StarPU Handbook

for StarPU 1.4.2

Generated by Doxygen.

1 Introduction
1.1 Motivation L e e e e e
1.2StarPUinaNutshell
1.3 Application Taskification L

1.4 Research Papers e e e e e e
2 Documentation Organization

3 Glossary

| StarPU Installation
4 Organization

5 Building and Installing StarPU
5.1 Installing a Binary Package e
5.2 Installing a Source Package

5.3 Building from Source

6 Compilation Configuration
6.1 Common Configuration e e
6.2 Configuring Workers L e e e
6.3 Extension Configuration L

6.4 Advanced Configuration L

7 Execution Configuration Through Environment Variables
7.1 Configuring Workers L e e
7.2 Configuring The Scheduling Engine o
7.3 Configuring The Heteroprio Scheduler
TAEXIENSIONS e e e e
7.5 Miscellaneous And Debug L
7.6 Configuring The Hypervisor

8 Configuration and initialization

Il StarPU Basics

9 Organization

10 StarPU Applications
10.1 Setting Flags for Compiling, Linking and Running Applications
10.2 Integrating StarPU ina Build System
10.3 Running a Basic StarPU Application
10.4 Running a Basic StarPU Application on Microsoft VisualC
10.5 Kernel Threads Started by StarPU e

A A WO W W

11

13
13
13
14

17
17
18
19
20

23
23
28
29
30
32
37

39

41

43

Generated by Doxygen

10.6 EnablingOpenCL

10.7 Storing Performance Model Files

11 Basic Examples

111 HelloWorld o
11.2VectorScaling
11.3 Vector Scaling on an Hybrid CPU/GPU Machine

12 Full Source Code for the 'Scaling a Vector’ Example

12.1 Main Applicationo
122CPUKernel e
123 CUDAKernel
124 0penCLKernel

13 Tasks In StarPU

13.1 Task Granularity
13.2 Task Submission
13.3 Task Priorities
13.4 Setting Many Data Handles ForaTask

13.5 Setting a Variable Number Of Data Handles For a Task

13.6 Insert Task Utility
13.7 Other Task Utility Functions

14 Data Management

141 Datalnterface
14.2 PartitioningData
14.3 Asynchronous Partitioningo oL
14.4 Commute Data AcCesS o i
145 DataReduction
14.6 Concurrent Data Accesseso

14.7 Temporary Buffers

15 Scheduling

15.1 Task Scheduling Policies,
15.2 Task Distribution Vs Data Transfer

16 Examples in StarPU Sources

il StarPU Applications
17 Organization

18 A Stencil Application

18.1 The Original Application
18.2 The StarPU Application

79

............... 79
............... 81

83

85

87

Generated by Doxygen

18.3 The StarPU MPI Application 91
IV StarPU Performances 93
19 Organization 95
20 Benchmarking StarPU 97
20.1 Task Size Overhead e 97
20.2 Data Transfer Latency e 97
20.3 Matrix-Matrix Multiplication 98
20.4 Cholesky Factorization e 98
20.5 LU Factorization e 98
20.6 Simulated Benchmarks L 98
21 Online Performance Tools 99
21.1 On-line Performance Feedback 99
21.2 Task And Worker Profiling o e 102
21.3 Performance Model Example L 102
21.4 Performance Monitoring Counters e 105
21.5 Performance Steering Knobs L 108
22 Offline Performance Tools 113
22.1 Generating Traces With FXT o e 113
22.2 Performance Of Codelets e 126
22.3Energy Of Codelets e 132
22.4 Datatrace and tasks length L 135
225 Trace Statistics e e 136
22.6 PAPlcounters e e 138
22.7 Theoretical Lower Bound On Execution Time oo 138
22.8 Trace visualizationwith StarVZ 139
229 StarPU Eclipse Plugin e e 141
22.10 Memory Feedback e 148
22.11 Data Statistics L e 149
22.12 Tracing MPl applications e 149
2213 Verbose TraCes o o e e e e e e e 150
V StarPU FAQ 151
23 Organization 153
24 Check List When Performance Are Not There 155
241 Check Task Size o e 155
24.2 Configuration Which May Improve Performance 155
24.3 Data Related Features Which May Improve Performance 155

Generated by Doxygen

24.4 Task Related Features Which May Improve Performance 155
24.5 Scheduling Related Features Which May Improve Performance 156
24.6 CUDA-specific Optimizations o e 156
24.7 OpenCL-specific Optimizations 157
24.8 Detecting Stuck Conditions L 157
24.9 How to Limit Memory Used By StarPU And Cache Buffer Allocations 157
24.10 How To Reduce The Memory Footprint Of Internal Data Structures 158
2411 How To Reuse Memory o 0 e 158
2412 Performance Model Calibration 159
2413 Profiling L e 161
24.14 Overhead Profiling o 161
25 Frequently Asked Questions 163
25.1 How To Initialize A Computation Library Once For Each Worker? 163
25.2 Hardware Topology o o e e e e 163
25.3 Using The Driver APl o e 165
25.40n-GPU Rendering o e e e e 165
25.5 Using StarPU With MKL 11 (Intel Composer XE2013) 166
25.6 Thread Bindingon NetBSD 166
25.7 StarPU permanently eats 100% of all CPUs 166
25.8 Interleaving StarPU and non-StarPU codeo 166
25.9 When running with CUDA or OpenCL devices, | am seeingless CPUcores 167
25.10 StarPU does not see my CUDA device o o it it i 167
25.11 StarPU does not see my OpenCL device o o o i ittt 168
25.12 There seems to be errors when copying to and from CUDA devices 168
25.13 | keep getting a "Incorrect performance model file"erroro oL 168
VI StarPU Language Bindings 171
26 Organization 173
27 Native Fortran Support 175
27.1 Implementation Details and Specificitieso 175
27.2 Fortran Translation for Common StarPU APl ldioms 176
27.3 Uses, Initialization and Shutdown 176
27.4 Fortran Flavor of StarPU's Variadic Insert_task 177
27.5 Functions and Subroutines Expecting Data Structures Arguments 177
27.6 Additional Notes about the Native Fortran Support L. 177
28 StarPU Java Interface 179
29 Python Interface 181
29.1 Installation of the Python Interface 181
29.2 Python Parallelism o e 181

Generated by Doxygen

29.3 Using StarPU in Python
29.4 StarPU Data Interface for Python Objects
29.5Benchmark

29.6 Running Python Functions as Pipeline Jobs (Imitating Joblib Library)

29.7 Multiple Interpreters
29.8 Master Slave Support

30 The StarPU OpenMP Runtime Support (SORS)

30.1 Implementation Details and Specificities .
30.2 Configuration
30.3 Initialization and Shutdown
30.4 Parallel Regions and Worksharing
305Tasks
30.6 Synchronization Support
30.7 Example: An OpenMP LLVM Support . .
30.8 OpenMP Standard Functions in StarPU .

VIl StarPU Extensions

31 Organization

32 Advanced Tasks In StarPU
32.1 Task Dependencies
32.2 Waiting For Tasks

32.3 Using Multiple Implementations Of ACodelet

32.4 Enabling Implementation According To Capabilities

32.5 Getting Task Children
326 Parallel Tasks
32.7 Synchronization Tasks

33 Advanced Data Management
33.1 Data Interface with Variable Size
33.2 Data Management Allocation
33.3DataAccess
33.4 DataPrefetch.
33.5 Manual Partitioning
33.6 Data handles helpers
33.7 Handles data buffer pointers
33.8 Defining A New Data Filter
33.9 Defining A New Data Interface
33.10 The Multiformat Interface
33.11 Specifying A Target Node For Task Data

34 Advanced Scheduling

182
187
192
194
198
201

203
203
203
203
204
206
208
209
209

211

213

215
215
216
216
217
218
218
220

221
221
222
223
223
224
224
225
225
226
230
231

233

Generated by Doxygen

vi

34.1 Energy-based Scheduling 233
34.2 Static Scheduling L e 235
34.3 Configuring Heteroprio e 235
35 Scheduling Contexts 237
35.1 General ldeas L e 237
35.2Creating AContext e e e 237
35.3 Creating A Context To Partitiona GPU 238
35.4 Modifying A Context e 238
35.5 Submitting Tasks To A Context o e e 238
35.6 Deleting AContext L e e 239
35.7 Emptying AContext 239
36 Scheduling Context Hypervisor 241
36.1 What Is The Hypervisor 241
36.2 Start the Hypervisor e 241
36.3 Interrogate The Runtime 241
36.4 Trigger the Hypervisor o e 241
36.5 Resizing Strategies L e 242
36.6 Defining A New Hypervisor Policy 243
37 How To Define a New Scheduling Policy 245
371 Introduction L L e e 245
37.2 Helper functions for defining a scheduling policy (Basicor modular) 245
37.3 Defining A New Basic Scheduling Policy 246
37.4 Defining A New Modular Scheduling Policy 248
37.5 Using a New Scheduling Policy 252
37.6 Graph-based Scheduling 252
37.7 Debugging Scheduling L 253
38 CUDA Support 255
39 OpenCL Support 257
40 Maxeler FPGA Support 259
40.1 Introduction L L L e e 259
40.2 Porting Applications to Maxeler FPGA 259
41 Out Of Core 263
411 Infroduction L e 263
41.2Useanewdisk memory i e e e 263
41.3 Data Registration e 264
414 UsingWontUse o e 264
41.5 Examples: disk_COpy e 264
41.6 Examples: disk_compute 265

Generated by Doxygen

vii

41.7 PerformancCes o e e e e e e e e e
41.8 Feedback Figures L e
41.9 Disk functions L e e e e e

42 MPI Support
42.1 Building with MPlsupport e
42.2 Example Used In This Documentation o
42.3 About Not Using The MPI Support
42.4 Simple Example e
42.5 How to Initialize StarPU-MP1 o e
42.6 Point To Point Communication
42.7 Exchanging User Defined Data Interface
42.8 MPl Insert Task Utility o
42.9 Other MPI Utility Functions o
42.10 Pruning MPI Task Insertion e
4211 Temporary Data e
4212 Per-node Data e
42.13 Inter-node reduction L L
4214 Priorities L e e e e
4215 MPI Cache Support o e e
42.16 MPI Data Migration e e
42.17 MPI Collective Operations e
42.18 Make StarPU-MPI Progression Thread Execute Tasks
42.19 Debugging MPI L e
42.20 More MPlexamples e e
42.21 Using the NewMadeleine communication library
42.22 MPI Master Slave Support e e
42.23 MPI Checkpoint Support o e e

43 TCP/IP Support
43.1 TCP/IP Master Slave Support o e e

44 Transactions
441 General Ideas e e e
442 USA0E o e e e e e

44.3 Known limitations L e e e e e

45 Fault Tolerance
451 Introduction L L L e e e e e
452 Retryingtasks L

46 FFT Support
46.1 Compilation e e

267
267
267

269
269
270
270
271
271
271
272
274
276
276
276
277
277
278
278
279
279
280
280
282
282
282
283

285
285

287
287
287
288

289
289
289

291

Generated by Doxygen

viii

47 SOCL OpenCL Extensions 293
48 Hierarchical DAGS 295
48.1 AnExample e 295
49 Parallel Workers 297
49.1 General Ideas L e e 297
49.2 Workers Creating Parallel Workers o o 297
49.3 Example Of Constraining OpenMP 298
49.4 Creating Custom Parallel Workers e 299
49.5 Parallel Workers With Scheduling 299
50 Interoperability Support 301
50.1 StarPU Resource Management e e 301
51 SimGrid Support 303
51.1 Preparing Your Application For Simulation o 303
51.2 Calibration L e e e e 304
51.3 Simulation L e e e 304
51.4 Simulation On Another Machine e 304
51.5 Simulation Examples 305
51.6 Simulations On Fake Machines 305
51.7 Tweaking Simulation L e 305
51.8 MPI Applications o e e 305
51.9 Debugging Applications 305
51.10 Memory Usage o o e e e 305
52 Helpers 307
53 Debugging Tools 309
53.1 TroubleShooting In General 309
53.2 Using The Gdb Debugger e 309
53.3 Using Other Debugging Tools e 310
53.4 Watchdog Support 310
53.5 Using The Temanejo Task Debugger i 310
VIII Appendix 313
54 The GNU Free Documentation License 315
54.1 ADDENDUM: How to use this License for your documents 319
55 Module Index 321
55.1 Modules L e e e 321
56 Module Documentation a.k.a StarPU’s API 323

