BIBTOOL

A Tool to Manipulate BIBTRX Files

C Programmers Manual

Gerd Neugebauer

Abstract

BisTooL provides a library of useful C functions to manipulate BIBTRX files.
This library has been used to implement the BIBTOOL program. This document
describes This library and allows you to write C programs dealing with BIBTpX
files.

— This documentation is still in a rudimentary form and needs additional efforts. —

This file is part of BIBToOL Version 2.50
Copyright (©2010 Gerd Neugebauer

BiBTOOL is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
1, or (at your option) any later version.

BIBToOL is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this docu-
mentation; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass
Ave, Cambridge, MA 02139, USA.

Gerd Neugebauer
Im Lerchelsbohl 5
64521 GroB-Gerau (Germany)

WWW: http://www.gerd-neugebauer.de/

Net: gene@gerd-neugebauer.de

Contents

1 Introduction

1.1 The Module main.c s
2 The BisTooL C Library

3 Creating and Using the BisToorL C Library
3.1 Creating the BIBTooL C Library
3.2 Using the BIBTooL C Library

4 Coding Standards
4.1 K&R-Cvs. ANSI-C e

11

13
13
14

15

CONTENTS

Introduction

The BisTooL C library provides functions to deal with BIBTRX files. These functions
are described in this document. Thus it should be fairly easy to write new C program
which handle BIBTX files. The reader is assumed to be familiar with BIBTEX files. this
documentation will not repeat an introduction into BIBTRX.

This documentation can not only be used to write new C programs dealing with BIBTpX
files but also to understand BiBTooL—The Program which serves as one example for using
the BIBToOOLC library. In any case it is essential to understand some of the underlying
concepts. Thus it is vital to read some sections very carefully. Especially the section

The BIBToOL program uses the BIBTooL C library. Well, in fact it is the other way round.
Historically the BIBTOOL program was first and then the library has been extracted from
it. Nevertheless the BIBTOOL program can serve as an example how the BIBTooL C libary
can be used.

1.1 The Module main.c

This is the BIBTooL main module. It contains the main() function which evaluates the
command line arguments and proceeds accordingly. This means that usually resource files
and BIBTRX files are read and one or more BIBTRX files are written.

This file makes use of the BIBTooL C library but is not part of it. For this purpose it has
to provide certain functions which are expected by the library. These functions are:

save_input_file()
save macro_file()
save_output_file()

6 1. INTRODUCTION

The arguments and the expected behaviour of these functions is described below.

If you are trying to understand the implementation of BIBTOOL the file resource.h plays
a central role. Consult the description of this file for further details.

If you are trying to write your own program to manipulate BIBTEX files then this file can
serve as a starting point. But you should keep in mind that this file has grown over several
years and it contains the full complexity of the BIBTOOL program logic. Thus you can
reduce this file drastically if you start playing around with the BisTooL C library.

static int keep_selected() Function
Returns:

int keep_xref() Function
DB db;

Record rec;

Undelete crossreferenced entries

Returns:

int main() Function
int argc; Number of arguments
char *argv[]; Array of arguments

This is the main function which is automatically called when the program is started.
This function contains the overall program logic. It has to perform the appropriate
initializations, evaluate command line arguments, and run the main loop.

Returns: 0 upon success. Usually a failure raises an exception which leads to an
exit (). Thus this function does not need to signal an error to the calling envi-

ronment.
static int rec_gt_cased() Function
Returns:
static int rec_lt_cased() Function

Returns:

1.1. THE MODULE MAIN.C

void save_input_file() Function
char *file; File name to save.
The input file pipe is a dynamic array of strings. This fifo stack is used to store the
input BIBTRX files to be processed by BIBTOOL.

This function is called to push an string into the pipe. If neccesary the array has to be
allocated or enlarged. This is done in larger junks to avoid lots of calls to realloc().

Returns: nothing

void save_macro_file() Function
char *file; File name to save
Simply feed the macro file name into the static variable. This function is useful since

it can be called from rsc.c
Returns: nothing

void save_output_file() Function
char * file; File name to save

Simply feed the output file name into the static variable. This function is useful since

it can be called from rsc.c

Returns: nothing

1. INTRODUCTION

2

The BiBTooL C Library

10

2. THE BisTooL C LIBRARY

Creating and Using the BiBTooL C
Library

3.1 Creating the BiBTooL C Library

Creating the BIBToOL library should not be too hard. Mainly make BIBTooOL in the main
directory according to the instructions given there. As a side effect various object files are
created. These object files—except the one for main.c—have to be put into the library.

For UNIX this is prepared in the makefile. Usually an invocation of make should be enough:
make libbib.a
This invocation of make is in fact the same as the following two commands:

ar r libbib.a $0FILES
ranlib libbib.a

Here $0FILES denotes the list of object files as described above. On some systems no ranlib
program is present and needed. In this case the second command can be omitted.

For other operating systems I simply do not know how things work there. I would be
grateful to receive descriptions what to do there.

11

12 3. CREATING AND UsSING THE BisTooL C LIBRARY

3.2 Using the BiBTooL C Library

If you have written a program which uses the BiBTooL C Library you have to include the
library into the linking list. In addition the directory where the library can be found has to
be specified. On UNIX this can be done with the compiler switches -1 and -L respectively.
Thus consider you have a program named mybib.c and you have created the object file
mybib.o for it. The linking step can be performed with the following command:

cc mybib.o -L$DIR -1bib -o mybib

Here $DIR denotes the path containing the file 1ibbib.a. This path can be omitted if the
library has been installed in a “standard” place like /usr/1ib.

Coding Standards

Several tools are used for the development of BiBTooL. Mostly they are home grown—
maybe they will be replaced by some wider used tools some day. Among those tools are
indentation routines for Emacs to format the comments contained in the source. There is
also a Lisp function to generate the function prototypes contained in the header files and
sometimes in the C files as well. And finally there is a Program to extract the documentation
from the source files and generate a printable manual.

All those support programs rely on standards for coding. Some of those standards have
been develped independantly but should be used for consistency. In the following sections
these coding standards are described.

4.1 K&R-C vs. ANSI-C

BiBTooL tries hard to be portable to wide variety of C systems. Thus it can not be assumed
that an ANSI C compiler is at hand. As a consequence the function heads are written in
the old style which is also tolerated by ANSI compliant compilers. This means that the
argument types are given after the argument list.

Here it is essential that the arguments type declarations are given in the same order as the
arguments of the function. Each type variable must have a new type declaration in a line
by it’s own. This feature is used by the program which extracts the function prototypes.

Those function heads are use to generate function prototypes which can be understood by
ANSI-C compilers as well as by of K&R compilers. This is achieved by the od trick to
introduce a macro which expands to nothing on the old compilers and to its aregument
on ANSI compilers. This macro is defined appropriately according to the existence of the
macro __STDC__ which should indicate an ANSI compliant compiler.

13

Index

keep_selected()

keep xref()

rec_gt_cased() ...
rec_lt_cased() ...

save_input_file()
save macro_file()
save_output_file()

14

