsin an error terminates the current verification operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD,

Example: see C_VerifyFinal.

¢ C VeifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen

)|

C_VerifyFinal finishes a multiple-part verification operation, checking the signature.
hSession is the session’s handle; pSgnature points to the signature; ulSgnatureLen isthe
length of the signature.

Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 197 |

The verification operation must have been initiadized with C_Verifylnit. A cal to
C_VerifyFinal aways terminates the active verification operation.

A successful cal to C_VerifyFinal should return either the value CKR_OK (indicating
that the supplied signatureisvalid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active verifying operation is terminated.

Return values; CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O
};
CK BYTE data[] ={...};
CK_BYTE mac| 4] ;
CK RV rv;

-rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_X) {
rv = C VerifyUpdate(hSessi on, data, sizeof(data));

-rv = C VerifyFinal (hSession, mac, sizeof(mac));

Copyright © 1994-1999-2000 RSA Security Inc. |

| 198 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_VerifyRecoverlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecoverlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VerifyRecoverInit initializes a signature verification operation, where the data is
recovered from the signature. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; hKey is the handle of the verification

key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the datais recovered from the signature, must
be TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify
a signature on data in a single part. The verification operation is active until the
application usesacall to C_VerifyRecover to actually obtain the recovered message.

| Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT_LOGGED IN;,
CKR_ARGUMENTS BAD.

Example: see C_VerifyRecover.

¢ C VeifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen,
CK_BYTE_PTR pbDat a,
CK_ULONG_PTR pul Dat aLen
);

C_VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. hSession is the session’s handle; pSgnature points to the
signature; ulSignaturelLen is the length of the signature; pData points to the location that

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 199

receives the recovered data; and pulDatal.en points to the location that holds the length of
the recovered data.

C_VerifyRecover uses the convention described in Section[11.2 on producing output.

The verification operation must have been initialized with C_VerifyRecoverinit. A call
to C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the recovered data.

A successful call to C VerifyRecover should return ether the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should
be returned. The retun codes CKR_SIGNATURE_INVALID and
CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code
CKR_BUFFER_TOO_SMALL, i.e, if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER _TOO SMALL,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID; CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O
};
CK BYTE data[] ={...};
CK_ULONG ul Dat aLen;
CK_BYTE si gnat ure[128];
CK_ RV ryv;

rv = C VerifyRecoverlnit(hSession, &mechani sm hKey);
if (rv == CKR_OK)
ul Dat aLen = si zeof (data);
rv = C VerifyRecover(
hSessi on, signature, sizeof(signature), data,

Copyright © 1994-1999-2000 RSA Security Inc.

| 200 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

&ul Dat aLen) ;

}

11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token.

¢ C DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)|

C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. hSession is the session’s handle; pPart points to the data
part; ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives the digested and encrypted data part; pul EncryptedPartLen points to the location
that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section on producing
output. If a C_DigestEncryptUpdate call does not produce encrypted output (because
an error occurs, or because pEncryptedPart has the vaue NULL PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized
with C_Digestlnit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DigestUpdate,
C_DigestKey, and C_EncryptUpdate calls (it would be somewhat unusual to
intersperse callsto C_DigestEncryptUpdate with callsto C_DigestK ey, however).

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 201 |

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv][8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

};

CK_BYTE encr ypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[(2* BUF_SZ) +8] ;

CK_ RV ryv;

int i;

menset (i v, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C_Encryptlinit(hSession, &encryptionMechani sm hKey);
if (rv 1= CKR.X) {

}
rv = C Digestlnit(hSession, &digestMchanisn);
if (rv 1= CKR.K) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Digest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

Ll| Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Digest Encrypt Updat e(
hSessi on,

Copyright © 1994-1999-2000 RSA Security Inc. |

| 202 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

&dat a[BUF_SZ], BUF_SZ,
encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with
* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the digest on the buffer */
rv = C_DigestUpdat e(hSessi on, &datal BUF_Sz*2], 5);

QID gestLen = sizeof (di gest);
rv = C _DigestFinal (hSession, digest, &ulD gestlLen);

/* Then, pad |ast part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

[* CGet |last piece of ciphertext (should have length O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_Encrypt Fi nal (hSessi on, encryptedDat a,
&ul Encr ypt edDat aLen) ;

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 203 |

¢ C _DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen

)

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data
part; pPart points to the location that receives the recovered data part; pulPartLen points
to the location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section on producing
output. If aC_DecryptDigestUpdate call does not produce decrypted output (because an
error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too
small to hold the entire decrypted part output), then no plaintext is passed to the active
digest operation.

Decryption and digesting operations must both be active (they must have been initialized
with C_Decryptinit and C_DigestInit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DecryptUpdate,
C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse
callsto C_DigestEncryptUpdate with callsto C_DigestK ey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when
using C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate.
This is because when C_DigestEncryptUpdate is caled, precisely the same input is
passed to both the active digesting operation and the active encryption operation;
however, when C_DecryptDigestUpdate is called, the input passed to the active
digesting operation is the output of the active decryption operation. This issue comes up
only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and digest the origina plaintext thereby
obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate
returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there's
more ciphertext coming, or if the last block of ciphertext held any padding. These 16
bytes of plaintext are passed into the active digesting operation.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 204 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and digesting operations are linked only
through the C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to
be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16
bytes of the plaintext, not the message digest of the entire plaintext. It is crucia that,
before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active
digesting operation viaa C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext has
been passed into the active digesting operation. Extreme caution is warranted when
using a padded decryption mechanismwith C_DecryptDigestUpdate.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR-ARGUMENTS BAD

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM_DES ECB, iv, sizeof(iv)

1

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

1

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;

CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;

CK_ RV ryv;

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 205 |

menset (iv, 0, sizeof(iv));

menset (encryptedbData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm hKey);
if (rv 1= CKR.K) {

}
rv = C Digestlnit(hSession, &digestMchanisn);

if (rv = CKR . OK){

}

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul DatalLen);

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul DatalLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with
* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C _Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

data, &ul Last Updat eSi ze);

)* Get | ast piece of plaintext (should have length O,
here) */
ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 206 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

rv = C _DecryptFi nal (hSessi on, &dat a[ul Last Updat eSi ze],
&ul Dat aLen) ;
if (rv 1= CKR.OK) {

}
[* Digest last bit of plaintext */

rv = C_DigestUpdat e(hSessi on, &data[BUF_Sz*2], 5);
if (rv 1= CKR.OK) {

ul Di gest Len = si zeof (di gest);
rv = C _DigestFinal (hSession, digest, &ulD gestLen);
if (rv 1= CKR.X) {

}
¢ C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncr ypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)

C_SignEncryptUpdate continues a multiple-part combined signature and encryption
operation, processing another data part. hSession is the session’s handle; pPart points to
the data part; ulPartLen is the length of the data part; pEncryptedPart points to the
location that receives the digested and encrypted data part; and pul EncryptedPart points
to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section on producing
output. If aC_SignEncryptUpdate call does not produce encrypted output (because an
error occurs, or because pEncryptedPart has the value NULL_PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized
with C_Signinit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_SignUpdate and
C_EncryptUpdate calls.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 207 |

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER _TOO SMALL, |
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK_BYTE iv][8];
CK_MECHANI SM si gnMechani sm = {
CKM DES MAC, NULL_PTR, O
1
CK_MECHANI SM encr ypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
};
CK_BYTE encr ypt edDat a[BUF_SZ] ;
CK_ULONG ul Encrypt edDat aLen;
CK_BYTE MAC 4] ;
CK_ULONG ul MacLen;
CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_ RV ryv;
int i;

menset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm
hEncrypti onKey) ;

if (rv = CKR.OK) {

}
rv = C_Signlnit(hSession, &signMechanism hMacKey);
if (rv 1= CKR.OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 208

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

rv = C_Si gnEncrypt Updat e(
hSessi on,
&dat a[0], BUF_SZ,
encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal with padding issues in ECB node

*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &datal BUF_Sz*2], 5);

ﬂlthLen = si zeof (MAC) ;
rv = C DigestFinal (hSession, MAC, &ul MaclLen);

/* Then pad | ast part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

[* CGet |ast piece of ciphertext (should have length O,
here) */

| Copyright © 1994-1999-2000 RSA Security Inc.

11139. FUNCTIONS 209 |

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C _EncryptFi nal (hSessi on, encryptedDat a,
&ul Encr ypt edDat aLen) ;

¢ C DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Veri fyUpdate) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen
);

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data;
pPart points to the location that receives the recovered data; and pul PartLen points to the
location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section on producing
output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because
an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen istoo
small to hold the entire encrypted part output), then no plaintext is passed to the active
verification operation.

Decryption and signature operations must both be active (they must have been initialized
with C_Decryptlnit and C_Verifylnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DecryptUpdate and
C_VerifyUpdate cdlls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when
using C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This
is because when C_SignEncryptUpdate is called, precisely the same input is passed to
both the active signing operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is
the output of the active decryption operation. This issue comes up only when the
mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and verify a signature on the original plaintext
thereby obtained.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 210 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After initializing decryption and verification operations, the application passes the 24-
byte ciphertext 3 DES blocks) into C_DecryptVerifyUpdate.
C DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of ciphertext
held any padding. These 16 bytes of plaintext are passed into the active verification
operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and verification operations are linked
only through the C_DecryptVerifyUpdate cal, these 2 bytes of plaintext are not passed
on to the verification mechanism.

A cdl to C_VerifyFinal, therefore, would verify whether or not the signature supplied is
a valid signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is
crucial that, before C_VerifyFinal is called, the last 2 bytes of plaintext get passed into
the active verification operation viaaC_VerifyUpdate cal.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted when
using a padded decryption mechanismwith C_DecryptVerifyUpdate.

| Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID,CKR-ARGUMENTS BAD.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;

CK_BYTE iv][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM_DES ECB, iv, sizeof(iv)

Ci(_NECHANI SM veri fyMechani sm = {
CKM DES_MAC, NULL_PTR, O

1

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;

CK_BYTE MAC 4] ;

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 211 |

CK_ULONG ul MacLen;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

menset (iv, 0, sizeof(iv));

menset (encryptedbData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm
hDecrypti onKey) ;

if (rv 1= CKR.OK) {

}
rv = C Verifylnit(hSession, &erifyMechanism hMacKey);
if (rv 1= CKR_X){

}

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul datalen);

/*

* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal wth padding issues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C _Decrypt Updat e(

Copyright © 1994-1999-2000 RSA Security Inc. |

| 212 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

hSessi on,
&encrypt edDat a[BUF_SZ* 2], 8,
data, &ul Last Updat eSi ze);

[* CGet last little piece of plaintext. Should have
length 0 */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C _DecryptFi nal (hSessi on, &dat a[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.XK) {

}

/* Send last bit of plaintext to verification operation
*/

rv = C VerifyUpdat e(hSessi on, &datal BUF_Sz*2], 5);

if (rv = CKR.OK) {

}
rv = C VerifyFinal (hSession, MAC, ul MaclLen);
if (rv == CKR_SI GNATURE | NVALI D) {

}
11.14 Key management functions

Cryptoki provides the following functions for key management:

¢ C _GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count ,
CK_OBJECT_HANDLE_PTR phKey
);

| C_GenerateKey generates a secret key or set of key parameters, creating a new key
object. hSession is the session’s handle; pMechanism points to the key generation
| mechanism; pTemplate points to the template for the new key or set of key parameters;

| Copyright © 1994-1999-2000 RSA Security Inc.

11239. FUNCTIONS 213

ulCount is the number of attributes in the template; phKey points to the location that
receives the handle of the new key or set of key parameters.

If the key generation mechanism is for key parameter generation, the CKA CLASS
attribute will have the value CKO KG PARAMETERS; otherwise, it will have the value
CKO SECRET KEY.

Since the type of key or key parameters to be generated is implicit in the key generation
mechanism, the template does not need to supply a key type. If it does supply a key type
which is inconsistent with the key generation mechanism, C_GenerateKey fails and
returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS
atribute is treated similarly.

If acall to C_GenerateK ey cannot support the precise template supplied to it, it will fail
and return without creating any-keyan object.

The key—object created by a successful call to C _GenerateKey will have its
CKA_LOCAL attribute set to TRUE.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED _IN;
CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES_KEY_GEN, NULL_PTR, O

};
CK RV rv;

-rv = C_Gener at eKey(hSessi on, &mrechanism NULL PTR, O,
&hKey) ;
if (rv == CKR_.OK) {

Copyright © 1994-1999-2000 RSA Security Inc.

| 214 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}

¢ C _GenerateKeyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C Cener at eKeyPair) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri buteCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE PTR phPri vat eKey

)

C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handle; pMechanism points to the key generation mechanism;
pPublicKkeyTemplate points to the template for the public key;
ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism,
the templates do not need to supply key types. If one of the templates does supply a key
type which is inconsistent with the key generation mechanism, C_GenerateK eyPair fails
and returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS
atribute is treated similarly.

If acal to C_GenerateKeyPair cannot support the precise templates supplied to it, it
will fail and return without creating any key objects.

A cal to C_GenerateKeyPair will never create just one key and return. A call can fail,
and create no keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful call to C_GenerateKeyPair will have ther
CKA_LOCAL attributes set to TRUE.

Note carefully the order of the arguments to C GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

| Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 215 |

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_PARAMS INVALID, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED _IN;
CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA PKCS _KEY_PAIR_GEN, NULL_PTR, O

};

CK_ULONG nodul usBits = 768;

CK _BYTE publicExponent[] = { 3 };
CK_BYTE subject[] ={...};

CK BYTE id[] = {123};

CK BBOOL true = TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_MODULUS BI TS, &nmodul usBits, sizeof(nodulusBits)},
{ CKA_PUBLI C_EXPONENT, publicExponent, si zeof
(publ i cExponent)}

CK_ATTRI BUTE privat eKeyTenplate[] = {
{CKA TOKEN, &true, sizeof(true)},
{CKA PRI VATE, &true, sizeof(true)},

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

{CKA _SENSI Tl VE, &true, sizeof(true)},

{ CKA DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},

{CKA _UNWRAP, &true, sizeof(true)}

1

CK_ RV ryv;

rv = C_Gener at eKeyPai r (
hSessi on, &nmechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,

&hPubl i cKey, &hPrivat eKey);
if (rv == CKR_X) {

Copyright © 1994-1999-2000 RSA Security Inc. |

| 216 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
¢ C_ WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_W apKey) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen
);

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s
handle; pMechanism points to the wrapping mechanism; hWrappingKey is the handle of
the wrapping key; hKey is the handle of the key to be wrapped; pWrappedKey points to
the location that receives the wrapped key; and pulWrappedKeyLen points to the location
that receives the length of the wrapped key.

C_WrapK ey uses the convention described in Section [L1.2]on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key to
be wrapped must also be TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its
having its CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails with
error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified
wrapping key and mechanism solely because of its length, then C_WrapKey fails with
error code CKR_KEY_SIZE_RANGE.

C_WrapKey can be used in the following situations:
» Towrap any secret key with an RSA public key.

* To wrap any secret key with any other secret key other than a SKIPJACK, BATON,
or JUNIPER key.

* Towrap aSKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON,
or JUNIPER key (the two keys need not be the same type of key).

e« To wrap an RSA, Diffie-Hdellman, X9.42 DiffieeHellman, EC (adlso related to
ECDSA) or DSA private key with any secret key other than a SKIPJACK, BATON,
or JUNIPER key.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 217 |

* Towrap aKEA or DSA private key with a SKIPJACK key.

Of course, tokens vary in which types of keys can actually be wrapped with which
mechanisms.

Return Values: CKR_ARGUMENTS BAD, CKR_BUFFER _TOO SMALL, |
CKR_CRYPTOKI|_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE,
CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, |
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE,

CKR_WRAPPING_KEY_TYPE_INCONSISTENT, CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM DES3_ECB, NULL_PTR, O
};
CK_BYTE w appedKey|[8] ;
CK_ULONG ul W appedKeyLen;
CK RV rv;

ul W appedKeyLen = si zeof (wr appedKey) ;
rv = C_WapKey(

hSessi on, &nmechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeylLen);
if (rv == CKR_X) {

Copyright © 1994-1999-2000 RSA Security Inc.

218 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unw apKey) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)E

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’ s handle; pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points
to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate
points to the template for the new key; ul AttributeCount is the number of attributes in the
template; phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS SENSITIVE attribute set to FALSE, and
the CKA NEVER EXTRACTABLE aftribute set to FALSE. The
CKA_EXTRACTABLE attribute is by default set to TRUE.

When C_UnwrapKey is used to unwrap a key with the
CKM_KEY_WRAP_SET_OAEP mechanism (see Section [12.35.112.35112321),
additional “extra data’ is decrypted at the same time that the key is unwrapped. The
return of this data follows the convention in Section on producing output. If the
extra data is not returned from a call to C_UnwrapKey (either because the call was only
to find out how large the extra data is, or because the buffer provided for the extra data
was too small), then C_UnwrapKey will not create a new key, either.

If acal to C_UnwrapKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_UnwrapKey will have its
CKA_LOCAL attribute set to FALSE.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_PARAMS INVALID, CKR_MECHANISM_INVALID,

Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 219 |

CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED KEY_INVALID,
CKR_WRAPPED KEY_LEN_RANGE, CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM DES3_ECB, NULL_PTR, O
};
CK_BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyC ass = CKO_SECRET_KEY,
CK_KEY_TYPE keyType = CKK_DES;

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, é&keyd ass, sizeof(keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}
1
CK RV rv;

rv = C_Unw apKey(

hSessi on, &nmechani sm hUnw appi ngKey,

wr appedKey, sizeof (w appedKey), tenplate, 4, &hKey);
if (rv == CKR_X) {

Copyright © 1994-1999-2000 RSA Security Inc. |

220 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C Deri veKey) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the
session’s handle; pMechanism points to a structure that specifies the key derivation
mechanism; hBaseKey is the handle of the base key; pTemplate points to the template for
the new key; ulAttributeCount is the number of attributes in the template; and phKey
points to the location that receives the handle of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS SENSITIVE,
CK_EXTRACTABLE, and CK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section for any
constraints of thistype.

If acall to C_DeriveKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_DeriveKey will haveits CKA_LOCAL
attribute set to FALSE.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR KEY PARAMS INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED _IN;
CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey, hKey;

Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 221 |

CK_MECHANI SM keyPai r Mechani sm = {

CKM _DH _PKCS_KEY_PAI R_GEN, NULL_PTR, O
};
CK_ BYTE prinme[] ={...};

CK_BYTE base[] ={...};
CK_BYTE publicVal ue[128];
CK_BYTE ot her Publ i cVval ue[128] ;
CK_MECHANI SM mechani sm = {
CKM_DH PKCS_DERI VE, ot her Publ i cVal ue,
si zeof (ot her Publ i cVal ue)

CK_ATTRI BUTE pTenplate[] = {

CKA VALUE, &publicVal ue, sizeof (publicVal ue)}
¥
CK_OBJECT_CLASS keyC ass = CKO _SECRET_KEY,
CK_KEY_TYPE keyType = CKK_DES;

CK BBOOL true = TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof (base)}

Ck_ATTRIBUTE privat eKeyTenpl ate[] = {
{CKA DERI VE, &true, sizeof(true)}

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA DECRYPT, &true, sizeof(true)}

}s
CK RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &keyPair Mechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&Publ i cKey, &hPrivat eKey);
if (rv == CKR_OK)
rv = C GetAttributeVal ue(hSessi on, hPubli cKey,
&Tenpl ate, 1);
if (rv == CKR_X) {
/* Put other guy’ s public value in otherPublicVal ue
*/

;v = C _DeriveKey(

Copyright © 1994-1999-2000 RSA Security Inc. |

| 222 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

hSessi on, &nmechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKR_.OK) {

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

¢ C_SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

)|

C_SeedRandom mixes additional seed material into the token’s random number
generator. hSession is the session’s handle; pSeed points to the seed materia; and
ulSeedLen isthe length in bytes of the seed material.

| Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_SEED_NOT_SUPPORTED,
CKR_RANDOM_NO _RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _|IN;
CKR-ARGUMENTS BAD.