Generated by Doxygen

56.1Bitmap e 324
56.2 Hierarchical Dags o e e 327
56.3 Codelet And Tasks e e 329
56.4 CUDA EXtensions o o e e e 357
56.5 Data Interfaces e 362
56.6 Data Management L e e e 410
56.7 Data Partition e 423
56.8 Expert Mode e 447
56.9 Explicit Dependencies 448
56.10 FFT Support o e e e 452
56.11 Fortran Support e 454
56.12 FXT SUPPOrt o o o e e e e e e 455
56.13 Heteroprio Scheduler e 458
56.14 HIP Extensions o e e e 461
56.15 Initialization and Termination L 464
56.16 Task Insert Utility 475
56.17 Interoperability Support 486
56.18 Maxeler FPGA Extensions e 497
56.19 Miscellaneous Helpers e 498
56.20 Modularized Scheduler Interface 503
56.21 MPI Fault Tolerance Support e e 521
56.22 MPI SUpPOrt o e e 523
56.23 OpenCL Extensions o e e e e 546
56.24 OpenMP Runtime Support e e 553
56.250utOf Core e e e 579
56.26 Parallel Tasks e 583
56.27 Parallel Workers L e e 585
56.28 Performance Monitoring Counterso 591
56.29 Performance Model L 597
56.30 Performance Steering Knobs L 608
56.31 Profiling e e 615
56.32 Profiling Tool e 621
56.33 Random Functions L e 623
56.34 Running Drivers e 624
56.35 Scheduler ToolbOX L 626
56.36 Scheduling Contexts e e 631
56.37 Scheduling Policy e 639
56.38 Scheduling Context Hypervisor - Linear Programming 650
56.39 Scheduling Context Hypervisor - Building a new resizingpolicy 654
56.40 Scheduling Context Hypervisor - Regularusage 664
56.41 SinK e 669
56.42 Standard Memory Library Lo 670

Generated by Doxygen

56.43 Task Bundles e 676
56.44 Task LiSts e e 678
56.45 Theoretical Lower Bound on Execution Time 681
56.46 Threads e 683
56.47 ToOIbOX e e e 693
56.48 Transactions e e e 697
56.4A9Tree e 698
56.50 Versioning e e e e e e 699
56.51 Workers e e e 700
57 File Index 715
571 File List o o e 715
58 File Documentation 717
58.1 starpu.h File Reference 717
58.2 starpu_bitmap.h File Reference 718
58.3 starpu_bound.h File Reference L 719
58.4 starpu_config.h File Reference L 720
58.5 starpu_cublas.h File Reference 723
58.6 starpu_cublas_v2.h File Reference 723
58.7 starpu_cusparse.h File Reference 723
58.8 starpu_cuda.h File Reference 723
58.9 starpu_data.h File Reference Lo 724
58.10 starpu_data_filters.h File Reference Lo 726
58.11 starpu_data_interfaces.h File Reference oL oo 730
58.12 starpu_deprecated_api.h File Referenceo L 735
58.13 starpu_disk.h File Reference e 736
58.14 starpu_driver.h File Reference 736
58.15 starpu_expert.h File Reference 736
58.16 starpu_fxt.h File Reference 737
58.17 starpu_hash.h File Reference 737
58.18 starpu_helper.h File Reference 737
58.19 starpu_heteroprio.h File Reference 738
58.20 starpu_hip.h File Reference Lo 739
58.21 starpu_scheduler_toolbox.h File Reference 740
58.22 starpu_max_fpga.h File Reference L 741
58.23 starpu_mod.f90 File Reference L 741
58.24 starpu_mpi.h File Reference 742
58.25 starpu_mpi_ft.h File Reference 745
58.26 starpu_mpi_lb.h File Referenceo 745
58.27 starpu_opencl.h File Reference L 746
58.28 starpu_openmp.h File Reference 747
58.29 starpu_parallel_worker.h File Reference oo 750

Generated by Doxygen

58.30 starpu_perf_monitoring.h File Reference Lo

58.31 starpu_perf_steering.h File Reference Lo

58.32 starpu_perfmodel.h File Reference

58.33 starpu_profiling.h File Reference Lo

58.34 starpu_profiling_tool.h File Reference

58.35 starpu_rand.h File Reference L

58.36 starpu_sched_component

.hFileReference

58.37 starpu_sched_ctx.h File Reference

58.38 starpu_sched_ctx_hypervisor.h File Reference

58.39 starpu_scheduler.h File Reference Lo

58.40 starpu_simgrid_wrap.h File Reference L

58.41 starpu_sink.h File Reference L

58.42 starpu_stdlib.h File Reference

58.43 starpu_task.h File Reference L

58.44 starpu_task_bundle.h File

Reference

58.45 starpu_task_dep.h File Reference Lo

58.46 starpu_task_list.h File Reference

58.47 starpu_task_utiLh File Reference L

58.48 starpu_thread.h File Reference

58.49 starpu_thread_util.h File Reference

58.50 starpu_tree.h File Reference L

58.51 starpu_util.h File Reference L

58.52 starpu_worker.h File Reference

58.53 starpufft.h File Reference

58.54 sc_hypervisor.h File Reference

58.55 sc_hypervisor_config.h File Referenceo Lo

58.56 sc_hypervisor_Ip.h File Reference

58.57 sc_hypervisor_monitoring.

h File Reference

58.58 sc_hypervisor_policy.h File Referenceo Lo

58.59 starpurm.h File Reference

59 Deprecated List

Index

751
752
753
755
756
756
757
760
762
763
764
764
764
765
768
768
769
769
771
774
775
775
776
779
780
781
782
783
784
786

789

790

Generated by Doxygen

This manual documents the usage of StarPU version 1.4.2. Its contents was last updated on 2023-11-23.

Copyright © 2009-2023 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Generated by Doxygen

Chapter 1

Introduction

1.1 Motivation

The use of specialized hardware, such as accelerators or coprocessors offers an interesting approach to overcoming
the physical limits encountered by processor architects. As a result, many machines are now equipped with one or
several accelerators (e.g. a GPU), in addition to the usual processor(s). While significant efforts have been devoted
to offloading computation onto such accelerators, very little attention has been paid to portability concerns on the
one hand, and to the possibility of having heterogeneous accelerators and processors interact on the other hand.
StarPU is a runtime system that provides support for heterogeneous multicore architectures. It not only offers
a unified view of the computational resources (i.e. CPUs and accelerators simultaneously) but also takes care
of efficiently mapping and executing tasks onto an heterogeneous machine while transparently handling low-level
issues such as data transfers in a portable manner.

1.2 StarPU in a Nutshell

StarPU is a software tool designed to enable programmers to harness the computational capabilities of both CPUs
and GPUs, all while sparing them the need to meticulously adapt their programs for specific target machines and
processing units.

At the heart of StarPU lies its runtime support library, which takes charge of scheduling tasks supplied by applica-
tions on heterogeneous CPU/GPU systems. Furthermore, StarPU provides programming language support through
an OpenCL front-end (SOCL OpenCL Extensions).

StarPU's runtime mechanism and programming language extensions are built around a task-based programming
model. In this modell, applications submit computational tasks, with CPU and/or GPU implementations. StarPU
effectively schedules these tasks and manages the associated data transfers across available CPUs and GPUs.
The data that a task operates on are automatically exchanged between accelerators and the main memory, thereby
sparing programmers the intricacies of scheduling and the technical details tied to these transfers.

StarPU excels in its adaptness at efficiently scheduling tasks using established algorithms from the literature
(Task Scheduling Policies). Furthermore addition, it provides the flexibility for scheduling experts, such as compiler
or computational library developers, to implement custom scheduling policies in a manner that is easily portable
(How To Define A New Scheduling Policy).

The remainder of this section describes the main concepts used in StarPU.

A video, lasting 26 minutes, accessible on the StarPU website (https://starpu.gitlabpages.+«
inria. fr/) presents these concepts.

Additionally, a serie of tutorials can be found at https://starpu.gitlabpages.inria.«
fr/tutorials/

1.2.1 Codelet and Tasks

One of StarPU's key data structures is the codelet. A codelet defines a computational kernel that can potentially
be implemented across various architectures, including CPUs, CUDA devices, or OpenCL devices.

Another pivotal data structure is the task. Executing a StarPU task involves applying a codelet to a data set,
utilizing one of the architectures on which the codelet is implemented. Therefore, a task describes the codelet that it
uses, the data accessed, and how they are accessed during the computation (read and/or write). StarPU tasks are

Generated by Doxygen

https://starpu.gitlabpages.inria.fr/
https://starpu.gitlabpages.inria.fr/
https://starpu.gitlabpages.inria.fr/tutorials/
https://starpu.gitlabpages.inria.fr/tutorials/

4 Introduction

asynchronous, meaning that submitting a task to StarPU is a non-blocking operation. The task structure can also
specify a callback function, which is called once StarPU succesfully completes the task. Additionally, it contains
optional fields that the application may use to provide hints to the scheduler, such as priority levels.

By default, task dependencies are inferred from data dependency (sequential coherency) within StarPU. However,
the application has the ability to disable sequential coherency for specific data, and dependencies can also be
specifically defined. A task can be uniquely identified by a 64-bit number, chosen by the application, referred to as
a tag. Task dependencies can be enforced through callback functions, by submitting other tasks, or by specifying
dependencies between tags (which can correspond to tasks that have yet to be submitted).

1.2.2 StarPU Data Management Library

As StarPU dynamically schedules tasks at runtime, the need for data transfers is automatically managed in a™‘just-
in-time™ manner between different processing units, This automated approach alleviates the burden on application
programmers to explicitly handle data transfers. Furthemore, to minimize needless transfers, StarPU retains data
at the location of its last use, even if modifications were made there. Additionally, StarPU allows multiple instances
of the same data to coexist across various processing units simultaneously, as long as the data remains unaltered.

1.3 Application Taskification

We will explain here shortly the concept of "taskifying” an application.
Before transitioning to StarPU, you must transform your application as follows:

» Refactor functions into "pure" functions that exclusively utilize data from their parameters.
+ Create a central main function responsible for calling these pure functions.

Once this restructuring is complete, integrating StarPU or any similar task-based library becomes straightforward.
You merely replace function calls with task submissions, leveraging the library's capabilities.
Chapter A Stencil Application shows how to easily convert an existing application to use StarPU.

1.4 Research Papers

Research papers about StarPU can be found at https://starpu.gitlabpages.inria.«
fr/publications/.
A good overview is available in the research report at http://hal.archives-ouvertes.«
fr/inria-00467677.

Generated by Doxygen

https://starpu.gitlabpages.inria.fr/publications/
https://starpu.gitlabpages.inria.fr/publications/
http://hal.archives-ouvertes.fr/inria-00467677
http://hal.archives-ouvertes.fr/inria-00467677

Chapter 2

Documentation Organization

The documentation chapters include

¢ mmmnee — StarPU Installation ------ —

Building and Installing StarPU

Execution Configuration Through Environment Variables

Compilation Configuration

o mmmnee — StarPU Basics ------ —

StarPU Applications, setting up Your Own Code

Basic Examples

Full source code for the 'Scaling a Vector’ example
Tasks In StarPU

Data Management

Scheduling

Examples in StarPU Sources

¢ mmenee — StarPU Applications ------ —

A Stencil Application
o mmmmee — StarPU Performances ------ —

— Benchmarking StarPU

Online Performance Tools

Offline Performance Tools
¢ mmenee — StarPU FAQs ------ —

Check List When Performance Are Not There

Frequently Asked Questions

¢ mmmnee — StarPU Language Bindings ------ —

The StarPU Native Fortran Support
StarPU Java Interface

Python Interface
The StarPU OpenMP Runtime Support (SORS)

¢ mmmnee — StarPU Extensions ------ —

Configuration and Initialization
Advanced Tasks In StarPU

Generated by Doxygen

6 Documentation Organization

Advanced Data Management

— Advanced Scheduling

— Scheduling Contexts

— Scheduling Context Hypervisor

— How To Define A New Scheduling Policy
— CUDA Support

— OpenCL Support

— Maxeler FPGA Support

— Out Of Core

— MPI Support

— TCP/IP Support

— Transactions

— Fault Tolerance

— FFT Support

— SOCL OpenCL Extensions

— Hierarchical DAGS

— Creating Parallel Workers On A Machine
— Interoperability Support

— SimGrid Support

— Debugging Tools

— Helpers

+ Appendices

The GNU Free Documentation License

Module Documentation

File Documentation

Deprecated List

Make sure to have had a look at those too!

Generated by Doxygen

Chapter 3

Glossary

A codelet stores pointers to different implementations of the same theoretical function.

A memory node can be either the main RAM, GPU-embedded memory or disk memory.

A bus represents a connection between memory nodes.

A data handle keeps track of multiple copies of the same data (registered by the application) across various
memory nodes. The data management library ensures coherency among these copies.

The home memory node of a data handle is the memory node where the data was originally registered (typically
the main memory node).

A task represents a scheduled execution of a codelet on specific data handles.

A tag is a rendez-vous point. Tasks generally have their own tag and can depend on other tags. The value of a tag
is chosen by the application.

