
Package ‘CATALYST’
December 20, 2024

Type Package

Title Cytometry dATa anALYSis Tools

Version 1.31.2

Depends R (>= 4.4), SingleCellExperiment

biocViews Clustering, DataImport, DifferentialExpression,
ExperimentalDesign, FlowCytometry, ImmunoOncology,
MassSpectrometry,Normalization, Preprocessing, SingleCell,
Software, StatisticalMethod, Visualization

Description CATALYST provides tools for preprocessing of and differential discovery
in cytometry data such as FACS, CyTOF, and IMC. Preprocessing includes
i) normalization using bead standards, ii) single-cell deconvolution,
and iii) bead-based compensation.
For differential discovery, the package provides a number of convenient
functions for data processing (e.g., clustering, dimension reduction),
as well as a suite of visualizations for exploratory data analysis and
exploration of results from differential abundance (DA) and state (DS)
analysis in order to identify differences in composition and expression
profiles at the subpopulation-level, respectively.

Imports circlize, ComplexHeatmap, ConsensusClusterPlus, cowplot,
data.table, dplyr, drc, flowCore, FlowSOM, ggplot2, ggrepel,
ggridges, graphics, grDevices, grid, gridExtra, Matrix,
matrixStats, methods, nnls, purrr, RColorBrewer, reshape2,
Rtsne, SummarizedExperiment, S4Vectors, scales, scater, stats

Suggests BiocStyle, diffcyt, flowWorkspace, ggcyto, knitr, openCyto,
rmarkdown, testthat, uwot

URL https://github.com/HelenaLC/CATALYST

BugReports https://github.com/HelenaLC/CATALYST/issues

VignetteBuilder knitr

RoxygenNote 7.3.1

License GPL (>=2)

Encoding UTF-8

1

https://github.com/HelenaLC/CATALYST
https://github.com/HelenaLC/CATALYST/issues

2 Contents

LazyData true

git_url https://git.bioconductor.org/packages/CATALYST

git_branch devel

git_last_commit ada7c3c

git_last_commit_date 2024-11-28

Repository Bioconductor 3.21

Date/Publication 2024-12-20

Author Helena L. Crowell [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4801-1767>),

Vito R.T. Zanotelli [aut] (ORCID:
<https://orcid.org/0000-0001-7268-311X>),

Stéphane Chevrier [aut, dtc] (ORCID:
<https://orcid.org/0000-0002-9216-7910>),

Mark D. Robinson [aut, fnd] (ORCID:
<https://orcid.org/0000-0002-3048-5518>),

Bernd Bodenmiller [fnd] (ORCID:
<https://orcid.org/0000-0002-6325-7861>)

Maintainer Helena L. Crowell <helena@crowell.eu>

Contents
adaptSpillmat . 3
applyCutoffs . 4
assignPrelim . 5
clrDR . 6
cluster . 9
compCytof . 11
computeSpillmat . 13
data . 15
estCutoffs . 16
extractClusters . 18
filterSCE . 19
guessPanel . 20
mergeClusters . 21
normCytof . 22
pbMDS . 24
plotAbundances . 26
plotClusterExprs . 28
plotCodes . 29
plotCounts . 30
plotDiffHeatmap . 31
plotDR . 33
plotEvents . 35
plotExprHeatmap . 37
plotExprs . 40

https://orcid.org/0000-0002-4801-1767
https://orcid.org/0000-0001-7268-311X
https://orcid.org/0000-0002-9216-7910
https://orcid.org/0000-0002-3048-5518
https://orcid.org/0000-0002-6325-7861

adaptSpillmat 3

plotFreqHeatmap . 41
plotMahal . 43
plotMultiHeatmap . 44
plotNRS . 46
plotPbExprs . 47
plotScatter . 49
plotSpillmat . 51
plotYields . 52
prepData . 53
runDR . 56
SCE-accessors . 57
sce2fcs . 59

Index 61

adaptSpillmat Adapt spillover matrix

Description

This helper function adapts the columns of a provided spillover matrix such that it is compatible
with data having the column names provided.

Usage

adaptSpillmat(
x,
out_chs,
isotope_list = CATALYST::isotope_list,
verbose = TRUE

)

Arguments

x a previously calculated spillover matrix.

out_chs the column names that the prepared output spillover matrix should have. Nu-
meric names as well as names of the form MetalMass(Di), e.g. Ir191, Ir191Di
or Ir191(Di), will be interpreted as masses with associated metals.

isotope_list named list. Used to validate the input spillover matrix. Names should be metals;
list elements numeric vectors of their isotopes. See isotope_list for the list of
isotopes used by default.

verbose logical. Should warnings about possibly inaccurate spillover estimates be printed
to the console?

Details

The rules how the spillover matrix is adapted are explained in compCytof.

4 applyCutoffs

Value

An adapted spillover matrix with column and row names according to out_chs.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch> & Vito RT Zanotelli

Examples

estimate spillover matrix from
single-stained control samples
data(ss_exp)
sce <- prepData(ss_exp)
bc_ms <- c(139, 141:156, 158:176)
sce <- assignPrelim(sce, bc_ms, verbose = FALSE)
sce <- applyCutoffs(estCutoffs(sce))
sce <- computeSpillmat(sce)

library(SingleCellExperiment)
sm1 <- metadata(sce)$spillover_matrix
sm2 <- adaptSpillmat(sm1, rownames(sce), verbose = FALSE)
all(dim(sm2) == ncol(sm1))

applyCutoffs Single-cell debarcoding (2)

Description

Applies separation and mahalanobies distance cutoffs.

Usage

applyCutoffs(x, assay = "exprs", mhl_cutoff = 30, sep_cutoffs = NULL)

Arguments

x a SingleCellExperiment.

assay character string specifying which assay data to use. Should be one of assayNames(x)
and correspond to expression-like not count data.

mhl_cutoff numeric mahalanobis distance threshold above which events should be unas-
signed; ignored if metadata(x)$mhl_cutoff exists.

sep_cutoffs non-negative numeric of length one or of same length as the number of rows in
the bc_key(x). Specifies the distance separation cutoffs between positive and
negative barcode populations below which events should be unassigned. If NULL
(default), applyCutoffs will try to access metadata(x)$sep_cutoffs.

assignPrelim 5

Value

the input SingleCellExperiment x is returned with updated colData columns "bc_id" and "mhl_dist",
and an additional int_metadata slot "mhl_cutoff" containing the applied mahalanobies distance
cutoff.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Zunder, E.R. et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme
and single-cell deconvolution algorithm. Nature Protocols 10, 316-333.

Examples

library(SingleCellExperiment)

construct SCE
data(sample_ff, sample_key)
sce <- prepData(sample_ff)

assign preliminary barcode IDs
& estimate separation cutoffs
sce <- assignPrelim(sce, sample_key)
sce <- estCutoffs(sce)

use estimated population-specific
vs. global separation cutoff(s)
sce1 <- applyCutoffs(sce)
sce2 <- applyCutoffs(sce, sep_cutoffs = 0.35)

compare yields after applying cutoff(s)
c(global = mean(sce1$bc_id != 0),
specific = mean(sce2$bc_id != 0))

assignPrelim Single-cell debarcoding (1)

Description

Assigns a preliminary barcode ID to each event.

Usage

assignPrelim(x, bc_key, assay = "exprs", verbose = TRUE)

6 clrDR

Arguments

x a SingleCellExperiment.

bc_key the debarcoding scheme. A binary matrix with sample names as row names and
numeric masses as column names OR a vector of numeric masses corresponding
to barcode channels. When the latter is supplied, ‘assignPrelim‘ will create a
scheme of the appropriate format internally.

assay character string specifying which assay to use.

verbose logical. Should extra information on progress be reported?

Value

a SingleCellExperiment structured as follows:

assays • counts - raw counts
• exprs - arcsinh-transformed counts
• scaled - population-wise scaled expression using (95%)-quantiles as boundaries

colData • bc_id - numeric vector of barcode assignments
• delta - separation between positive and negative barcode populations

metadata • bc_key - the input debarcoding scheme

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Zunder, E.R. et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme
and single-cell deconvolution algorithm. Nature Protocols 10, 316-333.

Examples

data(sample_ff, sample_key)
sce <- prepData(sample_ff)
sce <- assignPrelim(sce, sample_key)
table(sce$bc_id)

clrDR DR plot on CLR of proportions

Description

Computes centered log-ratios (CLR) on cluster/sample proportions across samples/clusters, and vi-
sualizes them in a lower-dimensional space, highlighting differences in composition between sam-
ples/clusters.

clrDR 7

Usage

clrDR(
x,
dr = c("PCA", "MDS", "UMAP", "TSNE", "DiffusionMap"),
by = c("sample_id", "cluster_id"),
k = "meta20",
dims = c(1, 2),
base = 2,
arrows = TRUE,
point_col = switch(by, sample_id = "condition", "cluster_id"),
arrow_col = switch(by, sample_id = "cluster_id", "condition"),
arrow_len = 0.5,
arrow_opa = 0.5,
label_by = NULL,
size_by = TRUE,
point_pal = NULL,
arrow_pal = NULL

)

Arguments

x a SingleCellExperiment.

dr character string specifying which dimension reduction to use.

by character string specifying across which IDs to compute CLRs

• by = "sample_id" compute CLRs across relative abundances of samples
across clusters; each point in the embedded space represents a sample.

• by = "cluster_id" compute CLRs across relative abundances of clusters
across samples; each point in the embedded space represents a cluster.

k character string specifying which clustering to use; valid values are names(cluster_codes(x)).

dims two numeric scalars indicating which dimensions to plot.

base integer scalar specifying the logarithm base to use.

arrows logical specifying whether to include arrows for PC loadings.
point_col, arrow_col

character string specifying a non-numeric cell metadata column to color points
and PC loading arrows by; valid values are names(colData(x)).

arrow_len non-zero single numeric specifying the length of loading vectors relative to the
largest xy-coordinate in the embedded space; NULL for no re-sizing (see de-
tails).

arrow_opa single numeric in [0,1] specifying the opacity (alpha) of PC loading arrows when
they are grouped; 0 will hide individual arrows.

label_by character string specifying a non-numeric sample metadata variable to label
points by; valid values are names(colData(x)).

size_by logical specifying whether to scale point sizes by the number of cells in a given
sample/cluster (for by = "sample/cluster_id").

8 clrDR

point_pal, arrow_pal
character string of colors to use for points and PC loading arrows. Arguments
default to .cluster_cols for clusters (defined internally), and brewer.pal’s
"Set3" for samples.