Example: see C_GenerateRandom.

¢ C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eRandom (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

)

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s
handle; pRandomData points to the location that receives the random data; and
ulRandomLen is the length in bytes of the random or pseudo-random data to be generated.

| Copyright © 1994-1999-2000 RSA Security Inc.

11439. FUNCTIONS 223 |

Return values; CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED, |
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER _NOT_LOGGED_IN,CKR-ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK _BYTE seed[] ={...};
CK_BYTE randomData[] = {...};
CK RV rv;

-rv = C_SeedRandon{ hSessi on, seed, sizeof(seed));
if (rv 1= CKR.K) {

}
rv = C_Gener at eRandon(hSessi on, randonDat a,

si zeof (randonDat a)) ;
if (rv == CKR_.X) {

}

11.16 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of
cryptographic functions. These functions exist only for backwards compatibility.

¢ C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C CGet Functi onSt at us) (
CK_SESSI ON_HANDLE hSessi on

)|

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in parallel with an application. Now, however, C_GetFunctionStatus is a
legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 224 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

| Return values; —CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

¢ C_CancdFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cancel Functi on) (
CK_SESSI ON_ HANDLE hSessi on

)

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in
paralel with an application. Now, however, C_CancelFunction is a legacy function
which should ssimply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRY PTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

11.17 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the
application of certain events.

11.17.1 Surrender callbacks

Cryptographic functions (i.e., any functions faling under one of these categories:
encryption functions; decryption functions, message digesting functions; signing and
MACing functions; functions for verifying signatures and MACs, dual-purpose
cryptographic functions, key management functions, random number generation
functions) executing in Cryptoki sessions can periodically surrender control to the
application who called them if the session they are executing in had a notification
callback function associated with it when it was opened. They do this by calling the
session's calback with the arguments (hSession, CKN_SURRENDER,
pAppl i cati on), where hSessi on isthe session’s handle and pAppl i cat i on was
supplied to C_OpenSession when the session was opened. Surrender callbacks should
return either the value CKR_OK (to indicate that Cryptoki should continue executing the
function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution
of the function). Of course, before returning one of these values, the callback function
can perform some computation, if desired.

A typical use of asurrender callback might be to give an application user feedback during
alengthy key pair generation operation. Each time the application receives a callback, it
could display an additional “.” to the user. It might also examine the keyboard's activity

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 225 |

since the last surrender callback, and abort the key pair generation operation (probably by
returning the value CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

11.17.2 Vendor-defined callbacks

Library vendors can aso define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each
callback they receive, and if they are unfamiliar with the type of that callback, they should
immediately give control back to the library by returning with the value CKR_OK.

12. Mechanisms
A mechanism specifies precisely how a certain cryptographic processis to be performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular operation may
well support only a subset of the mechanisms listed. There is also no guarantee that a
token which supports one mechanism for some operation supports any other mechanism
for any other operation (or even supports that same mechanism for any other operation).
For example, even if a token is able to create RSA digital signatures with the
CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can
also perform RSA encryption with CKM_RSA_PKCS.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 226 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 646055, M echanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify [VR! Key | Unwrap

Pair
CKM_RSA_PKCS KEY_PAIR_GEN v
CKM_RSA_PKCS v? v? v v
CKM_RSA_PKCS OAEP v? v
CKM_RSA_9796 v? v
CKM_RSA_X_509 v? v? v v
CKM_RSA X9 31 KEY_ PAIR_GEN v
CKM_RSA_X9 31 v?
CKM_MD2_RSA_PKCS v
CKM_MD5_RSA_PKCS v
CKM_SHA1 RSA_PKCS v
CKM_RIPEMD128_RSA_PKCS v
CKM_RIPEMD160_RSA_PKCS v
CKM_SHA1 RSA X9 31 v
CKM_DSA_KEY_PAIR_GEN %
CKM_DSA v?
CKM_DSA_SHA1 v
CKM_FORTEZZA_TIMESTAMP v?
CKM_EC KEY_PAIR _GEN v
(CKM_ECDSA_KEY_PAIR_GEN)
CKM_ECDSA v?
CKM_ECDSA_SHA1 v
CKM_ECDH1 DERIVE v
CKM_ECDH1 COFACTOR_DERIVE v
CKM_ECMQV_DERIVE v

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS

227 |

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

Digest

Key/
Key
Pair

Wrap
&
Unwrap

Derive

CKM_DH_PKCS KEY_PAIR_GEN

CKM_DH_PKCS _DERIVE

<

CKM_X9 42 DH_KEY_PAIR GEN

AN

CKM_X9 42 DH_DERIVE

CKM_X9 42 DH_HYBRID_ DERIVE

CKM_X9 42 MQV_DERIVE

ANERANEAN

CKM_KEA_KEY_PAIR_GEN

CKM_KEA_KEY_DERIVE

<

CKM_GENERIC_SECRET_KEY_GEN

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

<«

CKM_RC2_CBC_PAD

CKM_RC2_MAC_GENERAL

CKM_RC2_MAC

CKM_RC4_KEY_GEN

CKM_RC4

CKM_RC5_KEY_GEN

CKM_RC5_ECB

CKM_RC5_CBC

CKM_RC5_CBC_PAD

<

CKM_RC5_MAC_GENERAL

CKM_RC5_MAC

CKM_AES KEY_GEN

AN

CKM_AES ECB

CKM_AES CBC

CKM_AES CBC_PAD

ANEANIAN

ANEANEAN

CKM_AES MAC GENERAL

CKM_AES MAC

ANIAN

CKM_DES KEY_GEN

CKM_DES ECB

AN

<

CKM_DES_CBC

CKM_DES CBC_PAD

CKM_DES MAC_GENERAL

CKM_DES MAC

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_CBC_PAD

CKM_DES3 MAC_GENERAL

CKM_DES3_ MAC

CKM_CAST_KEY_GEN

CKM_CAST_ECB

CKM_CAST _CBC

CKM_CAST_CBC_PAD

CKM_CAST_MAC_GENERAL

Copyright © 1994-1999-2000 RSA Security Inc. |

| 228 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify [VR! Key | Unwrap
Pair

CKM_CAST_MAC v
CKM_CAST3_KEY_GEN v
CKM_CAST3_ECB v v
CKM_CAST3 CBC v v
CKM_CAST3_CBC_PAD v v
CKM_CAST3 MAC_GENERAL v
CKM_CAST3 MAC v

CKM_CAST128 KEY_GEN %
(CKM_CAST5_KEY_GEN)

CKM_CAST128_ECB (CKM_CAST5_ECB) v v
CKM_CAST128_CBC (CKM_CAST5_CBC) v v

CKM_CAST128_CBC_PAD v v
(CKM_CAST5_CBC_PAD)

CKM_CAST128 MAC_GENERAL v
(CKM_CAST5 MAC_GENERAL)

CKM_CAST128 MAC (CKM_CAST5_MAC) v
CKM_IDEA_KEY_GEN v
CKM_IDEA_ECB v v
CKM_IDEA_CBC v v
CKM_IDEA_CBC_PAD v v
CKM_IDEA_MAC_GENERAL v
CKM_IDEA_MAC v
CKM_CDMF_KEY_GEN v
CKM_CDMF _ECB v v
CKM_CDMF _CBC v v
CKM_CDMF_CBC_PAD v v
CKM_CDMF_MAC_GENERAL v
CKM_CDMF_MAC v
CKM_SKIPJACK_KEY_GEN v
CKM_SKIPJACK_ECB64
CKM_SKIPJACK_CBC64
CKM_SKIPJACK_OFB64
CKM_SKIPJACK_CFB64
CKM_SKIPJACK_CFB32
CKM_SKIPJACK_CFB16
CKM_SKIPJACK_CFB8
CKM_SKIPJACK_WRAP v
CKM_SKIPJACK_PRIVATE_WRAP v
CKM_SKIPJACK_RELAYX V3
CKM_BATON_KEY_GEN v
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP v
CKM_JUNIPER_KEY_GEN v
CKM_JUNIPER_ECB128 v

AIRNIENIENIEN RN RN

ASERNERN AN RN

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS

229 |

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

Digest

Key/
Key
Pair

Wrap
&
Unwrap

Derive

CKM_JUNIPER_CBC128

v

CKM_JUNIPER_COUNTER

v

CKM_JUNIPER_SHUFFLE

v

CKM_JUNIPER_WRAP

CKM_MD2

CKM_MD2_HMAC_GENERAL

CKM_MD2_HMAC

CKM_MD2_KEY_DERIVATION

CKM_MD5

CKM_MD5_HMAC_GENERAL

CKM_MD5_HMAC

CKM_MD5_KEY_DERIVATION

CKM_SHA_1

CKM_SHA_1_HMAC_GENERAL

CKM_SHA_1_HMAC

CKM_SHA1_KEY_DERIVATION

CKM_RIPEMD128

CKM_RIPEMD128 HMAC_GENERAL

CKM_RIPEMD128 HMAC

CKM_RIPEMD160

CKM_RIPEMD160_ HMAC_GENERAL

CKM_RIPEMD160_HMAC

CKM_FASTHASH

CKM_PBE_MD2_DES CBC

CKM_PBE_MD5_DES CBC

CKM_PBE_MD5_CAST_CBC

CKM_PBE_MD5_CAST3 CBC

CKM_PBE_MD5_CAST128 CBC
(CKM_PBE_MD5_CAST5 _CBC)

RNV IEVIEN

CKM_PBE_SHA1_CAST128 CBC
(CKM_PBE_SHA1_CAST5 _CBC)

<«

CKM_PBE_SHA1_RC4_128

CKM_PBE_SHAL RC4 40

CKM_PBE_SHA1_DES3_EDE_CBC

CKM_PBE_SHA1 DES2_EDE_CBC

CKM_PBE_SHA1_RC2_128_CBC

CKM_PBE_SHA1 _RC2_40_CBC

CKM_PBA_SHAL_WITH_SHAL HMAC

CKM_PKCS5_PBKD2

ANERNERNERNERN BN ERN BN

CKM_KEY_WRAP_SET_OAEP

CKM_KEY_WRAP_LYNKS

CKM_SSL3_PRE_MASTER_KEY_GEN

CKM_SSL3 MASTER KEY_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE

CKM_SSL3_MD5_MAC

CKM_SSL3_SHAL MAC

CKM_CONCATENATE_BASE_AND_KEY

Copyright © 1994-1999-2000 RSA Security Inc. |

| 230 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify [VR! Key | Unwrap

Pair

CKM_CONCATENATE_BASE_AND_DATA v
CKM_CONCATENATE_DATA_AND_BASE v
CKM_XOR_BASE_AND_DATA v
CKM_EXTRACT_KEY_FROM_KEY v
CKM_DSA_PARAMETER_GEN v
CKM_DH_PKCS PARAMETER_GEN v

! SR = SignRecover, VR = VerifyRecover.
2 Single-part operations only.
% Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section |11.17.2) will present in detail the mechanisms supported by
Cryptoki Version 2.1 and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen
fields of the CK_MECHANISM_INFO structure, then those fields have no meaning for
that particular mechanism.

12.1 RSA mechanisms

12.1.1 PKCS#1 RSA key pair generation

The PKCS #1 RSA key par generation mechanism, denoted
CKM_RSA PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA_MODULUS BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the
CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may also
contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT _1, CKA_EXPONENT_2,
CKA_COEFFICIENT (see Section . Other attributes supported by the RSA
public and private key types (specifically, the flags indicating which functions the keys

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 231

support) may also be specified in the templates for the keys, or else are assigned default
initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.2 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted
CKM RSA X9 31 KEY PAIR GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bhits and public exponent, as specified in the CKA MODULUS BITS and
CKA PUBLIC EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, CKA MODULUS,
and CKA PUBLIC EXPONENT attributes to the new public key. It contributes the
CKA CLASS and CKA KEY TYPE attributes to the new private key; it may also
contribute some of the following attributes to the new private key: CKA MODULUS,
CKA PUBLIC EXPONENT, CKA PRIVATE EXPONENT, CKA PRIME 1,
CKA PRIME 2, CKA EXPONENT 1, CKA EXPONENT 2,
CKA COEFFICIENT (see Section [10.9.1). Other attributes supported by the RSA
public and private key types (specificaly, the flags indicating which functions the keys
support) may aso be specified in the templates for the keys, or else are assigned default
initial_values. Unlike the CKM_ RSA PKCS KEY PAIR _GEN mechanism, this
mechanism _is guaranteed to generate p and g vaues, CKA PRIME 1 and
CKA _PRIME 2 respectively, that meet the strong primes requirement of X9.31.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of RSA modulus sizes,
in bits.

1231.212.1.3 PKCS#1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the block formats defined in
PKCS #1. It supports single-part encryption and decryption; single-part signatures and

Copyright © 1994-1999-2000 RSA Security Inc.

| 232 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

verification with and without message recovery; key wrapping; and key unwrapping.
This mechanism corresponds only to the part of PKCS #1 that involves RSA; it does not
compute a message digest or a Digestinfo encoding as specified for the
nmd2wi t hRSAEncr ypt i on and nd5wi t hRSAEncr ypt i on algorithmsin PKCS #1.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption, decryption, signatures and signature verification, the input and output
data may begin at the same location in memory. In the table, k is the length in bytes of
the RSA modulus.

Table 656156, PKCS#1 RSA: Key And Data L ength

Function Key type Input Output Comments
length length

C_Encrypt* RSA public key <k-11 k block type 02
C_Decrypt! RSA private key K <k-11 block type 02
C_Sign' RSA privatekey | <k-11 k block type 01
C_SignRecover RSA private key <k11 Kk block type 01
C_Veify RSA publickey | <k-11, K? N/A block type 01
C VeifyRecover | RSA public key k <k11 block type 01
C WrapKey RSA public key <k11 Kk block type 02
C_UnwrapKey RSA private key k <k11 block type 02

! Single-part operations only.

? Data length, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 233

12.1.312.1.4 PKCS#1 RSA OAEP mechanism parameters

¢ CK_RSA_PKCS MGF TYPE; CK_RSA_PKCS MGF_TYPE_PTR

CK_RSA PKCS MGF _TYPE is used to indicate the Message Generation Function
(MGF) applied to a message block when formatting a message block for the PKCS #1
OAEP encryption scheme. It is defined as follows:

t ypedef CK ULONG CK _RSA PKCS MEF TYPE;

The following MGFs are defined in PKCS #1 v2.0. The following table lists the defined
functions.

Table 666257, PKCS#1 RSA: Message Gener ation Functions

Sour ce ldentifier Value
CKG_MGF1 SHA1 0x00000001

CK_RSA_PKCS MGF TYPE_PTRisapointer toaCK_RSA PKCS MGF TYPE.

¢ CK_RSA_PKCS OAEP SOURCE_TYPE;
CK_RSA_PKCS OAEP _SOURCE_TYPE_PTR

CK_RSA PKCS OAEP SOURCE_TYPE s used to indicate the source of the
encoding parameter when formatting a message block for the PKCS #1 OAEP encryption
scheme. It is defined as follows:

t ypedef CK _ULONG CK_RSA PKCS_QAEP_SOURCE_TYPE;
The following encoding parameter sources are defined in PKCS #1 v2.0. The following

table lists the defined sources along with the corresponding data type for the pSourceData
fiddinthe CK_RSA_ PKCS OAEP_PARAMS structure defined below.

Table 676358, PKCS #1 RSA OAEP: Encoding parameter sources

Source I dentifier Value Data Type

CKZ_DATA_SPECIFIED | 0x00000001 | Array of CK_BY TE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatal_en must be zero.

CK_RSA_PKCS OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS OAEP_SOURCE_TYPE.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 234 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢+ CK_RSA_PKCS OAEP PARAMS: CK_RSA_PKCS OAEP PARAMS PTR

CK_RSA PKCS OAEP _PARAMS is a structure that provides the parameters to the
CKM_RSA PKCS OAEP mechanism. The structure is defined as follows:

typedef struct CK_RSA PKCS_ QAEP_PARAMS {
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS_OAEP_MGF_TYPE nyf :
CK_RSA PKCS QAEP_SOURCE TYPE source;
CK VA D_PTR pSour ceDat a;
CK_ULONG ul Sour ceDat aLen;

} CK_RSA PKCS_ OAEP_PARANS;

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to
calculate the digest of the encoding parameter

mgf mask generation function to use on the encoded block
source source of the encoding parameter

pSourceData data used as the input for the encoding parameter
source

ulSourceDatalLen length of the encoding parameter source input

CK_RSA_PKCS OAEP_PARAMS PTR is a poi nter to a
CK_RSA_PKCS OAEP_PARAMS.

12141215 PKCS#1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS OAEP, is a multi-
purpose mechanism based on the RSA public-key cryptosystem and the OAEP block
format defined in PKCS #1. It supports single-part encryption and decryption; key

wrapping; and key unwrapping.
It has aparameter, aCK_RSA PKCS OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 235 |

key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption and decryption, the input and output data may begin at the same location
in memory. In the table, k is the length in bytes of the RSA modulus, and hLen is the
output length of the message digest algorithm specified by the hashAlg field of the
CK_RSA_PKCS OAEP_PARAMS structure,

Table 686459, PKCS#1 RSA OAEP: Key And Data L ength
Function Key type Input Output
length length
C_Encrypt* RSA publickey | <k-2-2hLen k
C_Decrypt’ RSA private key k < k-2-2hLen
C_WrapKey RSA publickey | <k-2-2hLen k
C_UnwrapKey RSA private key Kk < k-2-2hLen

! Single-part operations only.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.512.1.6 ISO/IEC 9796 RSA |

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA 9796, is a mechanism for
single-part signatures and verification with and without message recovery based on the
RSA publlc-key cryptosystem and the bIock formats deflned |n ISO/IEC 9796 and its

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit
strings. Accordingly, the following transformations are performed:

» Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit of
the bit string (this assumes the length in bits of the datais a multiple of 8).

» A signatureis converted from a bit string to a byte string by padding the bit string on
the left with O to 7 zero bits so that the resulting length in bitsis a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bitsis the same as that of the RSA modulus.

Copyright © 1994-1999-2000 RSA Security Inc. |

236 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In thetable, k isthe length in bytes of the RSA modulus.

Table 696560, I SO/IEC 9796 RSA: Key And Data L ength

Function Key type Input Output
length length
C_Sign* RSA privatekey | <|k/2] k
C_SignRecover | RSA privatekey | <|k/2] k
C_Verify* RSA publickey | <|ki2], Kk N/A
C_VerifyRecover | RSA public key k <| k2]

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

121.612.1.7 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part encryption
and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. All these operations are based on so-called
“raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-
significant byte first, applying “raw” RSA exponentiation, and converting the result to a
byte string, most-significant byte first. The input string, considered as an integer, must be
less than the modulus; the output string is also less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type, key length, or any other information about the
key; the application must convey these separately, and supply them when unwrapping the

key.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 237 |

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For
this mechanism, padding should be performed by prepending plaintext data with 0-valued
bytes. In effect, to encrypt the sequence of plaintext bytes by b, ... b, (n < K), Cryptoki
forms P=2"h,+2"%h,+...+b,. This number must be less than the RSA modulus. The k-
byte ciphertext (k is the length in bytes of the RSA modulus) is produced by raising P to
the RSA public exponent modulo the RSA modulus. Decryption of a k-byte ciphertext C
is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is
to be used to produce an unwrapped key, then however many bytes are specified in the
template for the length of the key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is
specified in X.5009.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numericaly a least as large as the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same
length as the RSA modulus and is numerically at least as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In thetable, k isthe length in bytes of the RSA modulus.