A worker execute tasks. Typically, there is one worker per CPU computation core and one per accelerator (with a
dedicated whole CPU core).

A driver oversees a given type of worker. Currently, there are CPU, CUDA, and OpenCL drivers.

A performance model is a (dynamic or static) model of the performance of a given codelet. Codelets can have
performance model for execution time as well as energy consumption.

A data interface describes the layout of the data: for a vector, it includes a pointer for the start, the number of
elements and the size of elements ; for a matrix, it involves a pointer for the start, the number of elements per
row, the offset between rows, and the size of each element ; etc. Codelet functions receive interfaces for the local
memory node copies of data handles assigned to the scheduled task, to access their data.

Data partitioning means dividing the data of a specific data handle (referred to as the father) into several children
data handles, each representing distinct segments of the original data.

A filter is the function responsible for deriving child data handles from a father data handle, thus defining how the
partitioning should be done (e.g. horizontal, vertical, etc.)

Acquiring a data handle can be done from the main application, allowing secure access to the data of a data handle
from its home node without needing to unregister it.

Generated by Doxygen

Glossary

Generated by Doxygen

Part |

StarPU Installation

Generated by Doxygen

Chapter 4

Organization

This parts shows a basic usage of StarPU and how to execute the provided examples or your own applications.
+ Chapter Building and Installing StarPU shows how to build and install StarPU.
» Chapter Compilation Configuration shows how to tune StarPU building process through configuration options.

« Chapter Execution Configuration Through Environment Variables lists environment variables that can be
used to tune StarPU when executing an application.

Finally, Chapter Configuration and Initialization shows a brief overview of how to configure and tune StarPU.

Generated by Doxygen

12

Organization

Generated by Doxygen

Chapter 5

Building and Installing StarPU

Depending on the level of customization required for the library installation, we offer several solutions.

1. Basic Installation or Evaluation: If you are looking to simply try out the library, assess its performance on
simple cases, run examples, or use the latest stable version, we recommend the following options:

» For Linux Debian or Ubuntu distributions, consider using the latest StarPU Debian package (see
Installing a Binary Package).

» For macOS, you can opt for Brew and follow the steps in Installing a Source Package.

2. Customization for Specific Needs: If you intend to use StarPU but require modifications, such as switching
to another version (git branch), changing the default MPI, utilizing a preferred compiler, or altering source
code, consider these options:

» Guix or Spack can be useful, as these package managers allow dynamic changes during source-based
builds. Refer to Installing a Source Package for details.

« Alternatively, you can directly build from the source using the native build system of the library (Makefile,
GNU autotools). Instructions can be found in Building from Source.

3. Experiment Reproducibility: If your focus is on experiment reproducibility, we recommend using Guix. Refer
to Installing a Source Package for guidance.

Whichever solution you choose, you can utilize the tool bin/starpu_config to view all the configuration pa-
rameters used during StarPU installation.
Please refer to the provided documentation for specific installation steps and details for each solution.

5.1 Installing a Binary Package

One of the StarPU developers being a Debian Developer, the packages are well integrated and very up-to-date. To
see which packages are available, simply type:

$ apt-cache search starpu

To install what you need, type for example:

$ sudo apt-get install libstarpu-dev

5.2 Installing a Source Package

StarPU is available from different package managers.
* Guix https://gitlab.inria.fr/guix—hpc/guix—hpc
* Spack https://github.com/spack/spack/
* Brew https://gitlab.inria.fr/solverstack/brew-repo

Documentation on how to install StarPU with these package managers is directly available from the links specified
above. We give below a brief overview of the spack installation.

Generated by Doxygen

https://gitlab.inria.fr/guix-hpc/guix-hpc
https://github.com/spack/spack/
https://gitlab.inria.fr/solverstack/brew-repo

14 Building and Installing StarPU

5.2.1 Installing the Spack Package
Here is a quick guide to install StarPU with spack.

$ git clone git@github.com:spack/spack.git
$ source ./spack/share/spack/setup-env.sh # if you use bash or zsh
$ spack install starpu

By default, the latest release will be installed, one can choose to install a specific release or even the master version.

$ spack install starpul@master
$ spack install starpu@l.3.5

We strongly advise reading the detailed reference manual at https://spack.readthedocs.«
io/en/latest/getting_started.html

5.3 Building from Source

StarPU can be built and installed by the standard means of the GNU autotools. The following chapter is intended to
briefly remind how these tools can be used to install StarPU.

5.3.1 Optional Dependencies

The hwloc (http://www.open-mpi.org/software/hwloc) topology discovery library is not manda-
tory to use StarPU, but strongly recommended. It allows for topology aware scheduling, which improves perfor-
mance. hwloc is available in major free operating system distributions, and for most operating systems. Make
sure to not only install a hwloc or 1ibhwloc package, but also hwloc—devel or 1ibhwloc—dev to have
hwloc headers etc.

If 1ibhwloc is installed in a standard location, no option is required, it will be detected automatically, otherwise
--with-hwloc=<directory> should be used to specify its location.

If 1ibhwloc is not available on your system, the option --without-hwloc should be explicitly given when calling the
script configure.

5.3.2 Getting Sources

StarPU's sources can be obtained from the download page of the StarPU website (https://starpu.«
gitlabpages.inria.fr/files/).

All releases and the development tree of StarPU are freely available on StarPU SCM server under the LGPL license.
Some releases are available under the BSD license.

The latest release can be downloaded from the StarPU download page (https://starpu.gitlabpages.«+
inria.fr/files/).

The latest nightly snapshot can be downloaded from the StarPU website (https://starpu.+«
gitlabpages.inria.fr/files/testing/).

And finally, the current development version is also accessible via git. It should only be used if you need the very
latest changes (i.e. less than a day old!).

$ git clone git@gitlab.inria.fr:starpu/starpu.git

5.3.3 Configuring StarPU

Running autogen. sh is not necessary when using the tarball releases of StarPU. However, when using the
source code from the git repository, you first need to generate the script configure and the different Makefiles.
This requires the availability of autoconf and automake >=2.60.

$./autogen.sh

You then need to configure StarPU. Details about options that are useful to give to configure are given in
Compilation Configuration.

$./configure

Generated by Doxygen

https://spack.readthedocs.io/en/latest/getting_started.html
https://spack.readthedocs.io/en/latest/getting_started.html
http://www.open-mpi.org/software/hwloc
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/
https://starpu.gitlabpages.inria.fr/files/testing/
https://starpu.gitlabpages.inria.fr/files/testing/

5.3 Building from Source 15

If configure does not detect some software or produces errors, please make sure to post the contents of the file
config.log when reporting the issue.

By default, the files produced during the compilation are placed in the source directory. As the compilation generates
a lot of files, it is advised to put them all in a separate directory. It is then easier to clean up, and this allows to
compile several configurations out of the same source tree. To do so, simply enter the directory where you want the
compilation to produce its files, and invoke the script configure located in the StarPU source directory.

$ mkdir build

$ cd build
$../configure

By default, StarPU will be installed in /usr/local/bin, /usr/local/1lib, etc. You can specify an installa-
tion prefix other than /usr/local using the option —prefix, for instance:

$../configure —-prefix=$HOME/starpu

5.3.4 Building StarPU

$ make

Once everything is built, you may want to test the result. An extensive set of regression tests is provided with Star«
PU. Running the tests is done by calling make check. These tests are run every night and the result from the
main profile is publicly available (https://starpu.gitlabpages/files/testing/master/).

$ make check

5.3.5 Installing StarPU
In order to install StarPU at the location which was specified during configuration:

$ make install
If you have let StarPU install in /usr/local/, you additionally need to run

$ sudo ldconfig

so the libraries can be found by the system.
Libtool interface versioning information are included in libraries names (1libstarpu-1.4.so, libstarpumpi-1.«
4.soand libstarpufft-1.4.s0).

Generated by Doxygen

https://starpu.gitlabpages/files/testing/master/

16

Building and Installing StarPU

Generated by Doxygen

Chapter 6

Compilation Configuration

The behavior of the StarPU library and tools may be tuned thanks to the following configure options.

6.1 Common Configuration

—enable-debug Enable debugging messages.
—enable-spinlock-check Enable checking that spinlocks are taken and released properly.
—enable-fast Disable assertion checks, which saves computation time.

—enable-verbose Increase the verbosity of the debugging messages. This can be disabled at runtime by setting
the environment variable STARPU_SILENT to any value. —enable-verbose=extra increase even more
the verbosity.

$ STARPU_SILENT=1 ./vector_scal
—enable-coverage Enable flags for the coverage tool gcov.

—enable-quick-check Specify tests and examples should be run on a smaller data set, i.e allowing a faster exe-
cution time

—enable-long-check Enable some exhaustive checks which take a really long time.
—enable-new-check Enable new testcases which are known to fail.

—with-hwloc Specify hwloc should be used by StarPU. hwloc should be found by the means of the tool
pkg-config.

—with-hwloc=prefix Specify hwloc should be used by StarPU. hw1loc should be found in the directory spec-
ified by prefix
—without-hwloc Specify hwloc should not be used by StarPU.

—disable-build-doc Disable the creation of the documentation. This should be done on a machine
which does not have the tools doxygen and latex (plus the packages latex-xcolor and
texlive-latex—extra).

—enable-build-doc-pdf By default, only the HTML documentation is generated. Use this option to also enable
the generation of the PDF documentation. This should be done on a machine which does have the tools
doxygen and latex (plus the packages latex—xcolor and texlive-latex—extra).

—enable-icc Enable the compilation of specific ICC examples. StarPU itself will not be compiled with ICC unless
specified with CC=1icc

—disable-icc Disable the usage of the ICC compiler. Otherwise, when a ICC compiler is found, some specific ICC
examples are compiled as explained above.

—with-check-flags Specify flags which will be given to C, CXX and Fortran compilers when valid

Additionally, the script configure recognize many variables, which can be listed by typing ./configure
~help. Forexample, . /configure NVCCFLAGS="-arch sm_20" adds a flag for the compilation of CUDA
kernels, and NVCC_CC=gcc-5 allows to change the C++ compiler used by nvcc.

Generated by Doxygen

18 Compilation Configuration

6.2 Configuring Workers

—enable-data-locality-enforce Enable data locality enforcement when picking up a worker to execute a task. This
mechanism is by default disabled.

—enable-blocking-drivers By default, StarPU keeps CPU workers awake permanently, for better reactivity. This
option makes StarPU put CPU workers to real sleep when there are not enough tasks to compute.

—enable-worker-callbacks If blocking drivers are enabled, enable callbacks to notify an external resource man-
ager about workers going to sleep and waking up.

—enable-maxcpus=count Use at most count CPU cores. This information is then available as the macro
STARPU_MAXCPUS.
The default value is aut o. it allows StarPU to automatically detect the number of CPUs on the build machine.
This should not be used if the running host has a larger number of CPUs than the build machine.
—enable-maxnumanodes=count Use at most count NUMA nodes. This information is then available as the
macro STARPU_MAXNUMANODES.

The default value is auto. it allows StarPU to automatically detect the number of NUMA nodes on the build
machine. This should not be used if the running host has a larger number of NUMA nodes than the build
machine.

—disable-cpu Disable the use of CPUs of the machine. Only GPUs etc. will be used.

—enable-maxcudadev=count Use at most count CUDA devices. This information is then available as the
macro STARPU_MAXCUDADEVS.

—disable-cuda Disable the use of CUDA, even if a valid CUDA installation was detected.

—with-cuda-dir=prefix Search for CUDA under prefix, which should notably contain the file include/cuda. «
h.

—with-cuda-include-dir=dir Search for CUDA headers under dir, which should notably contain the file
cuda . h. This defaults to /include appended to the value given to --with-cuda-dir.

—with-cuda-lib-dir=dir Search for CUDA libraries under dir, which should notably contain the CUDA shared
libraries—e.g., Libcuda. so. This defaults to /1 ib appended to the value given to --with-cuda-dir.

—disable-cuda-memcpy-peer Explicitly disable peer transfers when using CUDA 4.0.

—enable-maxopencldev=count Use at most count OpenCL devices. This information is then available as the
macro STARPU_MAXOPENCLDEVS.

—disable-opencl Disable the use of OpenCL, even if the SDK is detected.

—with-opencl-dir=prefix Search for an OpenCL implementation under pre fix, which should notably contain
include/CL/cl.h (or include/OpenCL/cl.h on Mac OS).

—with-opencl-include-dir=dir Search for OpenCL headers under di r, which should notably contain CL./c1. «+
h (or OpenCL/cl.h on Mac OS). This defaults to /include appended to the value given to
--with-opencl-dir.

—with-opencl-lib-dir=dir Search for an OpenCL library under dir, which should notably contain the Open«
CL shared libraries—e.g. 1ibOpenCL.so. This defaults to /1ib appended to the value given to
--with-opencl-dir.

