{r add_column, warning=FALSE, message=FALSE} # model[which(model$type=="Gene"),] #
{r add_column2, warning=FALSE, message=FALSE} # model[which(model$type=="Disease"),] #
InterMine is a powerful open source data warehouse system integrating diverse biological data sets (e.g. genomic, expression and protein data) for various organisms. Integrating data makes it possible to run sophisticated data mining queries that span domains of biological knowledge. A selected list of databases powered by InterMine is shown in Table 1:
Database | Organism | Data |
---|---|---|
FlyMine | Drosophila | Genes, homology, proteins, interactions, gene ontology, expression, regulation, phenotypes, pathways, diseases, resources, publications |
HumanMine | H. sapiens | Genomics, SNPs, GWAS, proteins, gene ontology, pathways, gene expression, interactions, publications, disease, orthologues, alleles |
MouseMine | M. musculus | Genomics, proteins, gene ontology, expression, interactions, pathways, phenotypes, diseases, homology, publications |
RatMine | R. norvegicus | Disease, gene ontology, genomics, interactions, phenotype, pathway, proteins, publication QTL, SNP |
WormMine | C. elegans | Genes, alleles, homology, go annotation, phenotypes, strains |
YeastMine | S. cerevisiae | Genomics, proteins, gene ontology, comparative genomics, phenotypes, interactions, literature, pathways, gene expression |
ZebrafishMine | D. rerio | Genes, constructs, disease, gene ontology, genotypes, homology, morpholinos, phenotypes |
TargetMine | H. sapiens, M. musculus | Genes, protein structures, chemical compounds, protein domains, gene function, pathways, interactions, disease, drug targets |
MitoMiner | H. sapiens, M. musculus, R. norvegicus, D. rerio, S. cerevisiae, S. pombe | Genes, homology, localisation evidence, Mitochondrial reference gene lists, phenotypes, diseases, expression, interactions, pathways, exome |
IndigoMine | Archae | Genomics |
ThaleMine | A. thaliana | Genomics, proteins, domains, homology, gene ontology, interactions, expression, publications, pathways, GeneRIF, stocks, phenotypes, alleles, insertions, TAIR |
MedicMine | Medicago truncatula | Genomics, pathways, gene ontology, publications, proteins, homology |
PhytoMine | over 50 plant genomes | Genes, proteins, expression, transcripts, homology |
Please see the InterMine home page for a full list of available InterMines.
InterMine includes an attractive, user-friendly web interface that works ‘out of the box’ and a powerful, scriptable web-service API to allow programmatic access to your data. This R package provides an interface with the InterMine-powered databases through Web services.
Let’s start with a simple task - find the pathways of the gene ABO.
First, we look at what databases are available.
## BMAP
## "https://bmap.jgi.doe.gov/bmapmine/"
## BeanMine
## "https://mines.legumeinfo.org/beanmine"
## BovineMine
## "http://genomes.missouri.edu/bovinemine"
## CHOmine
## "https://chomine.boku.ac.at/chomine"
## ChickpeaMine
## "https://mines.legumeinfo.org/chickpeamine"
## CowpeaMine
## "https://mines.legumeinfo.org/cowpeamine"
## FlyMine
## "https://www.flymine.org/flymine"
## GrapeMine
## "http://urgi.versailles.inra.fr/GrapeMine"
## HumanMine
## "https://www.humanmine.org/humanmine"
## LegumeMine
## "https://mines.legumeinfo.org/legumemine"
## MaizeMine
## "http://maizemine.rnet.missouri.edu:8080/maizemine"
## MedicMine
## "http://medicmine.jcvi.org/medicmine"
## MitoMiner
## "http://mitominer.mrc-mbu.cam.ac.uk/release-4.0"
## ModMine
## "http://intermine.modencode.org/release-33"
## MouseMine
## "http://www.mousemine.org/mousemine"
## OakMine
## "https://urgi.versailles.inra.fr/OakMine_PM1N"
## PeanutMine
## "https://mines.legumeinfo.org/peanutmine"
## PhytoMine
## "https://phytozome.jgi.doe.gov/phytomine/"
## PlanMine
## "http://planmine.mpi-cbg.de/planmine"
## RatMine
## "http://ratmine.mcw.edu/ratmine"
## RepetDB
## "http://urgi.versailles.inra.fr/repetdb"
## SoyMine
## "https://mines.legumeinfo.org/soymine"
## ThaleMine
## "https://bar.utoronto.ca/thalemine"
## WheatMine
## "https://urgi.versailles.inra.fr/WheatMine"
## WormMine
## "http://intermine.wormbase.org/tools/wormmine/"
## XenMine
## "http://www.xenmine.org/xenmine"
## YeastMine
## "https://yeastmine.yeastgenome.org/yeastmine"
## ZebrafishMine
## "http://zebrafishmine.org"
Since we would like to query human genes, we select HumanMine.