Table 706661, X.509 (Raw) RSA: Key And Data L ength

Function Key type Input Output length
length

C_Encrypt* RSA public key <k k

C_Decrypt’ RSA private key k k

C_Sign* RSA privatekey | <k k

C_SignRecover RSA private key <k k

C_Verify* RSA publickey | <k, K N/A

C VerifyRecover | RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key Kk < k (specified in templ ate)

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

Copyright © 1994-1999-2000 RSA Security Inc. |

238 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism is intended for compatibility with applications that do not follow the
PKCS#1 or ISO/IEC 9796 block formats.

12.1.8 ANS X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM RSA X9 31, is a mechanism for
single-part signatures and verification without message recovery based on the RSA
public-key cryptosystem and the block formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The
trailer field must be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings.
Accordingly, the following transformations are performed:

 Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit of
the bit string (this assumes the length in bits of the datais a multiple of 8).

* A signature is converted from a bit string to a byte string by padding the bit string on
the left with O to 7 zero bits so that the resulting length in bits is a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANSI
X9.31.

Table 71674, ANSI X9.31 RSA: Key And Data L ength

Function Key type | nput Output
length length

C Sign* RSA private key < k-2 k

C_Verify' RSA publickey | <k-2, K N/A

! Single-part operations only.

2 Data length, signature length.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 239 |

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of RSA modulus sizes,
in bits.

121.712.1.9 PKCS#1 RSA signaturewith MD2, MD5, or SHA-1

The PKCS #1 RSA signature with MD2 mechanism, denoted CKM_MD2 RSA PKCS,
performs single- and multiple-part digital signatures and verification operations without
message recovery. The operations performed are as described in PKCS #1 with the
object identifier md2WithRSAEncryption.

Similarly, the PKCS #1 RSA signature with MD5 mechanism, denoted
CKM_MD5 RSA PKCS, performs the same operations described in PKCS #1 with the
object identifier md5WithRSAEncryption. The PKCS #1 RSA signature with SHA-1
mechanism, denoted CKM_SHA1 RSA PKCS, performs the same operations, except
that it uses the hash function SHA-1, instead of MD2 or MD5.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, k is the length in bytes of the RSA modulus. For the
PKCS #1 RSA signature with MD2 and PKCS #1 RSA signature with MD5 mechanisms,
k must be at least 27; for the PKCS #1 RSA signature with SHA-1 mechanism, k must be
at least 31.

Table 726862, PKCS #1 RSA Signatureswith MD2, MD5, or SHA-1: Key And Data
Length

Function Key type [nput Output Comments
length length
C_Sign RSA private key any k block type
01
C_Verify RSA public key any, k° N/A block type
01

Z Datalength, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.10 ANSI X9.31 RSA signaturewith SHA-1

The ANSI X931 RSA sSgnature with SHA-1 mechanism, denoted
CKM SHA1 RSA X9 31, peforms single- and multiple-part digital signatures and

Copyright © 1994-1999-2000 RSA Security Inc. |

| 240 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

verification operations without message recovery. The operations performed are as
described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, Kk is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANSI
X9.31.

Table 7369, ANSI X9.31 RSA Signatureswith SHA-1: Key And Data L ength

Function Key type Input Output
length length

C Sign RSA private key any K

C_Verify RSA public key any, kK N/A

2 Data length, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.2 DSA mechanisms

12.2.1 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, isa
key pair generation mechanism based on the Digital Signature Algorithm defined in FIPS
PUB 186.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA BASE

attrl butes of the templ ate for the publlc key—Nete%haHh%#eﬁskewef—G%mele—de&snet

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA VALUE
attributes to the new public key and the CKA_CLASS, CKA _KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the DSA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 241 |

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.2 DSA key parameter generation

The DSA key parameter generation mechanism, denoted
CKM DSA PARAMETER GEN, is a key parameter generation mechanism based on
the Digital Signature Algorithm defined in FIPS PUB 186.

This mechanism does not have a parameter.

The mechanism generates DSA key parameters with a particular prime length in bits, as
specified inthe CKA PRIME BITS attribute of the template for the key parameters.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, CKA PRIME,
CKA SUBPRIME, CKA BASE and CKA PRIME BITS attributes to the new object.
Other attributes supported by the DSA key parameter types may also be specified in the
template for the key parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of DSA prime sizes, in
bits.

122212.2.3 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS
PUB 186. (This mechanism corresponds only to the part of DSA that processes the 20-
byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 747063, DSA: Key And Data Length

Function Key type Input Output
length length

C_Sign* DSA private key 20 40

C_Verify* DSA public key 20, 40° N/A

! Single-part operations only.

Copyright © 1994-1999-2000 RSA Security Inc. |

242 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.312.2.4 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for
single- and multiple-part signatures and verification based on the Digital Signature
Algorithm defined in FIPS PUB 186. This mechanism computes the entire DSA
specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 757164, DSA with SHA-1: Key And Data L ength

Function Key type Input Output
length length

C_Sign DSA private key any 40

C_Verify DSA public key any, 40° N/A

Z Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.412.2.5 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP,
is a mechanism for single-part signatures and verification. The signatures it produces and
verifies are DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table.
The input and output data may begin at the same location in memory.

Table 767265, FORTEZZA Timestamp: Key And Data Length

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 243 |

Function Key type I nput Output
length length

C_Sign' DSA private key 20 40

C_Verify* DSA public key 20, 40° N/A

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.3 About Elliptic CurveAboutECDSA

The EC cryptosystem (also related to ECDSA) in this document is the one described in
the ANSI X9.62 standard and the ANSI X9.63 draft developed by the ANSI X9F1
working group.

In these standards, there are two different varieties of EC defined:

1. ECusing afield with an odd prime number of elements (i.e. the finite field Fy).

2. ECusing afield of characteristic two (i.e. the finite field Fom).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It
is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of
performing operations with the two varieties of EC, however this is not required. The
CK _MECHANISM INFO structure CKF EC F P flag identifies a Cryptoki library
supporting EC keys over F, whereas the CKF EC F 2M flag identifies a Cryptoki
library supporting EC keys over Fom. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

In these specifications there are also three representation methods to define the domain
parameters for an EC key. Only the ecParameters and the namedCurve choices are
supported in Cryptoki. The CK MECHANISM INFO structure
CKF EC ECPARAMETERS flag identifies a Cryptoki library supporting the
ecPar ameter s choice whereas the CKF EC NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the
ecParameters choice is used can be represented as an octet string of the uncompressed
form or the compressed form. The CK MECHANISM INFO structure
CKF EC UNCOMPRESS flag identifies a Cryptoki library supporting the
uncompressed form whereas the CKF EC COMPRESS flag identifies a Cryptoki

Copyright © 1994-1999-2000 RSA Security Inc.

| 244 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

library supporting the compressed form. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety,
one representation of domain parameters or one form may encounter difficulties
achieving interoperability with other implementations.

If an attempt to create, generate, derive, or unwrap an EC key of an unsupported variety
(or of an unsupported size of a supported variety) is made, that attempt should fail with
the error code CKR_ TEMPLATE INCONSISTENT. If an attempt to create, generate,
derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should faill with the error code
CKR_KEY PARAMS INVALID. If an attempt to create, generate, derive, or unwrap an
EC key of an unsupported form is made, that attempt should fail with the error code
CKR TEMPLATE INCONSISTENT.

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 245

124 12.4 Elliptic curve mechanisms

12.4.1 12.4.1 Elliptic curve key pair gener ation

The EC (aso related to ECDSA) key pair generation mechanism, denoted
CKM EC KEY PAIR GEN or CKM ECDSA KEY PAIR GEN, is a key pair
generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain
parameters, as specified in the CKA EC PARAMS or CKA ECDSA PARAMS
attribute of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, and
CKA EC POINT attributes to the new public key and the CKA CLASS,
CKA KEY TYPE, CKA EC PARAMS or CKA ECDSA PARAMS ad
CKA_ CKA VALUE attributes to the new private key. Other attributes supported by the
EC public and private key types (specificaly, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned
default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the minimum and maximum_supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°® and 2°% elements,
then ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 O bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

12.4.2 12.4.2 ECDSA without hashing

The ECDSA without hashing mechanism, denoted CKM ECDSA, is a mechanism for
single-part signatures and verification for ECDSA. (This mechanism corresponds only to
the part of ECDSA that processes the 20-byte hash value; it does not compute the hash

value.)

For the purposes of this mechanism, an ECDSA signature is an octet string of length two
times nLen, where nLen is the length in octets of the base point order n, and corresponds
to the concatenation of the ECDSA values r and s, each represented as an octet string of
length nLen most-significant byte first.

This mechanism does not have a parameter.

Copyright © 1994-1999-2000 RSA Security Inc.

246 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Constraints on key types and the length of data are summarized in the following table:

Table 66, ECDSA: Key And Data L ength

Function Key type [nput Output
length length

C Sign" ECDSA private key 20 2nLen

C Verify" ECDSA public key | 20, 2nLen? N/A

! Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK _MECHANISM INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°® and 2°° elements
(inclusive), then ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary
notation, the number 2°® consists of a 1 bit followed by 200 0 bits. It is therefore a 201-
bit number. Similarly, 2°% is a 301-bit number).

12.4.3 12.4.3 ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM ECDSA SHAL, is a mechanism
for single- and multiple-part signatures and verification for ECDSA. This mechanism
computes the entire ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, an ECDSA signature is an octet string of length two
times nLen, where nLen is the length in octets of the base point order n, and corresponds
to the concatenation of the ECDSA valuesr and s, each represented as an octet string of
length nLen most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 67, ECDSA with SHA-1: Key And Data L ength

Function | Keytype [nput length Output
length

C Sign ECDSA private key any 2nLen

C Veify | ECDSA publickey | any, 2nLen? N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the minimum and maximum supported

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 247 |

number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°® and 2°% elements,
then ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 O bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

12.4.4 EC mechanism parameters

¢ CK EC KDF TYPE,CK EC KDF TYPE PTR

CK EC KDF TYPE isused to indicate the Key Derivation Function (KDF) applied to
derive keying data from a shared secret. The key derivation function will be used by the
EC key agreement schemes. It is defined asfollows:

t ypedef CK ULONG CK EC KDF TYPE;

Thefollowing table lists the defined functions.

Table 7743, EC: Key Derivation Functions

Sour ce ldentifier Value
CKD NULL 0x00000001
CKD SHA1 KDF 0x00000002

The key derivation function CKD NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation function
CKD _SHA1 KDF, which is based on SHA-1, derives keying data from the shared secret
value as defined in the ANSI X9.63 draft.

CK EC KDF TYPE PTRisapointertoaCK EC KDF TYPE.

¢ CK ECDH1 DERIVE PARAMS CK ECDH1 DERIVE PARAMS PTR

CK ECDH1 DERIVE PARAMS is a structure that provides the parameters for the
CKM ECDH1 DERIVE and CKM ECDH1 COFACTOR DERIVE key derivation
mechanisms, where each party contributes one key pair. The structure is defined as
follows:

t ypedef struct CK ECDHL DERI VE PARAMS {
CK EC KDF TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK BYTE PTR pShar edDat a;
CK _ULONG ul Publ i cDat aLen;
CK BYTE PTR pPubl i cDat a;
1 CK_ECDH1_DERI VE_PARANS;

Copyright © 1994-1999-2000 RSA Security Inc. |

| 248 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Thefields of the structure have the following meanings:

kdf key derivation function used on the shared secret value

ulSharedDatal en the length in bytes of the shared info

pSharedData some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s EC public key

pPublicData pointer to other party’s EC public key value

With the key derivation function CKD NULL, pSharedData must be NULL and
ulSharedDatalen must be zero. With the key derivation function CKD _SHA1 KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal_en must be zero.

CK_ECDH1 DERIVE PARAMS PTR IS a pointer to a
CK ECDH1 DERIVE PARAMS.

¢ CK ECDH2? DERIVE PARAMS CK ECDH2 DERIVE PARAMS PTR

CK ECDH2 DERIVE PARAMS is a structure that provides the parameters to the
CKM ECMOV DERIVE key derivation mechanism, where each party contributes two
key pairs. The structure is defined as follows:

t ypedef struct CK ECDH2 DERI VE PARANS ({
CK EC KDF TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK BYTE PTR pShar edDat a;
CK _ULONG ul Publ i cDat aLen;
CK BYTE PTR pPubl i cDat a;
CK _ULONG ul Pri vat eDat aLen;
CK OBJECT HANDLE hPri vat eDat a;
CK_ _ULONG ul Publ i cDat aLen2;
CK BYTE PTR pPubl i cDat a2;
1 CK_ECDH2_ DERI VE_PARANS;

Thefields of the structure have the following meanings:

kdf key derivation function used on the shared secret value

ulSharedDatal en the length in bytes of the shared info

pSharedData some data shared between the two parties

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 249 |

ulPublicDatalLen the length in bytes of the other party’sfirst EC public
key

pPublicData pointer to other party’s first EC public key value

ulPrivateDatalLen the length in bytes of the second EC private key

hPrivateData key handle for second EC private key value

ulPublicDatal.en2 the length in bytes of the other party’s second EC
public key

pPublicData? pointer to other party’s second EC public key value

With the key derivation function CKD NULL, pSharedData must be NULL and
ulSharedDatalen must be zero. With the key derivation function CKD _SHA1 KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal_en must be zero.

CK_ECDH2 DERIVE PARAMS PTR IS a pointer to a
CK ECDH?2 DERIVE PARAMS.

12.4.5 Elliptic curve Diffie-Hellman key derivation

The €dliptic _curve DiffieeHellman (ECDH) key derivation mechanism, denoted
CKM_ECDH1 DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman version of the €liptic curve key agreement scheme, as defined in the ANSI
X9.63 draft, where each party contributes one key pair al using the same EC domain

parameters.

It has aparameter,aCK ECDH1 DERIVE PARAMS structure.

This _mechanism derives a secret value, and truncates the result according to the
CKA _KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_ VAL UE attribute of the new key; other attributes required by the key type must be
specified in the templ ate.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify

Copyright © 1994-1999-2000 RSA Security Inc. |

250 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the minimum and maximum_supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2*® and 2°® elements, then
ulMinKeySize = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 O bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

12.4.6 Elliptic curve Diffie-Hellman with cofactor key derivation

The dliptic_curve DiffieeHellman (ECDH) with cofactor key derivation mechanism,
denoted CKM_ECDH1 COFACTOR DERIVE, is a mechanism for key derivation
based on the cofactor Diffie-Hellman version of the éliptic curve key agreement scheme,
as defined in the ANSI X9.63 draft, where each party contributes one key pair al using
the same EC domain parameters. Cofactor multiplication is computationally efficient and
helps to prevent security problems like small group attacks.

It has aparameter,aCK ECDH1 DERIVE PARAMS structure.

This _mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the templ ate.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 251 |

2200 2300

only EC using a field of characteristic 2 which has between and elements, then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°° consists of a 1 hit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

12.4.7 Elliptic curve Menezes-Qu-Vanstone key derivation

The €lliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version
of the dliptic curve key agreement scheme, as defined in the ANSI X9.63 draft, where
each party contributes two key pairs all using the same EC domain parameters.

It has aparameter,aCK ECDH2 DERIVE PARAMS structure.

This _mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the templ ate.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the minimum and maximum_supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2*° and 2°® elements, then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 O bits. It is therefore a 201-bit number.
Similarly, 2°® is a301-bit number).

Copyright © 1994-1999-2000 RSA Security Inc. |

252 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12 4ECDSA-mechanisms

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 253

Function Key type Input Output
length length
C-Sign” ECDSA-privatekey 20 40

Copyright © 1994-1999-2000 RSA Security Inc.

254 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

125 DiffieeHelman mechanisms

12.5.1 PKCS#3 Diffie-Hellman key pair generation

The PKCS #3 DiffieHdlman key par generation mechanism, denoted
CKM_DH_PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls
“phasel”.

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime
and base, as specified in the CKA_PRIME and CKA_BASE attributes of the template
for the public key. If the CKA_VALUE_BITS attribute of the private key is specified,

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_BASE, and CKA_VALUE (and the CKA_VALUE_BITS
attribute, if it is not already provided in the template) attributes to the new private key;
other attributes required by the Diffie-Hellman public and private key types must be
specified in the templates.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

12.5.2 PKCS#3 Diffie-Hellman key parameter gener ation

The PKCS #3 DiffieHdlman key parameter generation mechanism, denoted
CKM DH PKCS PARAMETER GEN, is a key parameter generation mechanism
based on Diffie-Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman key parameters with a particular prime length
in bhits, as specified in the CKA PRIME BITS attribute of the template for the key

parameters.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 255 |

The mechanism contributes the CKA CLASS, CKA KEY TYPE, CKA PRIME,
CKA BASE, and CKA PRIME BITS attributes to the new object. Other attributes
supported by the Diffie-Hellman key parameter types may also be specified in the
template for the key parameters, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

125.212.5.3 PKCS#3 Diffie-Hellman key derivation

The PKCS #3 DiffieHdlman key derivation mechanism, denoted
CKM_DH _PKCS DERIVE, is a mechanism for key derivation based on Diffie-
Hellman key agreement, as defined in PKCS #3. Thisiswhat PKCS#3 calls “phase 11”.

It has a parameter, which is the public value of the other party in the key agreement
protocol, represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-
significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public
value of the other party. It computes a Diffie-Hellman secret value from the public value
and private key according to PKCS #3, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from
the leading end of the secret value) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the

CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

Copyright © 1994-1999-2000 RSA Security Inc. |

256 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.6 X9.42 Diffie-Hellman mechanism parameters

¢ CK X942 DH KDF TYPE,CK X9 42 DH KDF TYPE PTR

CK X9 42 DH KDF TYPE is used to indicate the Key Derivation Function (KDF)
applied to derive keying data from a shared secret. The key derivation function will be
used by the X9.42 Diffie-Hellman key agreement schemes. |t is defined as follows:

typedef CK ULONG CK X9 42 DH KDF TYPE;

Thefollowing table lists the defined functions.

Table 80%6, X9.42 Diffie-Hellman K ey Derivation Functions

Sour ce I dentifier Value

CKD_NULL 0x00000001
CKD SHA1 KDF ASN1 0x00000003
CKD_SHA1 KDF CONCATENATE 0x00000004

The key derivation function CKD NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation functions
CKD SHA1 KDF ASN1 and CKD SHA1l KDF CONCATENATE, which are both
based on SHA-1, derive keying data from the shared secret value as defined in the ANSI
X9.42 draft.

CK X9 42 DH KDF TYPE PTRisapointertoaCK X9 42 DH KDF TYPE.