Details

The centered log-ratio (CLR) Let k be one of S samples, k one of K clusters, and p(s,k) be the
proportion of cells from s in k. The centered log-ratio (CLR) is defined as

clr(sk) = logp(s, k)−
∑

p(s, k)/K

and analogous for clusters replacing s by k and K by S. Thus, each sample/cluster gives a vector
with length K/S and mean 0, and the CLRs computed across all instances can be represented as
a matrix with dimensions S x K (or K x S for clusters) that we embed into a lower dimensional
space.

Dimensionality reduction In principle, clrDR allows any dimension reduction to be applied on
the CLRs. The default method (dr = "PCA") will include the percentage of variance explained
by each principal component (PC) in the axis labels.
Noteworthily, distances between points in the lower-dimensional space are meaningful only
for linear DR methods (PCA and MDS), and results obtained from other methods should be
interpreted with caution. Thus, the output plot’s aspect ratio should be kept as is for PCA and
MDS; non-linear DR methods can use aspect.ratio = 1, rendering a square plot.

Interpreting PC loadings For dr = "PCA", PC loadings will be represented as arrows that may
be interpreted as follows: 0° (180°) between vectors indicates a strong positive (negative)
relation between them, while vectors that are orthogonal to each another (90°) are roughly
independent.
When a vector points towards a given quadrant, the variability in proportions for the points
within this quadrant are largely driven by the corresponding variable. Here, only the relative
orientation of vectors to one another and to the PC axes is meaningful; however, the sign of
loadings (i.e., whether an arrow points left or right) can be flipped when re-computing PCs.
When arrow_len is specified, PC loading vectors will be re-scaled to improve their visibility.
Here, a value of 1 will stretch vectors such that the largest loading will touch on the outer most
point. Importantly, while absolute arrow lengths are not interpretable, their relative length is.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

cluster 9

CLR on sample proportions across clusters
(1st vs. 3rd PCA; include sample labels)
clrDR(sce, by = "sample_id", k = "meta12",

dims = c(1, 3), label_by = "sample_id")

CLR on cluster proportions across samples
(use custom colors for both points & loadings)
clrDR(sce, by = "cluster_id",

point_pal = hcl.colors(10, "Spectral"),
arrow_pal = c("royalblue", "orange"))

cluster FlowSOM clustering & ConsensusClusterPlus metaclustering

Description

cluster will first group cells into xdimxydim clusters using FlowSOM, and subsequently perform
metaclustering with ConsensusClusterPlus into 2 through maxK clusters.

Usage

cluster(
x,
features = "type",
xdim = 10,
ydim = 10,
maxK = 20,
verbose = TRUE,
seed = 1

)

Arguments

x a SingleCellExperiment.

features a character vector specifying which features to use for clustering; valid values
are "type"/"state" for type/state_markers(x) if rowData(x)$marker_class
have been specified; a subset of rownames(x); NULL to use all features.

xdim, ydim numeric specifying the grid size of the self-orginizing map; passed to BuildSOM.
The default 10x10 grid will yield 100 clusters.

maxK numeric specifying the maximum number of clusters to evaluate in the metaclus-
tering; passed to ConsensusClusterPlus. The default (maxK = 20) will yield 2
through 20 metaclusters.

verbose logical. Should information on progress be reported?

seed numeric. Sets the random seed for reproducible results in ConsensusClusterPlus.

10 cluster

Details

The delta area represents the amount of extra cluster stability gained when clustering into k groups
as compared to k-1 groups. It can be expected that high stability of clusters can be reached when
clustering into the number of groups that best fits the data. The "natural" number of clusters present
in the data should thus corresponds to the value of k where there is no longer a considerable increase
in stability (pleateau onset).

Value

a SingleCellEcperiment with the following newly added data:

• colData

– cluster_id: each cell’s cluster ID as inferred by FlowSOM. One of 1, ..., xdimxydim.

• rowData

– marker_class: added when previosly unspecified. "type" when an antigen has been
used for clustering, otherwise "state".

– used_for_clustering: logical indicating whether an antigen has been used for cluster-
ing.

• metadata

– SOM_codes: a table with dimensions K x (# cell type markers), where K = xdim x ydim.
Contains the SOM codes.

– cluster_codes: a table with dimensions K x (maxK + 1). Contains the cluster codes for
all metaclustering.

– delta_area: a ggplot object (see details).

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)

run clustering
(sce <- cluster(sce))

view all available clustering
names(cluster_codes(sce))

access specific clustering resolution

compCytof 11

table(cluster_ids(sce, "meta8"))

view delta area plot
delta_area(sce)

compCytof Compensate CyTOF data

Description

Compensates a mass spectrometry based experiment using a provided spillover matrix & assuming
a linear spillover in the experiment.

Usage

compCytof(
x,
sm = NULL,
method = c("nnls", "flow"),
assay = "counts",
overwrite = TRUE,
transform = TRUE,
cofactor = NULL,
isotope_list = CATALYST::isotope_list

)

Arguments

x a SingleCellExperiment OR a character string specifying the location of FCS
files that should be compensates.

sm a spillover matrix.

method "flow" or "nnls".

assay character string specifying which assay data to use; should be one of assayNames(x)
and correspond to count-like data, as linearity assumptions underlying compen-
sation won’t hold otherwise.

overwrite logical; should the specified assay slot (and exprs, when transform = TRUE) be
overwritten with the compensated data? If FALSE, compensated counts (and ex-
pressions, if transform = TRUE) will be stored in assay(s) compcounts/exprs,
respectively.

transform logical; should normalized counts be arcsinh-transformed with the specified
cofactor(s)?

cofactor numeric cofactor(s) to use for optional arcsinh-transformation when transform
= TRUE; single value or a vector with channels as names. If NULL, compCytof
will try and access the cofactor(s) stored in int_metadata(x), thus re-using the
same transformation applied previously.

12 compCytof

isotope_list named list. Used to validate the input spillover matrix. Names should be metals;
list elements numeric vectors of their isotopes. See isotope_list for the list of
isotopes used by default.

Details

If the spillover matrix (SM) does not contain the same set of columns as the input experiment, it
will be adapted according to the following rules:

1. columns present in the SM but not in the input data will be removed from it

2. non-metal columns present in the input but not in the SM will be added such that they do
neither receive nor cause spill

3. metal columns that have the same mass as a channel present in the SM will receive (but not
emit) spillover according to that channel

4. if an added channel could potentially receive spillover (as it has +/-1M or +16M of, or is of
the same metal type as another channel measured), a warning will be issued as there could be
spillover interactions that have been missed and may lead to faulty compensation

Value

Compensates the input flowFrame or, if x is a character string, all FCS files in the specified location.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch> & Vito RT Zanotelli

Examples

deconvolute single-stained control samples
data(ss_exp)
sce <- prepData(ss_exp)
bc_ms <- c(139, 141:156, 158:176)
sce <- assignPrelim(sce, bc_ms)
sce <- applyCutoffs(estCutoffs(sce))

estimate spillover matrix
sce <- computeSpillmat(sce)

compensate & store compensated data in separate assays
sce <- compCytof(sce, overwrite = FALSE)
assayNames(sce)

biscatter before vs. after compensation
chs <- c("Dy162Di", "Dy163Di")
m <- match(chs, channels(sce))
i <- rownames(sce)[m][1]
j <- rownames(sce)[m][2]

par(mfrow = c(1, 2))
for (a in c("exprs", "compexprs")) {

es <- assay(sce, a)

computeSpillmat 13

plot(es[i,], es[j,], cex = 0.2, pch = 19,
main = a, xlab = i, ylab = j)

}

computeSpillmat Compute spillover matrix

Description

Computes a spillover matrix from priorly identified single-positive populations.

Usage

computeSpillmat(
x,
assay = "counts",
interactions = c("default", "all"),
method = c("default", "classic"),
trim = 0.5,
th = 1e-05

)

Arguments

x a SingleCellExperiment.

assay character string specifying which assay to use; should be one of assayNames(x)
and correspond to count-like data, as linearity assumptions underlying spillover
estimation won’t hold otherwise.

interactions "default" or "all". Specifies which interactions spillover should be estimated
for. The default exclusively takes into consideration interactions that are sensible
from a chemical and physical point of view (see below for more details).

method "default" or "classic". Specifies the function to be used for spillover esti-
mation (see below for details).

trim numeric. Specifies the trim value used for estimation of spill values. Note that
trim = 0.5 is equivalent to using medians.

th single non-negative numeric. Specifies the threshold value below which spill
estimates will be set to 0.

Details

The default method estimates the spillover as the median ratio between the unstained spillover
receiving and the stained spillover emitting channel in the corresponding single stained populations.

method = "classic" will compute the slope of a line through the medians (or trimmed means) of
stained and unstained populations. The medians (or trimmed means) computed from events that

14 computeSpillmat

are i) negative in the respective channels; and, ii) not assigned to interacting channels; and, iii) not
unassigned are subtracted as to account for background.

interactions="default" considers only expected interactions, that is, M+/-1 (detection sensitiv-
ity), M+16 (oxide formation) and channels measuring metals that are potentially contaminated by
isotopic impurites (see reference below and isotope_list).

interaction="all" will estimate spill for all n x n - n interactions, where n denotes the number
of single-color controls (= nrow(bc_key(re))).

Value

Returns a square compensation matrix with dimensions and dimension names matching those of
the input flowFrame. Spillover is assumed to be linear, and, on the basis of their additive nature,
spillover values are computed independently for each interacting pair of channels.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Coursey, J.S., Schwab, D.J., Tsai, J.J., Dragoset, R.A. (2015). Atomic weights and isotopic compo-
sitions, (available at http://physics.nist.gov/Comp).

Examples

construct SCE from single-stained control samples
data(ss_exp)
sce <- prepData(ss_exp)

specify mass channels stained for
bc_ms <- c(139, 141:156, 158:176)

debarcode single-positive populations
sce <- assignPrelim(sce, bc_ms)
sce <- estCutoffs(sce)
sce <- applyCutoffs(sce)

estimate & extract spillover matrix
sce <- computeSpillmat(sce)

library(SingleCellExperiment)
head(metadata(sce)$spillover_matrix)

data 15

data Example data sets

Description

• Concatenation & Normalization

raw_data a flowSet with 3 experiments, each containing 2’500 raw measurements with a
variation of signal over time. Samples were mixed with DVS beads capture by mass
channels 140, 151, 153, 165 and 175.