## $mine
## HumanMine
## "https://www.humanmine.org/humanmine"
##
## $token
## [1] ""
Both in InterMine database website and in InterMineR, you are able to build custom queries. However, to facilitate the retrieval of information from InterMine databases, a variety of pre-built queries, called templates, have also been made available. Templates are queries that have already been created with a fixed set of output columns and one or more constraints.
## name
## 1 Tissue_Expression_illumina
## 2 humDisGeneOrthol2
## 3 PhenotypeGene
## 4 Protein_complex_details
## 5 disExprGene
## 6 protein_interactions
## title
## 1 Tissue --> Gene Expression (Illumina body map)
## 2 Human Disease --> Human Gene + Orthologue Gene(s)
## 3 Mouse Phenotype --> Mouse Genes + Orthologous genes
## 4 Protein --> Protein Complex
## 5 Disease Expression --> Genes
## 6 Protein --> Interactions
We would like to find templates involving genes.
## name
## 2 humDisGeneOrthol2
## 3 PhenotypeGene
## 5 disExprGene
## 7 Gene_Interactions2
## 8 Protein_Gene_Ortho
## 9 GOterm_Gene
## 11 Gene_Alleles_Disease2
## 13 ChromRegion_GenesTransExon
## 16 GeneExpress
## 17 Disease_Genes2
## 18 Gene_Location
## 19 Protein_GeneChromosomeLength
## 20 Gene_Identifiers
## 22 Gene_Pathway
## 23 gene_complex_details
## 26 PathwayGenes
## 28 Gene_Protein
## 29 Gene_OverlapppingGenes
## 32 Gene_To_Publications
## 33 Gene_Interactions_forReportPage
## 35 Gene_Disease_HPO
## 36 Gene_GO
## 38 GeneInteractorsExpression
## 39 Gene_particularGoannotation
## 40 Gene_TissueExpressionIllumina
## 42 Gene_HPOphenotype_2
## 43 domain_protein_gene
## 44 Gene_Expression_GTex
## 45 Pathway_ProteinGene
## 48 GeneHPOparent_Genes_2
## 49 Gene_proteindomain
## 50 Gene_SigSNP
## 51 Gene_inGWAS
## 52 geneGWAS_reportPg
## 53 geneInteractiongene
## 54 Gene_Disease2
## 55 Term_inGWASoptionalGene
## 56 Gene_proteinAtlasExpression2
## 57 GeneOrthAllele
## 61 Gene_Orth
## 62 ChromRegion_Genes
## 64 GenePathway_interactions2
## 65 Gene_AllelePhen
## title
## 2 Human Disease --> Human Gene + Orthologue Gene(s)
## 3 Mouse Phenotype --> Mouse Genes + Orthologous genes
## 5 Disease Expression --> Genes
## 7 Gene --> Interactions
## 8 Protein --> Gene and Orthologues
## 9 GO term --> Genes
## 11 Gene --> Alleles and Disease (clinVar data)
## 13 Chromosomal Location --> All Genes + Transcripts + Exons
## 16 Gene --> Gene Expression (Tissue, Disease; Array Express, E-MTAB-62)
## 17 Disease --> Gene(s)
## 18 Gene --> Chromosomal location.
## 19 Protein --> Gene.
## 20 Gene --> All identifiers.
## 22 Gene --> Pathway
## 23 Gene --> protein complex
## 26 Pathway --> Genes
## 28 Gene --> Proteins.
## 29 Gene --> Overlapping genes.
## 32 Gene --> Publications.
## 33 Gene --> Physical and Genetic Interactions
## 35 Gene --> Disease + HPO annotations (Human Phenotype Ontology
## 36 Gene --> GO terms.
## 38 Gene + Tissue Expression --> Interactors that are expressed in that tissue
## 39 Gene + GO term --> Genes by GO term
## 40 Gene --> Tissue Expression (Illumina body map)
## 42 Gene -> HPO annotation (Human Phenotype Ontology)
## 43 Protein Domain --> Protein and Genes
## 44 Gene --> Tissue Expression (GTex data)
## 45 Pathway --> Protein and Gene
## 48 Gene + HPO Phenotype parent term -> Genes
## 49 Gene --> Protein + Domains
## 50 Gene(s) --> Significant SNPs (GTex data)
## 51 Gene --> GWAS hit
## 52 Gene Report --> GWAS hit
## 53 Gene A --> Interaction <-- Gene B
## 54 Gene --> Disease (OMIM)
## 55 GWAS term --> SNP + Associated gene if available
## 56 Gene --> Protein tissue Localisation
## 57 Gene (Hum OR Rat) --> Mouse Allele (Phenotype)
## 61 Gene --> Orthologues
## 62 Region --> Genes
## 64 Gene + Pathway --> Interactions
## 65 Mouse Gene --> Allele [Phenotype]
The template Gene_Pathway seems to be what we want. Let’s look at this template in more detail.