¢ CK X9 42 DH1 DERIVE PARAMS,
CK X9 42 DH1 DERIVE PARAMS PTR

CK X9 42 DH1 DERIVE PARAMS s astructure that provides the parameters to the
CKM X9 42 DH DERIVE key derivation mechanism, where each party contributes
one key pair. The structure is defined as follows:

typedef struct CK X9 42 DH1 DERI VE PARANS {
CK_X9 42 DH KDF_TYPE Kkdf;
CK _ULONG ul O her I nf oLen;
CK_BYTE _PTR pQ her | nf o;
CK ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubli cDat a;
} CK X9 42 DH1 DERI VE PARANES;

The fields of the structure have the following meanings:

kdf key derivation function used on the shared secret value

ulOtherInfoLen the length in bytes of the other info

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 257 |

pOtherinfo some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s X9.42 Diffie-
Hellman public key

pPublicData pointer to other party’s X9.42 Diffie-Hellman public
key value

With the key derivation function CKD NULL, pOtherinfo must be NULL and
ulOtherinfoLen must be zero. With the key derivation function
CKD SHA1 KDF ASN1, pOtherinfo must be supplied, which contains an octet string,
specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD SHA1l KDF CONCATENATE, an optional pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherinfo must be NULL and ulOtherInfoLen must be zero.

CK X9 42 DH1 DERIVE PARAMS PTR IS a pointer to a
CK X9 42 DH1 DERIVE PARAMS.

¢ CK X9 42 DH2 DERIVE PARAMS,
CK X9 42 DH2 DERIVE PARAMS PTR

CK X9 42 DH2 DERIVE PARAMS s astructure that provides the parameters to the
CKM X9 42 DH HYBRID DERIVE and CKM X9 42 MOV _DERIVE key
derivation mechanisms, where each party contributes two key pairs. The structure is
defined as follows:

typedef struct CK X9 42 DH2 DERI VE_PARAMS {
CK X9 42 DH KDF TYPE kdf;
CK _ULONG ul Ot her I nf oLen;
CK BYTE PTR pQ her | nf o;
CK _ULONG ul Publ i cDat aLen;
CK BYTE PTR pPubl i cDat a;
CK _ULONG ul Pri vat eDat aLen;
CK OBJECT HANDLE hPri vat eDat a;
CK _ULONG ul Publ i cDat aLen2;
CK BYTE PTR pPubl i cDat a2;
1 CK X9 42 DH2_ DERI VE_PARANS;

Thefields of the structure have the following meanings:

kdf key derivation function used on the shared secret value

ulOtherInfoLen the length in bytes of the other info

pOtherinfo some data shared between the two parties

Copyright © 1994-1999-2000 RSA Security Inc. |

| 258 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulPublicDatalLen the length in bytes of the other party’ sfirst X9.42
Diffie-Hellman public key

pPublicData pointer to other party’sfirst X9.42 Diffie-Hellman
public key value

ulPrivateDatalLen the length in bytes of the second X9.42 Diffie-Hellman
private key

hPrivateData key handle for second X9.42 Diffie-Hellman private
key value

ulPublicDatal.en2 the length in bytes of the other party’s second X9.42
Diffie-Hellman public key

pPublicData? pointer to other party’ s second X9.42 Diffie-Hellman
public key value

With the key derivation function CKD NULL, pOtherinfo must be NULL and
ulOCtherinfoLen must be zero. With the key derivation function
CKD SHA1 KDF ASN1, pOtherinfo must be supplied, which contains an octet string,
specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD SHA1l KDF CONCATENATE, an optional pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherinfo must be NULL and ulOtherInfoLen must be zero.

CK X9 42 DH2 DERIVE PARAMS PTR IS a pointer to a
CK X9 42 DH?2 DERIVE PARAMS.

12.7 X9.42 Diffie-Hellman mechanisms

12.7.1 X9.42 Diffie-Hellman key pair gener ation

The X942 DiffieHellman key par generation mechanism, denoted
CKM X9 42 DH KEY PAIR GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in the ANSI X9.42 draft.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular
prime, base and subprime, as specified in the CKA PRIME, CKA BASE and
CKA_SUBPRIME attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating a prime, base and subprime.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439, MECHANISMS 259 |

The mechanism contributes the CKA CLASS, CKA KEY TYPE, and CKA VALUE
attributes to _the new public key and the CKA CLASS, CKA KEY TYPE,
CKA PRIME, CKA BASE, CKA SUBPRIME, and CKA VALUE attributes to the
new private key; other attributes required by the X9.42 Diffie-Hellman public and private
key types must be specified in the templ ates.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA PRIME attribute.

Editor’'s Note: The ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM INFO structure only specifies the supported range
for the CKA PRIME attribute and not the CKA SUBPRIME attribute.
Should something be done to specify the range of the
CKA SUBPRIME attribute?

12.7.2 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted
CKM X9 42 DH DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman key agreement scheme, as defined in the ANSI X9.42 draft, where each party
contributes one key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has aparameter, aCK X9 42 DH1 DERIVE PARAMS structure.

This _mechanism derives a secret value, and truncates the result according to the
CKA _KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the templ ate.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

Copyright © 1994-1999-2000 RSA Security Inc. |

260 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA PRIME attribute.

Editor's Note: The ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM INFO structure only specifies the supported range
for the CKA PRIME attribute and not the CKA SUBPRIME attribute.
Should something be done to specify the range of the
CKA SUBPRIME attribute?

12.7.3 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 DiffieHellman hybrid key derivation mechanism, denoted
CKM X9 42 DH HYBRID DERIVE, isamechanism for key derivation based on the
Diffie-Hellman hybrid key agreement scheme, as defined in the ANSI X9.42 draft, where
each party contributes two key pair, all using the same X9.42 Diffie-Hellman domain

parameters.

It has aparameter, aCK X9 42 DH2 DERIVE PARAMS structure.

This _mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the templ ate.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA PRIME attribute.

Editor’'s Note: The ulMinKeySize and ulMaxKeySize fields of the
CK MECHANISM INFO structure only specifies the supported range
for the CKA PRIME attribute and not the CKA SUBPRIME attribute.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 261 |

Should something be done to specify the range of the
CKA SUBPRIME attribute?

12.7.4 X9.42 Diffie-Hellman M enezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism,
denoted CKM X9 42 MQV_DERIVE, is a mechanism for key derivation based the
MQV scheme, as defined in the ANSI X9.42 draft, where each party contributes two key
pairs, al using the same X9.42 Diffie-Hellman domain parameters.

It has aparameter,aCK X9 42 DH2 DERIVE PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA VALUE LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA VAL UE attribute of the new key; other attributes required by the key type must be
specified in the template.

The derived key inherits the values of the CKA SENSITIVE,
CKA ALWAYS SENSITIVE, CKA EXTRACTABLE, and
CKA NEVER EXTRACTABLE attributes from the base key. The vaues of the
CKA SENSITIVE and CKA EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA NEVER EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA PRIME attribute.

Editor's _Note: The ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM INFO structure only specifies the supported range
for the CKA PRIME attribute and not the CKA SUBPRIME attribute.
Should something be done to specify the range of the
CKA SUBPRIME attribute?

Copyright © 1994-1999-2000 RSA Security Inc. |

| 262 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12612.8 KEA mechanism parameters

¢+ CK_KEA_DERIVE_PARAMS: CK_KEA_DERIVE_PARAMS PTR

CK_KEA_DERIVE_PARAMS is a dtructure that provides the parameters to the
CKM_KEA_DERIVE mechanism. It isdefined asfollows:

t ypedef struct CK_KEA DERI VE_PARANS ({
CK _BBOOL i sSender;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandonh;
CK_BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_KEA DERI VE_PARANS;

The fields of the structure have the following meanings:

isSender Option for generating the key (called a TEK). The
valueis TRUE if the sender (originator) generates the
TEK, FALSE if the recipient is regenerating the TEK.

ulRandomLen size of random Raand Rb, in bytes
pRandomA pointer to Radata
pRandomB pointer to Rb data
ulPublicDataLen other party’s KEA public key size
pPublicData pointer to other party’s KEA public key value

CK_KEA_DERIVE_PARAMS PTRisapointertoaCK_KEA DERIVE_PARAMS.
12712.9 KEA mechanisms

12.7112.9.1 KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN,
generates key pairs for the Key Exchange Algorithm, as defined by NIST's “SKIPJACK
and KEA Algorithm Specification Version 2.0”, 29 May 1998.

It does not have a parameter.
The mechanism generates KEA public/private key pairs with a particular prime, subprime

and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 263 |

attributes of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the KEA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of KEA prime sizes, in
bits.

12.7.212.9.2 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA DERIVE, is a mechanism
for key derivation based on KEA, the Key Exchange Algorithm, as defined by NIST’s
“SKIPJACK and KEA Algorithm Specification Version 2.0, 29 May 1998.

It has a parameter, aCK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

As defined in the Specification, KEA can be used in two different operational modes: full
mode and e-mail mode. Full mode is a two-phase key derivation sequence that requires
real-time parameter exchange between two parties. E-mail mode is a one-phase key
derivation sequence that does not require real-time parameter exchange. By convention,
e-mail mode is designated by use of a fixed value of one (1) for the KEA parameter Ry,
(pRandomB).

The operation of this mechanism depends on two of the vaues in the supplied
CK_KEA_DERIVE_PARAMS structure, as detailed in the table below. Note that, in all
cases, the data buffers pointed to by the parameter structure fields pRandomA and
pRandomB must be allocated by the caller prior to invoking C_DeriveKey. Also, the
values pointed to by pRandomA and pRandomB are represented as Cryptoki “Big integer”
data(i.e., a sequence of bytes, most-significant byte first).

Copyright © 1994-1999-2000 RSA Security Inc. |

| 264 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 817768, KEA Parameter Values and Operations

Value of Value of
boolean big integer Token Action
isSender pRandomB (after checking parameter and template values)
TRUE 0 Compute KEA R, value, storeit in pRandomA, return
CKR_OK. No derived key object is created.
TRUE 1 Compute KEA R, value, storeit in pRandomA, derive
key value using e-mail mode, create key object, return
CKR_OK.
TRUE >1 Compute KEA R, value, storeit in pRandomA, derive
key value using full mode, create key object, return
CKR_OK.
FALSE 0 Compute KEA Ry, value, storeit in pRandomB, return
CKR_OK. No derived key object is created.
FALSE 1 Derive key value using e-mail mode, create key
object, return CKR_OK.
FALSE >1 Derive key value using full mode, create key object,
return CKR_OK.

Note that the parameter value pRandomB==0 is a flag that the KEA mechanism is being
invoked to compute the party’s public random value (R, or Ry, for sender or recipient,
respectively), not to derive a key. In these cases, any object template supplied as the
C_DeriveK ey pTemplate argument should be ignored.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_SENSITIVE attribute set to FALSE;
similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute set to
TRUE, then the template may not specify that the derived key should have the
CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the

CK_MECHANISM _INFO structure specify the supported range of KEA prime sizes, in
bits.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 265 |

12.812.10 Generic secret key mechanisms

128.112.10.1 Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any atributes provided in the template passed to the
C_GenerateKey cal, and the CKA_VALUE_LEN attribute specifies the length of the
key to be generated.

It does not have a parameter.

The template supplied must specify avalue for the CKA_VALUE_LEN attribute. If the
template specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS=CKO_SECRET_KEY;

CK_KEY_TYPE =CKK_GENERIC_SECRET;
For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bits.

12.11 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping
RSA private keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC
(also related to ECDSA) private keys and DSA private keys. For wrapping, a private key
is BER-encoded according to PKCS #8' s PrivateKeylnfo ASN.1 type. PKCS #8 requires
an_adgorithm identifier for the type of the secret key. The object identifiers for the
required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgreenent OBJECT IDENTIFIER ::= { pkcs-3 1 }
dhpubl i cnunber OBJECT IDENTIFIER ::= { iso(1l) nenber-

body(2) us(840) ansi-x942(10046) nunber-type(2) 1}

I d-ecPubl i cKey OBJECT IDENTIFIER ::= { iso(1) nenber-
body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1 }

I d-dsa OBJECT I DENTIFIER :: = {
I so(1) nenber-body(2) us(840) x9-57(10040) x9cnm(4) 1 }

where

Copyright © 1994-1999-2000 RSA Security Inc. |

| 266 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

pkcs-1 OBJECT | DENTIFIER :: = {
i so(1) nmenber-body(2) US(840) rsadsi (113549) pkcs(1) 1
b
pkcs-3 OBJECT | DENTI FIER :: = {

i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1) 3
}

These parameters for the algorithm identifiers have the following types, respectively:

NULL
DHPar anet er ::= SEQUENCE {
prinme I NTEGER, -- p
base | NTEGER, -- ¢
privat eVal ueLength | NTEGER OPTI ONAL
}
Domai nPar aneters :: = SEQUENCE {
prinme I NTEGER, -- p
base | NTEGER, -- ¢
subpri nme | NTEGER, - -
cof act or | NTEGER OPTI ONAL, -- |
val i dat i onPar ns Val i dati onParms OPTI ONAL
}
Val i dati onParns ::= SEQUENCE {
Seed BIT STRING -- seed
PGenCount er | NTEGER -- paraneter verification
3
Paraneters ::= CHO CE {
ecPar anet ers ECPar anet er s,
nanedCur ve CURVES. & d({CurveNanes}),
inplicitlyCA NULL
3
Dss-Parns ::= SEQUENCE {
p | NTECGER,
g | NTEGER,
g | NTEGER
3

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationPar ms
optional fields should not be used when wrapping or unwrapping X9.42 Diffie-Hellman
private keys since their values are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choiceimplicitlyCA must not be used in Cryptoki.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 267 |

Within the PrivateK eylnfo type:

RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1

type. This type requires values to be present for all the attributes specific to
Cryptoki’s RSA private key objects. In other words, if a Cryptoki library does not
have values for an RSA private key's CKA MODULUS,
CKA PUBLIC EXPONENT, CKA PRIVATE EXPONENT, CKA PRIME 1,
CKA PRIME 2, CKA EXPONENT 1, CKA EXPONENT?2, and
CKA COEFFICIENT values, it cannot create an RSAPrivateK ey BER-encoding of
the key, and so it cannot prepare it for wrapping.

Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

X9.42 DiffieeHellman private keys are represented as BER-encoded ASN.1 type

INTEGER.

EC (dso related with ECDSA) private keys are BER-encoded according to SECG

SEC 1 ECPrivateKey ASN.1 type:

ECPri vat eKey ::= SEQUENCE {
Ver si on | NTEGER { ecPrivkeyVer1(1) }
(ecPrivkeyVer1l),
pri vat eKey OCTET STRI NG,
paraneters [0] Paraneters OPTI ONAL,
publ i cKey [1] BI'T STRI NG OPTI ONAL

13

Since the EC domain parameters are placed in the PKCS #8' s privateKeyAlgorithm
field, the optional parameters field in an ECPrivateKey must be omitted. The
optional publicKey field could be omitted, however it may be useful to send the
public key aong with the private key, especialy in _mechanisms that involve
calculations with the public key.

DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 268 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string
of bytes is encrypted with the secret key. This encryption must be done in CBC mode
with PKCS padding.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 269

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The data thereby obtained are
parsed as a PrivateKeyInfo type, and the wrapped key is produced. An error will result if
the original wrapped key does not decrypt properly, or if the decrypted unpadded data
does not parse properly, or its type does not match the key type specified in the template
for the new key. The unwrapping mechanism contributes only those attributes specified
in the PrivateKeylnfo type to the newly-unwrapped key; other attributes must be specified
in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm12 }
al gorithm OBJECT | DENTIFIER ::= {
iso(l) identifier-organization(3) oiw1l4) secsig(3)
al gorithm2) }

with associated parameters

DSAPar anet ers :: = SEQUENCE {
prinmel INTEGER, -- nodulus p
prinme2 | NTEGER, -- nodulus g
base I NTEGER -- base ¢

}

for wrapping DSA private keys. Note that although the two structures for holding DSA
parameters appear identical when instances of them are encoded, the two corresponding
object identifiers are different.

12.1012.12 About RC2

RC2 is a block cipher which is trademarked by RSA Data Security. It has a variable
keysize and an additional parameter, the “effective number of bits in the RC2 search
space”, which can take on values in the range 1-1024, inclusive. The effective number of
bits in the RC2 search space is sometimes specified by an RC2 “version number”; this
“version number” is not the same thing as the “ effective number of bits’, however. There
isacanonical way to convert from one to the other.

12.1112.13 RC2 mechanism parameters

¢ CK_RCZ2 PARAMS; CK_RC2 PARAMS PTR

CK_RC2 PARAMS provides the parameters to the CKM_RC2 ECB and
CKM_RC2 MAC mechanisms. It holds the effective number of bits in the RC2 search
space. It isdefined asfollows:

Copyright © 1994-1999-2000 RSA Security Inc.

270 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

typedef CK ULONG CK_RC2_PARAMS;

CK_RC2 PARAMS PTRisapointertoaCK_RC2 PARAMS.

¢+ CK_RC2 CBC_PARAMS; CK_RC2 CBC_PARAMS PTR

CK_RC2 CBC_PARAMS is a structure that provides the parameters to the
CKM_RC2 CBC and CKM_RC2_CBC_PAD mechanisms. It isdefined asfollows:

t ypedef struct CK RC2_CBC PARAMS {
CK_ULONG ul Ef fectiveBits;
CK_BYTE i v[8];
} CK_RC2_CBC_PARAMNS;
The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bitsin the RC2 search space

iv theinitiaization vector (V) for cipher block chaining
mode

CK_RC2 CBC_PARAMS PTR isapointer to aCK_RC2 CBC_PARAMS.

¢ CK_RC2 MAC GENERAL PARAMS;
CK_RC2 MAC_GENERAL PARAMS PTR

CK_RC2 MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC2 MAC_GENERAL mechanism. It isdefined as follows:

typedef struct CK RC2_MAC GENERAL_ PARAMS {
CK_ULONG ul EffectiveBits;
CK_ULONG ul MacLengt h;
} CK_RC2_MAC_GENERAL _PARANS;
The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bitsin the RC2 search space
ulMacLength length of the MAC produced, in bytes

CK_RC2 MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC2 MAC_GENERAL_PARAMS.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 271 |

12.1212.14 RC2 mechanisms

1212112.14.1 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2 KEY_GEN, is a key
generation mechanism for RSA Data Security’s block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 key sizes, in
bits.

1212.212.14.2 RC2-ECB

RC2-ECB, denoted CKM_RC2 ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’ s block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits
in the RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 272 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 827869, RC2-ECB: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey | RC2 multiple of 8 | determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

1212312.14.3 RC2-CBC

RC2-CBC, denoted CKM_RC2 CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’ s block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector for cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 273 |

Table 837970, RC2-CBC: Key And Data L ength

Function Key Input length Output length Comments
type

C_Encrypt RC2 multiple of 8 same as input length no final part

C_Decrypt RC2 multiple of 8 same as input length no final part

C WrapKey RC2 any input length rounded up

to multiple of 8

C_UnwrapKey | RC2 multiple of 8 determined by type of

key being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

1212.412.14.4 RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2 CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Data Security’s block cipher RC2; cipher-block chaining mode as defined
in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector.