• Debarcoding

sample_ff a flowFrame following a 6-choose-3 barcoding scheme where mass channels 102,
104, 105, 106, 108, and 110 were used for labeling such that each of the 20 individual
barcodes are positive for exactly 3 out of the 6 barcode channels.

sample_key a data.frame of dimension 20 x 6 with sample names as row and barcode
masses as column names. Contains a binary code of length 6 for each sample in sample_ff,
e.g. 111000, as its unique identifier.

• Compensation

ss_exp a flowFrame with 20’000 events. Contains 36 single-antibody stained controls where
beads were stained with antibodies captured by mass channels 139, 141 through 156, and
158 through 176, respectively, and pooled together.

mp_cells a flowFrame with 5000 spill-affected multiplexed cells and 39 measurement pa-
rameters.

isotope_list a named list of isotopic compositions for all elements within 75 through 209
u corresponding to the CyTOF mass range at the time of writing.

• Differential Analysis

PBMC_fs a flowSet with PBMCs samples from 6 patients. For each sample, the expression of
10 cell surface and 14 signaling markers was measured before (REF) and upon BCR/FcR-
XL stimulation (BCRXL) with B cell receptor/ Fc receptor crosslinking for 30’, resulting
in a total of 12 samples.

PBMC_panel a 2 column data.frame that contains each marker’s column name in the FCS
file, and its targeted protein marker.

PBMC_md a data.frame where each row corresponds to a sample, and with columns describ-
ing the experimental design.

merging_table a 20 x 2 table with "old_cluster" IDs and "new_cluster" labels to exemplify
manual cluster merging and cluster annotation.

Value

see descriptions above.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

16 estCutoffs

References

Bodenmiller, B., Zunder, E.R., Finck, R., et al. (2012). Multiplexed mass cytometry profiling of
cellular states perturbed by small-molecule regulators. Nature Biotechnology 30(9): 858-67.

Coursey, J.S., Schwab, D.J., Tsai, J.J., Dragoset, R.A. (2015). Atomic weights and isotopic compo-
sitions, (available at http://physics.nist.gov/Comp).

Examples

example data for concatenation & normalization:
raw measurement data
data(raw_data)

example data for debarcoding:
20 barcoded samples
data(sample_ff)
6-choose-3 barcoding scheme
data(sample_key)

example data for compensation:
single-stained control samples
data(ss_exp)
multiplexed cells
data(mp_cells)

example data for differential analysis:
REF vs. BCRXL samples
data(PBMC_fs)
antigen panel & experimental design
data(PBMC_panel, PBMC_md)
exemplary manual merging table
data(merging_table)

estCutoffs Estimation of distance separation cutoffs

Description

For each sample, estimates a cutoff parameter for the distance between positive and negative bar-
code populations.

Usage

estCutoffs(x)

Arguments

x a SingleCellExperiment.

estCutoffs 17

Details

For the estimation of cutoff parameters, we considered yields upon debarcoding as a function of the
applied cutoffs. Commonly, this function will be characterized by an initial weak decline, where
doublets are excluded, and subsequent rapid decline in yields to zero. In between, low numbers of
counts with intermediate barcode separation give rise to a plateau. As an adequate cutoff estimate,
we target the point that approximately marks the end of the plateau regime and the onset of yield
decline. To facilitate robust cutoff estimation, we fit a linear and a three-parameter log-logistic
function to the yields function:

f(x) =
d

1 + eb(log(x)−log(e))

The goodness of the linear fit relative to the log-logistic fit is weighed with:

w =
RSSlog−logistic

RSSlog−logistic +RSSlinear

and the cutoffs for both functions are defined as:

clinear = − β0

2β1

clog−logistic = argminx{
|f ′(x)|
f(x)

> 0.1}

The final cutoff estimate is defined as the weighted mean between these estimates:

c = (1− w) · clog−logistic + w · clinear

Value

the input SingleCellExperiment is returned with an additional metadata slot sep_cutoffs.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Finney, D.J. (1971). Probit Analsis. Journal of Pharmaceutical Sciences 60, 1432.

Examples

library(SingleCellExperiment)

construct SCE
data(sample_ff, sample_key)
sce <- prepData(sample_ff)

assign preliminary barcode IDs
& estimate separation cutoffs
sce <- assignPrelim(sce, sample_key)
sce <- estCutoffs(sce)

18 extractClusters

access separation cutoff estimates
(seps <- metadata(sce)$sep_cutoffs)

compute population yields
cs <- split(seq_len(ncol(sce)), sce$bc_id)
sapply(names(cs), function(id) {

sub <- sce[, cs[[id]]]
mean(sub$delta > seps[id])

})

view yield plots including current cutoff
plotYields(sce, which = "A1")

extractClusters Extract clusters from a SingleCellExperiment

Description

Extracts clusters from a SingleCellExperiment. Populations will be either returned as a flowSet
or written to FCS files, depending on argument as.

Usage

extractClusters(
x,
k,
clusters = NULL,
as = c("flowSet", "fcs"),
out_dir = ".",
verbose = TRUE

)

Arguments

x a SingleCellExperiment.

k numeric or character string. Specifies the clustering to extract populations from.
Must be one of names(cluster_codes(x)).

clusters a character vector. Specifies which clusters to extract. NULL = all clusters.

as "flowSet" or "fcs". Specifies whether clusters should be return as a flowSet
or written to FCS files.

out_dir a character string. Specifies where FCS files should be writen to. Defaults to the
working directory.

verbose logical. Should information on progress be reported?

filterSCE 19

Value

a flowSet or character vector of the output file names.

Author(s)

Mark D Robinson & Helena L Crowell <helena.crowell@uzh.ch>

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md, merging_table)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

merge clusters
sce <- mergeClusters(sce, k="meta20", table=merging_table, id="merging_1")
extractClusters(sce, k="merging_1", clusters=c("NK cells", "surface-"))

filterSCE SingleCellExperiment filtering

Description

Filters cells/features from a SingleCellExperiment using conditional statements a la dplyr.

Usage

filterSCE(x, ..., k = NULL)

Arguments

x a SingleCellExperiment.

... conditional statements separated by comma. Only rows/columns where the con-
dition evaluates to TRUE are kept.

k numeric or character string. Specifies the clustering to extract populations from.
Must be one of names(cluster_codes(x)). Defaults to the 1st clustering avail-
able.

Value

a SingleCellExperiment.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

20 guessPanel

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md, merging_table)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

one condition only, remove a single sample
filterSCE(sce, condition == "Ref", sample_id != "Ref1")

keep only a subset of clusters
filterSCE(sce, cluster_id %in% c(7, 8, 18), k = "meta20")

guessPanel Guess parameter panel

Description

Helper function to parse information from the parameters slot of a flowFrame/flowSet.

Usage

guessPanel(x, sep = "_")

Arguments

x a flowFrame.

sep character string specifying how channel descriptions should be parsed. E.g., if
pData(x)$desc contains both channel and antigens formatted as, 155Gd_CD73,
descriptions will be split according to sep and everything after the first sep will
be used as the antigen name (here, CD73).

Value

a data.frame with the following columns:

• name: the parameter name as extracted from the input flowFrame,

• desc: the parameter description as extracted from the input flowFrame,

• antigen: the targeted protein markers, and

• use_channel: logical. If TRUE, the channel is expected to contain a marker and will be kept.

Author(s)

Mark D Robinson & Helena L Crowell <helena.crowell@uzh.ch>

mergeClusters 21

Examples

examplary data with Time, DNA, BC channels, etc.
data(raw_data)
guessPanel(raw_data[[1]])

mergeClusters Manual cluster merging

Description

mergeClusters provides a simple wrapper to store a manual merging inside the input SingleCellExperiment.

Usage

mergeClusters(x, k, table, id, overwrite = FALSE)

Arguments

x a SingleCellExperiment.

k character string specifying the clustering to merge; valid values are names(cluster_codes(x)).

table merging table with 2 columns containing the cluster IDs to merge in the 1st, and
the cluster IDs to newly assign in the 2nd column.

id character string used as a label for the merging.

overwrite logical specifying whether to force overwriting should a clustering with name
id already exist.

Details

in the following code snippets, x is a SingleCellExperiment object.

• merging codes are accesible through cluster_codes(x)$id

• all functions that ask for specification of a clustering (e.g. plotAbundances, plotMultiHeatmap)
take the merging ID as a valid input argument.

Value

a SingleCellExperiment with newly added cluster codes stored in cluster_codes(.)$id.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

22 normCytof

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md, merging_table)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

merge clusters
sce <- mergeClusters(sce,

k = "meta20",
id = "merging",
table = merging_table)

tabulate manual merging
table(cluster_ids(sce, k = "merging"))

visualize median type-marker expression
plotExprHeatmap(sce,

features = "type",
by = "cluster_id",
k = "merging",
bars = TRUE)

normCytof Bead-based normalization

Description

an implementation of Finck et al.’s normalization of mass cytometry data using bead standards with
automated bead gating.

Usage

normCytof(
x,
beads = c("dvs", "beta"),
dna = c(191, 193),
k = 500,
trim = 5,
remove_beads = TRUE,
norm_to = NULL,
assays = c("counts", "exprs"),
overwrite = TRUE,
transform = TRUE,
cofactor = NULL,
plot = TRUE,
verbose = TRUE

)

normCytof 23

Arguments

x a SingleCellExperiment.
beads "dvs" (for bead masses 140, 151, 153 ,165, 175) or "beta" (for bead masses

139, 141, 159, 169, 175) or a numeric vector of masses.
dna numeric vector of masses corresponding to DNA channels (only one is required;

output scatter plot (see Value section) will be generated using the first matching
channel).

k integer width of the median window used for bead smoothing (affects visualiza-
tions only!).

trim a single non-negative numeric. A median+/-trim*mad rule is applied to prelim-
inary bead populations to remove bead-bead doublets and low signal beads prior
to estimating normalization factors.

remove_beads logical. If TRUE, bead events will be removed from the input SingleCellExperiment
and returned as a separate object?

norm_to a flowFrame or character string specifying an FCS file from which to compute
baseline bead intensities, and to which the input data should be normalized to.

assays lnegth 2 character string specifying which assay data to use; both should be in
assayNames(x) and correspond to count- and expression-like data, respectively.

overwrite logical; should the specified assays (both, when transform = TRUE) be over-
written with the normalized data? If FALSE, normalized counts (and expres-
sions, if transform = TRUE) will be stored in assay(s) normcounts/exprs, re-
spectively.

transform logical; should normalized counts be arcsinh-transformed with the specified
cofactor(s)?

cofactor numeric cofactor(s) to use for optional arcsinh-transformation when transform
= TRUE; single value or a vector with channels as names. If NULL, normCytof
will try and access the cofactor(s) stored in int_metadata(x), thus re-using the
same transformation applied previsouly.

plot logical; should bead vs. DNA scatters and smoothed bead intensities before vs.
after normalization be included in the output?

verbose logical; should extra information on progress be reported?