# Query for gene pathways
queryGenePath = getTemplateQuery(
im = im,
name = "Gene_Pathway"
)
queryGenePath
## $model
## name
## "genomic"
##
## $title
## [1] "Gene --> Pathway"
##
## $description
## [1] "For a given Gene (or List of Genes) show any associated Pathway(s) (Data Source: KEGG or REACTOME). Keywords: pathways, metabolism, cascade "
##
## $select
## [1] "Gene.primaryIdentifier" "Gene.symbol"
## [3] "Gene.name" "Gene.pathways.name"
## [5] "Gene.pathways.dataSets.name" "Gene.pathways.identifier"
## [7] "Gene.organism.shortName"
##
## $name
## [1] "Gene_Pathway"
##
## $comment
## [1] "Added 26OCT2010: ML"
##
## $tags
## [1] "im:public" "im:report"
##
## $rank
## [1] "1"
##
## $orderBy
## $orderBy[[1]]
## Gene.primaryIdentifier
## "ASC"
##
## $orderBy[[2]]
## Gene.primaryIdentifier
## "ASC"
##
## $orderBy[[3]]
## Gene.primaryIdentifier
## "ASC"
##
##
## $where
## $where[[1]]
## $where[[1]]$path
## [1] "Gene"
##
## $where[[1]]$op
## [1] "LOOKUP"
##
## $where[[1]]$code
## [1] "A"
##
## $where[[1]]$editable
## [1] TRUE
##
## $where[[1]]$switchable
## [1] FALSE
##
## $where[[1]]$switched
## [1] "LOCKED"
##
## $where[[1]]$value
## [1] "PPARG"
##
## $where[[1]]$extraValue
## [1] "H. sapiens"
There are three essential members in a query - SELECT, WHERE and constraintLogic.
What does ‘Gene.symbol’ mean? What is ‘Gene.pathway.identifier’?
Let’s take a look at the data model. NOTE: Section temporarily removed due to errors
Let's look at the children of the Gene data type.
# ```{r gene_type_data, warning=FALSE, message=FALSE}
# model[which(model$type=="Gene"),]
Gene has a field called ‘symbol’ (hence the column Gene.symbol). Gene also references the Pathways class, which is of the Pathway data type.
```
Let’s now run our template.
## Gene.primaryIdentifier Gene.symbol
## 1 5468 PPARG
## 2 5468 PPARG
## 3 5468 PPARG
## 4 5468 PPARG
## 5 5468 PPARG
## 6 5468 PPARG
## Gene.name
## 1 peroxisome proliferator activated receptor gamma
## 2 peroxisome proliferator activated receptor gamma
## 3 peroxisome proliferator activated receptor gamma
## 4 peroxisome proliferator activated receptor gamma
## 5 peroxisome proliferator activated receptor gamma
## 6 peroxisome proliferator activated receptor gamma
## Gene.pathways.name Gene.pathways.dataSets.name
## 1 Developmental Biology Reactome pathways data set
## 2 Gene expression (Transcription) Reactome pathways data set
## 3 Generic Transcription Pathway Reactome pathways data set
## 4 Huntington's disease KEGG pathways data set
## 5 Intracellular signaling by second messengers Reactome pathways data set
## 6 MECP2 regulates transcription factors Reactome pathways data set
## Gene.pathways.identifier Gene.organism.shortName
## 1 R-HSA-1266738 H. sapiens
## 2 R-HSA-74160 H. sapiens
## 3 R-HSA-212436 H. sapiens
## 4 05016 H. sapiens
## 5 R-HSA-9006925 H. sapiens
## 6 R-HSA-9022707 H. sapiens
Let’s modify the query to find the pathways of the gene ABO. We want to change the ‘value’ attribute from PPARG to ABO.