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, lefleHeIIman X9.42 D|ff|eHeIIman EC (aso related to ECDSA) and
DSA prlvate kevs ‘ Arap—al Aral \

Sectlon [12. 11}2—1—1—L2—9| for detalls) The entrles in rrable 841ab|e%913ble—7—1| for data

length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 274 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 848671, RC2-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC2 any input length rounded up to
multiple of 8
C_Decrypt RC2 multiple of 8 between 1 and 8 bytes
shorter than input length
C_WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multiple of 8 between 1 and 8 bytes
shorter than input length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

1212512.14.5 General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2 MAC_GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on RSA Data Security’ s block
cipher RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC2_ MAC_GENERAL_PARAMS structure, which specifies
the effective number of bits in the RC2 search space and the output length desired from
the mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 858172, General-length RC2-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sign RC2 any 0-8, as specified in parameters
C Veify RC2 any 0-8, as specified in parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 275 |

1212612.14.6 RC2-MAC ‘

RC2-MAC, denoted by CKM_RC2 MAC, is a specia case of the genera-length RC2-
MAC mechanism (see Section [2.1451234512125). Instead of taking a |
CK_RC2 MAC_GENERAL_PARAMS parameter, it takes a CK_RC2 PARAMS
parameter, which only contains the effective number of bits in the RC2 search space.
RC2-MAC aways produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 868273, RC2-MAC: Key And Data L ength

Function Key type | Datalength Signature length
C_Sign RC2 any 4
C Veify RC2 any 4

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.1312.15 RC4 mechanisms

1213.112.15.1 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY_GEN, is a key
generation mechanism for RSA Data Security’s proprietary stream cipher RCA4.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC4 key sizes, in
bits.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 276 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

‘ 1213.212.15.2 RC4

RC4, denoted CKM _RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Data Security’ s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 878374, RC4: Key And Data L ength

Function Key type I nput Output length Comments
length

C_Encrypt RC4 any same as input length | no final part

C_Decrypt RC4 any same as input length | no final part

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC4 key sizes, in
bits.

12.1412.16 About RC5

RCS5 is a parametrizable block cipher ferwhichpatented by RSA Data Security-has-patent
pending. It has a variable wordsize, a variable keysize, and a variable number of rounds.
The blocksize of RC5 is aways equal to twice its wordsize.

12.1512.17 RC5 mechanism parameters

¢+ CK_RC5 PARAMS; CK_RC5 PARAMS PTR

CK_RC5 PARAMS provides the parameters to the CKM_RC5 ECB and
CKM_RC5 MAC mechanisms. It isdefined asfollows:

typedef struct CK RC5 PARAMS {
CK_ULONG ul Wr dsi ze;
CK_ULONG ul Rounds;
} CK_RC5_PARAMS;
The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 277 |

ulRounds number of rounds of RC5 encipherment

CK_RC5 PARAMS PTRisapointertoaCK_RC5 PARAMS.

¢+ CK_RC5 CBC_PARAMS; CK_RC5 CBC_PARAMS PTR

CK_RC5 CBC PARAMS is a structure that provides the parameters to the
CKM_RC5 CBC and CKM_RC5 CBC_PAD mechanisms. It is defined asfollows:

typedef struct CK RC5_CBC PARAMS {
CK_ULONG ul Wr dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} CK_RC5_CBC_PARANS;
The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment
plv pointer to initiaization vector (IV) for CBC encryption

ullvLen length of initialization vector (must be same as
blocksize)

CK_RC5 CBC_PARAMS PTR isapointer to aCK_RC5 CBC_PARAMS.

¢ CK_RC5 MAC GENERAL PARAMS;
CK_RC5 MAC_GENERAL PARAMS PTR

CK_RC5 MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC5 MAC_GENERAL mechanism. It isdefined as follows:

typedef struct CK RC5_MAC GENERAL_ PARAMS {
CK_ULONG ul Wr dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;
} CK_RC5_MAC _GENERAL_PARAMS;
The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

Copyright © 1994-1999-2000 RSA Security Inc. |

| 278 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulMacLength length of the MAC produced, in bytes

CK_RC5 MAC_GENERAL_PARAMS PTR IS a poi nter to a
CK_RC5 MAC_GENERAL_PARAMS.

12.1612.18 RC5 mechanisms

12.16.112.18.1 RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5 KEY_GEN, is a key
generation mechanism for RSA Data Security’s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in
bytes.

1216.212.18.2 RC5-ECB

RC5-ECB, denoted CKM_RC5 ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’ s block cipher RC5 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 PARAMS, which indicates the wordsize and number of
rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of the
cipher blocksize (twice the wordsize). The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attributes of the template and, if it has one, and the

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 279 |

key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 888475, RC5-ECB: Key And Data Length

Function Key I nput Output length Comments
type length
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

12:16:312.18.3 RC5-CBC

RC5-CBC, denoted CKM_RC5 CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’ s block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 280 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 898576, RC5-CBC: Key And Data L ength

Function Key I nput Output length Comments
type length
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multipleof | determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

12.16.412.18.4 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5 _CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Data Security’s block cipher RCS5; cipher-block chaining mode as defined
in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5 CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, lefleHeIIman X9.42 D|ff|eHeIIman EC (aso related to ECDSA) and
DSA prlvate kevs ‘ Arap—al Aral \

Sectlo g for detalls) The entries in rrab|e 9013@%86Iabte—l7| for data length
constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 281

Table 908677, RC5-CBC with PKCS Padding: Key And Data L ength

Function Key I nput Output length
type length
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C_Decrypt RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length
C WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length

12.16.512.18.5 General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5 MAC_GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on RSA Data Security’ s block
cipher RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC5 MAC_GENERAL_PARAMS structure, which specifies
the wordsize and number of rounds of encryption to use and the output length desired
from the mechanism.

The output bytes from this mechanism are taken from the start of the final RC5 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 918778, General-length RC2-MAC: Key And Data L ength

Function Key type | Datalength Signature length

C Sign RC2RC5 any O-blocksize, as specified in
parameters

C Veify RC2RC5 any O-blocksize, as specified in
parameters

12.16.612.18.6 RC5-MAC

RC5-MAC, denoted by CKM_RC5 MAUC, is a specia case of the genera-length RC5-
MAC mechanism (see Section [12.18.51218512165). Instead of taking a
CK_RC5 MAC_GENERAL_PARAMS parameter, it takes a CK_RC5 PARAMS
parameter. RC5-MAC aways produces and verifies MACs half as large as the RC5
blocksize.

Copyright © 1994-1999-2000 RSA Security Inc.

282 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Constraints on key types and the length of data are summarized in the following table:

Table 928879, RC5-MAC: Key And Data L ength

Function Key type | Datalength Signature length
C_Sign RC5 any RC5 wordsize = | blocksize/2
C_Verify RC5 any RC5 wordsize = | blocksize/2 |

12.19 AES mechanisms

12.19.1 AESKkey generation

The AES key generation mechanism, denoted CKM AES KEY GEN, is a key
generation mechanism for NIST’ s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA VALUE LEN attribute of the template for the key.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the AES key type (specifically,
the flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

12.19.2 AESECB

AES-ECB, denoted CKM AES ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST Advanced
Encryption Standard and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA VAL UE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. 1t does not wrap the key type, key length, or any other information about the
key: the application must convey these separately.

Copyright © 1994-1999-2000 RSA Security Inc.

12439, MECHANISMS 283 |

For _unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_ TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA VALUE LEN attribute of the template. The mechanism
contributes the result as the CKA VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 9389, AES-ECB: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C UnwrapKey AES multiple of determined by type of key
block size being unwrapped or
CKA_ VALUE LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

12.19.3 AESCBC

AES-CBC, denoted CKM AES CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST's
Advanced Encryption Standard and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA VAL UE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key: the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA KEY TYPE attribute of the template and, if it has one, and the

Copyright © 1994-1999-2000 RSA Security Inc. |

284 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

key type supports it, the CKA VALUE LEN attribute of the template. The mechanism
contributes the result as the CKA VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 9490, AES-CBC: Key And Data L ength

Function Key Input length Output length Comments
type

C_Encrypt AES multiple of same as input length no final part
block size

C_Decrypt AES multiple of same as input length no final part
block size

C_WrapKey AES any input length rounded up to

multiple of the block size

C UnwrapKey AES multiple of determined by type of key

block size being unwrapped or

CKA_VALUE LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

12.19.4 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES CBC PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on NIST's Advanced Encryption Standard; cipher-block chaining mode; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA VALUE LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
private keys (see Section [1.1] for details). The entriesin[Table 9

length constraints when wrapping and unwrapping keys do not apply to wrapping and

unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 285 |

Table 9591, AES-CBC with PKCS Padding: Key And Data L ength

Function Key I nput length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size
block size bytes shorter than input
length
C WrapKey AES any input length rounded up to
multiple of the block size
C UnwrapKey | AES multiple of between 1 and block length
block size bytes shorter than input
length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

12.19.5 General-length AES-MAC

Generd-length AES-MAC, denoted CKM AES MAC GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on NIST Advanced
Encryption Standard.

It has a parameter, a CK MAC GENERAL PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 9692, General-length AES-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sign AES any 0-block size, as specified in parameters
C Veity AES any O-block size, as specified in parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

Copyright © 1994-1999-2000 RSA Security Inc. |

286 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.19.6 AESMAC

AES-MAC, denoted by CKM AES MAC, is a specia case of the general-length AES-
MAC mechanism (see Section D). AESMAC always produces and verifies MACs that
are half the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 9793, AES-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sign AES any Y block size (8 bytes)
C Veity AES any Y block size (8 bytes)

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK MECHANISM INFO structure specify the supported range of AES key sizes, in

bytes.

12.1712.20 General block cipher mechanism parameters

¢+ CK_MAC_GENERAL PARAMS: CK_MAC _GENERAL_PARAMS PTR

CK_MAC _GENERAL_PARAMS provides the parameters to the genera-length
MACiIng mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128
(CAST5), IDEA, and CDMF ciphers. It holds the length of the MAC that these
mechanisms will produce. It is defined as follows:

t ypedef CK ULONG CK_MAC GENERAL PARAME;

CK_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_MAC_GENERAL_PARAMS.

12.1812.21 General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CASTS3,
CAST128 (CAST5), IDEA, and CDMF block ciphers will be described together here.
Each of these ciphers has the following mechanisms, which will be described in a
templatized form:

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 287 |

1218.112.21.1 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME> KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specificaly, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as
specified in FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of the
DES keys comprising it has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is
possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-DES
keys are generated, it is token dependent whether or not it is possible for any of the
component DES keys to be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the
secret key must specify aCKA_VALUE_LEN attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CAST3, ad
CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation
mechanisms for these ciphers, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bytes.
For the DES, DESS3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

12.18.212.21.2 General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME> ECB. It isamechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of
<NAME>'s blocksize. The output data is the same length as the padded input data. It
does not wrap the key type, key length or any other information about the key; the
application must convey these separately.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 288 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 989480, General Block Cipher ECB: Key And Data L ength

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C_Decrypt <NAME> | multiple of same as input length no final
blocksize part
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

12.18.312.21.3 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC", denoted
CKM_<NAME> CBC. It isamechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>'s blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 999581, General Block Cipher CBC: Key And Data L ength

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 289 |

Function Key type I nput Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C_Decrypt <NAME> | multiple of same as input length no final
blocksize part
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

12.18.412.21.4 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-
CBC with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism
for singlee and multiple-part encryption and decryption; key wrapping; and key
unwrapping with <NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>'s blocksi ze.

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, lefleHeIIman X9.42 D|ff|eHeIIman EC (aso related to ECDSA) and
DSA prlvate kevs ‘ Arap—al Aral \

Sectlonmmr detalls) The entriesin h’able 1OOIabIeQ6IabLe€.2|for data length

constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 1009682, General Block Cipher CBC with PKCS Padding: Key And Data
Length

Copyright © 1994-1999-2000 RSA Security Inc. |

| 290 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Function Key type I nput Output length
length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C_Decrypt <NAME> | multiple of between 1 and blocksize
blocksize bytes shorter than input
length
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C UnwrapKey | <NAME> | multiple of between 1 and blocksize
blocksize bytes shorter than input
length

12.18.512.21.5 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-
MAC”, denoted CKM_<NAME> MAC_GENERAL. Itisamechanism for single- and
multiple-part signatures and verification.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the
output.

The output bytes from this mechanism are taken from the start of the final cipher block
produced in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 1019783, General-length General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signature length

C Sign <NAME> any 0-blocksize, depending on
parameters

C Veify <NAME> any 0-blocksize, depending on
parameters

‘ 12.18.612.21.6_General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC’", denoted
CKM_<NAME> MAC. This mechanism is a gspecia case of the
CKM <NAME> MAC GENERAL mechanism described in Section

| 12.21.522.21 51218 5] It always produces an output of size half as large as <NAME>'s
blocksize.

This mechanism has no parameters.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 291 |

Constraints on key types and the length of data are summarized in the following table:

Table 1029884, General Block Cipher MAC: Key And Data L ength

Function Key type | Datalength Signature length
C Sign <NAME> any | blocksize/2]
C Verify <NAME> any | blocksize/2]

12.1912.22 Double and Triple-length DES mechanisms

1219.112.22.1 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2 KEY_GEN,
is a key generation mechanism for double-length DES keys. The DES keys making up a
double-length DES key both have their parity bits set properly, as specified in FIPS PUB
46-3.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(specifically, the flags indicating which functions the key supports) may be specified in
the template for the key, or else are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3 ECB, CKM_DES3 CBC, CKM_DES3 CBC_PAD,
CKM_DES3 MAC_GENERAL, and CKM DES3 MAC (these mechanisms are
described in templatized form in Section [12.2112.2112.18). Triple-DES encryption with
a double-length DES key is equivalent to encryption with a triple-length DES key with
K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keysto be “weak” or “semi-weak” keys.

12.19.212.22.2 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt,
decrypt, encrypt. Decryptions are carried out with the opposite three steps. decrypt,
encrypt, decrypt. The mathematical representations of the encrypt and decrypt operations
are asfollows:

DES3-E({K1,K2,K3}, P) =E(K3,D(K2,E(K1,P)))

DES3-D({K1,K2,K3},C)=D(K1,E(K2,D(K3,P)))

Copyright © 1994-1999-2000 RSA Security Inc. |

| 292 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.19.312.22.3 Triple-length DESin CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are
performed using outer CBC as defined in X9.52. X9.52 describes this mode as TCBC.
The mathematical representations of the CBC encrypt and decrypt operations are as
follows:

DES3-CBC-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1,P+1)))
DES3-CBC-D({K1,K2,K3}, C)=D(K1, E(K2, D(K3,P))) +1

The value | is either an 8-byte initialization vector or the previous block of cipher text
that is added to the current input block. The addition operation is used is addition
modulo-2 (XOR).

12.2012.23 SKIPJACK mechanism parameters

¢ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a dtructure that provides the
parameters to the CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as
follows:

typedef struct CK_SKI PJACK PRI VATE_WRAP_PARAMS {
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandGL.en;
CK_ULONG ul QLen;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandonhA,;
CK_BYTE_PTR pPri neP;
CK_BYTE_PTR pBaseG
CK_BYTE_PTR pSubpri meQ

} CK_SKI PJACK_PRI VATE_WRAP_PARANS;

The fields of the structure have the following meanings:
ulPasswordLen length of the password

pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDataLen other party’ s key exchange public key size

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 293 |

pPublicData pointer to other party’ s key exchange public key value
ulPandGLen length of prime and base values
ulQLen length of subprime value
ulRandomLen size of random Ra, in bytes
pRandomA pointer to Radata
pPrimeP pointer to Prime, p, value
pBaseG pointer to Base, g, value
pSubprimeQ pointer to Subprime, q, value

CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR is a pointer to a
CK_PRIVATE_WRAP_PARAMS.

¢ CK_SKIPJACK_RELAYX_PARAMS;
CK_SKIPJACK_RELAYX_PARAMS PTR

CK_SKIPJACK_RELAYX_PARAMS isastructure that provides the parameters to the
CKM_SKIPJACK_RELAY X mechanism. It isdefined asfollows:

typedef struct CK_SKI PJACK RELAYX PARAMS {
CK_ULONG ul A dW appedXLen;
CK_BYTE_PTR pA dW appedX;
CK_ULONG ul d dPasswor dLen;
CK_BYTE_PTR pQ dPasswor d;
CK_ULONG ul d dPubl i cDat aLen;
CK _BYTE_PTR pd dPubl i cDat a;
CK_ULONG ul d drRandonien;
CK_BYTE_PTR pd dRandomA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandonien;
CK_BYTE_PTR pNewRandomA:

} CK _SKI PJACK RELAYX PARAMS;

The fields of the structure have the following meanings:
ulOldWrappedXLen length of old wrapped key in bytes

pOIldWrappedX pointer to old wrapper key

Copyright © 1994-1999-2000 RSA Security Inc. |

| 294

ulOldPasswordLen

pOldPassword

ulOldPublicDatal.en
pOldPublicData
ulOldRandomLen
pOldRandomA
ulNewPasswordLen

pNewPassword

ulNewPublicDatalLen
pNewPublicData
ulNewRandomLen

pNewRandomA

CK_SKIPJACK_RELAYX_PARAMS PTR is a

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

length of the old password

pointer to the buffer which contains the old user-
supplied password

old key exchange public key size

pointer to old key exchange public key value
size of old random Rain bytes

pointer to old Radata

length of the new password

pointer to the buffer which contains the new user-
supplied password

new key exchange public key size

pointer to new key exchange public key value
size of new random Rain bytes

pointer to new Radata

poi nter to a

CK_SKIPJACK_RELAYX_PARAMS.

12.2112.24 SKIPJACK mechanisms

1221.112.24.1 SKIPJACK Kkey generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is
a key generation mechanism for SKIPJACK. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 295

12.21.212.24.2 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB®64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic
codebook mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1039985, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 8 | same asinput length | no final part

12.21.312.24.3 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK _CBC64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block
chaining mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 10416086, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 8 | same asinput length | no final part

1221.412.24.4 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK _OFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot

Copyright © 1994-1999-2000 RSA Security Inc.

296 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 10516187, SKIPJACK-OFB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 8 | same asinput length | no final part

1221.512.24.5 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM _SKIPJACK _CFB64, is amechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 10616288, SKIPJACK-CFB64: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 8 | same asinput length | no final part

1221.612.24.6 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM _SKIPJACK _CFB32, is amechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc.

12339. MECHANISMS

Table 10716389, SKIPJACK-CFB32: Data and L ength
Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 4 | same asinput length | no final part

1221.712.24.7 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM _SKIPJACK _CFB16, is amechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode

as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular 1V when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 10816490, SKIPJACK-CFB16: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same asinput length | no final part
C_Decrypt SKIPJACK multipleof 4 | same asinput length | no final part

1221.812.24.8 SKIPJACK-CFBS8

SKIPJACK-CFBS8, denoted CKM_SKIPJACK CFBS, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback mode

as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

297 |

Copyright © 1994-1999-2000 RSA Security Inc. |

| 298 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

‘ Table 10916591, SKIPJACK-CFB8: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same asinput length | no final part
C_Decrypt SKIPJACK multiple of 4 | same asinput length | no final part

‘ 1221.012.24.9 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to
wrap and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

‘ 1221.1012.24.10 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It
can wrap KEA and DSA private keys.

It has a parameter, aCK_SKIPJACK_PRIVATE_WRAP_PARAM S structure.

‘ 122131122411 SKIPJACK-RELAYX

The SKIPJACK-RELAY X mechanism, denoted CKM_SKIPJACK_RELAYX, is used
with the C_WrapKey function to “change the wrapping” on a private key which was
wrapped with the SKIPJACK-PRIVATE-WRAP mechanism (see Section

‘ [12.24.1012.24.1612.21.10).

It has a parameter, a CK_SKIPJACK_RELAY X_PARAMS structure.