—enable-opencl-simulator Enable considering the provided OpenCL implementation as a simulator, i.e. use the
kernel duration returned by OpenCL profiling information as wallclock time instead of the actual measured
real time. This requires the SimGrid support.

—enable-maximplementations=count Allow for at most count codelet implementations for the same target
device. This information is then available as the macro STARPU_MAXIMPLEMENTATIONS macro.

—enable-max-sched-ctxs=count Allow for at most count scheduling contexts This information is then available
as the macro STARPU_NMAX_SCHED_ CTXS.

Generated by Doxygen

6.3 Extension Configuration 19

—disable-asynchronous-copy Disable asynchronous copies between CPU and GPU devices. The AMD imple-
mentation of OpenCL is known to fail when copying data asynchronously. When using this implementation, it
is therefore necessary to disable asynchronous data transfers.

—disable-asynchronous-cuda-copy Disable asynchronous copies between CPU and CUDA devices.

—disable-asynchronous-opencl-copy Disable asynchronous copies between CPU and OpenCL devices. The
AMD implementation of OpenCL is known to fail when copying data asynchronously. When using this imple-
mentation, it is therefore necessary to disable asynchronous data transfers.

—disable-asynchronous-hip-copy Disable asynchronous copies between CPU and HIP devices.

—disable-asynchronous-mpi-master-slave-copy Disable asynchronous copies between CPU and MPI Slave de-
vices.

—disable-asynchronous-tcpip-master-slave-copy Disable asynchronous copies between CPU and MPI Slave
devices.

—disable-asynchronous-fpga-copy Disable asynchronous copies between CPU and Maxeler FPGA devices.

—enable-maxnodes=count Use at most count memory nodes. This information is then available as the macro
STARPU_MAXNODES. Reducing it allows to considerably reduce memory used by StarPU data structures.

—with-max-fpga=dir Enable the Maxeler FPGA driver support, and optionally specify the location of the Maxeler
FPGA library.

—disable-asynchronous-max-fpga-copy Disable asynchronous copies between CPU and Maxeler FPGA de-
vices.

6.3 Extension Configuration

—enable-starpupy Enable the StarPU Python Interface (Python Interface)

—enable-python-multi-interpreter Enable the use of multiple interpreters in the StarPU Python Interface
(Multiple Interpreters)

—disable-mpi Disable the build of libstarpumpi. By default, it is enabled when MPI is found.
—enable-mpi Enable the build of libstarpumpi. This is necessary when using Simgrid+MPI.
—with-mpicc=path Use the compiler mpicc at path, for StarPU-MPI. (MPI Support).

—enable-mpi-pedantic-isend Before performing any MPI communication, StarPU-MPI waits for the data to be
available in the main memory of the node submitting the request. For send communications, data is ac-
quired with the mode STARPU_R. When enabling the pedantic mode, data are instead acquired with the
STARPU_RW which thus ensures that there is not more than 1 concurrent MPI_ I send calls accessing the
data and StarPU does not read from it from tasks during the communication.

—enable-mpi-master-slave Enable the MPI Master-Slave support. By default, it is disabled.

—enable-mpi-verbose Increase the verbosity of the MPI debugging messages. This can be disabled at runtime
by setting the environment variable STARPU_SILENT to any value. —enable-mpi-verbose=extra
increase even more the verbosity.

$ STARPU_SILENT=1 mpirun -np 2 ./insert_task
—enable-mpi-ft Enable the MPI checkpoint mechanism. See MPI Fault Tolerance Support
—enable-mpi-ft-stats Enable the statistics for the MPI checkpoint mechanism. See MPI Fault Tolerance Support
—enable-tcpip-master-slave Enable the TCP/IP Master-Slave support (TCP/IP Support). By default, it is disabled.

—enable-nmad Enable the NewMadeleine implementation for StarPU-MPI. See Using the NewMadeleine communication library
for more details.

—disable-fortran Disable the fortran extension. By default, it is enabled when a fortran compiler is found.

Generated by Doxygen

20 Compilation Configuration

—disable-socl Disable the SOCL extension (SOCL OpenCL Extensions). By default, it is enabled when an Open«
CL implementation is found.

—enable-openmp Enable OpenMP Support (The StarPU OpenMP Runtime Support (SORS))
—enable-openmp-llvm Enable LLVM OpenMP Support (Example: An OpenMP LLVM Support)
—enable-bubble Enable Hierarchical dags support (Hierarchical DAGS)

—enable-parallel-worker Enable parallel worker support (Creating Parallel Workers On A Machine)

—enable-eclipse-plugin Enable the StarPU Eclipse Plugin. See StarPU Eclipse Plugin to know how to install
Eclipse.

6.4 Advanced Configuration

—enable-perf-debug Enable performance debugging through gprof.
—enable-model-debug Enable performance model debugging.

—enable-fxt-lock Enable additional trace events which describes locks behaviour. This is however extremely heavy
and should only be enabled when debugging insides of StarPU.

—enable-maxbuffers Define the maximum number of buffers that tasks will be able to take as parameters, then
available as the macro STARPU_NMAXBUFS.

—enable-fxt-max-files=count Use at most count mpi nodes fxt files for generating traces. This information
is then available as the macro STARPU_FXT_MAX_FILES. This information is used by FxT tools when
considering multi node traces. Default value is 64.

—enable-allocation-cache Enable the use of a data allocation cache to avoid the cost of it with CUDA. Still exper-
imental.

—enable-opengl-render Enable the use of OpenGL for the rendering of some examples.
—enable-blas-lib=prefix Specify the blas library to be used by some of the examples. Libraries available :

» none [default] : no BLAS library is used
* atlas: use ATLAS library

* goto: use GotoBLAS library

* openblas: use OpenBLAS library

* mkl: use MKL library (you may need to set specific CFLAGS and LDFLAGS with —with-mkl-cflags and
—with-mkl-Idflags)

—enable-leveldb Enable linking with LevelDB if available

—enable-hdf5 Enable building HDF5 support.

—with-hdf5-include-dir=path Specify the directory where is stored the header file hdf5.h.
—with-hdf5-lib-dir=path Specify the directory where is stored the library hdf5.
—disable-starpufft Disable the build of libstarpufft, even if fftw or cuFFT is available.

—enable-starpufft-examples Enable the compilation and the execution of the libstarpufft examples. By default,
they are neither compiled nor checked.

—with-fxt=prefix Searchfor FxTunderprefix. FxT(http://savannah.nongnu.org/projects/fkt)
is used to generate traces of scheduling events, which can then be rendered them using VIiTE (Off-line«
PerformanceFeedback). prefix should notably contain include/fxt/fxt.h.

—with-perf-model-dir=dir Store performance models under dir, instead of the current user's home.

—with-goto-dir=prefix Search for GotoBLAS under prefix, which should notably contain 1ibgoto.so or
libgoto2.so.

Generated by Doxygen

http://savannah.nongnu.org/projects/fkt

6.4 Advanced Configuration 21

—with-atlas-dir=prefix Search for ATLAS under prefix, which should notably contain include/cblas.h.
—with-mkl-cflags=cflags Use cflags to compile code that uses the MKL library.

—with-mki-ldflags=1dflags Use 1dflags when linking code that uses the MKL library. Note that the MKL
website (http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/)
provides a script to determine the linking flags.

—disable-glpk Disable the use of 1ibglpk for computing area bounds.
—disable-build-tests Disable the build of tests.
—disable-build-examples Disable the build of examples.

—enable-sc-hypervisor Enable the Scheduling Context Hypervisor plugin (Scheduling Context Hypervisor). By
default, it is disabled.

—enable-memory-stats Enable memory statistics (Memory Feedback).

—enable-simgrid Enable simulation of execution in SimGrid, to allow easy experimentation with various numbers
of cores and GPUs, or amount of memory, etc. Experimental.

The path to SimGrid can be specified through the SIMGRID_CFLAGS and SIMGRID_LIBS environment
variables, for instance:

export SIMGRID_CFLAGS="-I/usr/local/simgrid/include"
export SIMGRID_LIBS="-L/usr/local/simgrid/lib -lsimgrid"

—with-simgrid-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
library.

—with-simgrid-include-dir Similar to the option --enable-simgrid but also allows to specify the location to the
SimGirid include directory.

—with-simgrid-lib-dir Similar to the option --enable-simgrid but also allows to specify the location to the SimGrid
lib directory.

—with-smpirun=path Use the smpirun at path

—enable-simgrid-mc Enable the Model Checker in simulation of execution in SimGrid, to allow exploring various
execution paths.

—enable-calibration-heuristic Allow to set the maximum authorized percentage of deviation for the history-based
calibrator of StarPU. A correct value of this parameter must be in [0..100]. The default value of this parameter
is 10. Experimental.

—enable-mlir Allow to enable multiple linear regression models (see Performance Model Example)

—enable-mir-system-blas Allow to make multiple linear regression models use the system-provided BLAS for
dgels (see Performance Model Example)

Generated by Doxygen

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

22

Compilation Configuration

Generated by Doxygen

Chapter 7

Execution Configuration Through Environment
Variables

The StarPU library and tools's behavior can be tuned using the following environment variables. To access these
variables, you can use the provided functions.

« starpu_getenv() retrieves the value of an environment variable.

 starpu_get_env_string_var_default() retrieves the value of an environment variable as a string. If the variable
is not set, you can provide a default value.

« starpu_get_env_size_default() retrieves the value of an environment variable as a size in bytes, or a default
value if the environment variable is not set.

These functions allow to fine-tune the behavior of StarPU according to your preferences and requirements by lever-
aging environment variables.

7.1 Configuring Workers

7.1.1 General Configuration

STARPU_WORKERS_NOBIND Setting it to non-zero will prevent StarPU from binding its threads to CPUs. This
is for instance useful when running the test suite in parallel.

STARPU_WORKERS_GETBIND By default StarPU uses the OS-provided CPU binding to determine how many
and which CPU cores it should use. This is notably useful when running several StarPU-MPI processes on
the same host, to let the MPI launcher set the CPUs to be used. Default value is 1.

If that binding is erroneous (e.g. because the job scheduler binds to just one core of the allocated cores), you
can set STARPU_WORKERS_GETBIND to 0 to make StarPU use all cores of the machine.

STARPU_WORKERS_CPUID Passing an array of integers in STARPU_WORKERS_CPUID specifies on which
logical CPU the different workers should be bound. For instance, if STARPU_WORKERS_CPUID="0 1 4
5", the first worker will be bound to logical CPU #0, the second CPU worker will be bound to logical CPU #1
and so on. Note that the logical ordering of the CPUs is either determined by the OS, or provided by the library
hwloc in case it is available. Ranges can be provided: for instance, STARPU_WORKERS_CPUID="1-3
5" will bind the first three workers on logical CPUs #1, #2, and #3, and the fourth worker on logical CPU #5.
Unbound ranges can also be provided: STARPU_WORKERS_CPUID="1-" will bind the workers starting
from logical CPU #1 up to last CPU.

Note that the first workers correspond to the CUDA workers, then come the OpenCL workers, and finally the
CPU workers. For example, if we have STARPU_NCUDA=1, STARPU_NOPENCL=1, STARPU_NCPU=2
and STARPU_WORKERS_CPUID="0 2 1 3",the CUDA device will be controlled by logical CPU #0, the
OpenCL device will be controlled by logical CPU #2, and the logical CPUs #1 and #3 will be used by the CPU
workers.

If the number of workers is larger than the array given in STARPU_WORKERS_CPUID, the workers are

bound to the logical CPUs in a round-robin fashion: if STARPU_WORKERS_CPUID="0 1", the first and
the third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).

Generated by Doxygen

24 Execution Configuration Through Environment Variables

This variable is ignored if the field starpu_conf::use_explicit_workers_bindid passed to starpu_init() is set.

Setting STARPU_WORKERS_CPUID or STARPU_WORKERS_COREID overrides the binding provided by
the job scheduler, as described for STARPU_WORKERS_GETBIND.

STARPU_WORKERS_COREID Same as STARPU_WORKERS_CPUID, but bind the workers to cores instead of
PUs (hyperthreads).

STARPU_NTHREADS_PER_CORE Specify how many threads StarPU should run on each core. The default is
1 because kernels are usually already optimized for using a full core. Setting this to e.g. 2 instead allows
exploiting hyperthreading.

STARPU_MAIN_THREAD_BIND Tell StarPU to bind the thread that calls starpu_initialize() to a reserved CPU,
subtracted from the CPU workers.

STARPU_MAIN_THREAD_CPUID Tell StarPU to bind the thread that calls starpu_initialize() to the given CPU ID
(using logical numbering).