There are two ways to build a query in InterMineR.
We can either build a query as a list object with newQuery
function, and assign all input values (selection of retrieved data type, constraints, etc.) as items of that list,
Or we can build the query as an InterMineR-class
object with the functions setConstraint
, which allows us to generate a new or modify an existing list of constraints, and setQuery
, which generates the query as a InterMineR-class
object.
setConstraints
and setQuery
functions are designed to facilitate the generation of queries for InterMine instances and avoid using multiple iterative loops, especially when it is required to include multiple constraints or constraint values (e.g. genes, organisms) in your query.
# modify directly the value of the first constraint from the list query
queryGenePath$where[[1]][["value"]] <- "ABO"
# or modify the value of the first constraint from the list query with setConstraints
queryGenePath$where = setConstraints(
modifyQueryConstraints = queryGenePath,
m.index = 1,
values = list("ABO")
)
queryGenePath$where
## [[1]]
## [[1]]$path
## [1] "Gene"
##
## [[1]]$op
## [1] "LOOKUP"
##
## [[1]]$code
## [1] "A"
##
## [[1]]$editable
## [1] TRUE
##
## [[1]]$switchable
## [1] FALSE
##
## [[1]]$switched
## [1] "LOCKED"
##
## [[1]]$value
## [1] "ABO"
##
## [[1]]$extraValue
## [1] "H. sapiens"
Note the value is now equal to ‘ABO’. Let’s rerun our query with the new constraint.
## Gene.primaryIdentifier Gene.symbol
## 1 28 ABO
## 2 28 ABO
## 3 28 ABO
## 4 28 ABO
## 5 28 ABO
## 6 28 ABO
## Gene.name
## 1 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## 2 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## 3 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## 4 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## 5 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## 6 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## Gene.pathways.name
## 1 ABO blood group biosynthesis
## 2 Blood group systems biosynthesis
## 3 Glycosphingolipid biosynthesis - lacto and neolacto series
## 4 Metabolic pathways
## 5 Metabolism
## 6 Metabolism of carbohydrates
## Gene.pathways.dataSets.name Gene.pathways.identifier Gene.organism.shortName
## 1 Reactome pathways data set R-HSA-9033807 H. sapiens
## 2 Reactome pathways data set R-HSA-9033658 H. sapiens
## 3 KEGG pathways data set 00601 H. sapiens
## 4 KEGG pathways data set 01100 H. sapiens
## 5 Reactome pathways data set R-HSA-1430728 H. sapiens
## 6 Reactome pathways data set R-HSA-71387 H. sapiens
Now we are seeing pathways for the ABO gene.
You can also add additional filters. Let’s look for a specifc pathway.
There are four parts of a constraint to add:
newConstraint <- list(
path=c("Gene.pathways.name"),
op=c("="),
value=c("ABO blood group biosynthesis"),
code=c("B")
)
queryGenePath$where[[2]] <- newConstraint
queryGenePath$where
## [[1]]
## [[1]]$path
## [1] "Gene"
##
## [[1]]$op
## [1] "LOOKUP"
##
## [[1]]$code
## [1] "A"
##
## [[1]]$editable
## [1] TRUE
##
## [[1]]$switchable
## [1] FALSE
##
## [[1]]$switched
## [1] "LOCKED"
##
## [[1]]$value
## [1] "ABO"
##
## [[1]]$extraValue
## [1] "H. sapiens"
##
##
## [[2]]
## [[2]]$path
## [1] "Gene.pathways.name"
##
## [[2]]$op
## [1] "="
##
## [[2]]$value
## [1] "ABO blood group biosynthesis"
##
## [[2]]$code
## [1] "B"
Our new filter has been added successfully. Rerun the query and you see you only have one pathway,ABO blood group biosynthesis, returned.
## Gene.primaryIdentifier Gene.symbol
## 1 28 ABO
## Gene.name
## 1 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## Gene.pathways.name Gene.pathways.dataSets.name
## 1 ABO blood group biosynthesis Reactome pathways data set
## Gene.pathways.identifier Gene.organism.shortName
## 1 R-HSA-9033807 H. sapiens
You can also add additional columns to the output. For instance, is the Gene also involved in any disease? Let’s add this information.
Let’s see what we know about diseases.
{r add_column, warning=FALSE, message=FALSE} # model[which(model$type=="Gene"),] #
The Gene data type has an ‘Diseases’ reference of type ‘Disease’.