Although the SKIPJACK-RELAY X mechanism is used with C_WrapKey, it differs
from other key-wrapping mechanisms. Other key-wrapping mechanisms take a key
handle as one of the argumentsto C_WrapKey; however, for the SKIPJACK_RELAY X
mechanism, the [aways invalid] value O should be passed as the key handle for
C WrapKey, and the aready-wrapped key should be passed in as part of the
CK_SKIPJACK_RELAYX_PARAMS structure.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 299

12.2212.25 BATON mechanisms

1222112.25.1 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is akey
generation mechanism for BATON. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.
This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

1222.212.25.2 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 11016692, BATON-ECB128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 | sameasinput length | no fina part
C_Decrypt BATON multiple of 16 | sameasinput length | nofina part

1222312.25.3 BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 96-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc.

| 300 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

‘ Table 11116793, BATON-ECB96: Data and Length

Function Key type Input length Output length Comments
C_Encrypt BATON multipleof 12 | sameasinput length | no final part
C_Decrypt BATON multipleof 12 | sameasinput length | no final part

‘ 1222.412.25.4 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

‘ Table 11216894, BATON-CBC128: Data and L ength

Function Key type | Input length Output length Comments
C_Encrypt BATON multiple of 16 | same asinput length | no fina part
C_Decrypt BATON multiple of 16 | same asinput length | no fina part

‘ 1222.512.25.5 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single-
and multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 301 |

Table 11316995, BATON-COUNTER: Data and Length ‘

Function Key type | Input length Output length Comments
C_Encrypt BATON multiple of 16 | same asinput length | no fina part
C_Decrypt BATON multiple of 16 | same asinput length | no fina part

12.22612.25.6 BATON-SHUFFLE ‘

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single-
and multiple-part encryption and decryption with BATON in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 11411096, BATON-SHUFFLE: Data and Length ‘

Function Key type | Input length Output length Comments
C_Encrypt BATON multiple of 16 | same asinput length | no fina part
C_Decrypt BATON multiple of 16 | same asinput length | no fina part

1222.712.25.7 BATON WRAP ‘
The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a
function used to wrap and unwrap a secret key (MEK). It can wrap and unwrap
SKIPJACK, BATON, and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY _TYPE, and CKA_VALUE attributesto it.

12.2312.26 JUNIPER mechanisms

1223.112.26.1 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a
key generation mechanism for JUNIPER. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 302 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.23.212.26.2 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM _JUNIPER_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

‘ Table 11511197, JUNIPER-ECB128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multipleof 16 | same asinput length | no final part
C_Decrypt JUNIPER | multipleof 16 | same asinput length | no final part

‘ 1223312.26.3 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 303 |

Table 11611298, JUNIPER-CBC128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multipleof 16 | same asinput length | no final part
C_Decrypt JUNIPER | multipleof 16 | same asinput length | no final part

12.23.412.26.4 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 11711399, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multipleof 16 | same asinput length | no final part
C_Decrypt JUNIPER | multipleof 16 | same asinput length | no final part

12.23.512.26.5 JUNIPER-SHUFFLE ‘

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this 1V
is set to some vaue generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.

For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 118114100, JUNIPER-SHUFFLE: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multipleof 16 | same asinput length | no final part
C_Decrypt JUNIPER | multipleof 16 | same asinput length | no final part

Copyright © 1994-1999-2000 RSA Security Inc. |

| 304 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

1223.612.26.6 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY _TYPE, and CKA_VALUE attributesto it.

12.2412.27 MD2 mechanisms

1224112.27.1 MD2

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting,
following the MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.
Constraints on the length of data are summarized in the following table:

‘ Table 119115101, MD2: Data Length

Function | Datalength | Digest length
C Digest any 16

‘ 1224.212.27.2 General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted
CKM_MD2 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD2 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD2 is
16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start of
the full 16-byte HMAC output.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 305 |

Table 120116102, General-length MD2-HMAC: Key And Data Length

Function Key type Data Signature length
length

C Sign generic secret any 0-16, depending on parameters

C Veify generic secret any 0-16, depending on parameters

1224.312.27.3 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2 HMAC, is a specia case of the
general-length MD2-HMAC mechanism in Section|12.27.242.27.212 24.2,

It has no parameter, and always produces an output of length 16.

1224.412.27.4 MD2 key derivation

MD2 key derivation, denoted CKM_MD2 KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 16 bytes (the output size of
MD2).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2,-BES3; or CDMF key is derived with this mechanism, the parity bits of |
the key will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is |
generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999-2000 RSA Security Inc. |

306 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.2512.28 M D5 mechanisms

1225112.28.1 MD5

The MD5 mechanism, denoted CKM_MD?5, is a mechanism for message digesting,
following the MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 121117103, MD5: Data Length

Function | Datalength | Digest length
C Digest any 16

12.25.212.28.2 General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted
CKM_MD5 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD5 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD5 is
16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start of
the full 16-byte HMAC output.

Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 307 |

Table 122118104, General-length MD5-HMAC: Key And Data Length

Function Key type Data Signature length
length

C Sign generic secret any 0-16, depending on parameters

C Veify generic secret any 0-16, depending on parameters

1225312.28.3 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5 HMAC, is a specia case of the
general-length MD5-HMAC mechanism in Section|12.28.242.28 212 25 2|

It has no parameter, and always produces an output of length 16.

12.25.412.28.4 MD5 key derivation

MD5 key derivation, denoted CKM_MD5 KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD5.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 16 bytes (the output size of
MDS5).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2,-BES3; or CDMF key is derived with this mechanism, the parity bits of |
the key will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is |
generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999-2000 RSA Security Inc. |

308 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.2612.29 SHA-1 mechanisms

1226112.29.1 SHA-1

The SHA-1 mechanism, denoted CKM_SHA _1, is a mechanism for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-1.

It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table.

For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 123119105, SHA-1: Data Length

Function I nput Digest length
length
C Digest any 20

12.26.212.29.2 General-length SHA-1-HMAC

The genera-length SHA-1-HMAC mechanism, denoted
CKM_SHA 1 HMAC _GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the SHA-1 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of SHA-1
is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 20-byte HMAC output.

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 309 |

Table 124120106, General-length SHA-1-HMAC: Key And Data L ength

Function Key type Data Signature length
length

C Sign generic secret any 0-20, depending on parameters

C Veify generic secret any 0-20, depending on parameters

12.26312.29.3 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAUC, is a specia case of the
general-length SHA-1-HMAC mechanism in Section[12.29.242.29.212 26 2|

It has no parameter, and always produces an output of length 20.

12.26.412.29.4 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 20 bytes (the output size of
SHA-1).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2,-BES3; or CDMF key is derived with this mechanism, the parity bits of |
the key will be set properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is |
generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 1994-1999-2000 RSA Security Inc. |

310 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.2712.30 FASTHASH mechanisms

1227112.30.1 FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message
digesting, following the U. S. government’ s algorithm.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table:

Table 125121107, FASTHASH: Data Length

Function I nput Digest length
length
C Digest any 40

12.2812.31 Passwor d-based encryption/authentication mechanism parameters

¢+ CK_PBE_PARAMS; CK_PBE_PARAMS PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on
the PBE generation mechanisms) and the CKM_PBA_SHA1 WITH_SHA1 HMAC
mechanism. It is defined as follows:

Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 311 |

typedef struct CK _PBE_PARAMS {
CK_CHAR_PTR pl ni t Vect or;
CK_CHAR PTR pPassword;
CK_ULONG ul Passwor dLen;
CK_CHAR_PTR pSal t;
CK_ULONG ul sal tLen;
CK_ULONG ul Iteration;

} CK_PBE_PARANS;

The fields of the structure have the following meanings:

plnitVector pointer to the location that receives the 8-byte
initialization vector (1V), if an 1V isrequired;

pPassword points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;
pSalt pointsto the salt to be used in the PBE key generation;
ulSaltLen length in bytes of the salt information;
ullteration number of iterations required for the generation.

CK_PBE_PARAMS PTR isapointer to aCK_PBE_PARAMS.

12.2912.32 PKCS#5 and PK CS #5-style passwor d-based encryption mechanisms |

The mechanisms in this section are for generating keys and Vs for performing password-
based encryption. The method used to generate keys and 1Vs is specified in PKCS #5.

12.29.112.32.1 MD2-PBE for DES-CBC |

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2 DES CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD2 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDF1.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input

information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

Copyright © 1994-1999-2000 RSA Security Inc. |

312 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.29.212.32.2 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD5 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDFL1.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input

information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

12.29.312.32.3 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5 CAST_CBC, is a mechanism
used for generating a CAST secret key and an 1V from a password and a salt value by
using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PK CS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.412.32.4 MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism
used for generating a CAST3 secret key and an IV from a password and a salt value by
using the MD5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PK CS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.512.32.5 MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_MD5 CAST128 CBC or CKM_PBE_MD5 CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a

Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 313 |

password and a salt value by using the MD5 digest algorithm and an iteration count. This
functionality is analogous to that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.612.32.6 _SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_SHA1 CAST128 CBC or CKM_PBE_SHA1 CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a
password and a salt value by using the SHA-1 digest algorithm and an iteration count.
This functionality is analogous to that defined in PK CS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.29.712.32.7_PKCS#5 PBKDF2 key generation mechanism parameters

¢ CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5 PBKD2 PSEUDO_RANDOM _ FUNCTION_TYPE is used to indicate
the Pseudo-Random Function (PRF) used to generate key bits using PKCS #5 PBKDF2.
It isdefined as follows:

t ypedef CK ULONG |
CK_PKCS5_PBKD2_PSEUDO RANDOM FUNCTI ON_TYPE;

The following PRFs are defined in PKCS #5 v2.0. The following table lists the defined
functions.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 314 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 126122108, PKCS#5 PBKDF2 Key Generation: Pseudo-random functions

Sour ce I dentifier Value Parameter Type

CKP_PKCS5 PBKD2 HMAC SHA1 | 0x00000001 | No Parameter. pPrfData must
be NULL and ulPrfDataLen
must be zero.

CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to
aCK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE.

¢ CK_PKCS5 PBKDF2 SALT SOURCE_TYPE;
CK_PKCS5 PBKDF2 SALT SOURCE_TYPE_PTR

CK_PKCS5 PBKDE2 SALT_SOURCE_TYPE is used to indicate the source of the
salt value when deriving akey using PKCS #5 PBKDF2. It is defined as follows:

t ypedef CK _ULONG CK_PKCS5_PBKDF2_SALT SOURCE_TYPE;
The following salt value sources are defined in PKCS #5 v2.0. The following table lists

the defined sources along with the corresponding data type for the pSaltSourceData field
inthe CK_PKCS5 PBKD2 PARAM structure defined below.

’ Table 127123109, PKCS#5 PBKDF2 Key Generation: Salt sources

Source I dentifier Value Data Type
CKZ_SALT_SPECIFIED | 0x00000001 | Array of CK_BY TE containing the value of
the salt value.

CK_PKCS5 PBKDE2 SALT_SOURCE_TYPE_PTR is a pointer to a
CK_PKCS5 PBKDE2 SALT_SOURCE_TYPE.

¢ CK_PKCS5 PBKD2 PARAMS; CK_PKCS5 PBKD2 PARAMS PTR

CK_PKCS5 PBKD2 PARAMS is a structure that provides the parameters to the
CKM_PKCS5 PBKD2 mechanism. The structureis defined as follows:

t ypedef struct CK_PKCS5_PBKD2_ PARAMS {
| CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE sal t Sour ce;

CK VO D _PTR pSal t Sour ceDat a;
CK_ULONG ul Sal t Sour ceDat aLen;
CK_ ULONG iterations;
CK_PKCS5_PBKD2_PSEUDO RANDOM FUNCTI ON_TYPE prf;
CK VA D_PTR pPr f Dat a;
CK_ULONG ul Prf Dat aLen;

} CK_PKCS5_PBKD2_PARANS;

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 315 |

The fields of the structure have the following meanings:
saltSource source of the salt value
pSaltSourceData data used as the input for the salt source
ulSaltSourceDatalLen length of the salt source input

iterations number of iterations to perform when generating each
block of random data

prf pseudo-random function to used to generate the key

pPrfData dataused asthe input for PRF in addition to the salt
value

ulPrfDataLen length of the input data for the PRF
CK_PKCS5 PBKD2 PARAMS PTR is a poi nter to a
CK_PKCS5 PBKD2 _PARAMS.

12.29.812.32.8 PKCS#5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5 PKKD?2, is a mechanism
used for generating a secret key from a password and a salt value. This functionality is
defined in PK CS#5 as PBKDF2.

It has a parameter, a CK_PKCS5 PBKDF2 PARAMS sdtructure. The parameter |
specifies the salt value source, pseudo-random function, and iteration count used to
generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates
must contain the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type
has afixed length the CKA_VALUE_LEN attribute may be omitted.

12.3012.33 PKCS#12 passwor d-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and Vs for performing password-
based encryption or authentication. The method used to generate keys and 1Vs is based
on amethod that was specified in the original draft of PKCS #12.

We specify here a general method for producing various types of pseudo-random bits
from a password, p; a string of sat bits, s; and an iteration count, c. The “type’ of
pseudo-random hits to be produced isidentified by an identification byte, 1D, the meaning
of which will be discussed later.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 316 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Let H be a hash function built around a compression function f: Z," x Z,Y - Z," (that is,
H has a chaining variable and output of length u bits, and the message input to the
compression function of H isv bits). For MD2 and MD5, u=128 and v=512; for SHA-1,
u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the
password and salt strings and the number n of pseudo-random bits required. In addition,
u and v are of course nonzero.

1. Construct astring, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length vis/iv] bits (the
final copy of the salt may be truncated to create S). Note that if the salt is the empty
string, then so is S

3. Concatenate copies of the password together to create a string P of length viIp/v| bits
(the final copy of the password may be truncated to create P). Note that if the
password is the empty string, then soisP.

4. Set I=9|P to be the concatenation of Sand P.
5. Setjd niul.

6. Fori=1,2,...,], dothefollowing:

a) Set A=HY(DJ|l), the ¢ hash of D||I. That is, compute the hash of DJ|I; compute
the hash of that hash; etc.; continue in this fashion until atotal of ¢ hashes have
been computed, each on the result of the previous hash.

b) Concatenate copies of A to create a string B of length v bits (the final copy of A
may be truncated to create B).

¢) Treating | as a concatenation o, I, ..., l1 Of v-bit blocks, where k=l siv I+ piv],
modify | by setting I;=(1;+B+1) mod 2’ for each j. To perform this addition, treat
each v-bit block as a binary number represented most-significant bit first.

7. Concatenate Ay, Ay, ..., A together to form a pseudo-random bit string, A.

8. Usethefirst n bits of A asthe output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate akey and IV (if needed) from a password, salt, and an iteration count, the above
agorithm is used. To generate a key, the identifier byte ID is set to the vaue 1; to
generate an |V, the identifier byte ID is set to the value 2.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 317 |

When the password based authentication mechanism presented in this section is used to
generate a key from a password, salt, and an iteration count, the above algorithm is used.
The identifier byte ID is set to the value 3.

12.30-112.33.1 SHA-1-PBE for 128-bit RC4 ‘

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1 RC4 128, is a mechanism
used for generating a 128-bit RC4 secret key from a password and a salt value by using
the SHA-1 digest algorithm and an iteration count. The method used to generate the key
is described above on page[3157274| ‘

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of thisfield areignored, since RC4 does not requirean V.

The key produced by this mechanism will typically be used for performing password-
based encryption.

12.30.212.33.2 SHA-1-PBE for 40-bit RC4 ‘

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4 40, is a mechanism used
for generating a 40-bit RC4 secret key from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key is

described above on page[3157274, ‘

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of thisfield areignored, since RC4 does not requirean V.

The key produced by this mechanism will typically be used for performing password-
based encryption.

12.30.312.33.3 SHA-1-PBE for 3-key triple-DES-CBC ‘

SHA-1-PBE for 3-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES3 EDE_CBC, is a mechanism used for generating a 3-key
triple-DES secret key and 1V from a password and a salt value by using the SHA-1 digest
agorithm and an iteration count. The method used to generate the key and IV is
described above on page[3157274 Each byte of the key produced will have its low-order |
bit adjusted, if necessary, so that a valid 3-key triple-DES key with proper parity bitsis
obtained.

Copyright © 1994-1999-2000 RSA Security Inc. |

318 PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.36:412.33.4 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES2 EDE_CBC, is a mechanism used for generating a 2-key
triple-DES secret key and 1V from a password and a salt value by using the SHA-1 digest
agorithm and an iteration count. The method used to generate the key and IV is
described above on page[3157276] Each byte of the key produced will have its low-order
bit adjusted, if necessary, so that a valid 2-key triple-DES key with proper parity bits is
obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.30.512.33.5 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 128 CBC, is a
mechanism used for generating a 128-bit RC2 secret key and 1V from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and 1V is described above on page[3157276

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and 1V generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 128. This ensures
compatibility with the ASN.1 Object Identifier ppbeW t hSHA1ANd128Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 319 |

12.30.612.33.6 SHA-1-PBE for 40-bit RC2-CBC ‘

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 40 CBC, is a
mechanism used for generating a 40-bit RC2 secret key and 1V from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and |V is described above on page[3157274 ‘

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 40. This ensures
compatibility with the ASN.1 Object Identifier ppbeW t hSHA1ANd40Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.30.712.33.7 SHA-1-PBA for SHA-1-HMAC |

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC,
is a mechanism used for generating a 160-bit generic secret key from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key is described above on page|3157274, ’

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of this field are ignored, since authentication with SHA-1-HMAC does not
requirean V.

The key generated by this mechanism will typically be used for computing a SHA-1
HMAC to perform password-based authentication (not password-based encryption). At
the time of thiswriting, thisis primarily done to ensure the integrity of a PKCS #12 PDU.

12.3112.34 SET mechanism parameters

¢ CK_KEY_WRAP SET_OAEP PARAMS;
CK_KEY_WRAP _SET _OAEP PARAMS PTR

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters
tothe CKM_KEY_WRAP_SET_OAEP mechanism. It isdefined asfollows:

typedef struct CK KEY_WRAP_SET_ QAEP_PARAMS {
CK_BYTE bBC,

Copyright © 1994-1999-2000 RSA Security Inc. |

| 320 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE_PTR pX;
CK_ULONG ul XLen;
} CK_KEY_WRAP_SET_OAEP_PARANE;
The fields of the structure have the following meanings:
bBC block contents byte

pX concatenation of hash of plaintext data (if present) and
extradata (if present)

ulXLen length in bytes of concatenation of hash of plaintext
data (if present) and extra data (if present). Oif neither
IS present

CK_KEY_WRAP _SET OAEP PARAMS PTR is a pointer to a
CK_KEY_WRAP_SET_OAEP PARAMS,

12.3212.35 SET mechanisms

1232112.35.1 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted
CKM_KEY_WRAP_SET OAEP, isamechanism for wrapping and unwrapping a DES
key with an RSA key. The hash of some plaintext data and/or some extra data may
optionally be wrapped together with the DES key. This mechanism is defined in the SET
protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS dtructure. This
structure holds the “Block Contents’ byte of the data and the concatenation of the hash of
plaintext data (if present) and the extra data to be wrapped (if present). If neither the hash
nor the extra data is present, thisisindicated by the ulXLen field having the value O.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext
data (if present) and the extra data (if present) is returned following the convention
described in Section[L1.2]on producing output. Note that if the inputs to C_UnwrapK ey
are such that the extra data is not returned (e.g., the buffer supplied in the
CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL_PTR), then the
unwrapped key object will not be created, either.