Value

a list of the following SingleCellExperiment...

• data: The filtered input SCE (when remove_beads = TRUE); otherwise, colData columns
is_bead and remove indicate whether an event as been identified as a bead or doublet. If
overwrite = FALSE, assays normcounts/exprs are added; otherwise, the specified counts/exprs
assays are overwritten.

• beads, removed: SCEs containing subsets of events identified as beads and that were removed,
respectively. The latter includes bead-cell and cell-cell doublets)

...and ggplot objects:

• scatter: scatter plot of DNA vs. bead intensities with indication of the applied gates
• lines: running-median smoothed bead intensities before and after normalization

24 pbMDS

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Finck, R. et al. (2013). Normalization of mass cytometry data with bead standards. Cytometry A
83A, 483-494.

Examples

data(raw_data)
sce <- prepData(raw_data)

apply normalization & write normalized data to separate assays
res <- normCytof(sce, beads = "dvs", k = 80, overwrite = FALSE)

ncol(res$beads) # no. of bead events
ncol(res$removed) # no. of events removed

res$scatter # plot DNA vs. bead intensities including applied gates
res$lines # plot smoothed bead intensities before vs. after normalization

filtered SCE now additionally includes
normalized count & expression data
assayNames(res$data)

pbMDS Pseudobulk-level MDS plot

Description

Pseudobulk-level Multi-Dimensional Scaling (MDS) plot computed on median marker expressions
in each sample.

Usage

pbMDS(
x,
by = c("sample_id", "cluster_id", "both"),
k = "meta20",
dims = c(1, 2),
features = NULL,
assay = "exprs",
fun = c("median", "mean", "sum"),
color_by = switch(by, sample_id = "condition", "cluster_id"),
label_by = if (by == "sample_id") "sample_id" else NULL,
shape_by = NULL,

pbMDS 25

size_by = is.null(shape_by),
pal = if (color_by == "cluster_id") .cluster_cols else NULL

)

Arguments

x a SingleCellExperiment.

by character string specifying whether to aggregate by sample_id, cluster_id or
both.

k character string specifying which clustering to use when by != "sample_id";
valid values are names(cluster_codes(x)).

dims two numeric scalars indicating which dimensions to plot.

features character string specifying which features to include for computation of reduced
dimensions; valid values are "type"/"state" for type/state_markers(x)
if rowData(x)$marker_class have been specified; a subset of rownames(x);
NULL to use all features.

assay character string specifying which assay data to use; valid values are assayNames(x).

fun character string specifying which summary statistic to use.

color_by character string specifying a non-numeric cell metadata column to color by;
valid values are names(colData(x)).

label_by character string specifying a non-numeric cell metadata column to label by;
valid values are names(colData(x)).

shape_by character string specifying a non-numeric cell metadata column to shape by;
valid values are names(colData(x)).

size_by logical specifying whether points should be sized by the number of cells that
went into aggregation; i.e., the size of a give sample, cluster or cluster-sample
instance.

pal character vector of colors to use; NULL for default ggplot2 colors.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

26 plotAbundances

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

sample-level pseudobulks
including state-markers only
pbMDS(sce, by = "sample_id", features = "state")

cluster-level pseudobulks
including type-features only
pbMDS(sce, by = "cluster_id", features = "type")

pseudobulks by cluster-sample
including all features
pbMDS(sce, by = "both", k = "meta12",

shape_by = "condition", size_by = TRUE)

plotAbundances Population frequencies across samples & clusters

Description

Plots the relative population abundances of the specified clustering.

Usage

plotAbundances(
x,
k = "meta20",
by = c("sample_id", "cluster_id"),
group_by = "condition",
shape_by = NULL,
col_clust = TRUE,
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
linkage = c("average", "ward.D", "single", "complete", "mcquitty", "median",
"centroid", "ward.D2"),

k_pal = .cluster_cols
)

Arguments

x a SingleCellExperiment.

k character string specifying which clustering to use; valid values are names(cluster_codes(x)).

by a character string specifying whether to plot frequencies by samples or clusters.

plotAbundances 27

group_by character string specifying a non-numeric cell metadata columnd to group by
(determines the color coding); valid values are names(colData(x)) other than
"sample_id" and "cluster_id".

shape_by character string specifying a non-numeric cell metadata columnd to shape by;
valid values are names(colData(x)) other than "sample_id" and "cluster_id".

col_clust for by = "sample_id", specifies whether to hierarchically cluster samples and
reorder them accordingly. When col_clust = FALSE, samples are ordered ac-
cording to levels(x$sample_id) (or alphabetically, when x$sample_id is not
a factor).

distance character string specifying the distance metric to use for sample clustering;
passed to dist

linkage character string specifying the agglomeration method to use for sample cluster-
ing; passed to hclust.

k_pal character string specifying the cluster color palette; ignored when by = "cluster_id".
If less than nlevels(cluster_ids(x, k)) are supplied, colors will be interpo-
lated via colorRampPalette.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

plot relative population abundances
by sample & cluster, respectively
plotAbundances(sce, k = "meta12")
plotAbundances(sce, k = "meta8", by = "cluster_id")

use custom cluster color palette
plotAbundances(sce, k = "meta10",

k_pal = c("lightgrey", "cornflowerblue", "navy"))

28 plotClusterExprs

plotClusterExprs Plot expression distributions by cluster

Description

Plots smoothed densities of marker intensities by cluster.

Usage

plotClusterExprs(x, k = "meta20", features = "type")

Arguments

x a SingleCellExperiment.

k character string specifying which clustering to use; valid values are names(cluster_codes(x)).

features a character vector specifying which antigens to include; valid values are "type"/"state"
for type/state_markers(x) if rowData(x)$marker_class have been speci-
fied; a subset of rownames(x); NULL to use all features.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

plotClusterExprs(sce, k = "meta8")

plotCodes 29

plotCodes tSNE and PCA on SOM codes

Description

Plots the tSNE and PCA representing the SOM codes as inferred by FlowSOM. Sizes are scaled to
the total number of events assigned to each cluster, and points are color according to their cluster
ID upon ConsensusClusterPlus metaclustering into k clusters.

Usage

plotCodes(x, k = "meta20", k_pal = .cluster_cols)

Arguments

x a SingleCellExperiment.

k character string. Specifies the clustering to use for color coding.

k_pal character string specifying the cluster color palette; If less than nlevels(cluster_ids(x,
k)) are supplied, colors will be interpolated via colorRampPalette.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

plotCodes(sce, k = "meta14")

use custom cluster color palette
plotCodes(sce, k = "meta12",

k_pal = c("lightgrey", "cornflowerblue", "navy"))

30 plotCounts

plotCounts Plot cell counts

Description

Barplot of the number of cells measured for each sample.

Usage

plotCounts(x, group_by = "condition", color_by = group_by, prop = FALSE)

Arguments

x a SingleCellExperiment.

group_by character string specifying a non-numeric cell metadata column to group by
(determines x-axis ticks); valid values are names(colData(x)).

color_by character string specifying a non-numeric cell metadata column to color by (de-
termines grouping of bars); valid values are names(colData(x)); NULL for no
color.

prop logical specifying whether to plot relative abundances (frequencies) for each
group rather than total cell counts; bars will be stacked when prop = TRUE and
dodged otherwise.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)

plot number of cells per sample, colored by condition
plotCounts(sce,

group_by = "sample_id",
color_by = "condition")

same as above, but order by patient

plotDiffHeatmap 31

plotCounts(sce,
group_by = "patient_id",
color_by = "condition")

total number of cell per patient
plotCounts(sce,

group_by = "patient_id",
color_by = NULL)

plot proportion of cells from each patient by condition
plotCounts(sce,

prop = TRUE,
group_by = "condition",
color_by = "patient_id")

plotDiffHeatmap Plot differential heatmap

Description

Heatmaps summarizing differental abundance & differential state testing results.

Usage

plotDiffHeatmap(
x,
y,
k = NULL,
top_n = 20,
fdr = 0.05,
lfc = 1,
all = FALSE,
sort_by = c("padj", "lfc", "none"),
y_cols = list(padj = "p_adj", lfc = "logFC", target = "marker_id"),
assay = "exprs",
fun = c("median", "mean", "sum"),
normalize = TRUE,
col_anno = TRUE,
row_anno = TRUE,
hm_pal = NULL,
fdr_pal = c("lightgrey", "lightgreen"),
lfc_pal = c("blue3", "white", "red3")

)

Arguments

x a SingleCellExperiment.

32 plotDiffHeatmap

y a SummarizedExperiment containing differential testing results as returned by
one of testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM.
Alternatively, a list as returned by diffcyt.

k character string specifying the clustering in x from which y was obtained. If
NULL, plotDiffHeatmap will try and guess it, which will be inaccurate if mul-
tiple clusterings share the same levels.

top_n numeric. Number of top clusters (if type = "DA") or cluster-marker combina-
tions (if type = "DS") to display.

fdr numeric threshold on adjusted p-values below which results should be retained
and considered to be significant.

lfc numeric threshold on logFCs above which to retain results.

all logical specifying whether all top_n results should be displayed. If TRUE, fdr,lfc
filtering is skipped.

sort_by character string specifying the y column to sort by; "none" to retain original or-
dering. Adj. p-values will increase, logFCs will decreasing from top to bottom.

y_cols named list specifying columns in y that contain adjusted p-values (padj), logFCs
(lfc) and, for DS results, feature names (target). When only some y_cols
differ from the defaults, specifying only these is sufficient.

assay character string specifying which assay data to use; valid values are assayNames(x).

fun character string specifying the function to use as summary statistic for aggrega-
tion of assay data.

normalize logical specifying whether Z-score normalized values should be plotted. If
y contains DA analysis results, frequencies will be arcsine-square-root scaled
prior to normalization.

col_anno logical specifying whether to include column annotations for all non-numeric
cell metadata variables; or a character vector in names(colData(x)) to include
only a subset of annotations. (Only variables that map uniquely to each sample
will be included)

row_anno logical specifying whether to include a row annotation indicating whether clus-
ter (DA) or cluster-marker combinations (DS) are significant, labeled with ad-
justed p-values, as well as logFCs.

hm_pal character vector of colors to interpolate for the heatmap. Defaults to brewer.pal’s
"RdYlBu" for DS, "RdBu" for DA results heatmaps.

fdr_pal, lfc_pal
character vector of colors to use for row annotations

• fdr_pallength 2 for (non-)significant at given fdr

• lfc_pallength 3 for negative, zero and positive

Value

a Heatmap-class object.

Author(s)

Lukas M Weber & Helena L Crowell <helena.crowell@uzh.ch>

plotDR 33

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce, verbose = FALSE)

differential analysis
library(diffcyt)

create design & constrast matrix
design <- createDesignMatrix(ei(sce), cols_design=2:3)
contrast <- createContrast(c(0, 1, 0, 0, 0))

test for
- differential abundance (DA) of clusters
- differential states (DS) within clusters

da <- diffcyt(sce, design = design, contrast = contrast,
analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
clustering_to_use = "meta20", verbose = FALSE)

ds <- diffcyt(sce, design = design, contrast = contrast,
analysis_type = "DS", method_DS = "diffcyt-DS-limma",
clustering_to_use = "meta20", verbose = FALSE)

extract result tables
da <- rowData(da$res)
ds <- rowData(ds$res)

display test results for
- top DA clusters
- top DS cluster-marker combinations
plotDiffHeatmap(sce, da)
plotDiffHeatmap(sce, ds)

visualize results for subset of clusters
sub <- filterSCE(sce, cluster_id %in% seq_len(5), k = "meta20")
plotDiffHeatmap(sub, da, all = TRUE, sort_by = "none")

visualize results for selected feature
& include only selected annotation
plotDiffHeatmap(sce["pp38",], ds, col_anno = "condition", all = TRUE)

plotDR Plot reduced dimensions

Description

Dimension reduction plot colored by expression, cluster, sample or group ID.

34 plotDR

Usage

plotDR(
x,
dr = NULL,
color_by = "condition",
facet_by = NULL,
ncol = NULL,
assay = "exprs",
scale = TRUE,
q = 0.01,
dims = c(1, 2),
k_pal = .cluster_cols,
a_pal = hcl.colors(10, "Viridis")

)

Arguments

x a SingleCellExperiment.

dr character string specifying which dimension reduction to use. Should be one of
reducedDimNames(x); default to the 1st available.

color_by character string specifying the color coding; valid values are rownames(sce)
and names(colData(x)).

facet_by character string specifying a non-numeric cell metadata column to facet by; valid
values are names(colData(x)).

ncol integer scalar specifying number of facet columns; ignored unless coloring by
multiple features without facetting or coloring by a single feature with facetting.

assay character string specifying which assay data to use when coloring by marker(s);
valid values are assayNames(x).

scale logical specifying whether assay data should be scaled between 0 and 1 using
lower (1%) and upper (99%) expression quantiles; ignored if !all(color_by
%in% rownames(x)).

q single numeric in [0,0.5) determining the quantiles to trim when scale = TRUE.

dims length 2 numeric specifying which dimensions to plot.

k_pal character string specifying the cluster color palette; ignored when color_by is
not one of names(cluster_codes(x)). If less than nlevels(cluster_ids(x,
k)) are supplied, colors will be interpolated via colorRampPalette.

a_pal character string specifying the assay data palette when coloring by feature(s),
i.e. all(color_by %in% rownames(x)).

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

plotEvents 35

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)

run clustering & dimension reduction
sce <- cluster(sce)
sce <- runDR(sce, dr = "UMAP", cells = 100)

color by single marker, split by sample
plotDR(sce, color_by = "CD7", facet_by = "sample_id", ncol = 4)

color by a set of markers using custom color palette
cdx <- grep("CD", rownames(sce), value = TRUE)
plotDR(sce, color_by = cdx, ncol = 4,

a_pal = rev(hcl.colors(10, "Spectral")))

color by scaled expression for
set of markers, split by condition
plotDR(sce,

scale = TRUE,
facet_by = "condition",
color_by = sample(rownames(sce), 4))

color by 8 metaclusters using custom
cluster color palette, split by sample
p <- plotDR(sce,

color_by = "meta8",
facet_by = "sample_id",
k_pal = c("lightgrey", "cornflowerblue", "navy"))

p$facet$params$ncol <- 4; p

plotEvents Event plot

Description

Plots normalized barcode intensities for a given barcode.

36 plotEvents

Usage

plotEvents(
x,
which = "all",
assay = "scaled",
n = 1000,
out_path = NULL,
out_name = "event_plot"

)

Arguments

x a SingleCellExperiment.

which "all", numeric or character specifying which barcode(s) to plot. Valid values
are IDs that occur as rownames in the bc_key slot of the input SCE’s metadata,
or 0 for unassigned events.

assay character string specifying which assay data slot to use. One of assayNames(x).

n single numeric specifying the number of events to plot.

out_path character string. If specified, events plots for all barcodes specified via which
will be written to a single PDF file in this location.

out_name character strings specifying the output’s file name when !is.null(out_path);
should be provided without(!) file type extension.

Details

Plots intensities normalized by population for each barcode specified by which: Each event corre-
sponds to the intensities plotted on a vertical line at a given point along the x-axis. Events are scaled
to the 95% quantile of the population it has been assigned to. Barcodes with less than 50 event as-
signments will be skipped; it is strongly recommended to remove such populations or reconsider
their separation cutoffs.

Value

a list of ggplot objects.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Zunder, E.R. et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme
and single-cell deconvolution algorithm. Nature Protocols 10, 316-333.

plotExprHeatmap 37

Examples

data(sample_ff, sample_key)
sce <- prepData(sample_ff, by_time = FALSE)
sce <- assignPrelim(sce, sample_key)
plotEvents(sce, which = "D1")

plotExprHeatmap Plot expression heatmap

Description

Heatmap of marker expressions aggregated by sample, cluster, or both; with options to include
annotation of cell metadata factors, clustering(s), as well as relative and absolute cell counts.

Usage

plotExprHeatmap(
x,
features = NULL,
by = c("sample_id", "cluster_id", "both"),
k = "meta20",
m = NULL,
assay = "exprs",
fun = c("median", "mean", "sum"),
scale = c("first", "last", "never"),
q = 0.01,
row_anno = TRUE,
col_anno = TRUE,
row_clust = TRUE,
col_clust = TRUE,
row_dend = TRUE,
col_dend = TRUE,
bars = FALSE,
perc = FALSE,
bin_anno = FALSE,
hm_pal = rev(brewer.pal(11, "RdYlBu")),
k_pal = .cluster_cols,
m_pal = k_pal,
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
linkage = c("average", "ward.D", "single", "complete", "mcquitty", "median",
"centroid", "ward.D2")

)

38 plotExprHeatmap

Arguments

x a SingleCellExperiment.

features character string specifying which features to include; valid values are "type"/"state"
for type/state_markers(x) if rowData(x)$marker_class have been speci-
fied; a subset of rownames(x); NULL to use all features. When by = "both",
only 1 feature is allowed.

by character string specifying whether to aggregate by sample, cluster, both.

k character string specifying which clustering to use when by != "sample_id";
assay data will be aggregated across these cluster IDs.

m character string specifying a metaclustering to include as an annotation when by
!= "sample_id" and row_anno = TRUE.

assay character string specifying which assay data to use; valid values are assayNames(x).

fun character string specifying the function to use as summary statistic.

scale character string specifying the scaling strategy:

• "first": scale & trim then aggregate
• "last": aggregate then scale & trim
• "never": aggregate only

If scale != "never", data will be scaled using lower (q%) and upper (1-q%)
quantiles as boundaries.

q single numeric in [0,0.5) determining the quantiles to trim when scale != "never".
row_anno, col_anno

logical specifying whether to include row/column annotations (see details); when
one axis corresponds to samples (by != "cluster_id"), this can be a character
vector specifying a subset of names(colData(x)) to be included as annotations.

row_clust, col_clust
logical specifying whether rows/columns should be hierarchically clustered and
re-ordered accordingly.

row_dend, col_dend
logical specifying whether to include the row/column dendrograms.

bars logical specifying whether to include a barplot of cell counts per cluster as a
right-hand side row annotation.

perc logical specifying whether to display percentage labels next to bars when bars
= TRUE.

bin_anno logical specifying whether to display values inside bins.

hm_pal character vector of colors to interpolate for the heatmap.

k_pal, m_pal character vector of colors to interpolate for cluster annotations when by != "sample_id".

distance character string specifying the distance metric to use for both row and column
hierarchical clustering; passed to Heatmap

linkage character string specifying the agglomeration method to use for both row and
column hierarchical clustering; passed to Heatmap

plotExprHeatmap 39

Details

By default (row/col_anno = TRUE), for axes corresponding to samples (y-axis for by = "sample_id"
and x-axis for by = "both"), annotations will be drawn for all non-numeric cell metadata variables.
Alternatively, a specific subset of annotations can be included for only a subset of variables by
specifying row/col_anno to be a character vector in names(colData(x)) (see examples).

For axes corresponding to clusters (y-axis for by = "cluster_id" and "both"), annotations will be
drawn for the specified clustering(s) (arguments k and m).

Value

a Heatmap-class object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

See Also

plotFreqHeatmap, plotMultiHeatmap

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

median scaled & trimmed expression by cluster
plotExprHeatmap(sce,

by = "cluster_id", k = "meta8",
scale = "first", q = 0.05, bars = FALSE)

scale each marker between 0 and 1
after aggregation (without trimming)
plotExprHeatmap(sce,

scale = "last", q = 0,
bars = TRUE, perc = TRUE,
hm_pal = hcl.colors(10, "YlGnBu", rev = TRUE))

raw (un-scaled) median expression by cluster-sample
plotExprHeatmap(sce,

features = "pp38", by = "both", k = "meta10",
scale = "never", row_anno = FALSE, bars = FALSE)

include only subset of samples
sub <- filterSCE(sce,

40 plotExprs

patient_id != "Patient",
sample_id != "Ref3")

includes specific annotations &
split into CDx & all other markers
is_cd <- grepl("CD", rownames(sce))
plotExprHeatmap(sub,

rownames(sce)[is_cd],
row_anno = "condition",
bars = FALSE)

plotExprHeatmap(sub,
rownames(sce)[!is_cd],
row_anno = "patient_id",
bars = FALSE)

plotExprs Expression densities

Description

Plots smoothed densities of marker intensities, with a density curve for each sample ID, and curves
colored by a cell metadata variable of interest.

Usage

plotExprs(x, features = NULL, color_by = "condition", assay = "exprs")

Arguments

x a SingleCellExperiment.

features character vector specifying which features to invlude; valid values are "type"/"state"
for type/state_markers(x) if rowData(x)$marker_class have been speci-
fied; a subset of rownames(x); NULL to use all features.

color_by character string specifying a non-numeric cell metadata column by which to
color density curves for each sample; valid values are names(colData(x)).

assay character string specifying which assay data to use; valid values are assayNames(x).

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

plotFreqHeatmap 41

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
plotExprs(sce)

plotFreqHeatmap Cluster frequency heatmap

Description

Heatmap of relative cluster abundances (frequencies) by sample.

Usage

plotFreqHeatmap(
x,
k = "meta20",
m = NULL,
normalize = TRUE,
row_anno = TRUE,
col_anno = TRUE,
row_clust = TRUE,
col_clust = TRUE,
row_dend = TRUE,
col_dend = TRUE,
bars = TRUE,
perc = FALSE,
hm_pal = rev(brewer.pal(11, "RdBu")),
k_pal = .cluster_cols,
m_pal = k_pal

)

Arguments

x a SingleCellExperiment.

k character string specifying the clustering to use; valid values are names(cluster_codes(x)).
Cell counts will be computed across these cluster IDs.

m character string specifying a metaclustering to include as an annotation when
row_anno = TRUE.

42 plotFreqHeatmap

normalize logical specifying whether to Z-score normalize.
row_anno, col_anno

logical specifying whether to include row/column annotations for clusters/samples;
for col_anno, this can be a character vector specifying a subset of names(colData(x))
to be included.

row_clust, col_clust
logical specifying whether rows/columns (clusters/samples) should be hierar-
chically clustered and re-ordered accordingly.

row_dend, col_dend
logical specifying whether to include row/column dendrograms.

bars logical specifying whether to include a barplot of cell counts per cluster as a
right-hand side row annotation.

perc logical specifying whether to display percentage labels next to bars when bars
= TRUE.

hm_pal character vector of colors to interpolate for the heatmap.

k_pal, m_pal character vector of colors to use for cluster and merging row annotations. If
less than nlevels(cluster_ids(x, k/m)) values are supplied, colors will be
interpolated via colorRampPalette.

Value

a Heatmap-class object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

See Also

plotAbundances, plotExprHeatmap, plotMultiHeatmap,

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

complete
plotFreqHeatmap(sce, k = "meta12", m = "meta8")

minimal
plotFreqHeatmap(sce, k = "meta10",

normalize = FALSE, bars = FALSE,
row_anno = FALSE, col_anno = FALSE,
row_clust = FALSE, col_clust = FALSE)

customize colors & annotations
plotFreqHeatmap(sce,

k = "meta7", m = "meta4",

plotMahal 43

col_anno = "condition",
hm_pal = c("navy", "grey95", "gold"),
k_pal = hcl.colors(7, "Set 2"),
m_pal = hcl.colors(4, "Dark 3"))

plotMahal Biaxial plot

Description

Histogram of counts and plot of yields as a function of separation cutoffs.

Usage

plotMahal(x, which, assay = "exprs", n = 1000)

Arguments

x a SingleCellExperiment.

which character string. Specifies which barcode to plot.

assay character string specifying which assay to use.

n numeric. Number of cells to subsample; use NULL to include all.

Value

Plots all inter-barcode interactions for the population specified by argument which. Events are
colored by their Mahalanobis distance.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Zunder, E.R. et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme
and single-cell deconvolution algorithm. Nature Protocols 10, 316-333.

Examples

data(sample_ff, sample_key)
sce <- prepData(sample_ff, by_time = FALSE)
sce <- assignPrelim(sce, sample_key)
sce <- estCutoffs(sce)
sce <- applyCutoffs(sce)
plotMahal(sce, which = "B3")

44 plotMultiHeatmap

plotMultiHeatmap Multi-panel expression & frequency heatmaps

Description

Combines expression and frequency heatmaps from plotExprHeatmap and plotFreqHeatmap, re-
spectively, into a HeatmapList.

Usage

plotMultiHeatmap(
x,
hm1 = "type",
hm2 = "abundances",
k = "meta20",
m = NULL,
assay = "exprs",
fun = c("median", "mean", "sum"),
scale = c("first", ifelse(hm2 == "state", "first", "last")),
q = c(0.01, ifelse(hm2 == "state", 0.01, 0)),
normalize = TRUE,
row_anno = TRUE,
col_anno = TRUE,
row_clust = TRUE,
col_clust = c(TRUE, hm2 == "state"),
row_dend = TRUE,
col_dend = c(TRUE, hm2 == "state"),
bars = FALSE,
perc = FALSE,
hm1_pal = rev(brewer.pal(11, "RdYlBu")),
hm2_pal = if (isTRUE(hm2 == "abundances")) rev(brewer.pal(11, "PuOr")) else hm1_pal,
k_pal = .cluster_cols,
m_pal = k_pal,
distance = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
linkage = c("average", "ward.D", "single", "complete", "mcquitty", "median",
"centroid", "ward.D2")

)

Arguments

x a SingleCellExperiment.

hm1 character string specifying which features to include in the 1st heatmap; valid
values are "type"/"state" for type/state_markers(x) if rowData(x)$marker_class
have been specified; a subset of rownames(x); NULL to use all features; and
FALSE to omit the 1st heatmap altogether.

hm2 character string. Specifies the right-hand side heatmap. One of:

plotMultiHeatmap 45

• "abundances": cluster frequencies across samples
• "state": median state-marker expressions across clusters (analogous to

the left-hand side heatmap)
• a character string/vector corresponding to one/multiple marker(s): median

marker expressions across samples and clusters
k character string specifying which; valid values are names(cluster_codes(x)).
m character string specifying a metaclustering to include as an annotation when

row_anno = TRUE.
assay character string specifying which assay data to use; valid values are assayNames(x).
fun character string specifying the function to use as summary statistic.
scale character string specifying the scaling strategy; for expression heatmaps (see

plotExprHeatmap).
q single numeric in [0,1) determining the quantiles to trim when scale != "never".
normalize logical specifying whether to Z-score normalize cluster frequencies across sam-

ples; see plotFreqHeatmap.
row_anno, col_anno

logical specifying whether to include row/column annotations for cell metadata
variables and clustering(s); see plotExprHeatmap and plotFreqHeatmap.

row_clust, col_clust
logical specifying whether rows/columns should be hierarchically clustered and
re-ordered accordingly.

row_dend, col_dend
logical specifying whether to include the row/column dendrograms.

bars logical specifying whether to include a barplot of cell counts per cluster as a
right-hand side row annotation.

perc logical specifying whether to display percentage labels next to bars when bars
= TRUE.

hm1_pal, hm2_pal
character vector of colors to interpolate for each heatmap.

k_pal, m_pal character vector of colors to use for cluster and merging row annotations. If
less than nlevels(cluster_ids(x, k/m)) values are supplied, colors will be
interpolated via colorRampPalette.

distance character string specifying the distance metric to use in dist for hierarchical
clustering.

linkage character string specifying the agglomeration method to use in hclust for hier-
archical clustering.

Details

In its 1st panel, plotMultiHeatmap will display (scaled) type-marker expressions aggregated by
cluster (across all samples). Depending on argument hm2, the 2nd panel will contain one of:

hm2 = "abundances" relataive cluster abundances by cluster & sample
hm2 = "state" aggregated (scaled) state-marker expressions by cluster (across all samples; analo-

gous to panel 1)
hm2 %in% rownames(x) aggregated (scaled) marker expressions by cluster & sample

46 plotNRS

Value

a HeatmapList-class object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

See Also

plotAbundances, plotExprHeatmap, plotFreqHeatmap

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

state-markers + cluster frequencies
plotMultiHeatmap(sce,

hm1 = "state", hm2 = "abundances",
bars = TRUE, perc = TRUE)

type-markers + marker of interest
plotMultiHeatmap(sce, hm2 = "pp38", k = "meta12", m = "meta8")

both, type- & state-markers
plotMultiHeatmap(sce, hm2 = "state")

plot markers of interest side-by-side
without left-hand side heatmap
plotMultiHeatmap(sce, k = "meta10",

hm1 = NULL, hm2 = c("pS6", "pNFkB", "pBtk"),
row_anno = FALSE, hm2_pal = c("white", "black"))

plotNRS Plot non-redundancy scores

Description

Plots non-redundancy scores (NRS) by feature in decreasing order of average NRS across samples.

plotPbExprs 47

Usage

plotNRS(x, features = NULL, color_by = "condition", assay = "exprs")

Arguments

x a SingleCellExperiment.

features a character vector specifying which antigens to use for clustering; valid values
are "type"/"state" for type/state_markers(x) if rowData(x)$marker_class
have been specified; a subset of rownames(x); NULL to use all features.

color_by character string specifying the color coding; valid values are namescolData(x)).

assay character string specifying which assay data to use; valid values are assayNames(x).

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)

plotNRS(sce, features = NULL) # default: all markers
plotNRS(sce, features = "type") # type-markers only

plotPbExprs Pseudobulk-level boxplot

Description

Boxplot of aggregated marker data by sample or cluster, optionally colored and faceted by non-
numeric cell metadata variables of interest.

48 plotPbExprs

Usage

plotPbExprs(
x,
k = "meta20",
features = "state",
assay = "exprs",
fun = c("median", "mean", "sum"),
facet_by = c("antigen", "cluster_id"),
color_by = "condition",
group_by = color_by,
shape_by = NULL,
size_by = FALSE,
geom = c("both", "points", "boxes"),
jitter = TRUE,
ncol = NULL

)

Arguments

x a SingleCellExperiment{SingleCellExperiment}.

k character string specifying which clustering to use; values values are names(cluster_codes(x)).
Ignored if facet_by = "antigen".

features character vector specifying which features to include; valid values are "type"/"state"
for type/state_markers(x) if rowData(x)$marker_class have been speci-
fied; a subset of rownames(x); NULL to use all features.

assay character string specifying which assay data to use; valid values are assayNames(x).

fun character string specifying the summary statistic to use.

facet_by "antigen" or "cluster_id"; the latter requires having run cluster.
color_by, group_by, shape_by

character string specifying a non-numeric cell metadata variable to color, group
and shape by, respectively; valid values are names(colData(x)) and names(cluster_codes(x))
if cluster has been run.

size_by logical specifying whether to scale point sizes by the number of cells in a given
sample or cluster-sample instance; ignored when geom = "boxes".

geom character string specifying whether to include only points, boxplots or both.

jitter logical specifying whether to use position_jitterdodge in geom_point when
geom != "boxes".

ncol integer scalar specifying number of facet columns.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

plotScatter 49

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce, verbose = FALSE)

plot median expressions by sample & condition
...split by marker
plotPbExprs(sce,

shape_by = "patient_id",
features = sample(rownames(sce), 6))

...split by cluster
plotPbExprs(sce, facet_by = "cluster_id", k = "meta6")

plot median type-marker expressions by sample & cluster
plotPbExprs(sce, feature = "type", k = "meta6",

facet_by = "antigen", group_by = "cluster_id", color_by = "sample_id",
size_by = TRUE, geom = "points", jitter = FALSE, ncol = 5)

plot median state-marker expressions
by sample & cluster, split by condition
plotPbExprs(sce, k = "meta6", facet_by = "antigen",

group_by = "cluster_id", color_by = "condition", ncol = 7)

plotScatter Scatter plot

Description

Bivariate scatter plots including visualization of (group-specific) gates, their boundaries and per-
centage of selected cells.

Usage

plotScatter(
x,
chs,
color_by = NULL,
facet_by = NULL,
bins = 100,
assay = "exprs",

50 plotScatter

label = c("target", "channel", "both"),
zeros = FALSE,
k_pal = .cluster_cols

)

Arguments

x a SingleCellExperiment.

chs character string pecifying which channels to plot. Valid values are antigens:
rownames(x), channel names: channels(x) or non-mass channels stored in
names([int_]colData(x)), and should correspond to numeric variables.

color_by character string specifying a cell metadata column to color by; valid values are
names(colData(x)), names(int_colData(x)); names(cluster_codes(x))
(if cluster has been run); or NULL to color by density.

facet_by character string specifying a non-numeric cell metadata column to facet by; valid
values are names(colData(x)). When length(chs) == 1, 2 facetting variables
may be provided, otherwise 1 only.

bins numeric of length 1 giving the number of bins for geom_hex when coloring by
density.

assay character string specifying which assay data to use. Should be one of assayNames(x).

label character string specifying axis labels should include antigen targets, channel
names, or a concatenation of both.

zeros logical specifying whether to include 0 values.

k_pal character string specifying the cluster color palette; ignored when color_by is
not one of names(cluster_codes(x)). If less than nlevels(cluster_ids(x,
k)) are supplied, colors will be interpolated via colorRampPalette.

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

Examples

data(raw_data)
sce <- prepData(raw_data)

dna_chs <- c("DNA1", "DNA2")
plotScatter(sce, dna_chs, label = "both")

plotScatter(sce,
chs = sample(rownames(sce), 4),
color_by = "sample_id")

sce <- prepData(sample_ff)

plotSpillmat 51

ids <- sample(rownames(sample_key), 3)
sce <- assignPrelim(sce, sample_key[ids,])
sce <- sce[, sce$bc_id %in% ids]

chs <- sample(rownames(sce), 5)
plotScatter(sce, chs, color_by = "bc_id")
plotScatter(sce, chs, color_by = "delta")

plotSpillmat Spillover matrix heatmap

Description

Generates a heatmap of the spillover matrix annotated with estimated spill percentages.

Usage

plotSpillmat(
x,
sm = NULL,
anno = TRUE,
isotope_list = CATALYST::isotope_list,
hm_pal = c("white", "lightcoral", "red2", "darkred"),
anno_col = "black"

)

Arguments

x a SingleCellExperiment.

sm spillover matrix to visualize. If NULL, plotSpillmat will try and access metadata(x)$spillover_matrix.

anno logical. If TRUE (default), spill percentages are shown inside bins and rows are
annotated with the total amount of spill received.

isotope_list named list. Used to validate the input spillover matrix. Names should be metals;
list elements numeric vectors of their isotopes. See isotope_list for the list of
isotopes used by default.

hm_pal character vector of colors to interpolate.

anno_col character string specifying the color to use for bin annotations.

Value

a ggplot2-object showing estimated spill percentages as a heatmap with colors ramped to the high-
est spillover value present.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

52 plotYields

Examples

get single-stained control samples & construct SCE
data(ss_exp)
sce <- prepData(ss_exp)

debarcode single-positive populations
bc_ms <- c(139, 141:156, 158:176)
sce <- assignPrelim(sce, bc_ms, verbose = FALSE)
sce <- applyCutoffs(estCutoffs(sce))

estimate & visualize spillover matrix
sce <- computeSpillmat(sce)
plotSpillmat(sce)

plotYields Yield plot

Description

Plots the distribution of barcode separations and yields upon debarcoding as a function of separa-
tion cutoffs. If available, currently used separation cutoffs as well as their resulting yields will be
indicated in the plot.

Usage

plotYields(x, which = 0, out_path = NULL, out_name = "yield_plot")

Arguments

x a SingleCellExperiment.

which 0, numeric or character. Specifies which barcode(s) to plot. Valid values are IDs
that occur as row names of bc_key(x); 0 (the default) will generate a summary
plot with all barcodes.

out_path character string. If specified, yields plots for all barcodes specified via which
will be written to a single PDF file in this location.

out_name character strings specifying the output’s file name when !is.null(out_path);
should be provided without(!) file type extension.

Details

The overall yield that will be achieved upon application of the specified set of separation cutoffs
is indicated in the summary plot. Respective separation thresholds and their resulting yields are
included in each barcode’s plot. The separation cutoff value should be chosen such that it appropri-
ately balances confidence in barcode assignment and cell yield.

prepData 53

Value

a list of ggplot objects.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Zunder, E.R. et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme
and single-cell deconvolution algorithm. Nature Protocols 10, 316-333.

Examples

construct SCE & apply arcsinh-transformation
data(sample_ff, sample_key)
sce <- prepData(sample_ff)

deconvolute samples & estimate separation cutoffs
sce <- assignPrelim(sce, sample_key)
sce <- estCutoffs(sce)

all barcodes summary plot
plotYields(sce, which = 0)

plot for specific sample
plotYields(sce, which = "C1")

prepData Data preparation

Description

Data preparation

Usage

prepData(
x,
panel = NULL,
md = NULL,
features = NULL,
transform = TRUE,
cofactor = 5,
panel_cols = list(channel = "fcs_colname", antigen = "antigen", class = "marker_class"),
md_cols = list(file = "file_name", id = "sample_id", factors = c("condition",
"patient_id")),

54 prepData

by_time = TRUE,
FACS = FALSE,
fix_chs = c("common", "all"),
...

)

Arguments

x a flowSet holding all samples or a path to a set of FCS files.

panel a data.frame containing, for each channel, its column name in the input data,
targeted protein marker, and (optionally) class ("type", "state", or "none"). If
‘panel‘ is unspecified, it will be constructed from the first input sample via
guessPanel.

md a table with column describing the experiment. An exemplary metadata table
could look as follows:

• file_name: the FCS file name
• sample_id: a unique sample identifier
• patient_id: the patient ID
• condition: brief sample description (e.g. reference/stimulated, healthy/diseased)

If ‘md‘ is unspecified, the flowFrame/Set identifier(s) will be used as sam-
ple IDs with no additional metadata factors.

features a logical vector, numeric vector of column indices, or character vector of channel
names. Specified which column to keep from the input data. Defaults to the
channels listed in the input panel.

transform logical. Specifies whether an arcsinh-transformation with cofactor cofactor should
be performed, in which case expression values (transformed counts) will be
stored in assay(x, "exprs").

cofactor numeric cofactor(s) to use for optional arcsinh-transformation when transform
= TRUE; single value or a vector with channels as names.

panel_cols a names list specifying the panel column names that contain channel names,
targeted protein markers, and (optionally) marker classes. When only some
panel_cols deviate from the defaults, specifying only these is sufficient.

md_cols a named list specifying the column names of md that contain the FCS file names,
sample IDs, and factors of interest (batch, condition, treatment etc.). When only
some md_cols deviate from the defaults, specifying only these is sufficient.

by_time logical; should samples be ordered by acquisition time? Ignored if !is.null(md)
in which case samples will be ordered as they are listed in md[[md_cols$file]].
(see details)

FACS logical; is this FACS / flow cytometry data? By default, prepData moves non-
mass channels to the output SCE’s int_colData; FACS = TRUE assures that all
channels are kept as assay data. If FALSE, prepData will try and access the
input flowFrame/Set’s "$CYT" descriptor (keyword(., "$CYT")) to determine
the data type; this may be inaccurate for some cytometer descriptors.

prepData 55

fix_chs specifies the strategy to use in case of panel discrepancies. "common" will re-
tain only channels present in all frames/FCS files; "all" will retain the union of
channels across samples. In the latter case, a logical matrix with rows = chan-
nels and columns = samples will be stored under metadata slot chs_by_fcs
specifying which channels were/n’t (FALSE/TRUE) measured in which samples.

... additional arguments passed to read.FCS. E.g., channel_alias in case of panel
discrepancies between frames/ FCS files. By default, transformation = truncate_max_range
= FALSE.

Details

By default, non-mass channels (e.g., time, event lengths) will be removed from the output SCE’s
assay data and instead stored in the object’s internal cell metadata (int_colData) to assure these
data are not subject to transformations or other computations applied to the assay data.

For more than 1 sample, prepData will concatenate cells into a single SingleCellExperiment
object. Note that cells will hereby be order by "Time", regardless of whether by_time = TRUE or
FALSE. Instead, by_time determines the sample (not cell!) order; i.e., whether samples should
be kept in their original order, or should be re-ordered according to their acquision time stored in
keyword(flowSet, "$BTIM").

When a metadata table is specified (i.e. !is.null(md)), argument by_time will be ignored and
sample ordering is instead determined by md[[md_cols$file]].

Value

a SingleCellExperiment.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

Examples

data(PBMC_fs, PBMC_panel, PBMC_md)
prepData(PBMC_fs, PBMC_panel, PBMC_md)

channel-specific transformation
cf <- sample(seq_len(10)[-1], nrow(PBMC_panel), TRUE)
names(cf) <- PBMC_panel$fcs_colname
sce <- prepData(PBMC_fs, cofactor = cf)
int_metadata(sce)$cofactor

input has different name for "condition"
md <- PBMC_md
m <- match("condition", names(md))
colnames(md)[m] <- "treatment"

add additional factor variable batch ID
md$batch_id <- sample(c("A", "B"), nrow(md), TRUE)

specify 'md_cols' that differ from defaults

56 runDR

factors <- list(factors = c("treatment", "batch_id"))
ei(prepData(PBMC_fs, PBMC_panel, md, md_cols = factors))

without panel & metadata tables
sce <- prepData(raw_data)

'flowFrame' identifiers are used as sample IDs
levels(sce$sample_id)

panel was guess with 'guessPanel';
non-mass channels are set to marker class "none"
rowData(sce)

runDR Dimension reduction

Description

Wrapper around dimension reduction methods available through scater, with optional subsam-
pling of cells per each sample.

Usage

runDR(
x,
dr = c("UMAP", "TSNE", "PCA", "MDS", "DiffusionMap"),
cells = NULL,
features = "type",
assay = "exprs",
...

)

Arguments

x a SingleCellExperiment.

dr character string specifying which dimension reduction to use.

cells single numeric specifying the maximal number of cells per sample to use for
dimension reduction; NULL for all cells.

features a character vector specifying which antigens to use for dimension reduction;
valid values are "type"/"state" for type/state_markers(x) if rowData(x)$marker_class
have been specified; a subset of rownames(x); NULL to use all features.

assay character string specifying which assay data to use for dimension reduction;
valid values are assayNames(x).

... optional arguments for dimension reduction; passed to runUMAP, runTSNE, runPCA,
runMDS and runDiffusionMap, respecttively. See ?"scater-red-dim-args"
for details.

SCE-accessors 57

Value

a ggplot object.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

References

Nowicka M, Krieg C, Crowell HL, Weber LM et al. CyTOF workflow: Differential discov-
ery in high-throughput high-dimensional cytometry datasets. F1000Research 2017, 6:748 (doi:
10.12688/f1000research.11622.1)

Examples

construct SCE
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)

run UMAP on <= 200 cells per sample
sce <- runDR(sce, features = type_markers(sce), cells = 100)

SCE-accessors SingleCellExperiment accessors

Description

Various wrappers to conviniently access slots in a SingleCellExperiment created with prepData,
and that are used frequently during differential analysis.

Usage

S4 method for signature 'SingleCellExperiment'
ei(x)

S4 method for signature 'SingleCellExperiment'
n_cells(x)

S4 method for signature 'SingleCellExperiment'
channels(x)

S4 method for signature 'SingleCellExperiment'
marker_classes(x)

S4 method for signature 'SingleCellExperiment'
type_markers(x)

58 SCE-accessors

S4 method for signature 'SingleCellExperiment'
state_markers(x)

S4 method for signature 'SingleCellExperiment'
sample_ids(x)

S4 method for signature 'SingleCellExperiment,missing'
cluster_ids(x, k = NULL)

S4 method for signature 'SingleCellExperiment,character'
cluster_ids(x, k = NULL)

S4 method for signature 'SingleCellExperiment'
cluster_codes(x)

S4 method for signature 'SingleCellExperiment'
delta_area(x)

Arguments

x a SingleCellExperiment.

k character string specifying the clustering to extract. Valid values are names(cluster_codes(x)).

Value

ei extracts the experimental design table.

n_cells extracts the number of events measured per sample.

channels extracts the original FCS file’s channel names.

marker_classes extracts marker class assignments ("type", "state", "none").

type_markers extracts the antigens used for clustering.

state_markers extracts antigens that were not used for clustering.

sample_ids extracts the sample IDs as specified in the metadata-table.

cluster_ids extracts the numeric vector of cluster IDs as inferred by FlowSOM.

cluster_codes extracts a data.frame containing cluster codes for the FlowSOM clustering, the
ConsensusClusterPlus metaclustering, and all mergings done through mergeClusters.

delta_area extracts the delta area plot stored in the SCE’s metadata by cluster

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

Examples

construct SCE & run clustering
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce)

sce2fcs 59

view experimental design table
ei(sce)

quick-access sample & cluster assignments
plot(table(sample_ids(sce)))
plot(table(cluster_ids(sce)))

access specific clustering resolution
table(cluster_ids(sce, k = "meta8"))

access marker information
channels(sce)
marker_classes(sce)
type_markers(sce)
state_markers(sce)

get cluster ID correspondece between 2 clusterings
old_ids <- seq_len(20)
m <- match(old_ids, cluster_codes(sce)$`meta20`)
new_ids <- cluster_codes(sce)$`meta12`[m]
data.frame(old_ids, new_ids)

view delta area plot (relative change in area
under CDF curve vs. the number of clusters 'k')
delta_area(sce)

sce2fcs SCE to flowFrame/Set

Description

If split_by = NULL, the input SCE is converted to a flowFrame. Otherwise, it is split into a flowSet
by the specified colData column. Any cell metadata (colData) and dimension reductions available
in the SCE may be dropped or propagated to the output.

Usage

sce2fcs(x, split_by = NULL, keep_cd = FALSE, keep_dr = FALSE, assay = "counts")

Arguments

x a SingleCellExperiment.

split_by NULL or a character string specifying a colData(x) column to split by.
keep_cd, keep_dr

logials specifying whether cell metadata (stored in colData(x)) and dimension
reductions (stored in reducedDims(x)), respectively, should be kept or dropped.

assay a character string specifying which assay data to use; valid values are assayNames(x).
When writing out FCS files, this should correspond to count-like data!

60 sce2fcs

Value

a flowFrame if split_by = NULL; otherwise a flowSet.

Author(s)

Helena L Crowell <helena.crowell@uzh.ch>

Examples

PREPROCESSING
data(sample_ff, sample_key)
sce <- prepData(sample_ff, by_time = FALSE)
sce <- assignPrelim(sce, sample_key, verbose = FALSE)

split SCE by barcode population
fs <- sce2fcs(sce, split_by = "bc_id")

do some spot checks
library(flowCore)
library(SingleCellExperiment)

length(fs) == nrow(sample_key)
all(fsApply(fs, nrow)[, 1] == table(sce$bc_id))
identical(t(exprs(fs[[1]])), assay(sce, "exprs")[, sce$bc_id == "A1"])

DIFFERENTIAL ANALYSIS
data(PBMC_fs, PBMC_panel, PBMC_md)
sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
sce <- cluster(sce, verbose = FALSE)

split by 20 metacluster populations
sce$meta20 <- cluster_ids(sce, "meta20")
fs <- sce2fcs(sce, split_by = "meta20", assay = "exprs")
all(fsApply(fs, nrow)[, 1] == table(sce$meta20))

Index

adaptSpillmat, 3
applyCutoffs, 4
assignPrelim, 5

BuildSOM, 9

channels (SCE-accessors), 57
channels,SingleCellExperiment-method

(SCE-accessors), 57
clrDR, 6
cluster, 9, 48, 50, 58
cluster_codes (SCE-accessors), 57
cluster_codes,SingleCellExperiment-method

(SCE-accessors), 57
cluster_ids (SCE-accessors), 57
cluster_ids,SingleCellExperiment,character-method

(SCE-accessors), 57
cluster_ids,SingleCellExperiment,missing-method

(SCE-accessors), 57
colorRampPalette, 27, 29, 34, 42, 45, 50
compCytof, 3, 11
computeSpillmat, 13
ConsensusClusterPlus, 9, 58

data, 15
delta_area (SCE-accessors), 57
delta_area,SingleCellExperiment-method

(SCE-accessors), 57
diffcyt, 32
dist, 27, 45

ei (SCE-accessors), 57
ei,SingleCellExperiment-method

(SCE-accessors), 57
estCutoffs, 16
extractClusters, 18

filterSCE, 19
flowFrame, 12, 15, 20, 23, 59, 60
flowSet, 15, 59, 60
FlowSOM, 58

geom_hex, 50
ggplot, 10, 28, 30, 40
guessPanel, 20, 54

hclust, 27, 45
Heatmap, 38
HeatmapList, 44

identifier, 54
isotope_list, 3, 12, 14, 51
isotope_list (data), 15

marker_classes (SCE-accessors), 57
marker_classes,SingleCellExperiment-method

(SCE-accessors), 57
mergeClusters, 21, 58
merging_table (data), 15
mp_cells (data), 15

n_cells (SCE-accessors), 57
n_cells,SingleCellExperiment-method

(SCE-accessors), 57
normCytof, 22

PBMC_fs (data), 15
PBMC_md (data), 15
PBMC_panel (data), 15
pbMDS, 24
plotAbundances, 21, 26, 42, 46
plotClusterExprs, 28
plotCodes, 29
plotCounts, 30
plotDiffHeatmap, 31
plotDR, 33
plotEvents, 35
plotExprHeatmap, 37, 42, 44–46
plotExprs, 40
plotFreqHeatmap, 39, 41, 44–46
plotMahal, 43
plotMultiHeatmap, 21, 39, 42, 44
plotNRS, 46

61

62 INDEX

plotPbExprs, 47
plotScatter, 49
plotSpillmat, 51
plotYields, 52
prepData, 53, 57

raw_data (data), 15
read.FCS, 55
runDiffusionMap, 56
runDR, 56
runMDS, 56
runPCA, 56
runTSNE, 56
runUMAP, 56

sample_ff (data), 15
sample_ids (SCE-accessors), 57
sample_ids,SingleCellExperiment-method

(SCE-accessors), 57
sample_key (data), 15
SCE-accessors, 57
sce2fcs, 59
SingleCellExperiment, 4, 6, 7, 9, 11, 13, 16,

18, 19, 21, 23, 25, 26, 28–31, 34, 36,
38, 40, 41, 43, 44, 47, 48, 50–52,
55–59

ss_exp (data), 15
state_markers (SCE-accessors), 57
state_markers,SingleCellExperiment-method

(SCE-accessors), 57

testDA_edgeR, 32
testDA_GLMM, 32
testDA_voom, 32
testDS_limma, 32
testDS_LMM, 32
type_markers (SCE-accessors), 57
type_markers,SingleCellExperiment-method

(SCE-accessors), 57

	adaptSpillmat
	applyCutoffs
	assignPrelim
	clrDR
	cluster
	compCytof
	computeSpillmat
	data
	estCutoffs
	extractClusters
	filterSCE
	guessPanel
	mergeClusters
	normCytof
	pbMDS
	plotAbundances
	plotClusterExprs
	plotCodes
	plotCounts
	plotDiffHeatmap
	plotDR
	plotEvents
	plotExprHeatmap
	plotExprs
	plotFreqHeatmap
	plotMahal
	plotMultiHeatmap
	plotNRS
	plotPbExprs
	plotScatter
	plotSpillmat
	plotYields
	prepData
	runDR
	SCE-accessors
	sce2fcs
	Index