{r add_column2, warning=FALSE, message=FALSE} # model[which(model$type=="Disease"),] #
Disease has an attribute called “name”. Add Gene.diseases.name to the view. We’ll add it as the last column, we can see from above there are 7 other columns already so we’ll put it as #8:
# use setQuery function which will create an InterMineR-class query
queryGenePath.InterMineR = setQuery(
inheritQuery = queryGenePath,
select = c(queryGenePath$select,
"Gene.diseases.name")
)
getSelect(queryGenePath.InterMineR)
## [1] "Gene.primaryIdentifier" "Gene.symbol"
## [3] "Gene.name" "Gene.pathways.name"
## [5] "Gene.pathways.dataSets.name" "Gene.pathways.identifier"
## [7] "Gene.organism.shortName" "Gene.diseases.name"
#queryGenePath.InterMineR@select
# or assign new column directly to the existing list query
queryGenePath$select[[8]] <- "Gene.diseases.name"
queryGenePath$select
## [1] "Gene.primaryIdentifier" "Gene.symbol"
## [3] "Gene.name" "Gene.pathways.name"
## [5] "Gene.pathways.dataSets.name" "Gene.pathways.identifier"
## [7] "Gene.organism.shortName" "Gene.diseases.name"
# run queries
resGenePath.InterMineR <- runQuery(im, queryGenePath.InterMineR)
resGenePath <- runQuery(im, queryGenePath)
all(resGenePath == resGenePath.InterMineR)
## [1] TRUE
## Gene.primaryIdentifier Gene.symbol
## 1 28 ABO
## Gene.name
## 1 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## Gene.pathways.name Gene.pathways.dataSets.name
## 1 ABO blood group biosynthesis Reactome pathways data set
## Gene.pathways.identifier Gene.organism.shortName Gene.diseases.name
## 1 R-HSA-9033807 H. sapiens BLOOD GROUP, ABO SYSTEM
NB: adding columns can result in changing the row count.
The constraintLogic, if not given, is ‘A and B’. We would now try to explicitly specify the constraintLogic. A and B corresponds to the ‘code’ for each constraint.
## [1] "A and B"
Run the query again and see no change:
## Gene.primaryIdentifier Gene.symbol
## 1 28 ABO
## Gene.name
## 1 ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase
## Gene.pathways.name Gene.pathways.dataSets.name
## 1 ABO blood group biosynthesis Reactome pathways data set
## Gene.pathways.identifier Gene.organism.shortName Gene.diseases.name
## 1 R-HSA-9033807 H. sapiens BLOOD GROUP, ABO SYSTEM
Change to be ‘A or B’ and see how the results change.
- Start with the template Gene GO
## $model
## name
## "genomic"
##
## $title
## [1] "Gene --> GO terms."
##
## $description
## [1] "Search for GO annotations for a particular gene (or List of Genes)."
##
## $select
## [1] "Gene.primaryIdentifier"
## [2] "Gene.symbol"
## [3] "Gene.goAnnotation.ontologyTerm.identifier"
## [4] "Gene.goAnnotation.ontologyTerm.name"
## [5] "Gene.goAnnotation.ontologyTerm.namespace"
## [6] "Gene.goAnnotation.evidence.code.code"
## [7] "Gene.goAnnotation.ontologyTerm.parents.identifier"
## [8] "Gene.goAnnotation.ontologyTerm.parents.name"
## [9] "Gene.goAnnotation.qualifier"
##
## $name
## [1] "Gene_GO"
##
## $comment
## [1] "Added 15NOV2010: ML"
##
## $tags
## [1] "im:aspect:Function" "im:aspect:Gene Ontology"
## [3] "im:aspect:Genomics" "im:frontpage"
## [5] "im:public" "im:report"
##
## $rank
## [1] "3"
##
## $orderBy
## $orderBy[[1]]
## Gene.primaryIdentifier
## "ASC"
##
##
## $where
## $where[[1]]
## $where[[1]]$path
## [1] "Gene"
##
## $where[[1]]$op
## [1] "LOOKUP"
##
## $where[[1]]$code
## [1] "A"
##
## $where[[1]]$editable
## [1] TRUE
##
## $where[[1]]$switchable
## [1] FALSE
##
## $where[[1]]$switched
## [1] "LOCKED"
##
## $where[[1]]$value
## [1] "PPARG"
##
## $where[[1]]$extraValue
## [1] "H. sapiens"
- Modify the view to display a compact view
## [1] "Gene.symbol"
## [2] "Gene.goAnnotation.ontologyTerm.identifier"
## [3] "Gene.goAnnotation.ontologyTerm.name"
## [4] "Gene.goAnnotation.ontologyTerm.namespace"
- Modify the constraints to look for gene ABO.