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the
parameter supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be
preferable for it ssimply to alocate a 128-byte buffer for the concatenation of the hash of
plaintext data and the extra data (this concatenation is never larger than 128 bytes), rather

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 321 |

than caling C_UnwrapKey twice Each cal of C _UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be
performed, and this computational overhead can be avoided by this means.

12.3312.36 LYNKS mechanisms

12.33.112.36.1 LYNKSkey wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, is a
mechanism for wrapping and unwrapping secret keys with DES keys. It can wrap any 8-
byte secret key, and it produces a 10-byte wrapped key, containing a cryptographic
checksum.

It does not have a parameter.

To wrap a 8-byte secret key K with a DES key W, this mechanism performs the following
steps:

1. Initialize two 16-bit integers, sumy, and suny, to 0.
2. Loop through the bytes of K from first to last.

3. Set sumy= sumy+the key byte (treat the key byte as a number in the range 0O-
255).

4. Set sump= sump+ sumy.
5. Encrypt K with Win ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sum,, representing sum, most-significant bit
first. Theresultisan 8-byte block, T.

7. Encrypt T with Win ECB mode, obtaining an encrypted checksum, C.
8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not
check out properly, an error is returned. In addition, if a DES key or CDMF key is
unwrapped with this mechanism, the parity bits on the wrapped key must be set
appropriately. If they are not set properly, an error is returned.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 322 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.3412.37 _SSL mechanism parameters

¢+ CK_SSL3 RANDOM DATA

CK_SSL3 RANDOM_DATA is a structure which provides information about the
random data of a client and a server in an SSL context. This structure is used by both the
CKM_SSL.3 MASTER_KEY_DERIVE and the
CKM_SSL3 KEY_AND _MAC_DERIVE mechanisms. It isdefined asfollows:

t ypedef struct CK SSL3 RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;
} CK_SSL3_RANDOM DATA;
The fields of the structure have the following meanings:
pClientRandom pointer to the client’s random data
ulClientRandomLen length in bytes of the client’s random data
pServerRandom pointer to the server’s random data

ulServerRandomLen length in bytes of the server’s random data

¢ CK_SSL3 MASTER KEY_DERIVE_PARAMS;
CK_SSL3 MASTER KEY_DERIVE_PARAMS PTR

CK_SSL3 MASTER_KEY_DERIVE_PARAMS is a structure that provides the
parametersto the CKM_SSL.3 MASTER_KEY_DERIVE mechanism. It is defined as
follows:

t ypedef struct CK SSL3 MASTER KEY_ DERI VE PARAMS {
CK_SSL3 RANDOM DATA Randoni nf o;

CK_VERSI ON_PTR pVer si on;
} CK_SSL3_MASTER KEY_DERI VE_PARANS;

The fields of the structure have the following meanings:
Randominfo client’sand server’ s random data information.

pVersion pointer to aCK_VERSION structure which receives
the SSL protocol version information

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 323 |

CK_SSL3 MASTER KEY DERIVE_PARAMS PTR is a pointer to a
CK_SSL3 MASTER_KEY_DERIVE_PARAMS.

¢ CK_SSL3 KEY_MAT_OUT; CK_SSL3 KEY_MAT_OUT_PTR

CK_SSL3 KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after peforming a C_DeriveKey function with the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It isdefined asfollows:

typedef struct CK SSL3 KEY_ MAT _QOUT {
CK_OBJECT _HANDLE hd i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl Vd i ent;
CK_BYTE_PTR pl VSer ver;
} CK_SSL3_KEY_NAT_OUT;
The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientkey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to alocation which receives the initialization
vector (1V) created for the client (if any)

plVServer pointer to alocation which receives the initialization
vector (1V) created for the server (if any)

CK_SSL3 KEY_MAT _OUT_PTRisapointer toaCK_SSL3 KEY _MAT_OUT.

¢ CK_SSL3 KEY_MAT_PARAMS;, CK_SSL3 KEY_MAT_PARAMS PTR

CK_SSL3 KEY_MAT_PARAMS is a dtructure that provides the parameters to the
CKM _SSL3 KEY_AND _MAC _DERIVE mechanism. It isdefined asfollows:

Copyright © 1994-1999-2000 RSA Security Inc. |

| 324 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

typedef struct CK _SSL3_KEY_MAT_PARAMS ({
CK_ULONG ul MacSi zel nBi ts;
CK_ULONG ul KeySi zel nBi ts;
CK_ULONG ul I VSi zel nBi t s;
CK _BBOOL bl sExport;
CK_SSL3_RANDOM DATA Random nf o;
CK_SSL3_KEY_MAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_NAT_PARANS;

The fields of the structure have the following meanings:

ulMacSzelnBits thelength (in bits) of the MACing keys agreed upon
during the protocol handshake phase

ulKeySzelnBits thelength (in bits) of the secret keys agreed upon
during the protocol handshake phase

ullVSzelnBits thelength (in bits) of the IV agreed upon during the
protocol handshake phase. If no IV isrequired, the
length should be set to 0

blsExport aBoolean value which indicates whether the keys have
to be derived for an export version of the protocol

Randominfo client’s and server’ s random data information.

pReturnedKeyMaterial pointstoaCK_SSL3 KEY_MAT_OUT structures
which receives the handles for the keys generated and
thelVs

CK_SSL3 KEY_MAT PARAMS PTR is a poi nter to a
CK_SSL3 KEY_MAT_PARAMS.

12.3512.38 SSL mechanisms

12.35.112.38.1 Pre _master key generation

Pre_master key generation in SSL 3.0, denoted
CKM_SSL3 PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It isused to produce the "pre_master” key used in SSL version 3.0.

It has one parameter, a CK_VERSION structure, which provides the client’'s SSL
version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 325

supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_GenerateK ey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 48 bytes.

12.35.212.38.2 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL.3 MASTER_KEY_DERIVE, is
a mechanism used to derive one 48-byte generic secret key from another 48-byte generic
secret key. It is used to produce the "master_secret” key used in the SSL protocol from
the "pre_master” key. This mechanism returns the value of the client version, which is
built into the "pre_master” key as well as ahandle to the derived "master_secret” key.

It has a parameter, aCK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol
version number which is part of the pre-master key. This structure is defined in Section
[12.3712.3712.34]

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_GenerateK ey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted, these
attributes each take on some default value.

* If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS SENSITIVE
attribute set to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSITIVE attribute.

Copyright © 1994-1999-2000 RSA Security Inc.

| 326 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL3 MASTER_KEY_DERIVE_PARAMS dtructure's pVersion field will be
modified by the C_DeriveKey call. In particular, when the call returns, this structure will
hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre master”
secret with an embedded version number. This includes the RSA cipher suites, but
excludes the Diffie-Hellman cipher suites.

12.35.312.38.3 Key and MAC derivation

Key, MAC and v derivation in SSL 3.0, denoted
CKM_SSL3 KEY_AND_MAC_DERIVE, is a mechanism is used to derive the
appropriate cryptographic keying material used by a "CipherSuite” from the
"master_secret" key and random data. This mechanism returns the key handles for the
keys generated in the process, as well asthe 1Vs created.

It has a parameter, a CK_SSL.3 KEY_MAT_PARAMS structure, which allows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and 1Vs which
were generated. This structure is defined in Section|12.3712.3712.34]

This mechanism contributes to the creation of four distinct keys on the token and returns
two 1Vs (if 1Vs are requested by the caller) back to the caller. The keys are all given an
object classof CKO_SECRET_KEY.

The two MACing keys ("client_write MAC_secret” and "server_write MAC_secret")
are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to
information found in the template sent along with this mechanism during aC_DeriveK ey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 327 |

IVs will be generated and returned if the ullVSzelnBits field of the
CK_SSL_KEY_MAT_PARAMSfield has a nonzero value. If they are generated, their
length in bits will agree with the value in the ull VS zelnBits field.

All four keys inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

Note that the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL3 KEY_MAT_PARAMS sdtructure's pReturnedKeyMaterial field will by
modified by the C DeriveKey call. In particular, the four key handle fields in the
CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by the CK_SSL3 KEY_MAT_OUT
structure’s plVClient and plVServer fields will have Vs returned in them (if 1Vs are
requested by the caler). Therefore, these two fields must point to buffers with sufficient
space to hold any 1V s that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism returns all of its key handles in
the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acal to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.

12.35412.38.4 MD5MACingin SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSLL3 MD5 MAC, isamechanism for single-
and multiple-part signatures (data authentication) and verification using MD5, based on
the SSL 3.0 protocol. Thistechniqueisvery similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 128124110, MD5 MACIing in SSL 3.0: Key And Data L ength

Copyright © 1994-1999-2000 RSA Security Inc. |

| 328 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Function Key type Data Signatur e length
length
C Sign generic secret any 4-8, depending on
parameters
C Veify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

12.35512.38.5 SHA-1MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL. 3 SHA1 MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using SHA-1,
based on the SSL 3.0 protocol. Thistechniqueis very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 129125111, SHA-1 MACingin SSL 3.0: Key And Data Length

Function Key type Data Signature length
length

C Sign generic secret any 4-8, depending on parameters

C Veify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

12.3612.39 Parametersfor miscellaneous ssimple key derivation mechanisms

¢ CK_KEY_DERIVATION_STRING DATA;
CK_KEY_DERIVATION_STRING DATA_PTR

CK_KEY_DERIVATION_STRING_DATA is astructure that holds a pointer to a byte
string and the byte string's length. It provides the parameters for the

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 329 |

CKM_CONCATENATE_BASE_AND_DATA,
CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND_DATA mechanisms. It isdefined asfollows:

typedef struct CK_KEY_DERI VATI ON_STRI NG DATA {
CK_BYTE_PTR pbDat a;
CK_ULONG ul Len;
} CK_KEY_DERI VATI ON_STRI NG_DATA;
The fields of the structure have the following meanings:
pData pointer to the byte string
ulLen length of the byte string
CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a
CK_KEY_DERIVATION_STRING_DATA.
¢ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base
key should be used as the first bit of the derived key. It isdefined asfollows:

t ypedef CK_ULONG CK_EXTRACT PARAMNES;

CK_EXTRACT_PARAMS PTR isapointer toaCK_EXTRACT_PARAMS.

12.3712.40 Miscellaneous simple key derivation mechanisms

12.37112.40.1 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE _BASE _AND KEY, derives a
secret key from the concatenation of two existing secret keys. The two keys are specified
by handles; the values of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces
the key value information which is appended to the end of the base key's value
information (the base key is the key whose handle is supplied as an argument to
C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other
key is OX89ABCDEF, then the vaue of the derived key will be taken from a buffer
containing the string 0x0123456789ABCDEF.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 330

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the values of the two original keys.

If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
two original keys values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If either of the two original keys hasits CKA_SENSITIVE attribute set to TRUE, so
does the derived key. If not, then the derived key’'s CKA_SENSITIVE attribute is
set either from the supplied template or from a default value.

Similarly, if either of the two origina keys hasits CKA_EXTRACTABLE attribute
set to FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

The derived key's CKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if both of the original keys have their CKA_ALWAYS _SENSITIVE attributes
set to TRUE.

Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if both of the origind keys have ther
CKA_NEVER_EXTRACTABLE attributes set to TRUE.

12.37.212.40.2_Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND DATA, derives a
secret key by concatenating data onto the end of a specified secret key.

| Copyright © 1994-1999-2000 RSA Security Inc.

12139. MECHANISMS 331 |

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be appended to the
base key to derive another key.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x0123456789 ABCDEF.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the value of the original key and the data.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If nolengthis provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
original key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived key's CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

» Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived key’'s CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived key’'s CKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key hasits CKA_ALWAYS SENSITIVE attribute set to TRUE.

* Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 332 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.37.312.40.3 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_ BASE, derives a
secret key by prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be prepended to the
base key to derive another key.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0OXx89ABCDEF01234567.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the data and the value of the original key.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If nolengthis provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
data and the original key’svalue, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived key's CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

» Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived key’'s CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived key’'s CKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key hasits CKA_ALWAYS SENSITIVE attribute set to TRUE.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 333 |

* Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

12.37.412.40.4 XORing of akey and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism
which provides the capability of deriving a secret key by performing a bit XORing of a
key pointed to by a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING _DATA
structure, which specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x88888888.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of
the lengths of the data and the value of the origina key.

» If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

» If nolengthis provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of
the data and the original key’svalue, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived key's CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 334 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived key's CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived key’'s CKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key hasits CKA_ALWAYS _SENSITIVE attribute set to TRUE.

* Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to

TRUE if and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

12.37.512.40.5 Extraction of one key from another key

Extraction of one key from another key, denoted
CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability
of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which
bit of the original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key
with the 4-byte value Ox329F84A9. We will derive a 2-byte secret key from this key,
starting at bit position 21 (i.e, the vaue of the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanismis21).

1. Wewrite the key’svalue in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labelled as b0, b1, ..., b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at
bit b21. We obtain the binary string 1001 0101 0010 0110.

3. Thevalue of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around
the end of the binary string representing the original key’svalue.

If the original key used in this process is sensitive, then the derived key must also be
sensitive for the derivation to succeed.

* If nolength or key typeis provided in the template, then an error will be returned.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

| Copyright © 1994-1999-2000 RSA Security Inc.

12439. MECHANISMS 335 |

» If nolength is provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’t, an error will be returned.

» If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than the original key has, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived
key. If not, then the derived key's CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so
does the derived key. If not, then the derived key's CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

* The derived key’'s CKA_ALWAYS SENSITIVE attribute is set to TRUE if and
only if the base key hasits CKA_ALWAYS _SENSITIVE attribute set to TRUE.

* Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

12.3812.41 RIPE-MD 128 mechanisms

1238112.41.1 RIPE-MD 128

The RIPE-MD 128 mechanism, denoted CKM_RIPEMD128, is a mechanism for
message digesting, following the RIPE-MD 128 message-digest algorithm.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 130126112, RIPE-MD 128: Data Length

Copyright © 1994-1999-2000 RSA Security Inc. |

| 336 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

[Function Data length|Digest length
C Digest any 16

12.38.212.41.2 General-length RIPE-MD 128-HMAC

The general-length RIPE-MD 128-HMAC mechanism, denoted
CKM_RIPEMD128 HMAC_GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 128 hash function.
The keysit uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of RIPE-
MD 128 is 16 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 16-byte HMAC output.

Table 131127113, General-length RIPE-MD 128-HMAC:

Data

|Funct|on Key type length

Signature length

0-16, depending on
parameters
0-16, depending on
parameters

C _Sign |generic secret| any

C_Verify | generic secret any

1238312.41.3 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128 HMAC, is a
special case of the general-length RIPE-MD 128-HMAC mechanism in Section
[12.41.212.41.212 38.2|

It has no parameter, and always produces an output of length 16.

12.3912.42 RIPE-MD 160 mechanisms

1239:112.42.1 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM_ RIPEMD160, is a mechanism for
message digesting, following the RIPE-MD 160 message-digest algorithm defined in
1SO-10118.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Copyright © 1994-1999-2000 RSA Security Inc.

13139. CRYPTOKI TIPS AND REMINDERS 337 |

Table 132128114, RIPE-M D 160: Data Length ‘

[Function Data length|Digest length
C Digest any 20

12.39.212.42.2 General-length RIPE-MD 160-HMAC ‘

The general-length RIPE-MD 160-HMAC mechanism, denoted
CKM_RIPEMD160 HMAC_GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 160 hash function.
The keysit uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of RIPE-
MD 160 is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 20-byte HMAC output.

Table 133129115, General-length RIPE-MD 160-HMAC:

Data
length
C Sign |generic secret| any | 0-20, depending on parameters
C Verify |generic secret| any | 0-20, depending on parameters

Function| Keytype Signaturelength

1239312.42.3 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160 HMAC, is a
special case of the general-length RIPE-MD 160-HMAC mechanism in Section
[12.42.212.42.212.39.2]

It has no parameter, and always produces an output of length 20.

13. Cryptoki tipsand reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

13.1 Operations, sessions, and threads

In Cryptoki, there are severa different types of operations which can be “active’ in a
session. An active operation is essentially one which takes more than one Cryptoki
function call to perform. The types of active operations are object searching; encryption;
decryption; message-digesting; signature with appendix; signature with recovery;
verification with appendix; and verification with recovery.

Copyright © 1994-1999-2000 RSA Security Inc. |

| 338 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations. digesting and
encryption; decryption and digesting; signing and encryption; decryption and verification.

If an application attempts to initialize an operation (make it active) in a session, but this
cannot be accomplished because of some other active operation(s), the application
receives the error value CKR_OPERATION_ACTIVE. This error value can aso be
received if a session has an active operation and the application attempts to use that
session to perform any of various operations which do not become “active”, but which
require cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

Different threads of an application should never share sessions, unless they are extremely
careful not to make function cals at the same time. This is true even if the Cryptoki
library was initialized with locking enabled for thread-safety.

13.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an application, are accessing a set
of common objects the issue of object protection becomes important. This is especially
the case when application A activates an operation using object O, and application B
attempts to delete O before application A has finished the operation. Unfortunately,
variation in device capabilities makes an absolute behavior specification impractical.
General guidelines are presented here for object protection behavior.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread that is using the object in an active
operation until that operation is complete. For instance, application A has begun a
signature operation with private key P and application B attempts to delete P while the
signature is in progress. In this case, one of two things should happen. The object is
deleted from the device but the operation is allow to compl ete because the operation uses
atemporary copy of the object, or the del ete operation blocks until the signature operation
has completed. If neither of these actions can be supported by an implementation, then the
error code CKR_OBJECT_HANDLE_INVALID may be returned to application A to
indicate that the key being used to perform its active operation has been del eted.

Whenever possible, changing the value of an object attribute should impact the behavior
of active operations in other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure
should be returned to the application with the active operation.

| Copyright © 1994-1999-2000 RSA Security Inc.

13139. CRYPTOKI TIPSAND REMINDERS 339 |

13.3 Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) always
possesses all possible attributes specified by Cryptoki for an object of its type. This
means, for example, that a DiffieeHellman private key object always possesses a
CKA_VALUE_BITS attribute, even if that attribute wasn’t specified when the key was
generated (in such a case, the proper value for the attribute is computed during the key
generation process).

In general, a Cryptoki function which requires a template for an object needs the template
to specify—either explicitly or implicitly—any attributes that are not specified elsewhere.
If a template specifies a particular attribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a particular value of the attribute from
among those specified and use that value. In any event, object attributes are aways
single-valued.

13.4 Signing with recovery

Signing with recovery is a general aternative to ordinary digital signatures (“signing with
appendix”) which is supported by certain mechanisms. Recall that for ordinary digital
signatures, a signature of a message is computed as some function of the message and the
signer’s private key; this signature can then be used (together with the message and the
signer’s public key) as input to the verification process, which yields a simple “signature
valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private
key. However, to verify this signature, no message is required as input. Only the
signature and the signer’s public key are input to the verification process, and the
verification process outputs either “signature invalid” or—if the signature is valid—the

original message.

Consider a simple example with the CKM_RSA_X_ 509 mechanism. Here, amessage is
a byte string which we will consider to be a number modulo n (the signer's RSA
modulus). When this mechanism is used for ordinary digital signatures (signatures with
appendix), a signature is computed by raising the message to the signer’s private
exponent modulo n. To verify this signature, a verifier raises the signature to the signer’s
public exponent modulo n, and accepts the signature as valid if and only if the result
matches the original message.

If CKM_RSA_ X 509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechanism, any number
modulo n is avalid signature. To recover the message from a signature, the signature is
raised to the signer’s public exponent modulo n.