STARPU_MAIN_THREAD_COREID Same as STARPU_MAIN_THREAD_CPUID, but bind the thread that calls
starpu_initialize() to the given core (using logical numbering), instead of the PU (hyperthread).

STARPU_WORKER_TREE Define to 1 to enable the tree iterator in schedulers.

STARPU_SINGLE_COMBINED_WORKER Tell StarPU to create several workers which won't be able to work
concurrently. It will by default create combined workers, which size goes from 1 to the total number of CPU
workers in the system. STARPU_MIN_WORKERSIZE and STARPU_MAX_WORKERSIZE can be used to
change this default.

STARPU_MIN_WORKERSIZE Specify the minimum size of the combined workers. Default value is 2.

STARPU_MAX_WORKERSIZE Specify the minimum size of the combined workers. Default value is the number
of CPU workers in the system.

STARPU_SYNTHESIZE_ARITY_COMBINED_WORKER Specify how many elements are allowed between com-
bined workers created from hwloc information. For instance, in the case of sockets with 6 cores with-
out shared L2 caches, if STARPU_SYNTHESIZE_ARITY_COMBINED_ WORKER is set to 6, no combined
worker will be synthesized beyond one for the socket and one per core. If it is set to 3, 3 intermediate
combined workers will be synthesized, to divide the socket cores into 3 chunks of 2 cores. If it set to 2,
2 intermediate combined workers will be synthesized, to divide the socket cores into 2 chunks of 3 cores,
and then 3 additional combined workers will be synthesized, to divide the former synthesized workers into a
bunch of 2 cores, and the remaining core (for which no combined worker is synthesized since there is already
a normal worker for it).

Default value is 2, thus makes StarPU tend to build binary trees of combined workers.

STARPU_DISABLE_ASYNCHRONOUS_COPY Disable asynchronous copies between CPU and GPU devices.
The AMD implementation of OpenCL is known to fail when copying data asynchronously. When us-
ing this implementation, it is therefore necessary to disable asynchronous data transfers. One can call
starpu_asynchronous_copy_disabled() to check whether asynchronous data transfers between CPU and ac-
celerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY and STARPU_DISABLE_ASYNCHRONOUS OPENCL_COF

STARPU_EXPECTED_TRANSFER_TIME_WRITEBACK Set to 1 to make task transfer time estimations artifi-
cially include the time that will be needed to write back data to the main memory.

STARPU_DISABLE_PINNING Disable (1) or Enable (0) pinning host memory allocated through starpu_malloc(),
starpu_memory_pin() and friends. Default value is Enable. This permits to test the performance effect of
memory pinning.

STARPU_BACKOFF_MIN Set minimum exponential backoff of number of cycles to pause when spinning. Default
value is 1.

STARPU_BACKOFF_MAX Set maximum exponential backoff of number of cycles to pause when spinning. De-
fault value is 32.

Generated by Doxygen

7.1 Configuring Workers 25

STARPU_SINK Defined internally by StarPU when running in master slave mode.

STARPU_ENABLE_MAP Disable (0) or Enable (1) support for memory mapping between memory nodes. The
default is Disabled. One can call starpu_map_enabled() to check whether memory mapping support between
memory nodes is enabled.

STARPU_DATA_LOCALITY_ENFORCE Enable (1) or Disable(0) data locality enforcement when picking up a
worker to execute a task. Default value is Disable.

7.1.2 CPU Workers

STARPU_NCPU Specify the number of CPU workers (thus not including workers dedicated to control accelera-
tors). Note that by default, StarPU will not allocate more CPU workers than there are physical CPUs, and that
some CPUs are used to control the accelerators.

STARPU_RESERVE_NCPU Specify the number of CPU cores that should not be used by StarPU, so the applica-
tion can use starpu_get_next_bindid() and starpu_bind_thread_on() to bind its own threads.

This option is ignored if STARPU_NCPU or starpu_conf::ncpus is set.
STARPU_NCPUS Deprecated. You should use STARPU_NCPU.

7.1.3 CUDA Workers

STARPU_NCUDA Specify the number of CUDA devices that StarPU can use. If STARPU_NCUDA is lower than
the number of physical devices, it is possible to select which GPU devices should be used by the means of the
environment variable STARPU_WORKERS_CUDAID. By default, StarPU will create as many CUDA workers
as there are GPU devices.

STARPU_NWORKER_PER_CUDA Specify the number of workers per CUDA device, and thus the number of
kernels which will be concurrently running on the devices, i.e. the number of CUDA streams. Default value is
1.

STARPU_CUDA_THREAD_PER_WORKER Specify whether the cuda driver should use one thread per
stream (1) or to use a single thread to drive all the streams of the device or all devices (0), and
STARPU_CUDA_THREAD_PER_DEV determines whether is it one thread per device or one thread for all
devices. Default value is 0. Setting it to 1 is contradictory with setting STARPU_CUDA_THREAD_PER_DEV.

STARPU_CUDA_THREAD_ PER_DEV Specify whether the cuda driver should use one thread per device (1) or to
use a single thread to drive all the devices (0). Default value is 1. It does not make sense to set this variable
if STARPU_CUDA_THREAD_PER_WORKER is set to to 1 (since STARPU_CUDA_THREAD_PER_DEV is
then meaningless).

STARPU_CUDA_PIPELINE Specify how many asynchronous tasks are submitted in advance on CUDA devices.
This for instance permits to overlap task management with the execution of previous tasks, but it also allows
concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. Default value is 2.
Setting the value to 0 forces a synchronous execution of all tasks.

STARPU_WORKERS_CUDAID Select which CUDA devices should be used to run CUDA workers (similarly to
the STARPU_WORKERS_CPUID environment variable). On a machine equipped with 4 GPUs, setting
STARPU_WORKERS_CUDAID="1 3" and STARPU_NCUDA=2 specifies that 2 CUDA workers should
be created, and that they should use CUDA devices #1 and #3 (the logical ordering of the devices is the one
reported by CUDA).

This variable is ignored if the field starpu_conf::use_explicit_workers_cuda_gpuid passed to starpu_init() is
set.

STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY Disable asynchronous copies between CPU and CUDA
devices. One can call starpu_asynchronous_cuda_copy_disabled() to check whether asynchronous data
transfers between CPU and CUDA accelerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_COPY and STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY.

Generated by Doxygen

26 Execution Configuration Through Environment Variables

STARPU_ENABLE_CUDA_GPU_GPU_DIRECT Enable (1) or Disable (0) direct CUDA transfers from GPU to
GPU, without copying through RAM. Default value is Enable. This permits to test the performance effect of
GPU-Direct.

STARPU_CUDA_ONLY_FAST_ALLOC_OTHER_MEMNODES Specify if CUDA workers should do only fast al-
locations when running the datawizard progress of other memory nodes. This will pass the internal value
_STARPU_DATAWIZARD_ONLY_FAST_ALLOC to allocation methods. Default value is 0, allowing CUDA
workers to do slow allocations.

This can also be specified with starpu_conf::cuda_only_fast_alloc_other_memnodes.

7.1.4 OpenCL Workers

STARPU_NOPENCL Specify the number of OpenCL devices that StarPU can use. If STARPU_NOPENCL is
lower than the number of physical devices, it is possible to select which GPU devices should be used by
the means of the environment variable STARPU_WORKERS_OPENCLID. By default, StarPU will create as
many OpenCL workers as there are GPU devices.

Note that by default StarPU will launch CUDA workers on GPU devices. You need to disable CUDA to allow
the creation of OpenCL workers.

STARPU_WORKERS_OPENCLID Select which GPU devices should be used to run OpenCL workers (similarly
to the STARPU_WORKERS_CPUID environment variable) On a machine equipped with 4 GPUs, setting
STARPU_WORKERS_OPENCLID="1 3" and STARPU_NOPENCL=2 specifies that 2 OpenCL workers
should be created, and that they should use GPU devices #1 and #3.

This variable is ignored if the field starpu_conf::use_explicit_workers_opencl_gpuid passed to starpu_init() is
set.

STARPU_OPENCL_PIPELINE Specify how many asynchronous tasks are submitted in advance on OpenCL de-
vices. This for instance permits to overlap task management with the execution of previous tasks, but it also
allows concurrent execution on Fermi cards, which otherwise bring spurious synchronizations. Default value
is 2. Setting the value to 0 forces a synchronous execution of all tasks.

STARPU_OPENCL_ON_CPUS Specify that OpenCL workers can also be run on CPU devices. By default, the
OpenCL driver only enables GPU devices.

STARPU_OPENCL_ONLY_ON_CPUS Specify that OpenCL workers can ONLY be run on CPU devices. By de-
fault, the OpenCL driver enables GPU devices.

STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY Disable asynchronous copies between CPU and
OpenCL devices. The AMD implementation of OpenCL is known to fail when copying data asynchronously.
When using this implementation, it is therefore necessary to disable asynchronous data transfers. One can
call starpu_asynchronous_opencl_copy_disabled() to check whether asynchronous data transfers between
CPU and OpenCL accelerators are disabled.

See also STARPU_DISABLE_ASYNCHRONOUS_COPY and STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY.

7.1.5 Maxeler FPGA Workers

STARPU_NMAX_FPGA Specify the number of Maxeler FPGA devices that StarPU can use. If STARPU_NMAX_FPGA
is lower than the number of physical devices, it is possible to select which Maxeler FPGA devices should be
used by the means of the environment variable STARPU_WORKERS_MAX_FPGAID. By default, StarPU
will create as many Maxeler FPGA workers as there are GPU devices.

STARPU_WORKERS_MAX_FPGAID Select which Maxeler FPGA devices should be used to run Maxeler FPGA
workers (similarly to the STARPU_WORKERS_CPUID environment variable). On a machine equipped with
4 Maxeler FPGAs, setting STARPU_WORKERS_MAX_FPGAID="1 3" and STARPU_NMAX_FPGA=2
specifies that 2 Maxeler FPGA workers should be created, and that they should use Maxeler FPGA devices
#1 and #3 (the logical ordering of the devices is the one reported by the Maxeler stack).

STARPU_DISABLE_ASYNCHRONOUS_MAX_FPGA_COPY Disable asynchronous copies between CPU and
Maxeler FPGA devices. One can call starpu_asynchronous_max_fpga_copy_disabled() to check whether
asynchronous data transfers between CPU and Maxeler FPGA devices are disabled.

Generated by Doxygen

7.1 Configuring Workers 27

7.1.6 MPI Master Slave Workers
STARPU_NMPI_MS Specify the number of MPI master slave devices that StarPU can use.
STARPU_NMPIMSTHREADS Specift the number of threads to use on the MPI Slave devices.

STARPU_MPI_MS_MULTIPLE_THREAD Specify whether the master should use one thread per slave, or one
thread for driver all slaves. Default value is 0.

STARPU_MPI_MASTER_NODE Specify the rank of the MPI process which will be the master. Default value is 0.

STARPU_DISABLE_ASYNCHRONOUS_MPI_MS_COPY Disable asynchronous copies between CPU and MPI
Slave devices. One can call starpu_asynchronous_mpi_ms_copy_disabled() to check whether asynchronous
data transfers between CPU and MPI Slave devices are disabled.

7.1.7 TCP/IP Master Slave Workers
STARPU_NTCPIP_MS Specify the number of TCP/IP master slave devices that StarPU can use.

STARPU_TCPIP_MS_SLAVES Specify the number of TCP/IP master slave processes that are expected to be
run. This should be provided both to the master and to the slaves.

STARPU_TCPIP_MS_MASTER Specify (for slaves) the IP address of the master so they can connect to it. They
will then automatically connect to each other.

STARPU_TCPIP_MS_PORT Specify the port of the master, for connexions between slaves and the master. De-
fault value is 1234.

STARPU_NTCPIPMSTHREADS Specify the number of threads to use on the TCP/IP Slave devices.

STARPU_TCPIP_MS_MULTIPLE_THREAD Specify whether the master should use one thread per slave, or one
thread for driver all slaves. Default value is 0.

STARPU_DISABLE_ASYNCHRONOUS_TCPIP_MS_COPY Disable asynchronous copies between CPU and
TCP/IP Slave devices. One can call starpu_asynchronous_tcpip_ms_copy_disabled() to check whether asyn-
chronous data transfers between CPU and TCP/IP Slave devices are disabled.

7.1.8 HIP Workers

STARPU_NHIP Specify the number of HIP devices that StarPU can use. If STARPU_NHIP is lower than the
number of physical devices, it is possible to select which HIP devices should be used by the means of the
environment variable STARPU_WORKERS_HIPID. By default, StarPU will create as many HIP workers as
there are HIP devices.

STARPU_WORKERS_HPIID Select which HIP devices should be used to run HIP workers (similarly to the
STARPU_WORKERS_HIPID environment variable). On a machine equipped with 4 HIP devices, setting
STARPU_WORKERS_HIPID="1 3" and STARPU_NHIP=2 specifies that 2 HIP workers should be cre-
ated, and that they should use HIP devices #1 and #3.

This variable is ignored if the field starpu_conf::use_explicit_workers_hip_gpuid passed to starpu_init() is set.

STARPU_DISABLE_ASYNCHRONOUS HIP_COPY Disable asynchronous copies between CPU and HIP de-
vices. One can call starpu_asynchronous_hip_copy_disabled() to check whether asynchronous data trans-
fers between CPU and HIP accelerators are disabled.

7.1.9 MPI Configuration

STARPU_MPI_THREAD_CPUID Tell StarPU to bind its MPI thread to the given CPU id, subtracted from the CPU
workers (unless STARPU_NCPU is defined).

Default value is -1, it will let StarPU allocate a CPU.

STARPU_MPI_THREAD_COREID Same as STARPU_MPI_THREAD_CPUID, but bind the MPI thread to the
given core ID, instead of the PU (hyperthread).

Generated by Doxygen

28 Execution Configuration Through Environment Variables

STARPU_MPI_NOBIND Setting it to non-zero will prevent StarPU from binding the MPI to a separate core. This
is for instance useful when running the testsuite on a single system.

STARPU_MPI_GPUDIRECT Enable (1) or disable (0) MPI GPUDirect support. Default value (-1) is to enable if
available. If STARPU_MPI_GPUDIRECT is explicitly set to 1, StarPU-MPI will warn if MPI does not provide
the GPUDirect support.

STARPU_MPI_PSM2 This variable allows to supercede PSM2 detection when asking for MPI GPUDirect support.
This is helpful when using old intel compilers, for which PSM2 detection is always true. The default (1) is to
enable it. If PSM2 is detected whereas it should not be, this variable can be set to 0.

STARPU_MPI_REDUX_ARITY_THRESHOLD The arity of the automatically-detected reduction trees follows the
following rule: when the data to be reduced is of small size a flat tree is unrolled i.e. all the contributing nodes
send their contribution to the root of the reduction. When the data to be reduced is of big size, a binary tree
is used instead. The default threshold between flat and binary tree is 1024 bytes. By setting the environment
variable with a negative value, all the automatically detected reduction trees will use flat trees. If this value is
set to 0, then binary trees will always be selected. Otherwise, the setup value replaces the default 1024.

7.2 Configuring The Scheduling Engine

STARPU_SCHED Select the scheduling policy from those proposed by StarPU: work random, stealing, greedy,
with performance models, etc.

Use STARPU_SCHED=help to get the list of available schedulers.

STARPU_SCHED_LIB Specify the location of a dynamic library to choose a user-defined scheduling policy. See
Using a New Scheduling Policy for more information.

STARPU_MIN_PRIO Set the minimum priority used by priorities-aware schedulers. The flag can also be set
through the field starpu_conf::global_sched_ctx_min_priority.

STARPU_MAX_PRIO Set the maximum priority used by priorities-aware schedulers. The flag can also be set
through the field starpu_conf::global_sched_ctx_max_priority.

STARPU_CALIBRATE Set to 1 to calibrate the performance models during the execution. Set to 2 to drop the
previous values and restart the calibration from scratch. Set to 0 to disable calibration, this is the default
behaviour.

Note: this currently only applies to dm and dmda scheduling policies.

STARPU_CALIBRATE_MINIMUM Define the minimum number of calibration measurements that will be made
before considering that the performance model is calibrated. Default value is 10.

STARPU_BUS_CALIBRATE Setto 1 to recalibrate the bus during initialization.
STARPU_PREFETCH Enable (1) or disable (0) data prefetching. Default value is Enable.

If prefetching is enabled, when a task is scheduled to be executed e.g. on a GPU, StarPU will request an
asynchronous transfer in advance, so that data is already present on the GPU when the task starts. As a
result, computation and data transfers are overlapped.

STARPU_SCHED_ALPHA To estimate the cost of a task StarPU takes into account the estimated computation
time (obtained thanks to performance models). The alpha factor is the coefficient to be applied to it before
adding it to the communication part.

STARPU_SCHED_BETA To estimate the cost of a task StarPU takes into account the estimated data transfer time
(obtained thanks to performance models). The beta factor is the coefficient to be applied to it before adding it
to the computation part.

STARPU_SCHED_GAMMA Define the execution time penalty of a joule (Energy-based Scheduling).

STARPU_SCHED_READY For a modular scheduler with sorted queues below the decision component, workers
pick up a task which has most of its data already available. Setting this to 0 disables this.

Generated by Doxygen

7.3 Configuring The Heteroprio Scheduler 29

STARPU_SCHED_SORTED_ABOVE For a modular scheduler with queues above the decision component, it is
usually sorted by priority. Setting this to 0 disables this.

STARPU_SCHED_SORTED_BELOW For a modular scheduler with queues below the decision component, they
are usually sorted by priority. Setting this to 0 disables this.

STARPU_IDLE_POWER Define the idle power of the machine (Energy-based Scheduling).
STARPU_PROFILING Enable on-line performance monitoring (Enabling On-line Performance Monitoring).

STARPU_CODELET_PROFILING Enable on-line performance monitoring of codelets (Per-codelet Feedback).
(enabled by default)

STARPU_PROF_PAPI_EVENTS Specify which PAPI events should be recorded in the trace (PAPI counters).

7.3 Configuring The Heteroprio Scheduler

7.3.1 Configuring LAHeteroprio

STARPU_HETEROPRIO_USE_LA Enable the locality aware mode of Heteroprio which guides the distribution of
tasks to workers in order to reduce the data transfers between memory nodes.

STARPU_LAHETEROPRIO_PUSH Choose between the different push strategies for locality aware Heteroprio:
WORKER, LcS, LS_SDH, LS_SDH2, LS_SDHB, LC_SMWB, AUTO (by default: AUTO). These are detailed
in Using locality aware Heteroprio

STARPU_LAHETEROPRIO_S_[ARCH] [ARCH] Specify the number of memory nodes contained in an affinity
group. An affinity group will be composed of the closest memory nodes to a worker of a given architecture,
and this worker will look for tasks available inside these memory nodes, before considering stealing tasks
outside this group. ARCH can be CPU, CUDA, OPENCL, SCC, MPI_MS, etc.

STARPU_LAHETEROPRIO_PRIO_STEP_[ARCH] [ARCH] Specify the number of buckets in the local memory
node in which a worker will look for available tasks, before this worker starts looking for tasks in other memory
nodes' buckets. ARCH indicates that this number is specific to a given arch which can be: CPU, CUDA,
OPENCL, SCC,MPI_MS, etc.

7.3.2 Configuring AutoHeteroprio

STARPU_HETEROPRIO_USE_AUTO_CALIBRATION Enable the auto calibration mode of Heteroprio which as-
sign priorities to tasks automatically

STARPU_HETEROPRIO_DATA_DIR Specify the path of the directory where Heteroprio stores data about pro-
gram executions. By default, these are stored in the same directory used by perfmodel.

STARPU_HETEROPRIO_DATA_FILE Specify the filename where Heteroprio will save data about the current pro-
gram's execution.

STARPU_HETEROPRIO_CODELET_GROUPING_STRATEGY Choose how Heteroprio groups similar tasks. It
can be 0 to group the tasks with the same perfmodel or the same codelet's name if no perfmodel was
assigned. Or, it could be 1 to group the tasks only by codelet's name.

STARPU_AUTOHETEROPRIO_PRINT_DATA_ON_UPDATE Enable the printing of priorities' data every time they
get updated.

STARPU_AUTOHETEROPRIO_PRINT_AFTER_ORDERING Enable the printing of priorities' order for each ar-
chitecture every time there's a reordering.

STARPU_AUTOHETEROPRIO_PRIORITY_ORDERING_POLICY Specify the heuristic which will be used to as-
sign priorities automatically. It should be an integer between 0 and 27.

STARPU_AUTOHETEROPRIO_ORDERING_INTERVAL Specify the period (in number of tasks pushed), be-
tween priorities reordering operations.

STARPU_AUTOHETEROPRIO_FREEZE_GATHERING Disable data gathering from task executions.

Generated by Doxygen

30 Execution Configuration Through Environment Variables

7.4 Extensions

SOCL_OCL_LIB_OPENCL Set the location of the file 1ibOpenCL. so of the OCL ICD implementation. The
SOCL test suite is only run when SOCL_OCL_LIB_OPENCL is defined.

OCL_ICD_VENDORS Set the directory where ICD files are installed. This is useful when using SOCL with Open<«
CLICD (https://forge.imag.fr/projects/ocl-icd/). Default directory is /etc/Open«
CL/vendors. StarPU installs ICD files in the directory $prefix/share/starpu/opencl/vendors.

STARPU_COMM_STATS Deprecated. You should use STARPU_MPI_STATS.

STARPU_MPI_STATS Enable (!= 0) or Disable (0) communication statistics for starpumpi (Debugging MPI). De-
fault value is Disable.

STARPU_MPI_CACHE Disable (0) or Enable (!= 0) communication cache for starpumpi (MPI Support). Default
value is Enable.

STARPU_MPI_COMM Enable (1) communication trace for starpumpi (MPI Support). Also needs for StarPU to
have been configured with the option --enable-verbose.

STARPU_MPI_CACHE_STATS Enable (1) statistics for the communication cache (MPI Support). Messages are
printed on the standard output when data are added or removed from the received communication cache.

STARPU_MPI_PRIORITIES Disable (0) the use of priorities to order MPI communications (MPI Support).

STARPU_MPI_NDETACHED_SEND Set the number of send requests that StarPU-MPI will emit concurrently.
Default value is 10. Setting it to 0 removes the limit of concurrent send requests.

STARPU_MPI_NREADY_PROCESS Setthe number of requests that StarPU-MPI will submit to MPI before polling
for termination of existing requests. Default value is 10. Setting it to 0 removes the limit: all requests to submit
to MPI will be submitted before polling for termination of existing ones.

STARPU_MPI_FAKE_SIZE Setting to a number makes StarPU believe that there are as many MPI nodes, even
if it was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big
cluster without actually running the rest. Of course, it does not provide computation results and timing.

STARPU_MPI_FAKE_RANK Setting to a number makes StarPU believe that it runs the given MPI node, even if it
was run on only one MPI node. This allows e.g. to simulate the execution of one of the nodes of a big cluster
without actually running the rest. Of course, it does not provide computation results and timing.

STARPU_MPI_COOP_SENDS Disable (0) dynamic collective operations: grouping same requests to different
nodes until the data becomes available and then use a broadcast tree to execute requests.
By now, it is only supported with the NewMadeleine library (see Using the NewMadeleine communication library).

STARPU_MPI_RECV_WAIT_FINALIZE Disable (1) releasing the write acquire of receiving handles when data is
received but the communication library still needs the data. Set to 0 by default to unlock as soon as possible
tasks which only require a read access on the handle; write access will become possible for tasks when the
communication library will not need the data anymore.

By now, it is only supported with the NewMadeleine library (see Using the NewMadeleine communication library).

STARPU_MPI_TRACE_SYNC_CLOCKS When mpi_sync_clocks is available, this library will be used to
have more precise clock synchronization in traces coming from different nodes. However, the clock syn-
chronization process can take some time (several seconds) and can be disabled by setting this variable to
0. In that case, a less precise but faster synchronization will be used. See Tracing MPI applications for more
details.

STARPU_MPI_DRIVER_CALL_FREQUENCY When set to a positive value, activates the interleaving of the ex-
ecution of tasks with the progression of MPI communications (MPI Support). The starpu_mpi_init_conf()
function must have been called by the application for that environment variable to be used. When set to 0,
the MPI progression thread does not use at all the driver given by users, and only focuses on making MPI
communications progress.

Generated by Doxygen

https://forge.imag.fr/projects/ocl-icd/

7.4 Extensions 31

STARPU_MPI_DRIVER_TASK_FREQUENCY When set to a positive value, the interleaving of the execution of
tasks with the progression of MPI communications mechanism to execute several tasks before checking com-
munication requests again (MPI Support). The starpu_mpi_init_conf() function must have been called by the
application for that environment variable to be used, and the STARPU_MPI_DRIVER_CALL_FREQUENCY
environment variable set to a positive value.

STARPU_MPI_MEM_THROTTLE When set to a positive value, this makes the starpu_mpi_sxrecvs functions block
when the memory allocation required for network reception overflows the available main memory (as typically
set by STARPU_LIMIT_CPU_MEM)

STARPU_MPI_EARLYDATA_ALLOCATE When set to 1, the MPI Driver will immediately allocate the data for
early requests instead of issuing a data request and blocking. Default value is 0, issuing a data re-
quest. Because it is an early request and we do not know its real priority, the data request will as-
sume STARPU_DEFAULT_PRIO. In cases where there are many data requests with priorities greater than
STARPU_DEFAULT_PRIO the MPI drive could be blocked for long periods.

STARPU_SIMGRID When set to 1 (default value is 0), this makes StarPU check that it was really build with
simulation support. This is convenient in scripts to avoid using a native version, that would try to update
performance models...

STARPU_SIMGRID_TRANSFER_COST When set to 1 (which is the default value), data transfers (over PCI bus,
typically) are taken into account in SimGrid mode.

STARPU_SIMGRID_CUDA_MALLOC_COST When set to 1 (which is the default value), CUDA malloc costs are
taken into account in SimGrid mode.

STARPU_SIMGRID_CUDA_QUEUE_COST When set to 1 (which is the default value), CUDA task and transfer
queueing costs are taken into account in SimGrid mode.

STARPU_PCI_FLAT When unset or set to 0, the platform file created for SimGrid will contain PCI bandwidths and
routes.

STARPU_SIMGRID_CUDA_QUEUE_COST When unset or set to 1, simulate within SimGrid the GPU transfer
queueing.

STARPU_MALLOC_SIMULATION_FOLD Define the size of the file used for folding virtual allocation, in MiB.
Default value is 1, thus allowing 64GiB virtual memory when Linux's sysct1l vm.max_map_count value
is the default 65535.

STARPU_SIMGRID_TASK_SUBMIT_COST When set to 1 (which is the default value), task submission costs are
taken into account in SimGrid mode. This provides more accurate SimGrid predictions, especially for the
beginning of the execution.

STARPU_SIMGRID_TASK_PUSH_COST When set to 1 (which is the default value), task push costs are taken
into account in SimGrid mode. This provides more accurate SimGrid predictions, especially with large de-
pendency arities.

STARPU_SIMGRID_FETCHING_INPUT_COST When setto 1 (which is the default value), fetching input costs are
taken into account in SimGrid mode. This provides more accurate SimGrid predictions, especially regarding
data transfers.

STARPU_SIMGRID_SCHED_COST When setto 1 (0 is the default value), scheduling costs are taken into account
in SimGrid mode. This provides more accurate SimGrid predictions, and allows studying scheduling overhead
of the runtime system. However, it also makes simulation non-deterministic.

STARPUPY_MULTI_INTERPRETER Enable (1) or disable (0) multi interpreters in the StarPU Python interface
(Multiple Interpreters). Default value is Disable.

STARPUPY_OWN_GIL Enable (1) or disable (0) using per-interpreter GIL (Python Parallelism). Default value is
Disable for now, until python is fully ready for this.

Generated by Doxygen

32 Execution Configuration Through Environment Variables

7.5 Miscellaneous And Debug

STARPU_HOME Specify the main directory in which StarPU stores its configuration files. Default value is SHOME
on Unix environments, and SUSERPROFILE on Windows environments.

STARPU_PATH Only used on Windows environments. Specify the main directory in which StarPU is installed
(Running a Basic StarPU Application on Microsoft Visual C)

STARPU_PERF_MODEL_DIR Specify the main directory in which StarPU stores its performance model files.
Default value is SSTARPU_HOME/ . starpu/sampling. See Storing Performance Model Files for more
details.

STARPU_PERF_MODEL_PATH Specify a list of directories separated with "' in which StarPU stores its perfor-
mance model files. See Storing Performance Model Files for more details.

STARPU_PERF_MODEL_HOMOGENEOUS_CPU When set to 0, StarPU will assume that CPU devices do not
have the same performance, and thus use different performance models for them, thus making kernel cali-
bration much longer, since measurements have to be made for each CPU core.

STARPU_PERF_MODEL_HOMOGENEOUS_CUDA When set to 1, StarPU will assume that all CUDA devices
have the same performance, and thus share performance models for them, thus allowing kernel calibration to
be much faster, since measurements only have to be once for all CUDA GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_OPENCL When set to 1, StarPU will assume that all OpenCL de-
vices have the same performance, and thus share performance models for them, thus allowing kernel cali-
bration to be much faster, since measurements only have to be once for all OpenCL GPUs.

STARPU_PERF_MODEL_HOMOGENEOUS_MPI_MS When set to 1, StarPU will assume that all MPI Slave de-
vices have the same performance, and thus share performance models for them, thus allowing kernel cali-
bration to be much faster, since measurements only have to be once for all MPI Slaves.

STARPU_HOSTNAME When set, force the hostname to be used when managing performance model files. Mod-
els are indexed by machine name. When running for example on a homogenenous cluster, it is possible to
share the models between machines by setting export STARPU_HOSTNAME=some_global_name.

STARPU_MPI_HOSTNAMES Similar to STARPU_HOSTNAME but to define multiple nodes on a heterogeneous
cluster. The variable is a list of hostnames that will be assigned to each StarPU-MPI rank considering their
position and the value of starpu_mpi_world_rank() on each rank. When running, for example, on a heteroge-
neous cluster, it is possible to set individual models for each machine by setting export STARPU_MPI+
_HOSTNAMES="name0O namel name2". Where rank 0 will receive name0, rank1 will receive namel,
and so on. This variable has precedence over STARPU_HOSTNAME.

STARPU_OPENCL_PROGRAM_DIR Specify the directory where the OpenCL codelet source files are lo-
cated. The function starpu_opencl_load_program_source() looks for the codelet in the current directory, in
the directory specified by the environment variable STARPU_OPENCL_PROGRAM_DIR, in the directory
share/starpu/opencl of the installation directory of StarPU, and finally in the source directory of
StarPU.

STARPU_SILENT Disable verbose mode at runtime when StarPU has been configured with the option
--enable-verbose. Also disable the display of StarPU information and warning messages.

STARPU_MPI_DEBUG_LEVEL_MIN Set the minimum level of debug when StarPU has been configured with the
option --enable-mpi-verbose.

STARPU_MPI_DEBUG_LEVEL_MAX Set the maximum level of debug when StarPU has been configured with
the option --enable-mpi-verbose.

STARPU_LOGFILENAME Specify in which file the debugging output should be saved to.
STARPU_FXT_PREFIX Specify in which directory to save the generated trace if FxT is enabled.

STARPU_FXT_SUFFIX Specify in which file to save the generated trace if FxT is enabled.

Generated by Doxygen

7.5 Miscellaneous And Debug 33

STARPU_FXT_TRACE Enable (1) or disable (0) the FxT trace generationin /tmp/prof_file XXX_YYY (the
directory and file name can be changed with STARPU_FXT_PREFIX and STARPU_FXT_SUFFIX). Default
value is Disable.

STARPU_FXT_EVENTS Specify which events will be recorded in traces. By default, all events (but VERBOSE«
_EXTRA ones) are recorded. One can set this variable to a comma- or pipe-separated list of the following
categories, to record only events belonging to the selected categories:

* USER
¢ TASK
¢ TASK_VERBOSE
* TASK_VERBOSE_EXTRA
« DATA
* DATA_VERBOSE
¢ WORKER
* WORKER_VERBOSE
* DSM
* DSM_VERBOSE
* SCHED
¢ SCHED_VERBOSE
* LOCK
¢ LOCK_VERBOSE
¢ EVENT
* EVENT_VERBOSE
e MPT
* MPI_VERBOSE
¢« MPI_VERBOSE_EXTRA
* HYP
* HYP_VERBOSE
The choice of which categories have to be recorded is a tradeoff between required information for offline

analyzis and acceptable overhead introduced by tracing. For instance, to inspect with ViTE which tasks
workers execute, one has to at least select the TASK category.

Events in VERBOSE_EXTRA are very costly to record and can have an important impact on application
performances. This is why there are disabled by default, and one has to explicitly select their categories
using this variable to record them.

STARPU_LIMIT_CUDA_devid MEM Specify the maximum number of megabytes that should be available to the
application on the CUDA device with the identifier devid. This variable is intended to be used for experi-
mental purposes as it emulates devices that have a limited amount of memory. When defined, the variable
overwrites the value of the variable STARPU_LIMIT_CUDA_MEM.

STARPU_LIMIT_CUDA_MEM Specify the maximum number of megabytes that should be available to the appli-
cation on each CUDA devices. This variable is intended to be used for experimental purposes as it emulates
devices that have a limited amount of memory.

STARPU_LIMIT_OPENCL_devid_MEM Specify the maximum number of megabytes that should be available to
the application on the OpenCL device with the identifier devid. This variable is intended to be used for
experimental purposes as it emulates devices that have a limited amount of memory. When defined, the
variable overwrites the value of the variable STARPU_LIMIT_OPENCL_MEM.

STARPU_LIMIT_OPENCL_MEM Specify the maximum number of megabytes that should be available to the ap-
plication on each OpenCL devices. This variable is intended to be used for experimental purposes as it
emulates devices that have a limited amount of memory.

Generated by Doxygen

34 Execution Configuration Through Environment Variables

STARPU_LIMIT_HIP_devid_MEM Specify the maximum number of megabytes that should be available to the
application on the HIP device with the identifier devid. This variable is intended to be used for experimental
purposes as it emulates devices that have a limited amount of memory. When defined, the variable overwrites
the value of the variable STARPU_LIMIT_HIP_MEM.

STARPU_LIMIT_HIP_MEM Specify the maximum number of megabytes that should be available to the application
on each HIP devices. This variable is intended to be used for experimental purposes as it emulates devices
that have a limited amount of memory.

STARPU_LIMIT_CPU_MEM Specify the maximum number of megabytes that should be available to the applica-
tion in the main CPU memory. Setting it enables allocation cache in main memory. Setting it to zero lets
StarPU overflow memory.

Note: for now not all StarPU allocations get throttled by this parameter. Notably MPI reception are not throttled
unless STARPU_MPI_MEM_THROTTLE is set to 1.

STARPU_LIMIT_CPU_NUMA_devid_MEM Specify the maximum number of megabytes that should be avail-
able to the application on the NUMA node with the OS identifier devid. Setting it overrides the value of
STARPU_LIMIT_CPU_MEM.

STARPU_LIMIT_CPU_NUMA_MEM Specify the maximum number of megabytes that should be available
to the application on each NUMA node. This is the same as specifying that same amount with
STARPU_LIMIT_CPU_NUMA_devid MEM for each NUMA node number. The total memory available
to StarPU will thus be this amount multiplied by the number of NUMA nodes used by StarPU. Any
STARPU_LIMIT_CPU_NUMA_devid_MEM additionally specified will take over STARPU_LIMIT_CPU_NUMA_MEM.

STARPU_LIMIT_BANDWIDTH Specify the maximum available PCI bandwidth of the system in MB/s. This can
only be effective with simgrid simulation. This allows to easily override the bandwidths stored in the platform
file generated from measurements on the native system. This can thus be used accelerate or slow down the
system bandwidth.

STARPU_SUBALLOCATOR Enable (1) or disable (0) the StarPU suballocator. Default value is to enable it to
amortize the cost of GPU and pinned RAM allocations for small allocations: StarPU allocate large chunks of
memory at a time, and suballocates the small buffers within them.

STARPU_MINIMUM_AVAILABLE_MEM Specify the minimum percentage of memory that should be available in
GPUs, i.e. not used at all by StarPU (or in main memory, when using out of core), below which a eviction
pass is performed. Default value is 0%.

STARPU_TARGET_AVAILABLE_MEM Specify the target percentage of memory that should be available in
GPUs, i.e. not used at all by StarPU (or in main memory, when using out of core), when performing a
periodic eviction pass. Default value is 0%.

STARPU_MINIMUM_CLEAN_BUFFERS Specify the minimum percentage of number of buffers that should be
clean in GPUs (or in main memory, when using out of core), i.e. used by StarPU, but for which a copy
is available in memory (or on disk, when using out of core), below which asynchronous writebacks will be
issued. Default value is 5%.

STARPU_TARGET_CLEAN_BUFFERS Specify the target percentage of number of buffers that should be
reached in GPUs (or in main memory, when using out of core), i.e. used by StarPU, but for which a copy
is available in memory (or on disk, when using out of core), when performing an asynchronous writeback
pass. Default value is 10%.

STARPU_DISK_SWAP Specify a path where StarPU can push data when the main memory is getting full.

STARPU_DISK_SWAP_BACKEND Specify the backend to be used by StarPU to push data when the main mem-
ory is getting full. Default value is unistd (i.e. using read/write functions), other values are stdio (i.e.
using fread/fwrite), unistd_o_direct (i.e. using read/write with O_DIRECT), leveldb (i.e. using a
leveldb database), and hd£5 (i.e. using HDF5 library).

STARPU_DISK_SWAP_SIZE Specify the maximum size in MiB to be used by StarPU to push data when the main
memory is getting full. Default value is unlimited.

Generated by Doxygen

7.5 Miscellaneous And Debug 35

STARPU_LIMIT_MAX_SUBMITTED_TASKS Allow users to control the task submission flow by speci-
fying to StarPU a maximum number of submitted tasks allowed at a given time, i.e. when this
limit is reached task submission becomes blocking until enough tasks have completed, specified by
STARPU_LIMIT_MIN_SUBMITTED_TASKS. Setting it enables allocation cache buffer reuse in main memory.
See How To Reduce The Memory Footprint Of Internal Data Structures.

STARPU_LIMIT_MIN_SUBMITTED_TASKS Allow users to control the task submission flow by specifying
to StarPU a submitted task threshold to wait before unblocking task submission. This variable has
to be used in conjunction with STARPU_LIMIT_MAX_SUBMITTED_TASKS which puts the task sub-
mission thread to sleep. Setting it enables allocation cache buffer reuse in main memory. See
How To Reduce The Memory Footprint Of Internal Data Structures.

STARPU_TRACE_BUFFER_SIZE Set the buffer size for recording trace events in MiB. Setting it to a big size
allows to avoid pauses in the trace while it is recorded on the disk. This however also consumes memory, of
course. Default value is 64.

STARPU_GENERATE_TRACE When set to 1, indicate that StarPU should automatically generate a Paje trace
when starpu_shutdown() is called.

STARPU_GENERATE_TRACE_OPTIONS When the variable STARPU_GENERATE_TRACE is set to 1 to gen-
erate a Paje trace, this variable can be set to specify options (see starpu_fxt_tool -help).

STARPU_ENABLE_STATS Enable gathering various data statistics (Data Statistics).

STARPU_MEMORY_STATS When set to 0, disable the display of memory statistics on data which have not been
unregistered at the end of the execution (Memory Feedback).

STARPU_MAX_MEMORY_USE When set to 1, display at the end of the execution the maximum memory used
by StarPU for internal data structures during execution.

STARPU_BUS_STATS Enable the display of data transfers statistics when calling starpu_shutdown()
(Profiling). By default, statistics are printed on the standard error stream, use the environment variable
STARPU_BUS_STATS_FILE to define another filename.

STARPU_BUS_STATS_FILE Define the name of the file where to display data transfers statistics, see
STARPU_BUS_STATS.

STARPU_WORKER_STATS Enable the display of workers statistics when calling starpu_shutdown() (Profiling).
When combined with the environment variable STARPU_PROFILING, it displays the energy consumption
(Energy-based Scheduling). By default, statistics are printed on the standard error stream, use the environ-
ment variable STARPU_WORKER_STATS_FILE to define another filename.

STARPU_WORKER_STATS_FILE Define the name of the file where to display workers statistics, see
STARPU_WORKER_STATS.

STARPU_STATS When set to 0, data statistics will not be displayed at the end of the execution of an application
(Data Statistics).

STARPU_WATCHDOG_TIMEOUT When set to a value other than 0, allows to make StarPU print an er-
ror message whenever StarPU does not terminate any task for the given time (in ps), but lets the ap-
plication continue normally. Should be used in combination with STARPU_WATCHDOG_CRASH (see
Detecting Stuck Conditions).

STARPU_WATCHDOG_CRASH When set to a value other than 0, trigger a crash when the watch dog is reached,
thus allowing to catch the situation in gdb, etc (see Detecting Stuck Conditions)

STARPU_WATCHDOG_DELAY Delay the activation of the watchdog by the given time (in us). This can be con-
venient for letting the application initialize data etc. before starting to look for idle time.

STARPU_TASK_PROGRESS Print the progression of tasks. This is convenient to determine whether a program
is making progress in task execution, or is just stuck.

STARPU_TASK_BREAK_ON_PUSH When this variable contains a job id, StarPU will raise SIGTRAP when
the task with that job id is being pushed to the scheduler, which will be nicely caught by debuggers (see
Debugging Scheduling)

Generated by Doxygen

36 Execution Configuration Through Environment Variables

STARPU_TASK_BREAK_ON_SCHED When this variable contains a job id, StarPU will raise STGTRAP when
the task with that job id is being scheduled by the scheduler (at a scheduler-specific point), which will be
nicely caught by debuggers. This only works for schedulers which have such a scheduling point defined (see
Debugging Scheduling)

STARPU_TASK_BREAK_ON_POP When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being popped from the scheduler, which will be nicely caught by debuggers (see
Debugging Scheduling)

STARPU_TASK_BREAK_ON_EXEC When this variable contains a job id, StarPU will raise SIGTRAP when the
task with that job id is being executed, which will be nicely caught by debuggers (see Debugging Scheduling)

STARPU_DISABLE_KERNELS When set to a value other than 1, it disables actually calling the kernel func-
tions, thus allowing to quickly check that the task scheme is working properly, without performing the actual
application-provided computation.

STARPU_HISTORY_MAX_ERROR History-based performance models will drop measurements which are really
far froom the measured average. This specifies the allowed variation. Default value is 50 (%), i.e. the
measurement is allowed to be x1.5 faster or /1.5 slower than the average.

STARPU_RAND_SEED The random scheduler and some examples use random numbers for their own working.
Depending on the examples, the seed is by default juste always 0 or the current time() (unless SimGrid mode
is enabled, in which case it is always 0). STARPU_RAND_SEED allows to set the seed to a specific value.

STARPU_GLOBAL_ARBITER When set to a positive value, StarPU will create a arbiter, which implements an
advanced but centralized management of concurrent data accesses (see Concurrent Data Accesses).

STARPU_USE_NUMA When defined to 1, NUMA nodes are taking into account by StarPU, i.e. StarPU will expose
one StarPU memory node per NUMA node, and will thus schedule tasks according to data locality, migrated
data when appropriate, etc.

STARPU_MAIN_RAM is then associated to the NUMA node associated to the first CPU worker if it exists, the
NUMA node associated to the first GPU discovered otherwise. If StarPU doesn't find any NUMA node after
these steps, STARPU_MAIN_RAM is the first NUMA node discovered by StarPU.

Applications should thus rather pass a NULL pointer and a -1 memory node to starpu_data_x_«
register functions, so that StarPU can manage memory as it wishes.

If the application wants to control memory allocation on NUMA nodes for some data, it can use
starpu_malloc_on_node and pass the memory node to the starpu_data_x_register func-
tions to tell StarPU where the allocation was made. starpu_memory_nodes_get_count_by kind() and
starpu_memory_node_get_ids_by type() can be used to get the memory nodes numbers of the CPU
memory nodes.

starpu_memory_nodes_numa_id_to_devid() and starpu_memory_nodes_numa_devid_to_id() are also avail-
able to convert between OS NUMA id and StarPU memory node number.
If this variable is unset, or set to 0, CPU memory is considered as only one memory node

(STARPU_MAIN_RAM) and it will be up to the OS to manage migration etc. and the StarPU scheduler
will not know about it.

STARPU_IDLE_FILE When defined, a file named after its contents will be created at the end of the execution.
This file will contain the sum of the idle times of all the workers.

STARPU_HWLOC_INPUT When defined to the path of an XML file, hwloc will use this file as input instead of
detecting the current platform topology, which can save significant initialization time.

To produce this XML file, use 1stopo file.xml

STARPU_CATCH_SIGNALS By default, StarPU catch signals SIGINT, SIGSEGV and SIGTRAP to perform
final actions such as dumping FxT trace files even though the application has crashed. Setting this variable
to a value other than 1 will disable this behaviour. This should be done on JVM systems which may use these
signals for their own needs. The flag can also be set through the field starpu_conf::catch_signals.

STARPU_DISPLAY_BINDINGS Display the binding of all processes and threads running on the machine. If MPI
is enabled, display the binding of each node.
Users can manually display the binding by calling starpu_display_bindings().

Generated by Doxygen

7.6 Configuring The Hypervisor 37

7.6 Configuring The Hypervisor

SC_HYPERVISOR_POLICY Choose between the different resizing policies proposed by StarPU for the
hypervisor: idle, app_driven, feft_1lp,teft_1p, ispeed_1lp, throughput_1lp etc.

Use SC_HYPERVISOR_POLICY=help to get the list of available policies for the hypervisor

SC_HYPERVISOR_TRIGGER_RESIZE Choose how should the hypervisor be triggered: speed if the resizing
algorithm should be called whenever the speed of the context does not correspond to an optimal precomputed
value, id1le it the resizing algorithm should be called whenever the workers are idle for a period longer than
the value indicated when configuring the hypervisor.

SC_HYPERVISOR_START_RESIZE Indicate the moment when the resizing should be available. The value cor-
respond to the percentage of the total time of execution of the application. Default value is the resizing frame.

SC_HYPERVISOR_MAX_SPEED_GAP Indicate the ratio of speed difference between contexts that should trigger
the hypervisor. This situation may occur only when a theoretical speed could not be computed and the
hypervisor has no value to compare the speed to. Otherwise the resizing of a context is not influenced by the
the speed of the other contexts, but only by the the value that a context should have.

SC_HYPERVISOR_STOP_PRINT By default the values of the speed of the workers is printed during the execution
of the application. If the value 1 is given to this environment variable this printing is not done.

SC_HYPERVISOR_LAZY_RESIZE By default the hypervisor resizes the contexts in a lazy way, that is workers
are firstly added to a new context before removing them from the previous one. Once this workers are clearly
taken into account into the new context (a task was popped there) we remove them from the previous one.
However if the application would like that the change in the distribution of workers should change right away
this variable should be set to 0

SC_HYPERVISOR_SAMPLE_CRITERIA By default the hypervisor uses a sample of flops when computing the
speed of the contexts and of the workers. If this variable is set to t ime the hypervisor uses a sample of time
(10% of an approximation of the total execution time of the application)

Generated by Doxygen

38

Execution Configuration Through Environment Variables

Generated by Doxygen

Chapter 8

Configuration and initialization

This section explains the relationship between configure options, compilation options and environment variables
used by StarPU.

1. Configure options are used during the installation process to enable or disable specific features and libraries.
These options are set using flags like --enable-maxcpus, which can be used to set the maximum number of
CPUs that can be used by StarPU.

2. Compilation options are used to set specific parameters during the compilation process, such as the opti-
mization level, architecture type, and debugging options.

3. Environment variables are used to set runtime parameters and control the behavior of the StarPU library. For
example, the STARPU_NCPUS environment variable can be used to specify the number of CPUs to use at
runtime, overriding the value set during compilation or installation.

Options can also be set with the different fields of the starpu_conf parameter given to starpu_init(), such as
starpu_conf::ncpus, which is used to specify the number of CPUs that StarPU should use for computations.

Generated by Doxygen

40

Configuration and initialization

Generated by Doxygen

Part i

StarPU Basics

Generated by Doxygen

Chapter 9

Organization

This part presents the basic knowledge of StarPU. It should be read to understand how StarPU works and how to
execute a basic StarPU application.

» Chapter StarPU Applications, setting up Your Own Code shows how to create and run your own StarPU ap-
plications.

» Chapter Basic Examples shows how to implement simple programs that submit tasks to StarPU.

» Chapter Full source code for the 'Scaling a Vector’ example gives the full source code for a vector scaling
application.

The next chapters cover the most important and core concepts in StarPU:
» Chapter Tasks In StarPU explains the basic information on tasks management.

» Chapter Data Management shows how to manage the data layout of your application data by using the differ-
ent data interfaces provided by StarPU.

» Chapter Scheduling explains the scheduling policies provided by StarPU.

Some examples applications are provided from the StarPU sources for you to try. Chapter Examples in StarPU Sources
lists these applications.

Generated by Doxygen

44

Organization

Generated by Doxygen

Chapter 10

StarPU Applications

10.1 Setting Flags for Compiling, Linking and Running Applications

StarPU provides a pkg—config executable to facilitate the retrieval of necessary compiler and linker flags. This
is useful when compiling and linking an application with StarPU, as certain flags or libraries (such as CUDA or
libspe2) may be required.

If StarPU is not installed in a standard location, the path of StarPU's library must be specified in the environment
variable PKG_CONFIG_PATH to allow pkg—config to find it. For example, if StarPU is installed in $STARPU+«+
_PATH, you can set the variable PKG_CONFIG_PATH like this:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:S$STARPU_PATH/lib/pkgconfig

The flags required to compile or link against StarPU are then accessible with the following commands:

$ pkg-config --cflags starpu-1.4 # options for the compiler
$ pkg-config --libs starpu-1.4 # options for the linker

Please note that it is still possible to use the API provided in StarPU version 1.0 by calling pkg—config with the
starpu-1.0 package. Similar packages are provided for starpumpi-1.0 and starpufft-1.0. For the
API provided in StarPU version 0.9, you can use pkg—config with the 1ibstarpu package. Similar packages
are provided for 1ibstarpumpi and 1ibstarpufft.

Make sure that pkg-config