## [[1]]
## [[1]]$path
## [1] "Gene"
##
## [[1]]$op
## [1] "LOOKUP"
##
## [[1]]$code
## [1] "A"
##
## [[1]]$editable
## [1] TRUE
##
## [[1]]$switchable
## [1] FALSE
##
## [[1]]$switched
## [1] "LOCKED"
##
## [[1]]$value
## [1] "ABO"
##
## [[1]]$extraValue
## [1] "H. sapiens"
- Run the query
## Gene.symbol Gene.goAnnotation.ontologyTerm.identifier
## 1 ABO GO:0000166
## 2 ABO GO:0003823
## 3 ABO GO:0004380
## 4 ABO GO:0004381
## 5 ABO GO:0005576
## 6 ABO GO:0005794
## Gene.goAnnotation.ontologyTerm.name
## 1 nucleotide binding
## 2 antigen binding
## 3 glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase activity
## 4 fucosylgalactoside 3-alpha-galactosyltransferase activity
## 5 extracellular region
## 6 Golgi apparatus
## Gene.goAnnotation.ontologyTerm.namespace
## 1 molecular_function
## 2 molecular_function
## 3 molecular_function
## 4 molecular_function
## 5 cellular_component
## 6 cellular_component
- Start with the template Gene GO
## $model
## name
## "genomic"
##
## $title
## [1] "GO term --> Genes"
##
## $description
## [1] "Search for Genes in a specified organism that are associated with a particular Gene Ontology (GO) annotation."
##
## $select
## [1] "Gene.primaryIdentifier"
## [2] "Gene.symbol"
## [3] "Gene.name"
## [4] "Gene.goAnnotation.ontologyTerm.identifier"
## [5] "Gene.goAnnotation.ontologyTerm.name"
## [6] "Gene.organism.shortName"
##
## $constraintLogic
## [1] "A and B"
##
## $name
## [1] "GOterm_Gene"
##
## $comment
## [1] "Added 26OCT2010: ML"
##
## $tags
## [1] "im:aspect:Function" "im:aspect:Gene Ontology"
## [3] "im:aspect:Genomics" "im:public"
## [5] "im:report"
##
## $rank
## [1] "2"
##
## $orderBy
## $orderBy[[1]]
## Gene.symbol
## "ASC"
##
##
## $where
## $where[[1]]
## $where[[1]]$path
## [1] "Gene.goAnnotation.ontologyTerm.name"
##
## $where[[1]]$op
## [1] "LIKE"
##
## $where[[1]]$code
## [1] "A"
##
## $where[[1]]$editable
## [1] TRUE
##
## $where[[1]]$switchable
## [1] FALSE
##
## $where[[1]]$switched
## [1] "LOCKED"
##
## $where[[1]]$value
## [1] "DNA binding"
##
##
## $where[[2]]
## $where[[2]]$path
## [1] "Gene.organism.shortName"
##
## $where[[2]]$op
## [1] "="
##
## $where[[2]]$code
## [1] "B"
##
## $where[[2]]$editable
## [1] TRUE
##
## $where[[2]]$switchable
## [1] FALSE
##
## $where[[2]]$switched
## [1] "LOCKED"
##
## $where[[2]]$value
## [1] "H. sapiens"
- Modify the view to display a compact view
## [1] "Gene.symbol"
## [2] "Gene.name"
## [3] "Gene.goAnnotation.ontologyTerm.identifier"
## [4] "Gene.goAnnotation.ontologyTerm.name"
- Modify the constraints to look for GO term ‘metal ion binding’
## [[1]]
## [[1]]$path
## [1] "Gene.goAnnotation.ontologyTerm.name"
##
## [[1]]$op
## [1] "LIKE"
##
## [[1]]$code
## [1] "A"
##
## [[1]]$editable
## [1] TRUE
##
## [[1]]$switchable
## [1] FALSE
##
## [[1]]$switched
## [1] "LOCKED"
##
## [[1]]$value
## [1] "metal ion binding"
##
##
## [[2]]
## [[2]]$path
## [1] "Gene.organism.shortName"
##
## [[2]]$op
## [1] "="
##
## [[2]]$code
## [1] "B"
##
## [[2]]$editable
## [1] TRUE
##
## [[2]]$switchable
## [1] FALSE
##
## [[2]]$switched
## [1] "LOCKED"
##
## [[2]]$value
## [1] "H. sapiens"
- Run the query
## Gene.symbol Gene.name
## 1 A3GALT2 alpha 1,3-galactosyltransferase 2
## 2 AARSD1 alanyl-tRNA synthetase domain containing 1
## 3 ABAT 4-aminobutyrate aminotransferase
## 4 ABCG5 ATP binding cassette subfamily G member 5
## 5 ABCG8 ATP binding cassette subfamily G member 8
## 6 ABLIM1 actin binding LIM protein 1
## Gene.goAnnotation.ontologyTerm.identifier Gene.goAnnotation.ontologyTerm.name
## 1 GO:0046872 metal ion binding
## 2 GO:0046872 metal ion binding
## 3 GO:0046872 metal ion binding
## 4 GO:0046872 metal ion binding
## 5 GO:0046872 metal ion binding
## 6 GO:0046872 metal ion binding
- Start with the Gene_Location template, update to search for ABCA6 gene.