Copyright © 1994-1999-2000 RSA Security Inc. |

A139. TOKEN PROFILES 341 |

A. Token profiles

This appendix describes “profiles,” i.e, sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets would be
standardized as parts of the various applications, for instance within alist of requirements
on the module that provides cryptographic services to the application (which may be a
Cryptoki token in some cases). Thus, these profiles are intended for reference only at this
point, and are not part of this standard.

The following table summarizes the mechanisms relevant to two common types of
application:

Table A-1, Mechanisms and profiles

Application
Gover nment Cellular Digital Packet

M echanism Authentication-only Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS KEY_PAIR_GEN v
CKM_DH_PKCS_DERIVE v
CKM_RC4 KEY_GEN v
CKM_RC4 v
CKM_SHA 1 v

A.1 Gover nment authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in
FIPS PUB 186 for signatures and the Secure Hash Algorithm as defined in FIPS PUB
180-1 for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)

DSA (512-1024 hits)

SHA-1
Note that this version of Cryptoki does not have a mechanism for generating DSA
parameters.
A.2 Cdlular Digital Packet Data

Cedllular Digital Packet Data (CDPD) is a set of protocols for wireless communication.
The basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 hits)

Copyright © 1994-1999-2000 RSA Security Inc. |

| 342 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)
RC4 (40-128 bits)

(Theinitial CDPD security specification limits the size of the Diffie-Hellman key to 256
bits, but it has been recommended that the size be increased to at least 512 hits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-
Hellman parameters.

| Copyright © 1994-1999-2000 RSA Security Inc.

B139. COMPARISON OF CRYPTOKI AND OTHER APIS

B. Comparison of Cryptoki and other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

* ANSI N13-94 - Guideline X9.TG-12-199X, Using Tesserain Financial Systems: An
Application Programming Interface, April 29, 1994

» X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. Itisat aleve
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together
with the equivalent Cryptoki functions:

TableB-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG

Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C Login

Cl_Close C CloseSession

Cl_Decrypt C_Decryptlnit, C_Decrypt, C_DecryptUpdate,

C_DecryptFina

Cl_DéeleteCertificate

C_DestroyObject

Cl_DeleteKey C_DestroyObject
Cl_Encrypt C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal
Cl_ExtractX C_WrapKey
Cl_GeneratelV C_GenerateRandom
Cl_GenerateMEK C_GenerateKey
Cl_GenerateRa C_GenerateRandom
Cl_GenerateRandom C_GenerateRandom
Cl_GenerateTEK C_GenerateKey
Cl_GenerateX C_GenerateKeyPair
Cl_GetCertificate C_FindObjects

Cl_Configuration

C_GetTokeninfo

Cl_GetHash C Digestlnit, C_Digest, C_DigestUpdate, and
C _DigestFina

Cl_GetlV No equivalent

Cl_GetPersonalityList C_FindObjects

Copyright © 1994-1999-2000 RSA Security Inc. |

| 344 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FORTEZZA CIPG Equivalent Cryptoki

Cl_GetState C_GetSessioninfo

Cl_GetStatus C_GetTokenInfo

Cl_GetTime C_GetTokenlnfo or
C_GetAttributeValue(clock object) [preferred]

Cl_Hash C Digestinit, C_Digest, C_DigestUpdate, and
C_DigestFina

Cl_Initialize C_Initidize

Cl_InitializeHash C_DigestInit

Cl_Install X C_UnwrapKey

Cl_LoadCertificate C_CreateObject

Cl_LoadDSAParameters C_CreateObject

Cl_LoadInitValues C_SeedRandom

Cl_LoadlV C_Encryptinit, C_Decryptinit

Cl_LoadK C_Signinit

Cl_LoadPublicKeyParameters | C_CreateObject

Cl_LoadPIN C_SetPIN

Cl_LoadX C_CreateObject

Cl_Lock Implicit in session management

Cl_Open C_OpenSession

Cl_RelayX C_WrapKey

Cl_Reset C_CloseAllSessions

Cl_Restore Implicit in session management

Cl_Save Implicit in session management

Cl_Select C_OpenSession

Cl_SetConfiguration No equivalent

Cl_SetKey C_Encryptinit, C_Decryptinit

Cl_SetMode C_Encryptinit, C_Decryptinit

Cl_SetPersonality C_CreateObject

Cl_SetTime No equivalent

Cl_Sign C_Signinit, C_Sign

Cl_Terminate C_CloseAllSessions

Cl_Timestamp C_Signinit, C_Sign

Cl_Unlock Implicit in session management

Cl_UnwrapKey C_UnwrapKey

Cl_VerifySignature C_Verifylnit, C_Verify

Cl_VerifyTimestamp C_Verifylnit, C_Verify

Cl_WrapKey C_WrapKey

| Copyright © 1994-1999-2000 RSA Security Inc.

B139. COMPARISON OF CRYPTOKI AND OTHER APIS |

FORTEZZA CIPG

Equivalent Cryptoki

Cl_Zeroize

C _InitToken

B.2 GCS-API

This proposed standard defines an APl to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-API
functions with the Cryptoki functions used to implement the functions. Note that full
support of GCS-API isleft for future versions of Cryptoki.

Table B-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation
retrieve_ CC

release CC

generate_hash C_Digestlnit, C_Digest

generate_random_number

C_GenerateRandom

generate_checkvalue

C_Signinit, C_Sign, C_SignUpdate,

C _SignFind

verify checkvalue C Veifylnit, C_Verify, C_VerifyUpdate,
C_VerifyFina

data_encipher C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data_decipher C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C_DecryptFina

create CC

derive_key C_DeriveKey

generate key C_GenerateKey

store CC

delete CC

replicate CC

export_key C_WrapKey

import_key C_UnwrapKey

archive CC C WrapKey

restore CC C_UnwrapKey

set key state

generate key pattern

verify key pattern

derive _clear_key C DeriveKey

Copyright © 1994-1999-2000 RSA Security Inc. |

| 346

PKCS#11v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

GCS-API

Cryptoki implementation

generate clear_key

C_GenerateKey

load key parts

clear_key encipher

C_WrapKey

clear_key decipher

C_UnwrapKey

change_key context

load initial_key

generate _initial_key

set_current_master_key

protect_under_new_master_key

protect_under_current_master_key

initialise_random_number_generator

C_SeedRandom

install_algorithm

de install_algorithm

disable algorithm

enable_algorithm

set_defaults

| Copyright © 1994-1999-2000 RSA Security Inc.

C239. INTELLECTUAL PROPERTY CONSIDERATIONS

C. Intellectual property considerations

The RSA public-key cryptosystem is pretected-bydescribed in U.S. Patent 4,405,829,
which expired on September 20, 2000. and-tThe RC5 block cipher is protected by U.S.
Patents 5,724,428 and 5,835,600. RSA Security Inc. makes no other patent claims on the
constructions described in this document, although specific underlying techniques may be
covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5S is a trademark
of RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is aregistered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in al material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property clams
by other parties. Such determination is the responsibility of the user.

Copyright © 1994-1999-2000 RSA Security Inc. |

347

| 348 PKCS#11 v2.11 DRAFT 10: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

D. Method for Exposing M ultiple-PINs on a Token Through Cryptoki

The following is a description of how to expose multiple PINs on a single token through
the Cryptoki interface. It has been implemented in products from SmartTrust (formerly
iD2 Technologies), and submitted to the PKCS workgroup for inclusion in PKCS #11.
The description is informative. An_implementation does not have to implement the
functionality in this appendix to meet conformance requirements, but this is the preferred
method for exposing multiple PINsin PKCS #11 v2.x libraries.

D.1 Virtual Slotsand Tokens

Exposing multiple PINs requires the creation of avirtual slot and token pair for each PIN
supported by the Cryptoki library. To the library there is a single slot and card, but to the
application it appears that there are multiple slots and tokens. Since libraries are not
alowed to add slots dynamically, all virtual slots must be allocated from the beginning
when C Initidlize is called. When a card is inserted in a reader, the library determines
how many PINs are on the card and then inserts that many virtual cards in the virtual
dots. For instance, if the library supports up to two PINs on a card, and a card with a
single PIN is inserted, only one of the two virtual slots will appear to have had a card
inserted.

Virtual dots that represent the same physical device are tied together using the
dotDescription field in the CK_SLOT INFO structure. All virtual sots for the same
device must have the same slotDescription value as the real slot would have had. This
allows applications that know about the behavior to handle the virtual slots and cards as a
single device with multiple PINs. As a result the library must make sure that the
sotDescription value is unique far all real sots.

PINs on a card are identified using the tokenLabel field in the CK_TOKEN_ INFO
structure. The tokenL abel value is generated from a combination of the real value and the
PIN label. The format is "<token |label> (<pin label>)" (i.e. "Electronic ID (PIN1)"). Asa
result, the user can know which PIN to use even if the application does not know about
multiple PINs. This requires that the application to show the tokenLabel value when it
wants a PIN. Fortunately, most applications do this. Using the above format, the
combined token and PIN label is limited to 29 bytes (32 minus white space and

parenthesis).

D.2 Object Visibility

Objects such as certificates, public keys, and private keys must only be visible in the
virtual dot representing the PIN that protects use of the private key. This allows
applications to continue assuming that the private key is in the same dlot as the
corresponding certificate and/or public key (private objects are not visible until logged

in).

| Copyright © 1994-1999-2000 RSA Security Inc.

D439. METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI

This approach has advantages and disadvantages. Since the library separates the view of
the objects based on the PIN that protects them, applications that only use the objects on
the virtual cards will function correctly. The problem appears when an application
attempts to update the objects. The library must insure that the certificate, public key, and
private keys are all updated in the same virtual card. The application should not be
required to use the virtual card for PIN2 to execute the private key, and update the
corresponding certificate in the virtual card for PIN1. This will not be a problem if the
application knows about this access behavior, but it will not be a generic PKCS #11
application. The disadvantage is not a problem when the cards are issued and updated by
the same company (which istrue in most cases).

Copyright © 1994-1999-2000 RSA Security Inc. |

349

	I
	Introduction
	Scope
	References
	Definitions
	Symbols and abbreviations
	General overview
	Design goals
	General model
	Logical view of a token
	Users
	Applications and their use of Cryptoki
	Applications and processes
	Applications and threads

	Sessions
	Read-only session states
	Read/write session states
	Permitted object accesses by sessions
	Session events
	Session handles and object handles
	Capabilities of sessions
	Example of use of sessions

	Secondary authentication (Deprecated)
	Using keys protected by secondary authentication
	Generating private keys protected by secondary authentication
	Changing the secondary authentication PIN value
	Secondary authentication PIN collection mechanisms

	Function overview

	Security considerations
	Platform- and compiler-dependent directives for C or C++
	Structure packing
	Pointer-related macros
	Sample platform- and compiler-dependent code
	Win32
	Win16
	Generic UNIX

	General data types
	General information
	Slot and token types
	Session types
	Object types
	Data types for mechanisms
	Function types
	Locking-related types

	Objects
	Creating, modifying, and copying objects
	Creating objects
	Modifying objects
	Copying objects

	Common attributes
	Hardware Feature Objects
	Clock Objects
	Monotonic Counter Objects

	Storage Objects
	Data objects
	Certificate objects
	X.509 public key certificate objects
	X.509 attribute certificate objects

	Key objects
	Public key objects
	RSA public key objects
	9.6.2.	DSA public key objects
	ECDSA public key objects
	ECDSA public key objects
	Diffie-Hellman public key objects
	X9.42 Diffie-Hellman public key objects
	KEA public key objects

	Private key objects
	RSA private key objects
	DSA private key objects
	Elliptic curve private key objects
	ECDSA private key objects
	Diffie-Hellman private key objects
	X9.42 Diffie-Hellman private key objects
	KEA private key objects

	Secret key objects
	Generic secret key objects
	RC2 secret key objects
	RC4 secret key objects
	RC5 secret key objects
	AES secret key objects
	DES secret key objects
	DES2 secret key objects
	DES3 secret key objects
	CAST secret key objects
	CAST3 secret key objects
	CAST128 (CAST5) secret key objects
	IDEA secret key objects
	CDMF secret key objects
	SKIPJACK secret key objects
	BATON secret key objects
	JUNIPER secret key objects

	Key parameter objects
	DSA public key parameter objects
	Diffie-Hellman public key parameter objects

	Functions
	Function return values
	Universal Cryptoki function return values
	Cryptoki function return values for functions that use a session handle
	Cryptoki function return values for functions that use a token
	Special return value for application-supplied callbacks
	Special return values for mutex-handling functions
	All other Cryptoki function return values
	More on relative priorities of Cryptoki errors
	Error code “gotchas”

	Conventions for functions returning output in a variable-length buffer
	Disclaimer concerning sample code
	General-purpose functions
	Slot and token management functions
	Session management functions
	Object management functions
	Encryption functions
	Decryption functions
	Message digesting functions
	Signing and MACing functions
	Functions for verifying signatures and MACs
	Dual-function cryptographic functions
	Key management functions
	Random number generation functions
	Parallel function management functions
	Callback functions
	Surrender callbacks
	Vendor-defined callbacks

	Mechanisms
	RSA mechanisms
	PKCS #1 RSA key pair generation
	X9.31 RSA key pair generation
	PKCS #1 RSA
	PKCS #1 RSA OAEP mechanism parameters
	PKCS #1 RSA OAEP
	ISO/IEC 9796 RSA
	X.509 (raw) RSA
	ANSI X9.31 RSA
	PKCS #1 RSA signature with MD2, MD5, or SHA-1
	ANSI X9.31 RSA signature with SHA-1

	DSA mechanisms
	DSA key pair generation
	DSA key parameter generation
	DSA without hashing
	DSA with SHA-1
	FORTEZZA timestamp

	About Elliptic CurveAbout ECDSA
	12.4	Elliptic curve mechanisms
	12.4.1	Elliptic curve key pair generation
	12.4.2	ECDSA without hashing
	12.4.3	ECDSA with SHA-1
	EC mechanism parameters
	Elliptic curve Diffie-Hellman key derivation
	Elliptic curve Diffie-Hellman with cofactor key derivation
	Elliptic curve Menezes-Qu-Vanstone key derivation

	ECDSA mechanisms
	ECDSA key pair generation
	ECDSA without hashing
	ECDSA with SHA-1

	Diffie-Hellman mechanisms
	PKCS #3 Diffie-Hellman key pair generation
	PKCS #3 Diffie-Hellman key parameter generation
	PKCS #3 Diffie-Hellman key derivation

	X9.42 Diffie-Hellman mechanism parameters
	X9.42 Diffie-Hellman mechanisms
	X9.42 Diffie-Hellman key pair generation
	X9.42 Diffie-Hellman key derivation
	X9.42 Diffie-Hellman hybrid key derivation
	X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

	KEA mechanism parameters
	KEA mechanisms
	KEA key pair generation
	KEA key derivation

	Generic secret key mechanisms
	Generic secret key generation

	Wrapping/unwrapping private keys
	Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA)
	About RC2
	RC2 mechanism parameters
	RC2 mechanisms
	RC2 key generation
	RC2-ECB
	RC2-CBC
	RC2-CBC with PKCS padding
	General-length RC2-MAC
	RC2-MAC

	RC4 mechanisms
	RC4 key generation
	RC4

	About RC5
	RC5 mechanism parameters
	RC5 mechanisms
	RC5 key generation
	RC5-ECB
	RC5-CBC
	RC5-CBC with PKCS padding
	General-length RC5-MAC
	RC5-MAC

	AES mechanisms
	AES key generation
	AES-ECB
	AES-CBC
	AES-CBC with PKCS padding
	General-length AES-MAC
	AES-MAC

	General block cipher mechanism parameters
	General block cipher mechanisms
	General block cipher key generation
	General block cipher ECB
	General block cipher CBC
	General block cipher CBC with PKCS padding
	General-length general block cipher MAC
	General block cipher MAC

	Double and Triple-length DES mechanisms
	Double-length DES key generation
	Triple-length DES Order of Operations
	Triple-length DES in CBC Mode

	SKIPJACK mechanism parameters
	SKIPJACK mechanisms
	SKIPJACK key generation
	SKIPJACK-ECB64
	SKIPJACK-CBC64
	SKIPJACK-OFB64
	SKIPJACK-CFB64
	SKIPJACK-CFB32
	SKIPJACK-CFB16
	SKIPJACK-CFB8
	SKIPJACK-WRAP
	SKIPJACK-PRIVATE-WRAP
	SKIPJACK-RELAYX

	BATON mechanisms
	BATON key generation
	BATON-ECB128
	BATON-ECB96
	BATON-CBC128
	BATON-COUNTER
	BATON-SHUFFLE
	BATON WRAP

	JUNIPER mechanisms
	JUNIPER key generation
	JUNIPER-ECB128
	JUNIPER-CBC128
	JUNIPER-COUNTER
	JUNIPER-SHUFFLE
	JUNIPER WRAP

	MD2 mechanisms
	MD2
	General-length MD2-HMAC
	MD2-HMAC
	MD2 key derivation

	MD5 mechanisms
	MD5
	General-length MD5-HMAC
	MD5-HMAC
	MD5 key derivation

	SHA-1 mechanisms
	SHA-1
	General-length SHA-1-HMAC
	SHA-1-HMAC
	SHA-1 key derivation

	FASTHASH mechanisms
	FASTHASH

	Password-based encryption/authentication mechanism parameters
	PKCS #5 and PKCS #5-style password-based encryption mechanisms
	MD2-PBE for DES-CBC
	MD5-PBE for DES-CBC
	MD5-PBE for CAST-CBC
	MD5-PBE for CAST3-CBC
	MD5-PBE for CAST128-CBC (CAST5-CBC)
	SHA-1-PBE for CAST128-CBC (CAST5-CBC)
	PKCS #5 PBKDF2 key generation mechanism parameters
	PKCS #5 PBKD2 key generation

	PKCS #12 password-based encryption/authentication mechanisms
	SHA-1-PBE for 128-bit RC4
	SHA-1-PBE for 40-bit RC4
	SHA-1-PBE for 3-key triple-DES-CBC
	SHA-1-PBE for 2-key triple-DES-CBC
	SHA-1-PBE for 128-bit RC2-CBC
	SHA-1-PBE for 40-bit RC2-CBC
	SHA-1-PBA for SHA-1-HMAC

	SET mechanism parameters
	SET mechanisms
	OAEP key wrapping for SET

	LYNKS mechanisms
	LYNKS key wrapping

	SSL mechanism parameters
	SSL mechanisms
	Pre_master key generation
	Master key derivation
	Key and MAC derivation
	MD5 MACing in SSL 3.0
	SHA-1 MACing in SSL 3.0

	Parameters for miscellaneous simple key derivation mechanisms
	Miscellaneous simple key derivation mechanisms
	Concatenation of a base key and another key
	Concatenation of a base key and data
	Concatenation of data and a base key
	XORing of a key and data
	Extraction of one key from another key

	RIPE-MD 128 mechanisms
	RIPE-MD 128
	General-length RIPE-MD 128-HMAC
	RIPE-MD 128-HMAC

	RIPE-MD 160 mechanisms
	RIPE-MD 160
	General-length RIPE-MD 160-HMAC
	RIPE-MD 160-HMAC

	Cryptoki tips and reminders
	Operations, sessions, and threads
	Multiple Application Access Behavior
	Objects, attributes, and templates
	Signing with recovery

	Token profiles
	Comparison of Cryptoki and other APIs
	Intellectual property considerations
	Method for Exposing Multiple-PINs on a Token Through Cryptoki
	Virtual Slots and Tokens
	Object Visibility