queryGeneLoc = getTemplateQuery(im, "Gene_Location")
queryGeneLoc$where[[2]][["value"]] = "ABCA6"
resGeneLoc= runQuery(im, queryGeneLoc)
resGeneLoc
## Gene.primaryIdentifier Gene.secondaryIdentifier Gene.symbol
## 1 23460 ENSG00000154262 ABCA6
## Gene.name Gene.chromosome.primaryIdentifier
## 1 ATP binding cassette subfamily A member 6 17
## Gene.locations.start Gene.locations.end Gene.locations.strand
## 1 69062044 69141927 -1
We’re going to use the output (gene location) as input for the next query.
- Define a new query
# set constraints
constraints = setConstraints(
paths = c(
"Gene.chromosome.primaryIdentifier",
"Gene.locations.start",
"Gene.locations.end",
"Gene.organism.name"
),
operators = c(
"=",
">=",
"<=",
"="
),
values = list(
resGeneLoc[1, "Gene.chromosome.primaryIdentifier"],
as.character(as.numeric(resGeneLoc[1, "Gene.locations.start"])-50000),
as.character(as.numeric(resGeneLoc[1, "Gene.locations.end"])+50000),
"Homo sapiens"
)
)
# set InterMineR-class query
queryNeighborGene = setQuery(
select = c("Gene.primaryIdentifier",
"Gene.symbol",
"Gene.chromosome.primaryIdentifier",
"Gene.locations.start",
"Gene.locations.end",
"Gene.locations.strand"),
where = constraints
)
summary(queryNeighborGene)
## path op value code
## 1 Gene.chromosome.primaryIdentifier = 17 A
## 2 Gene.locations.start >= 69012044 B
## 3 Gene.locations.end <= 69191927 C
## 4 Gene.organism.name = Homo sapiens D
- Run the query
## Gene.primaryIdentifier Gene.symbol Gene.chromosome.primaryIdentifier
## 1 100616316 MIR4524A 17
## 2 100847008 MIR4524B 17
## 3 23460 ABCA6 17
## Gene.locations.start Gene.locations.end Gene.locations.strand
## 1 69099564 69099632 -1
## 2 69099542 69099656 1
## 3 69062044 69141927 -1
- Plot the genes
resNeighborGene$Gene.locations.strand[which(resNeighborGene$Gene.locations.strand==1)]="+"
resNeighborGene$Gene.locations.strand[which(resNeighborGene$Gene.locations.strand==-1)]="-"
gene.idx = which(nchar(resNeighborGene$Gene.symbol)==0)
resNeighborGene$Gene.symbol[gene.idx]=resNeighborGene$Gene.primaryIdentifier[gene.idx]
annTrack = AnnotationTrack(
start=resNeighborGene$Gene.locations.start,
end=resNeighborGene$Gene.locations.end,
strand=resNeighborGene$Gene.locations.strand,
chromosome=resNeighborGene$Gene.chromosome.primaryIdentifier[1],
genome="GRCh38",
name="around ABCA6",
id=resNeighborGene$Gene.symbol)
gtr <- GenomeAxisTrack()
itr <- IdeogramTrack(genome="hg38", chromosome="chr17")
plotTracks(list(gtr, itr, annTrack), shape="box", showFeatureId=TRUE, fontcolor="black")
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=C LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] Gviz_1.30.1 GenomicRanges_1.38.0 GenomeInfoDb_1.22.0
## [4] org.Hs.eg.db_3.10.0 GO.db_3.10.0 GeneAnswers_2.28.0
## [7] RColorBrewer_1.1-2 Heatplus_2.32.1 MASS_7.3-51.5
## [10] RSQLite_2.2.0 annotate_1.64.0 XML_3.99-0.3
## [13] AnnotationDbi_1.48.0 IRanges_2.20.2 S4Vectors_0.24.3
## [16] Biobase_2.46.0 BiocGenerics_0.32.0 RCurl_1.98-1.1
## [19] igraph_1.2.4.2 InterMineR_1.8.1 BiocStyle_2.14.4
##
## loaded via a namespace (and not attached):
## [1] colorspace_1.4-1 htmlTable_1.13.3
## [3] biovizBase_1.34.1 XVector_0.26.0
## [5] base64enc_0.1-3 dichromat_2.0-0
## [7] rstudioapi_0.11 bit64_0.9-7
## [9] sqldf_0.4-11 xml2_1.2.2
## [11] splines_3.6.2 knitr_1.28
## [13] Formula_1.2-3 jsonlite_1.6.1
## [15] Rsamtools_2.2.2 cluster_2.1.0
## [17] dbplyr_1.4.2 png_0.1-7
## [19] graph_1.64.0 BiocManager_1.30.10
## [21] compiler_3.6.2 httr_1.4.1
## [23] backports_1.1.5 assertthat_0.2.1
## [25] Matrix_1.2-18 lazyeval_0.2.2
## [27] acepack_1.4.1 htmltools_0.4.0
## [29] prettyunits_1.1.1 tools_3.6.2
## [31] gtable_0.3.0 glue_1.3.1
## [33] GenomeInfoDbData_1.2.2 dplyr_0.8.4
## [35] rappdirs_0.3.1 Rcpp_1.0.3
## [37] vctrs_0.2.2 Biostrings_2.54.0
## [39] RJSONIO_1.3-1.4 rtracklayer_1.46.0
## [41] xfun_0.12 stringr_1.4.0
## [43] proto_1.0.0 lifecycle_0.1.0
## [45] ensembldb_2.10.2 zlibbioc_1.32.0
## [47] scales_1.1.0 BSgenome_1.54.0
## [49] VariantAnnotation_1.32.0 ProtGenerics_1.18.0
## [51] hms_0.5.3 SummarizedExperiment_1.16.1
## [53] RBGL_1.62.1 AnnotationFilter_1.10.0
## [55] yaml_2.2.1 curl_4.3
## [57] gridExtra_2.3 memoise_1.1.0
## [59] ggplot2_3.2.1 downloader_0.4
## [61] biomaRt_2.42.0 rpart_4.1-15
## [63] latticeExtra_0.6-29 stringi_1.4.5
## [65] checkmate_2.0.0 GenomicFeatures_1.38.2
## [67] BiocParallel_1.20.1 chron_2.3-55
## [69] rlang_0.4.4 pkgconfig_2.0.3
## [71] matrixStats_0.55.0 bitops_1.0-6
## [73] evaluate_0.14 lattice_0.20-38
## [75] purrr_0.3.3 htmlwidgets_1.5.1
## [77] GenomicAlignments_1.22.1 bit_1.1-15.2
## [79] tidyselect_1.0.0 magrittr_1.5
## [81] bookdown_0.17 R6_2.4.1
## [83] magick_2.3 Hmisc_4.3-1
## [85] DelayedArray_0.12.2 DBI_1.1.0
## [87] gsubfn_0.7 pillar_1.4.3
## [89] foreign_0.8-75 survival_3.1-8
## [91] nnet_7.3-12 tibble_2.1.3
## [93] crayon_1.3.4 BiocFileCache_1.10.2
## [95] rmarkdown_2.1 jpeg_0.1-8.1
## [97] progress_1.2.2 data.table_1.12.8
## [99] blob_1.2.1 digest_0.6.24
## [101] xtable_1.8-4 openssl_1.4.1
## [103] munsell_0.5.0 askpass_1.1
The InterMine model could be accessed from the mine homepage by clicking the tab “QueryBuilder” and selecting the appropriate data type under “Select a Data Type to Begin a Query”:
Here we select Gene as the data type:
We could select Symbol and Chromosome->Primary Identifier by clicking Show on the right of them. Then click “Export XML” at the bottom right corner of the webpage:
The column names Gene.symbol and Gene.chromosome.primaryIdentifier are contained in the XML output: